research communications
E)-3-(2-hydroxy-4-methylphenyl)-1-(2,4,6-trimethoxyphenyl)prop-2-en-1-one
of (aSchool of Chemical Sciences, Universiti Sains Malaysia, Penang 11800 USM, Malaysia, and bDepartment of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
*Correspondence e-mail: melati@usm.my
The title chalcone derivative, C19H20O5, adopts a trans configuration with respect to the olefinic C=C double bond. The 2-hydroxy-4-methylphenyl ring is coplanar with the attached enone bridge [torsion angle = −179.96 (14)°], where this plane is nearly perpendicular to the 2,4,6-trimethoxyphenyl ring [dihedral angle = 75.81 (8)°]. In the crystal, molecules are linked into chains propagating along [010] by an O—H⋯O hydrogen bond. These chains are further connected into centrosymmetric dimer chains via weak C—H⋯O interactions. The conformations of related chalcone derivatives are surveyed and all of these structures adopt a skeleton with two almost orthogonal aromatic rings.
Keywords: crystal structure; chalcone; enone bridge; O—H⋯O interaction; data survey.
CCDC reference: 1946810
1. Chemical context
et al., 2004; Sahu et al., 2012). Structurally, they consist of two linked by an α, β-unsaturated ketone system (Ibrahim et al., 2012; Kumar et al., 2013), whereby the can carry a variety of substituents such as hydroxyl, methoxy and alkenyl groups, which are by far the most commonly encountered ones in nature. With their structural simplicity and the associated ease of synthesis, chalcone compounds have attracted a considerable amount of attention because of their important pharmacological properties such as anti-oxidative (Aoki et al., 2008), anti-inflammatory (Israf et al., 2007), anti-gout (Jang et al., 2014), anti-histaminic (Yamamoto et al., 2004), anti-obesity (Birari et al., 2011), anti-protozoal (Chen et al., 1993), hypnotic (Cho et al., 2011) and anti-spasmodic (Sato et al., 2007) effects. In a continuation of our ongoing research on the properties of various chalcone derivatives (Sim et al., 2017, Kwong et al., 2018), we report herein the synthesis and determination of the title compound, C19H20O5, (I).
(1,3-diarylprop-2-en-1-ones) are precursors of and in the plant kingdom (Ni2. Structural commentary
The title chalcone derivative (I), crystallizes in the centrosymmetric triclinic P and its consists of a single unique molecule (Fig. 1). This molecule is constructed of two substituted aromatic rings (2-hydroxy-4-methylphenyl and 2,4,6-trimethoxyphenyl) and an enone (–CH=CH—(C=O)–) connecting bridge. In the enone bridge, the C6—C7, C8—C9 and C9—C10 bond lengths of 1.446 (2), 1.441 (2) and 1.504 (2) Å, respectively, confirm their single-bond character, whereas the C7=C8 and C9=O2 bond lengths of 1.340 (2) and 1.2255 (17) Å, respectively, confirm the presence of a double bond. In addition, the C6—C7—C8 and C8—C9—C10 bond angles of 128.71 (13) and 119.47 (11)°, respectively, are consistent with the sp2 of atoms C7, C8 and C9 (Kerr et al., 2001; Loghmani-Khouzani et al., 2009; Grealis et al., 2013). As the olefinic double bond C7=C8 adopts a trans configuration [C6—C7—C8—C9 torsion angle = −179.96 (14)°], the structural conformation of (I) can be defined by three torsion angles. The torsion angles between the 2-hydroxy-4-methylphenyl ring and the olefinic double bond (C5—C6—C7—C8, τ1), between the olefinic double bond and the carbonyl group (C7—C8—C9—C10, τ2) and between the carbonyl group and the 2,4,6-trimethoxyphenyl ring (C8—C9—C10—C11, τ3) are shown in Fig. 2. The torsion angles τ1 and τ2 are approximately ±180° or 0° [τ1 = −179.15 (14)° and τ2 = −0.8 (2)°], indicating that the 2-hydroxy-4-methylphenyl ring and the enone bridge are coplanar. In contrast, the carbonyl group is nearly perpendicular to the attached 2,4,6-trimethoxyphenyl ring, as τ3 is 76.87 (19)°. In general, the molecule of (I) can be considered as two individual planes, the first comprising the 2-hydroxy-4-methylphenyl ring and the enone bridge [maximum deviation of 0.0021 (2) Å for atom C19], and the second the 2,4,6-trimethoxyphenyl ring [maximum deviation of 0.0059 (2) Å for atom C18]. These two mean planes form a dihedral angle of 75.84 (4)°, hence the molecule of (I) possesses a skeleton with two almost orthogonal aromatic rings.
3. Supramolecular features
In the crystal, the molecules are linked into chains parallel to the b axis via classical O1—H1B⋯O2i hydrogen bonds (Fig. 3a). These chains are further connected into inversion-related dimeric chains by weak C17—H17A⋯O1ii intermolecular interactions (Fig. 3b, Table 1).
4. Database survey
A search of the Cambridge Structural Database (CSD version 5.40, last update May 2019; Groom et al., 2016) using (E)-3-phenyl-1-(2,4,6-trimethoxyphenyl)prop-2-en-1-one as the reference moiety resulted in three chalcone structures containing 2,4,6-trimethoxyphenyl with different substituents. They include (E)-3-(R1)-1-(2,4,6-trimethoxyphenyl)prop-2-en-1-one, where R1 = 2,4,6-trimethoxyphenyl (BAGXEN; Kerr et al., 2001), 6-nitrobenzo[d][1,3]dioxol-5-yl (BUFMOF; Loghmani-Khouzani et al., 2009) and 4-methoxyphenyl (GESRAZ; Grealis et al., 2013). As in (I), the molecules of all these structures adopt a trans configuration with respect to C=C double bond (C6—C7—C8—C9 torsion angles = 175.5–179.1°). Although, τ1 for all of the structures indicates an anti-periplanar conformation (Table 2), in BUFMOF it deviates slightly from planarity (τ1 = 152.7°) whereas τ1 for the other molecules is approximately 180° (τ1 = 174.1–176.0°, Table 2). Regarding the enone bridge, the torsion angle τ2 indicates that all of the structures are relatively planar (τ2 = −4.8–7.6°). The torsion angles τ3 always almost indicate a perpendicular arrangement (τ3 = 67.6–88.6°). This might arise from the steric repulsion between the carbonyl group and the attached 2,4,6-trimethoxyphenyl ring. This results in an overall L-shape for all of the structures, with the dihedral angle between the mean planes of the two aromatic rings being 61.6–80.4°.
5. Synthesis and crystallization
A reaction scheme for the synthesis of the title compound is given in Fig. 4. A solution of trimethoxyacetophenone (2 mmol) in 20 mL MeOH, LiOH (2.4 mmol) and 2-hydroxy-4-methylbenzaldehyde (1.6 mmol) was stirred at 368 K and the reaction progress was monitored by TLC. The reaction was quenched with diluted hydrochloric acid to pH = 6 and extracted with ethyl acetate. The organic layer was washed with aqueous NaHCO3, water, and brine, successively. The organic layer was dried over anhydrous Na2SO4 and then concentrated to provide the product as a brown powder. The residue was purified by with petroleum ether/ethyl acetate (10:1) as an to afford the target compound (Yan et al., 2016). Slow evaporation from an acetonitrile–water mixture provided X-ray quality crystals for the target chalcone compound.
(E)-3-(2-hydroxy-4-methylphenyl)-1-(2,4,6-trimethoxyphenyl)prop-2-en-1-one (I)
Brown powder, yield 84.1%. m.p. 503–506 K. IR (cm−1): 3283 (O—H), 2929 and 2842 (Csp3—H), 1603 (C=O), 1586 and 1457 (C=C). 1H NMR (500 MHz, DMSO-d6) δ, ppm: 10.02 (s, 1H), 7.45 (d, J = 16.2 Hz, 1H), 7.44 (d, J = 7.0 Hz, 1H), 6.86 (d, J = 16.2 Hz, 1H), 6.65 (d, J = 8.0 Hz, 2H), 6.30 (s, 2H), 3.83 (s, 3H), 3.70 (s, 6H), 2.23 (s, 3H). 13C-NMR (125 MHz, DMSO-d6) δ, ppm: 194.3, 162.2, 158.4, 157.1, 142.5, 140.2, 128.8, 127.9, 121.1, 118.9, 117.0, 111.9, 91.6, 56.2, 55.9, 21.6. CHN Elemental analysis: Calculated for C19H20O5: C, 69.50; H, 6.14; N. Found: C, 67.81; H, 5.72; N, 0.00.
6. Refinement
Crystal data, data collection and structure . C-bound H atoms were positioned geometrically (C—H = 0.93–0.96 Å) and refined using a riding model with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C–methyl). The O-bound hydrogen was located from difference-Fourier maps and refined freely with O—H = 0.82 Å.
details are summarized in Table 3
|
Supporting information
CCDC reference: 1946810
https://doi.org/10.1107/S2056989019011289/jj2214sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019011289/jj2214Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989019011289/jj2214Isup3.cml
Data collection: APEX2 (Bruker, 2012); cell
SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: SHELXL2013 (Sheldrick, 2015) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2015) and PLATON (Spek, 2009).C19H20O5 | Z = 2 |
Mr = 328.35 | F(000) = 348 |
Triclinic, P1 | Dx = 1.275 Mg m−3 |
a = 6.8072 (3) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 8.5792 (4) Å | Cell parameters from 6606 reflections |
c = 15.8010 (7) Å | θ = 2.5–25.7° |
α = 100.365 (1)° | µ = 0.09 mm−1 |
β = 99.433 (1)° | T = 296 K |
γ = 104.984 (1)° | Block, brown |
V = 855.09 (7) Å3 | 0.57 × 0.25 × 0.21 mm |
Bruker APEXII DUO CCD area-detector diffractometer | 5018 independent reflections |
Radiation source: fine-focus sealed tube | 3199 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.030 |
φ and ω scans | θmax = 30.1°, θmin = 1.3° |
Absorption correction: multi-scan (SADABS; Bruker, 2012) | h = −9→9 |
Tmin = 0.908, Tmax = 0.950 | k = −12→12 |
33448 measured reflections | l = −22→22 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.052 | H-atom parameters constrained |
wR(F2) = 0.171 | w = 1/[σ2(Fo2) + (0.0776P)2 + 0.1331P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max < 0.001 |
5018 reflections | Δρmax = 0.27 e Å−3 |
217 parameters | Δρmin = −0.19 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.64130 (18) | 0.04792 (12) | 0.33273 (7) | 0.0582 (3) | |
H1B | 0.622234 | −0.051206 | 0.330607 | 0.087* | |
O2 | 0.5594 (2) | 0.71937 (13) | 0.28620 (9) | 0.0750 (4) | |
O3 | 0.82818 (19) | 0.58546 (15) | 0.17162 (8) | 0.0718 (4) | |
O4 | 0.3336 (2) | 0.11733 (16) | −0.04471 (7) | 0.0741 (4) | |
O5 | 0.18978 (18) | 0.33623 (15) | 0.22860 (8) | 0.0653 (3) | |
C1 | 0.7621 (3) | 0.3898 (2) | 0.52362 (11) | 0.0587 (4) | |
H1A | 0.765072 | 0.500561 | 0.536913 | 0.070* | |
C2 | 0.8168 (3) | 0.3175 (2) | 0.59089 (11) | 0.0636 (4) | |
H2A | 0.856694 | 0.379893 | 0.648810 | 0.076* | |
C3 | 0.8134 (2) | 0.1518 (2) | 0.57349 (10) | 0.0576 (4) | |
C4 | 0.7548 (2) | 0.0621 (2) | 0.48690 (10) | 0.0536 (4) | |
H4A | 0.752792 | −0.048531 | 0.474238 | 0.064* | |
C5 | 0.6988 (2) | 0.13422 (17) | 0.41849 (9) | 0.0462 (3) | |
C6 | 0.7017 (2) | 0.30075 (17) | 0.43524 (9) | 0.0461 (3) | |
C7 | 0.6399 (2) | 0.37021 (17) | 0.36199 (9) | 0.0462 (3) | |
H7A | 0.600214 | 0.297697 | 0.306638 | 0.055* | |
C8 | 0.6322 (2) | 0.52507 (17) | 0.36314 (10) | 0.0530 (4) | |
H8A | 0.670606 | 0.601882 | 0.417082 | 0.064* | |
C9 | 0.5668 (2) | 0.57758 (17) | 0.28428 (10) | 0.0506 (3) | |
C10 | 0.5066 (2) | 0.45590 (17) | 0.19626 (10) | 0.0474 (3) | |
C11 | 0.3145 (2) | 0.33383 (18) | 0.16927 (10) | 0.0496 (3) | |
C12 | 0.2590 (2) | 0.2222 (2) | 0.08827 (10) | 0.0553 (4) | |
H12A | 0.130137 | 0.141133 | 0.070877 | 0.066* | |
C13 | 0.3996 (3) | 0.23348 (19) | 0.03331 (10) | 0.0539 (4) | |
C14 | 0.5911 (2) | 0.35440 (19) | 0.05781 (10) | 0.0528 (4) | |
H14A | 0.683280 | 0.361673 | 0.020255 | 0.063* | |
C15 | 0.6426 (2) | 0.46422 (18) | 0.13936 (10) | 0.0502 (3) | |
C16 | 0.9764 (3) | 0.6078 (3) | 0.11824 (14) | 0.0747 (5) | |
H16A | 1.098130 | 0.697163 | 0.149806 | 0.112* | |
H16B | 1.014327 | 0.507669 | 0.103655 | 0.112* | |
H16C | 0.917128 | 0.633866 | 0.065061 | 0.112* | |
C17 | 0.4721 (4) | 0.1217 (3) | −0.10396 (12) | 0.0798 (6) | |
H17A | 0.408006 | 0.034279 | −0.156077 | 0.120* | |
H17B | 0.501338 | 0.226820 | −0.119882 | 0.120* | |
H17C | 0.599756 | 0.106887 | −0.075655 | 0.120* | |
C18 | −0.0021 (3) | 0.2085 (3) | 0.21029 (14) | 0.0741 (5) | |
H18A | −0.072792 | 0.225952 | 0.257352 | 0.111* | |
H18B | −0.087708 | 0.210054 | 0.155938 | 0.111* | |
H18C | 0.024368 | 0.102923 | 0.205183 | 0.111* | |
C19 | 0.8715 (3) | 0.0699 (3) | 0.64692 (12) | 0.0785 (6) | |
H19A | 0.908022 | 0.148913 | 0.702583 | 0.118* | |
H19B | 0.755129 | −0.021899 | 0.646508 | 0.118* | |
H19C | 0.988302 | 0.030616 | 0.638320 | 0.118* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0834 (8) | 0.0397 (5) | 0.0461 (6) | 0.0191 (5) | 0.0077 (5) | 0.0007 (4) |
O2 | 0.1156 (11) | 0.0394 (6) | 0.0798 (8) | 0.0294 (6) | 0.0388 (8) | 0.0135 (5) |
O3 | 0.0660 (7) | 0.0665 (7) | 0.0692 (8) | −0.0007 (6) | 0.0305 (6) | −0.0029 (6) |
O4 | 0.0803 (9) | 0.0796 (8) | 0.0461 (6) | 0.0084 (7) | 0.0123 (6) | −0.0022 (6) |
O5 | 0.0577 (7) | 0.0702 (7) | 0.0659 (7) | 0.0118 (5) | 0.0271 (6) | 0.0090 (6) |
C1 | 0.0631 (9) | 0.0534 (8) | 0.0508 (8) | 0.0140 (7) | 0.0116 (7) | −0.0047 (7) |
C2 | 0.0594 (9) | 0.0766 (11) | 0.0441 (8) | 0.0141 (8) | 0.0094 (7) | −0.0018 (7) |
C3 | 0.0434 (8) | 0.0790 (11) | 0.0486 (8) | 0.0153 (7) | 0.0102 (6) | 0.0146 (7) |
C4 | 0.0527 (8) | 0.0538 (8) | 0.0543 (8) | 0.0169 (7) | 0.0119 (7) | 0.0113 (7) |
C5 | 0.0454 (7) | 0.0463 (7) | 0.0431 (7) | 0.0118 (6) | 0.0099 (6) | 0.0030 (6) |
C6 | 0.0432 (7) | 0.0440 (7) | 0.0464 (7) | 0.0097 (5) | 0.0117 (6) | 0.0018 (6) |
C7 | 0.0476 (7) | 0.0406 (7) | 0.0466 (7) | 0.0112 (5) | 0.0130 (6) | 0.0009 (5) |
C8 | 0.0607 (9) | 0.0413 (7) | 0.0523 (8) | 0.0129 (6) | 0.0163 (7) | −0.0009 (6) |
C9 | 0.0586 (8) | 0.0357 (6) | 0.0600 (9) | 0.0137 (6) | 0.0246 (7) | 0.0074 (6) |
C10 | 0.0557 (8) | 0.0403 (7) | 0.0507 (8) | 0.0185 (6) | 0.0173 (6) | 0.0108 (6) |
C11 | 0.0525 (8) | 0.0491 (8) | 0.0530 (8) | 0.0198 (6) | 0.0169 (6) | 0.0152 (6) |
C12 | 0.0529 (8) | 0.0563 (9) | 0.0522 (8) | 0.0117 (7) | 0.0082 (7) | 0.0113 (7) |
C13 | 0.0638 (9) | 0.0550 (8) | 0.0426 (7) | 0.0206 (7) | 0.0073 (7) | 0.0103 (6) |
C14 | 0.0597 (9) | 0.0568 (8) | 0.0475 (8) | 0.0214 (7) | 0.0192 (7) | 0.0136 (7) |
C15 | 0.0539 (8) | 0.0446 (7) | 0.0543 (8) | 0.0156 (6) | 0.0169 (7) | 0.0113 (6) |
C16 | 0.0663 (11) | 0.0762 (12) | 0.0799 (13) | 0.0099 (9) | 0.0345 (10) | 0.0137 (10) |
C17 | 0.1025 (15) | 0.0791 (12) | 0.0497 (10) | 0.0168 (11) | 0.0256 (10) | 0.0018 (8) |
C18 | 0.0613 (10) | 0.0826 (13) | 0.0820 (13) | 0.0132 (9) | 0.0271 (9) | 0.0297 (10) |
C19 | 0.0684 (11) | 0.1119 (16) | 0.0570 (11) | 0.0267 (11) | 0.0087 (9) | 0.0291 (10) |
O1—C5 | 1.3613 (16) | C8—H8A | 0.9300 |
O1—H1B | 0.8200 | C9—C10 | 1.504 (2) |
O2—C9 | 1.2255 (17) | C10—C15 | 1.390 (2) |
O3—C15 | 1.3626 (19) | C10—C11 | 1.392 (2) |
O3—C16 | 1.4151 (19) | C11—C12 | 1.383 (2) |
O4—C13 | 1.3636 (18) | C12—C13 | 1.391 (2) |
O4—C17 | 1.432 (2) | C12—H12A | 0.9300 |
O5—C11 | 1.3651 (18) | C13—C14 | 1.385 (2) |
O5—C18 | 1.419 (2) | C14—C15 | 1.384 (2) |
C1—C2 | 1.371 (2) | C14—H14A | 0.9300 |
C1—C6 | 1.403 (2) | C16—H16A | 0.9600 |
C1—H1A | 0.9300 | C16—H16B | 0.9600 |
C2—C3 | 1.392 (3) | C16—H16C | 0.9600 |
C2—H2A | 0.9300 | C17—H17A | 0.9600 |
C3—C4 | 1.381 (2) | C17—H17B | 0.9600 |
C3—C19 | 1.511 (2) | C17—H17C | 0.9600 |
C4—C5 | 1.387 (2) | C18—H18A | 0.9600 |
C4—H4A | 0.9300 | C18—H18B | 0.9600 |
C5—C6 | 1.3998 (19) | C18—H18C | 0.9600 |
C6—C7 | 1.446 (2) | C19—H19A | 0.9600 |
C7—C8 | 1.340 (2) | C19—H19B | 0.9600 |
C7—H7A | 0.9300 | C19—H19C | 0.9600 |
C8—C9 | 1.441 (2) | ||
C5—O1—H1B | 109.5 | C11—C12—C13 | 118.68 (15) |
C15—O3—C16 | 119.21 (13) | C11—C12—H12A | 120.7 |
C13—O4—C17 | 117.54 (14) | C13—C12—H12A | 120.7 |
C11—O5—C18 | 118.63 (14) | O4—C13—C14 | 123.74 (14) |
C2—C1—C6 | 121.65 (15) | O4—C13—C12 | 114.86 (14) |
C2—C1—H1A | 119.2 | C14—C13—C12 | 121.39 (14) |
C6—C1—H1A | 119.2 | C15—C14—C13 | 118.62 (14) |
C1—C2—C3 | 120.75 (15) | C15—C14—H14A | 120.7 |
C1—C2—H2A | 119.6 | C13—C14—H14A | 120.7 |
C3—C2—H2A | 119.6 | O3—C15—C14 | 123.97 (13) |
C4—C3—C2 | 118.51 (15) | O3—C15—C10 | 114.45 (13) |
C4—C3—C19 | 120.07 (17) | C14—C15—C10 | 121.57 (14) |
C2—C3—C19 | 121.41 (16) | O3—C16—H16A | 109.5 |
C3—C4—C5 | 121.08 (15) | O3—C16—H16B | 109.5 |
C3—C4—H4A | 119.5 | H16A—C16—H16B | 109.5 |
C5—C4—H4A | 119.5 | O3—C16—H16C | 109.5 |
O1—C5—C4 | 121.92 (13) | H16A—C16—H16C | 109.5 |
O1—C5—C6 | 117.19 (12) | H16B—C16—H16C | 109.5 |
C4—C5—C6 | 120.89 (13) | O4—C17—H17A | 109.5 |
C5—C6—C1 | 117.12 (14) | O4—C17—H17B | 109.5 |
C5—C6—C7 | 118.98 (12) | H17A—C17—H17B | 109.5 |
C1—C6—C7 | 123.89 (13) | O4—C17—H17C | 109.5 |
C8—C7—C6 | 128.71 (13) | H17A—C17—H17C | 109.5 |
C8—C7—H7A | 115.6 | H17B—C17—H17C | 109.5 |
C6—C7—H7A | 115.6 | O5—C18—H18A | 109.5 |
C7—C8—C9 | 122.77 (13) | O5—C18—H18B | 109.5 |
C7—C8—H8A | 118.6 | H18A—C18—H18B | 109.5 |
C9—C8—H8A | 118.6 | O5—C18—H18C | 109.5 |
O2—C9—C8 | 122.17 (14) | H18A—C18—H18C | 109.5 |
O2—C9—C10 | 118.36 (14) | H18B—C18—H18C | 109.5 |
C8—C9—C10 | 119.47 (12) | C3—C19—H19A | 109.5 |
C15—C10—C11 | 118.35 (13) | C3—C19—H19B | 109.5 |
C15—C10—C9 | 120.27 (13) | H19A—C19—H19B | 109.5 |
C11—C10—C9 | 121.37 (13) | C3—C19—H19C | 109.5 |
O5—C11—C12 | 124.18 (14) | H19A—C19—H19C | 109.5 |
O5—C11—C10 | 114.43 (13) | H19B—C19—H19C | 109.5 |
C12—C11—C10 | 121.39 (14) | ||
C6—C1—C2—C3 | −0.3 (3) | C18—O5—C11—C12 | 5.6 (2) |
C1—C2—C3—C4 | 0.4 (2) | C18—O5—C11—C10 | −174.96 (14) |
C1—C2—C3—C19 | −179.49 (16) | C15—C10—C11—O5 | −179.09 (12) |
C2—C3—C4—C5 | −0.5 (2) | C9—C10—C11—O5 | 0.4 (2) |
C19—C3—C4—C5 | 179.37 (14) | C15—C10—C11—C12 | 0.4 (2) |
C3—C4—C5—O1 | 179.78 (14) | C9—C10—C11—C12 | 179.85 (13) |
C3—C4—C5—C6 | 0.5 (2) | O5—C11—C12—C13 | 179.48 (13) |
O1—C5—C6—C1 | −179.66 (13) | C10—C11—C12—C13 | 0.1 (2) |
C4—C5—C6—C1 | −0.3 (2) | C17—O4—C13—C14 | 0.2 (2) |
O1—C5—C6—C7 | 1.36 (19) | C17—O4—C13—C12 | −179.57 (15) |
C4—C5—C6—C7 | −179.32 (13) | C11—C12—C13—O4 | 179.14 (13) |
C2—C1—C6—C5 | 0.2 (2) | C11—C12—C13—C14 | −0.6 (2) |
C2—C1—C6—C7 | 179.15 (14) | O4—C13—C14—C15 | −178.99 (14) |
C5—C6—C7—C8 | −179.68 (14) | C12—C13—C14—C15 | 0.8 (2) |
C1—C6—C7—C8 | 1.4 (2) | C16—O3—C15—C14 | 3.0 (2) |
C6—C7—C8—C9 | −179.96 (14) | C16—O3—C15—C10 | −178.38 (15) |
C7—C8—C9—O2 | 179.67 (15) | C13—C14—C15—O3 | 178.26 (14) |
C7—C8—C9—C10 | −0.8 (2) | C13—C14—C15—C10 | −0.3 (2) |
O2—C9—C10—C15 | 75.90 (19) | C11—C10—C15—O3 | −178.96 (13) |
C8—C9—C10—C15 | −103.68 (16) | C9—C10—C15—O3 | 1.6 (2) |
O2—C9—C10—C11 | −103.56 (17) | C11—C10—C15—C14 | −0.3 (2) |
C8—C9—C10—C11 | 76.87 (19) | C9—C10—C15—C14 | −179.73 (13) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1B···O2i | 0.82 | 1.88 | 2.6653 (15) | 161 |
C17—H17A···O1ii | 0.96 | 2.70 | 3.520 (2) | 144 |
Symmetry codes: (i) x, y−1, z; (ii) −x+1, −y, −z. |
The dihedral angle is that between the mean planes of the aromatic rings. |
Compound | R1 | τ1 (C5—C6—C7—C8) | τ2 (C7—C8—C9—C10) | τ3 (C8—C9—C10—C11) | Dihedral angle |
(I) | 2-hydroxy-4-methylphenyl | -179.2 (1) | -0.8 (2) | 76.9 (2) | 75.8 (1) |
BAGXEN | 2,4,6-trimethoxyphenyl | 174.1 | -4.8 | 88.6 | 80.4 |
BUFMOF | 6-nitrobenzo[d][1,3]dioxol-5-yl | 153.7 | 6.8 | 67.6 | 61.6 |
GESRAZ | 4-methoxyphenyl | 176.0 | 7.6 | -82.2 | 79.0 |
Note: values for the minor occupancy component of GESRAZ are not given. |
Funding information
The authors would like to express their sincere gratitude to Universiti Sains Malaysia for the financial support from the Bridging Research Grant 2017 (304.PKIMIA.6316171).
References
Aoki, N., Muko, M., Ohta, E. & Ohta, S. (2008). J. Nat. Prod. 71, 1308–1310. CrossRef PubMed CAS Google Scholar
Birari, R. B., Gupta, S., Mohan, C. G. & Bhutani, K. K. (2011). Phytomedicine, 18, 795–801. CrossRef CAS PubMed Google Scholar
Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chen, M., Christensen, S. B., Blom, J., Lemmich, E., Nadelmann, L., Fich, K., Theander, T. G. & Kharazmi, A. (1993). Antimicrob. Agents Chemother. 37, 2550–2556. CrossRef CAS PubMed Google Scholar
Cho, S., Kim, S., Jin, Z., Yang, H., Han, D., Baek, N. I., Jo, J., Cho, C. W., Park, J. H., Shimizu, M. & Jin, Y. H. (2011). Biochem. Biophys. Res. Commun. 413, 637–642. CrossRef CAS PubMed Google Scholar
Grealis, J. P., Müller-Bunz, H., Ortin, Y., Casey, M. & McGlinchey, M. J. (2013). Eur. J. Org. Chem. 2013, 332–347. CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Ibrahim, M., AlRefai, M., Abu-El-Halawa, R., Tashtoush, H., Alsohaili, S. & Masad, M. (2012). Jordan. J. Chem. 7, 115–123. CAS Google Scholar
Israf, D. A., Khaizurin, T. A., Syahida, A., Lajis, N. H. & Khozirah, S. (2007). Mol. Immunol. 44, 673–679. CrossRef PubMed CAS Google Scholar
Jang, I. T., Hyun, S. H., Shin, J. W., Lee, Y. H., Ji, J. H. & Lee, J. S. (2014). Mycobiology. 42, 296–300. CrossRef PubMed Google Scholar
Kerr, P. J., Pyke, S. M., Ward, A. D. & Tiekink, E. R. T. (2001). Z. Kristallogr. New Cryst. Struct. 216, 601. Google Scholar
Kumar, C. S., Loh, W. S., Ooi, C. W., Quah, C. K. & Fun, H. K. (2013). Molecules, 18, 11996–12011. CrossRef CAS PubMed Google Scholar
Kwong, H. C., Rakesh, M. S., Chidan Kumar, C. S., Maidur Shivaraj, R., Patil Parutagouda, S., Quah Ching, K., Win, Y.-F., Parlak, C. & Chandraju, S. (2018). Z. Kristallogr. Cryst. Mater. 233, 349–360. CAS Google Scholar
Loghmani-Khouzani, H., Abdul Rahman, N., Robinson, W. T., Yaeghoobi, M. & Kia, R. (2009). Acta Cryst. E65, o2545. Web of Science CSD CrossRef IUCr Journals Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ni, L., Meng, C. Q. & Sikorski, J. A. (2004). Expert Opin. Ther. Pat. 14, 1669–1691. Web of Science CrossRef CAS Google Scholar
Sahu, N. K., Balbhadra, S. S., Choudhary, J. & Kohli, D. V. (2012). Curr. Med. Chem. 19, 209–225. Web of Science CAS PubMed Google Scholar
Sato, Y., He, J. X., Nagai, H., Tani, T. & Akao, T. (2007). Biol. Pharm. Bull. 30, 145–149. CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sim, A., Chidan Kumar, C. S., Kwong, H. C., Then, L. Y., Win, Y.-F., Quah, C. K., Naveen, S., Chandraju, S., Lokanath, N. K. & Warad, I. (2017). Acta Cryst. E73, 896–900. Web of Science CSD CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yamamoto, T., Yoshimura, M., Yamaguchi, F., Kouchi, T., Tsuji, R., Saito, M., Obata, A. & Kikuchi, M. (2004). Biosci. Biotechnol. Biochem. 68, 1706–1711. CrossRef PubMed CAS Google Scholar
Yan, J., Chen, J., Zhang, S., Hu, J., Huang, L. & Li, X. (2016). J. Med. Chem. 59, 5264–5283. CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.