research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (E)-3-(2-hy­dr­oxy-4-methyl­phen­yl)-1-(2,4,6-tri­meth­­oxy­phen­yl)prop-2-en-1-one

CROSSMARK_Color_square_no_text.svg

aSchool of Chemical Sciences, Universiti Sains Malaysia, Penang 11800 USM, Malaysia, and bDepartment of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
*Correspondence e-mail: melati@usm.my

Edited by J. Jasinski, Keene State College, USA (Received 24 July 2019; accepted 13 August 2019; online 30 August 2019)

The title chalcone derivative, C19H20O5, adopts a trans configuration with respect to the olefinic C=C double bond. The 2-hy­droxy-4-methyl­phenyl ring is coplanar with the attached enone bridge [torsion angle = −179.96 (14)°], where this plane is nearly perpendicular to the 2,4,6-tri­meth­oxy­phenyl ring [dihedral angle = 75.81 (8)°]. In the crystal, mol­ecules are linked into chains propagating along [010] by an O—H⋯O hydrogen bond. These chains are further connected into centrosymmetric dimer chains via weak C—H⋯O inter­actions. The conformations of related chalcone derivatives are surveyed and all of these structures adopt a skeleton with two almost orthogonal aromatic rings.

1. Chemical context

Chalcones (1,3-di­aryl­prop-2-en-1-ones) are precursors of flavonoids and isoflavonoids in the plant kingdom (Ni et al., 2004[Ni, L., Meng, C. Q. & Sikorski, J. A. (2004). Expert Opin. Ther. Pat. 14, 1669-1691.]; Sahu et al., 2012[Sahu, N. K., Balbhadra, S. S., Choudhary, J. & Kohli, D. V. (2012). Curr. Med. Chem. 19, 209-225.]). Structurally, they consist of two aryl groups linked by an α, β-unsaturated ketone system (Ibrahim et al., 2012[Ibrahim, M., AlRefai, M., Abu-El-Halawa, R., Tashtoush, H., Alsohaili, S. & Masad, M. (2012). Jordan. J. Chem. 7, 115-123.]; Kumar et al., 2013[Kumar, C. S., Loh, W. S., Ooi, C. W., Quah, C. K. & Fun, H. K. (2013). Molecules, 18, 11996-12011.]), whereby the aryl groups can carry a variety of substituents such as hydroxyl, meth­oxy and alkenyl groups, which are by far the most commonly encountered ones in nature. With their structural simplicity and the associated ease of synthesis, chalcone compounds have attracted a considerable amount of attention because of their important pharmacological properties such as anti-oxidative (Aoki et al., 2008[Aoki, N., Muko, M., Ohta, E. & Ohta, S. (2008). J. Nat. Prod. 71, 1308-1310.]), anti-inflammatory (Israf et al., 2007[Israf, D. A., Khaizurin, T. A., Syahida, A., Lajis, N. H. & Khozirah, S. (2007). Mol. Immunol. 44, 673-679.]), anti-gout (Jang et al., 2014[Jang, I. T., Hyun, S. H., Shin, J. W., Lee, Y. H., Ji, J. H. & Lee, J. S. (2014). Mycobiology. 42, 296-300.]), anti-histaminic (Yamamoto et al., 2004[Yamamoto, T., Yoshimura, M., Yamaguchi, F., Kouchi, T., Tsuji, R., Saito, M., Obata, A. & Kikuchi, M. (2004). Biosci. Biotechnol. Biochem. 68, 1706-1711.]), anti-obesity (Birari et al., 2011[Birari, R. B., Gupta, S., Mohan, C. G. & Bhutani, K. K. (2011). Phytomedicine, 18, 795-801.]), anti-protozoal (Chen et al., 1993[Chen, M., Christensen, S. B., Blom, J., Lemmich, E., Nadelmann, L., Fich, K., Theander, T. G. & Kharazmi, A. (1993). Antimicrob. Agents Chemother. 37, 2550-2556.]), hypnotic (Cho et al., 2011[Cho, S., Kim, S., Jin, Z., Yang, H., Han, D., Baek, N. I., Jo, J., Cho, C. W., Park, J. H., Shimizu, M. & Jin, Y. H. (2011). Biochem. Biophys. Res. Commun. 413, 637-642.]) and anti-spasmodic (Sato et al., 2007[Sato, Y., He, J. X., Nagai, H., Tani, T. & Akao, T. (2007). Biol. Pharm. Bull. 30, 145-149.]) effects. In a continuation of our ongoing research on the properties of various chalcone derivatives (Sim et al., 2017[Sim, A., Chidan Kumar, C. S., Kwong, H. C., Then, L. Y., Win, Y.-F., Quah, C. K., Naveen, S., Chandraju, S., Lokanath, N. K. & Warad, I. (2017). Acta Cryst. E73, 896-900.], Kwong et al., 2018[Kwong, H. C., Rakesh, M. S., Chidan Kumar, C. S., Maidur Shivaraj, R., Patil Parutagouda, S., Quah Ching, K., Win, Y.-F., Parlak, C. & Chandraju, S. (2018). Z. Kristallogr. Cryst. Mater. 233, 349-360.]), we report herein the synthesis and crystal structure determination of the title compound, C19H20O5, (I)[link].

[Scheme 1]

2. Structural commentary

The title chalcone derivative (I)[link], crystallizes in the centrosymmetric triclinic space group P[\overline{1}] and its asymmetric unit consists of a single unique mol­ecule (Fig. 1[link]). This mol­ecule is constructed of two substituted aromatic rings (2-hy­droxy-4-methyl­phenyl and 2,4,6-tri­meth­oxy­phen­yl) and an enone (–CH=CH—(C=O)–) connecting bridge. In the enone bridge, the C6—C7, C8—C9 and C9—C10 bond lengths of 1.446 (2), 1.441 (2) and 1.504 (2) Å, respectively, confirm their single-bond character, whereas the C7=C8 and C9=O2 bond lengths of 1.340 (2) and 1.2255 (17) Å, respectively, confirm the presence of a double bond. In addition, the C6—C7—C8 and C8—C9—C10 bond angles of 128.71 (13) and 119.47 (11)°, respectively, are consistent with the sp2 hybridization of atoms C7, C8 and C9 (Kerr et al., 2001[Kerr, P. J., Pyke, S. M., Ward, A. D. & Tiekink, E. R. T. (2001). Z. Kristallogr. New Cryst. Struct. 216, 601.]; Loghmani-Khouzani et al., 2009[Loghmani-Khouzani, H., Abdul Rahman, N., Robinson, W. T., Yaeghoobi, M. & Kia, R. (2009). Acta Cryst. E65, o2545.]; Grealis et al., 2013[Grealis, J. P., Müller-Bunz, H., Ortin, Y., Casey, M. & McGlinchey, M. J. (2013). Eur. J. Org. Chem. 2013, 332-347.]). As the olefinic double bond C7=C8 adopts a trans configuration [C6—C7—C8—C9 torsion angle = −179.96 (14)°], the structural conformation of (I)[link] can be defined by three torsion angles. The torsion angles between the 2-hy­droxy-4-methyl­phenyl ring and the olefinic double bond (C5—C6—C7—C8, τ1), between the olefinic double bond and the carbonyl group (C7—C8—C9—C10, τ2) and between the carbonyl group and the 2,4,6-tri­meth­oxy­phenyl ring (C8—C9—C10—C11, τ3) are shown in Fig. 2[link]. The torsion angles τ1 and τ2 are approximately ±180° or 0° [τ1 = −179.15 (14)° and τ2 = −0.8 (2)°], indicating that the 2-hy­droxy-4-methyl­phenyl ring and the enone bridge are coplanar. In contrast, the carbonyl group is nearly perpendicular to the attached 2,4,6-tri­meth­oxy­phenyl ring, as τ3 is 76.87 (19)°. In general, the mol­ecule of (I)[link] can be considered as two individual planes, the first comprising the 2-hy­droxy-4-methyl­phenyl ring and the enone bridge [maximum deviation of 0.0021 (2) Å for atom C19], and the second the 2,4,6-tri­meth­oxy­phenyl ring [maximum deviation of 0.0059 (2) Å for atom C18]. These two mean planes form a dihedral angle of 75.84 (4)°, hence the mol­ecule of (I)[link] possesses a skeleton with two almost orthogonal aromatic rings.

[Figure 1]
Figure 1
The title mol­ecule with the atom-labelling scheme and displacement ellipsoids drawn at the 50% ellipsoid probability level.
[Figure 2]
Figure 2
General chemical diagram showing torsion angles, τ1, τ2 and τ3.

3. Supra­molecular features

In the crystal, the mol­ecules are linked into chains parallel to the b axis via classical O1—H1B⋯O2i hydrogen bonds (Fig. 3[link]a). These chains are further connected into inversion-related dimeric chains by weak C17—H17A⋯O1ii inter­molecular inter­actions (Fig. 3[link]b, Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1B⋯O2i 0.82 1.88 2.6653 (15) 161
C17—H17A⋯O1ii 0.96 2.70 3.520 (2) 144
Symmetry codes: (i) x, y-1, z; (ii) -x+1, -y, -z.
[Figure 3]
Figure 3
Views of (a) a chain of mol­ecules linked by O—H⋯O hydrogen bonds (shown as cyan dotted lines) and (b) a dimeric chain formed by weak C—H⋯O inter­actions (shown as magenta dotted lines). Symmetry code: (i) x, −1 + y, z; (ii) 1 − x, −y, −z. Hydrogen atoms not involved in these inter­actions are omitted for clarity.

4. Database survey

A search of the Cambridge Structural Database (CSD version 5.40, last update May 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) using (E)-3-phenyl-1-(2,4,6-tri­meth­oxy­phen­yl)prop-2-en-1-one as the reference moiety resulted in three chalcone structures containing 2,4,6-tri­meth­oxy­phenyl with different substituents. They include (E)-3-(R1)-1-(2,4,6-tri­meth­oxy­phen­yl)prop-2-en-1-one, where R1 = 2,4,6-tri­meth­oxy­phenyl (BAGXEN; Kerr et al., 2001[Kerr, P. J., Pyke, S. M., Ward, A. D. & Tiekink, E. R. T. (2001). Z. Kristallogr. New Cryst. Struct. 216, 601.]), 6-nitro­benzo[d][1,3]dioxol-5-yl (BUFMOF; Loghmani-Khouzani et al., 2009[Loghmani-Khouzani, H., Abdul Rahman, N., Robinson, W. T., Yaeghoobi, M. & Kia, R. (2009). Acta Cryst. E65, o2545.]) and 4-meth­oxy­phenyl (GESRAZ; Grealis et al., 2013[Grealis, J. P., Müller-Bunz, H., Ortin, Y., Casey, M. & McGlinchey, M. J. (2013). Eur. J. Org. Chem. 2013, 332-347.]). As in (I)[link], the mol­ecules of all these structures adopt a trans configuration with respect to C=C double bond (C6—C7—C8—C9 torsion angles = 175.5–179.1°). Although, τ1 for all of the structures indicates an anti-periplanar conformation (Table 2[link]), in BUFMOF it deviates slightly from planarity (τ1 = 152.7°) whereas τ1 for the other mol­ecules is approximately 180° (τ1 = 174.1–176.0°, Table 2[link]). Regarding the enone bridge, the torsion angle τ2 indicates that all of the structures are relatively planar (τ2 = −4.8–7.6°). The torsion angles τ3 always almost indicate a perpendicular arrangement (τ3 = 67.6–88.6°). This might arise from the steric repulsion between the carbonyl group and the attached 2,4,6-tri­meth­oxy­phenyl ring. This results in an overall L-shape for all of the structures, with the dihedral angle between the mean planes of the two aromatic rings being 61.6–80.4°.

Table 2
Selected torsion and dihedral angles (°)

The dihedral angle is that between the mean planes of the aromatic rings.

Compound R1 τ1 (C5—C6—C7—C8) τ2 (C7—C8—C9—C10) τ3 (C8—C9—C10—C11) Dihedral angle
(I) 2-hy­droxy-4-methyl­phen­yl −179.2 (1) −0.8 (2) 76.9 (2) 75.8 (1)
BAGXEN 2,4,6-tri­meth­oxy­phen­yl 174.1 −4.8 88.6 80.4
BUFMOF 6-nitro­benzo[d][1,3]dioxol-5-yl 153.7 6.8 67.6 61.6
GESRAZ 4-meth­oxy­phen­yl 176.0 7.6 −82.2 79.0
Note: values for the minor occupancy component of GESRAZ are not given.

5. Synthesis and crystallization

A reaction scheme for the synthesis of the title compound is given in Fig. 4[link]. A solution of tri­meth­oxy­aceto­phenone (2 mmol) in 20 mL MeOH, LiOH (2.4 mmol) and 2-hy­droxy-4-methyl­benzaldehyde (1.6 mmol) was stirred at 368 K and the reaction progress was monitored by TLC. The reaction was quenched with diluted hydro­chloric acid to pH = 6 and extracted with ethyl acetate. The organic layer was washed with aqueous NaHCO3, water, and brine, successively. The organic layer was dried over anhydrous Na2SO4 and then concentrated to provide the product as a brown powder. The residue was purified by column chromatography with petroleum ether/ethyl acetate (10:1) as an eluent to afford the target compound (Yan et al., 2016[Yan, J., Chen, J., Zhang, S., Hu, J., Huang, L. & Li, X. (2016). J. Med. Chem. 59, 5264-5283.]). Slow evaporation from an aceto­nitrile–water mixture provided X-ray quality crystals for the target chalcone compound.

[Figure 4]
Figure 4
Reaction scheme for the synthesis of the title chalcone.

(E)-3-(2-hy­droxy-4-methyl­phen­yl)-1-(2,4,6-tri­meth­oxy­phen­yl)prop-2-en-1-one (I)

Brown powder, yield 84.1%. m.p. 503–506 K. IR (cm−1): 3283 (O—H), 2929 and 2842 (Csp3—H), 1603 (C=O), 1586 and 1457 (C=C). 1H NMR (500 MHz, DMSO-d6) δ, ppm: 10.02 (s, 1H), 7.45 (d, J = 16.2 Hz, 1H), 7.44 (d, J = 7.0 Hz, 1H), 6.86 (d, J = 16.2 Hz, 1H), 6.65 (d, J = 8.0 Hz, 2H), 6.30 (s, 2H), 3.83 (s, 3H), 3.70 (s, 6H), 2.23 (s, 3H). 13C-NMR (125 MHz, DMSO-d6) δ, ppm: 194.3, 162.2, 158.4, 157.1, 142.5, 140.2, 128.8, 127.9, 121.1, 118.9, 117.0, 111.9, 91.6, 56.2, 55.9, 21.6. CHN Elemental analysis: Calculated for C19H20O5: C, 69.50; H, 6.14; N. Found: C, 67.81; H, 5.72; N, 0.00.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. C-bound H atoms were positioned geometrically (C—H = 0.93–0.96 Å) and refined using a riding model with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C–meth­yl). The O-bound hydrogen was located from difference-Fourier maps and refined freely with O—H = 0.82 Å.

Table 3
Experimental details

Crystal data
Chemical formula C19H20O5
Mr 328.35
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 6.8072 (3), 8.5792 (4), 15.8010 (7)
α, β, γ (°) 100.365 (1), 99.433 (1), 104.984 (1)
V3) 855.09 (7)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.57 × 0.25 × 0.21
 
Data collection
Diffractometer Bruker APEXII DUO CCD area-detector
Absorption correction Multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.908, 0.950
No. of measured, independent and observed [I > 2σ(I)] reflections 33448, 5018, 3199
Rint 0.030
(sin θ/λ)max−1) 0.706
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.171, 1.05
No. of reflections 5018
No. of parameters 217
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.27, −0.19
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: SHELXL2013 (Sheldrick, 2015) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2015) and PLATON (Spek, 2009).

(E)-3-(2-Hydroxy-4-methylphenyl)-1-(2,4,6-trimethoxyphenyl)prop-2-en-1-one top
Crystal data top
C19H20O5Z = 2
Mr = 328.35F(000) = 348
Triclinic, P1Dx = 1.275 Mg m3
a = 6.8072 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.5792 (4) ÅCell parameters from 6606 reflections
c = 15.8010 (7) Åθ = 2.5–25.7°
α = 100.365 (1)°µ = 0.09 mm1
β = 99.433 (1)°T = 296 K
γ = 104.984 (1)°Block, brown
V = 855.09 (7) Å30.57 × 0.25 × 0.21 mm
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
5018 independent reflections
Radiation source: fine-focus sealed tube3199 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
φ and ω scansθmax = 30.1°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
h = 99
Tmin = 0.908, Tmax = 0.950k = 1212
33448 measured reflectionsl = 2222
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.171 w = 1/[σ2(Fo2) + (0.0776P)2 + 0.1331P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
5018 reflectionsΔρmax = 0.27 e Å3
217 parametersΔρmin = 0.19 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.64130 (18)0.04792 (12)0.33273 (7)0.0582 (3)
H1B0.6222340.0512060.3306070.087*
O20.5594 (2)0.71937 (13)0.28620 (9)0.0750 (4)
O30.82818 (19)0.58546 (15)0.17162 (8)0.0718 (4)
O40.3336 (2)0.11733 (16)0.04471 (7)0.0741 (4)
O50.18978 (18)0.33623 (15)0.22860 (8)0.0653 (3)
C10.7621 (3)0.3898 (2)0.52362 (11)0.0587 (4)
H1A0.7650720.5005610.5369130.070*
C20.8168 (3)0.3175 (2)0.59089 (11)0.0636 (4)
H2A0.8566940.3798930.6488100.076*
C30.8134 (2)0.1518 (2)0.57349 (10)0.0576 (4)
C40.7548 (2)0.0621 (2)0.48690 (10)0.0536 (4)
H4A0.7527920.0485310.4742380.064*
C50.6988 (2)0.13422 (17)0.41849 (9)0.0462 (3)
C60.7017 (2)0.30075 (17)0.43524 (9)0.0461 (3)
C70.6399 (2)0.37021 (17)0.36199 (9)0.0462 (3)
H7A0.6002140.2976970.3066380.055*
C80.6322 (2)0.52507 (17)0.36314 (10)0.0530 (4)
H8A0.6706060.6018820.4170820.064*
C90.5668 (2)0.57758 (17)0.28428 (10)0.0506 (3)
C100.5066 (2)0.45590 (17)0.19626 (10)0.0474 (3)
C110.3145 (2)0.33383 (18)0.16927 (10)0.0496 (3)
C120.2590 (2)0.2222 (2)0.08827 (10)0.0553 (4)
H12A0.1301370.1411330.0708770.066*
C130.3996 (3)0.23348 (19)0.03331 (10)0.0539 (4)
C140.5911 (2)0.35440 (19)0.05781 (10)0.0528 (4)
H14A0.6832800.3616730.0202550.063*
C150.6426 (2)0.46422 (18)0.13936 (10)0.0502 (3)
C160.9764 (3)0.6078 (3)0.11824 (14)0.0747 (5)
H16A1.0981300.6971630.1498060.112*
H16B1.0143270.5076690.1036550.112*
H16C0.9171280.6338660.0650610.112*
C170.4721 (4)0.1217 (3)0.10396 (12)0.0798 (6)
H17A0.4080060.0342790.1560770.120*
H17B0.5013380.2268200.1198820.120*
H17C0.5997560.1068870.0756550.120*
C180.0021 (3)0.2085 (3)0.21029 (14)0.0741 (5)
H18A0.0727920.2259520.2573520.111*
H18B0.0877080.2100540.1559380.111*
H18C0.0243680.1029230.2051830.111*
C190.8715 (3)0.0699 (3)0.64692 (12)0.0785 (6)
H19A0.9080220.1489130.7025830.118*
H19B0.7551290.0218990.6465080.118*
H19C0.9883020.0306160.6383200.118*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0834 (8)0.0397 (5)0.0461 (6)0.0191 (5)0.0077 (5)0.0007 (4)
O20.1156 (11)0.0394 (6)0.0798 (8)0.0294 (6)0.0388 (8)0.0135 (5)
O30.0660 (7)0.0665 (7)0.0692 (8)0.0007 (6)0.0305 (6)0.0029 (6)
O40.0803 (9)0.0796 (8)0.0461 (6)0.0084 (7)0.0123 (6)0.0022 (6)
O50.0577 (7)0.0702 (7)0.0659 (7)0.0118 (5)0.0271 (6)0.0090 (6)
C10.0631 (9)0.0534 (8)0.0508 (8)0.0140 (7)0.0116 (7)0.0047 (7)
C20.0594 (9)0.0766 (11)0.0441 (8)0.0141 (8)0.0094 (7)0.0018 (7)
C30.0434 (8)0.0790 (11)0.0486 (8)0.0153 (7)0.0102 (6)0.0146 (7)
C40.0527 (8)0.0538 (8)0.0543 (8)0.0169 (7)0.0119 (7)0.0113 (7)
C50.0454 (7)0.0463 (7)0.0431 (7)0.0118 (6)0.0099 (6)0.0030 (6)
C60.0432 (7)0.0440 (7)0.0464 (7)0.0097 (5)0.0117 (6)0.0018 (6)
C70.0476 (7)0.0406 (7)0.0466 (7)0.0112 (5)0.0130 (6)0.0009 (5)
C80.0607 (9)0.0413 (7)0.0523 (8)0.0129 (6)0.0163 (7)0.0009 (6)
C90.0586 (8)0.0357 (6)0.0600 (9)0.0137 (6)0.0246 (7)0.0074 (6)
C100.0557 (8)0.0403 (7)0.0507 (8)0.0185 (6)0.0173 (6)0.0108 (6)
C110.0525 (8)0.0491 (8)0.0530 (8)0.0198 (6)0.0169 (6)0.0152 (6)
C120.0529 (8)0.0563 (9)0.0522 (8)0.0117 (7)0.0082 (7)0.0113 (7)
C130.0638 (9)0.0550 (8)0.0426 (7)0.0206 (7)0.0073 (7)0.0103 (6)
C140.0597 (9)0.0568 (8)0.0475 (8)0.0214 (7)0.0192 (7)0.0136 (7)
C150.0539 (8)0.0446 (7)0.0543 (8)0.0156 (6)0.0169 (7)0.0113 (6)
C160.0663 (11)0.0762 (12)0.0799 (13)0.0099 (9)0.0345 (10)0.0137 (10)
C170.1025 (15)0.0791 (12)0.0497 (10)0.0168 (11)0.0256 (10)0.0018 (8)
C180.0613 (10)0.0826 (13)0.0820 (13)0.0132 (9)0.0271 (9)0.0297 (10)
C190.0684 (11)0.1119 (16)0.0570 (11)0.0267 (11)0.0087 (9)0.0291 (10)
Geometric parameters (Å, º) top
O1—C51.3613 (16)C8—H8A0.9300
O1—H1B0.8200C9—C101.504 (2)
O2—C91.2255 (17)C10—C151.390 (2)
O3—C151.3626 (19)C10—C111.392 (2)
O3—C161.4151 (19)C11—C121.383 (2)
O4—C131.3636 (18)C12—C131.391 (2)
O4—C171.432 (2)C12—H12A0.9300
O5—C111.3651 (18)C13—C141.385 (2)
O5—C181.419 (2)C14—C151.384 (2)
C1—C21.371 (2)C14—H14A0.9300
C1—C61.403 (2)C16—H16A0.9600
C1—H1A0.9300C16—H16B0.9600
C2—C31.392 (3)C16—H16C0.9600
C2—H2A0.9300C17—H17A0.9600
C3—C41.381 (2)C17—H17B0.9600
C3—C191.511 (2)C17—H17C0.9600
C4—C51.387 (2)C18—H18A0.9600
C4—H4A0.9300C18—H18B0.9600
C5—C61.3998 (19)C18—H18C0.9600
C6—C71.446 (2)C19—H19A0.9600
C7—C81.340 (2)C19—H19B0.9600
C7—H7A0.9300C19—H19C0.9600
C8—C91.441 (2)
C5—O1—H1B109.5C11—C12—C13118.68 (15)
C15—O3—C16119.21 (13)C11—C12—H12A120.7
C13—O4—C17117.54 (14)C13—C12—H12A120.7
C11—O5—C18118.63 (14)O4—C13—C14123.74 (14)
C2—C1—C6121.65 (15)O4—C13—C12114.86 (14)
C2—C1—H1A119.2C14—C13—C12121.39 (14)
C6—C1—H1A119.2C15—C14—C13118.62 (14)
C1—C2—C3120.75 (15)C15—C14—H14A120.7
C1—C2—H2A119.6C13—C14—H14A120.7
C3—C2—H2A119.6O3—C15—C14123.97 (13)
C4—C3—C2118.51 (15)O3—C15—C10114.45 (13)
C4—C3—C19120.07 (17)C14—C15—C10121.57 (14)
C2—C3—C19121.41 (16)O3—C16—H16A109.5
C3—C4—C5121.08 (15)O3—C16—H16B109.5
C3—C4—H4A119.5H16A—C16—H16B109.5
C5—C4—H4A119.5O3—C16—H16C109.5
O1—C5—C4121.92 (13)H16A—C16—H16C109.5
O1—C5—C6117.19 (12)H16B—C16—H16C109.5
C4—C5—C6120.89 (13)O4—C17—H17A109.5
C5—C6—C1117.12 (14)O4—C17—H17B109.5
C5—C6—C7118.98 (12)H17A—C17—H17B109.5
C1—C6—C7123.89 (13)O4—C17—H17C109.5
C8—C7—C6128.71 (13)H17A—C17—H17C109.5
C8—C7—H7A115.6H17B—C17—H17C109.5
C6—C7—H7A115.6O5—C18—H18A109.5
C7—C8—C9122.77 (13)O5—C18—H18B109.5
C7—C8—H8A118.6H18A—C18—H18B109.5
C9—C8—H8A118.6O5—C18—H18C109.5
O2—C9—C8122.17 (14)H18A—C18—H18C109.5
O2—C9—C10118.36 (14)H18B—C18—H18C109.5
C8—C9—C10119.47 (12)C3—C19—H19A109.5
C15—C10—C11118.35 (13)C3—C19—H19B109.5
C15—C10—C9120.27 (13)H19A—C19—H19B109.5
C11—C10—C9121.37 (13)C3—C19—H19C109.5
O5—C11—C12124.18 (14)H19A—C19—H19C109.5
O5—C11—C10114.43 (13)H19B—C19—H19C109.5
C12—C11—C10121.39 (14)
C6—C1—C2—C30.3 (3)C18—O5—C11—C125.6 (2)
C1—C2—C3—C40.4 (2)C18—O5—C11—C10174.96 (14)
C1—C2—C3—C19179.49 (16)C15—C10—C11—O5179.09 (12)
C2—C3—C4—C50.5 (2)C9—C10—C11—O50.4 (2)
C19—C3—C4—C5179.37 (14)C15—C10—C11—C120.4 (2)
C3—C4—C5—O1179.78 (14)C9—C10—C11—C12179.85 (13)
C3—C4—C5—C60.5 (2)O5—C11—C12—C13179.48 (13)
O1—C5—C6—C1179.66 (13)C10—C11—C12—C130.1 (2)
C4—C5—C6—C10.3 (2)C17—O4—C13—C140.2 (2)
O1—C5—C6—C71.36 (19)C17—O4—C13—C12179.57 (15)
C4—C5—C6—C7179.32 (13)C11—C12—C13—O4179.14 (13)
C2—C1—C6—C50.2 (2)C11—C12—C13—C140.6 (2)
C2—C1—C6—C7179.15 (14)O4—C13—C14—C15178.99 (14)
C5—C6—C7—C8179.68 (14)C12—C13—C14—C150.8 (2)
C1—C6—C7—C81.4 (2)C16—O3—C15—C143.0 (2)
C6—C7—C8—C9179.96 (14)C16—O3—C15—C10178.38 (15)
C7—C8—C9—O2179.67 (15)C13—C14—C15—O3178.26 (14)
C7—C8—C9—C100.8 (2)C13—C14—C15—C100.3 (2)
O2—C9—C10—C1575.90 (19)C11—C10—C15—O3178.96 (13)
C8—C9—C10—C15103.68 (16)C9—C10—C15—O31.6 (2)
O2—C9—C10—C11103.56 (17)C11—C10—C15—C140.3 (2)
C8—C9—C10—C1176.87 (19)C9—C10—C15—C14179.73 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···O2i0.821.882.6653 (15)161
C17—H17A···O1ii0.962.703.520 (2)144
Symmetry codes: (i) x, y1, z; (ii) x+1, y, z.
Selected torsion and dihedral angles (°) top
The dihedral angle is that between the mean planes of the aromatic rings.
CompoundR1τ1 (C5—C6—C7—C8)τ2 (C7—C8—C9—C10)τ3 (C8—C9—C10—C11)Dihedral angle
(I)2-hydroxy-4-methylphenyl-179.2 (1)-0.8 (2)76.9 (2)75.8 (1)
BAGXEN2,4,6-trimethoxyphenyl174.1-4.888.680.4
BUFMOF6-nitrobenzo[d][1,3]dioxol-5-yl153.76.867.661.6
GESRAZ4-methoxyphenyl176.07.6-82.279.0
Note: values for the minor occupancy component of GESRAZ are not given.
 

Funding information

The authors would like to express their sincere gratitude to Universiti Sains Malaysia for the financial support from the Bridging Research Grant 2017 (304.PKIMIA.6316171).

References

First citationAoki, N., Muko, M., Ohta, E. & Ohta, S. (2008). J. Nat. Prod. 71, 1308–1310.  CrossRef PubMed CAS Google Scholar
First citationBirari, R. B., Gupta, S., Mohan, C. G. & Bhutani, K. K. (2011). Phytomedicine, 18, 795–801.  CrossRef CAS PubMed Google Scholar
First citationBruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, M., Christensen, S. B., Blom, J., Lemmich, E., Nadelmann, L., Fich, K., Theander, T. G. & Kharazmi, A. (1993). Antimicrob. Agents Chemother. 37, 2550–2556.  CrossRef CAS PubMed Google Scholar
First citationCho, S., Kim, S., Jin, Z., Yang, H., Han, D., Baek, N. I., Jo, J., Cho, C. W., Park, J. H., Shimizu, M. & Jin, Y. H. (2011). Biochem. Biophys. Res. Commun. 413, 637–642.  CrossRef CAS PubMed Google Scholar
First citationGrealis, J. P., Müller-Bunz, H., Ortin, Y., Casey, M. & McGlinchey, M. J. (2013). Eur. J. Org. Chem. 2013, 332–347.  CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationIbrahim, M., AlRefai, M., Abu-El-Halawa, R., Tashtoush, H., Alsohaili, S. & Masad, M. (2012). Jordan. J. Chem. 7, 115–123.  CAS Google Scholar
First citationIsraf, D. A., Khaizurin, T. A., Syahida, A., Lajis, N. H. & Khozirah, S. (2007). Mol. Immunol. 44, 673–679.  CrossRef PubMed CAS Google Scholar
First citationJang, I. T., Hyun, S. H., Shin, J. W., Lee, Y. H., Ji, J. H. & Lee, J. S. (2014). Mycobiology. 42, 296–300.  CrossRef PubMed Google Scholar
First citationKerr, P. J., Pyke, S. M., Ward, A. D. & Tiekink, E. R. T. (2001). Z. Kristallogr. New Cryst. Struct. 216, 601.  Google Scholar
First citationKumar, C. S., Loh, W. S., Ooi, C. W., Quah, C. K. & Fun, H. K. (2013). Molecules, 18, 11996–12011.  CrossRef CAS PubMed Google Scholar
First citationKwong, H. C., Rakesh, M. S., Chidan Kumar, C. S., Maidur Shivaraj, R., Patil Parutagouda, S., Quah Ching, K., Win, Y.-F., Parlak, C. & Chandraju, S. (2018). Z. Kristallogr. Cryst. Mater. 233, 349–360.  CAS Google Scholar
First citationLoghmani-Khouzani, H., Abdul Rahman, N., Robinson, W. T., Yaeghoobi, M. & Kia, R. (2009). Acta Cryst. E65, o2545.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNi, L., Meng, C. Q. & Sikorski, J. A. (2004). Expert Opin. Ther. Pat. 14, 1669–1691.  Web of Science CrossRef CAS Google Scholar
First citationSahu, N. K., Balbhadra, S. S., Choudhary, J. & Kohli, D. V. (2012). Curr. Med. Chem. 19, 209–225.  Web of Science CAS PubMed Google Scholar
First citationSato, Y., He, J. X., Nagai, H., Tani, T. & Akao, T. (2007). Biol. Pharm. Bull. 30, 145–149.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSim, A., Chidan Kumar, C. S., Kwong, H. C., Then, L. Y., Win, Y.-F., Quah, C. K., Naveen, S., Chandraju, S., Lokanath, N. K. & Warad, I. (2017). Acta Cryst. E73, 896–900.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYamamoto, T., Yoshimura, M., Yamaguchi, F., Kouchi, T., Tsuji, R., Saito, M., Obata, A. & Kikuchi, M. (2004). Biosci. Biotechnol. Biochem. 68, 1706–1711.  CrossRef PubMed CAS Google Scholar
First citationYan, J., Chen, J., Zhang, S., Hu, J., Huang, L. & Li, X. (2016). J. Med. Chem. 59, 5264–5283.  CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds