research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure, Hirshfeld surface analysis and DFT studies of 5-bromo-1-{2-[2-(2-chloro­eth­­oxy)eth­­oxy]eth­yl}indoline-2,3-dione

aLaboratoire de Chimie Organique Appliquée, Université Sidi Mohamed Ben Abdallah, Faculté des Sciences et Techniques, Route d'immouzzer, BP 2202, Fez, Morocco, bDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, and cUniv. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181–UCCS–Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
*Correspondence e-mail: abdellaouiomar10@gmail.com

Edited by A. J. Lough, University of Toronto, Canada (Received 15 July 2019; accepted 20 August 2019; online 30 August 2019)

The title compound, C14H15BrClNO4, consists of a 5-bromo­indoline-2,3-dione unit linked to a 1-{2-[2-(2-chloro­eth­oxy)eth­oxy]eth­yl} moiety. In the crystal, a series of C—H⋯O hydrogen bonds link the molecules to form a supramolecular three-dimensional structure, enclosing R22(8), R22(12), R22(18) and R22(22) ring motifs. ππ contacts between the five-membered dione rings may further stabilize the structure, with a centroid–centroid distance of 3.899 (2) Å. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (28.1%), H⋯O/O⋯H (23.5%), H⋯Br/Br⋯H (13.8%), H⋯Cl/Cl⋯H (13.0%) and H⋯C/C⋯H (10.2%) inter­actions. Hydrogen bonding and van der Waals inter­actions are the dominant inter­actions in the crystal packing. Density functional theory (DFT) optimized structures at the B3LYP/6-311G(d,p) level are compared with the experimentally determined mol­ecular structure in the solid state. The HOMO—LUMO behaviour was elucidated to determine the energy gap. The chloro­eth­oxy­ethoxyethyl side chain atoms are disordered over two sets of sites with an occupancy ratio of 0.665 (8):0.335 (6).

1. Chemical context

Heterocycles are a class of chemical compounds in which one atom or more than one carboxyl group is replaced by a heteroatom such as oxygen, nitro­gen, phospho­rus or sulfur. They are very inter­esting chemical compounds because of their potential applications in different fields. The most common heterocycles contain nitro­gen and oxygen (Pathak & Bahel, 1980[Pathak, R. B. & Bahel, S. C. (1980). J. Indian Chem. Soc. 57, 1108-1111.]; Naik & Malik, 2010[Naik, C. G. & Malik, C. M. (2010). Orient. J. Chem. 26, 113-116.]; Srivalli et al., 2011[Srivalli, T., Satish, K. & Suthakaran, R. (2011). Int. J. Innov. Pharm. Res. 2, 172-174.]). The chemistry of nitro­gen compounds is the preferred source for a large number of study subjects in the laboratory. The N atom is present in several natural mol­ecules of pharmacological inter­est, so many methods have been developed to access nitro­gen compounds, especially heterocyclic compounds. Given the biological inter­est of heterocyclic compounds, we have been inter­ested in synthesizing new polyfunctional heterocyclic systems capable of presenting potential applications. The chemistry of isatin is already well documented due to its wide range of applications, especially in organic synthetic chemistry and medicinal chemistry. The first reports on the syntheses of isatin and isatin-based derivatives can be traced back to the first half of the 19th century, and almost one hundred years after those publications, the review `The Chemistry of Isatin' showed the versatility of this mol­ecular fragment. This reaction is also used for the synthesis of natural products, such as sugar derivatives (DeShong et al., 1986[DeShong, P., Leginus, J. M. & Lander, S. W. (1986). J. Org. Chem. 51, 574-576.]), β-lactams (Kametani et al., 1988[Kametani, T., Chu, S. D. & Honda, T. (1988). J. Chem. Soc. Perkin Trans. 1, pp. 1593-1597.]), amino acids (Annuziata et al., 1986) and alkaloids (Asrof Ali et al., 1988[Asrof Ali, S., Khan, J. H. & Wazeer, M. I. M. (1988). Tetrahedron, 44, 5911-5920.]), and products with pharmacological inter­est, such as pyrazolines, which have several biological activities (Araino et al., 1996[Araino, N., Miura, J., Oda, Y. & Nishioka, H. (1996). Chem. Abstr. 125, 300995.]; Harrison et al., 1996[Harrison, C. R., Lett, R. M., Mccann, S. F., Shapiro, R. & Stevenson, T. M. (1996). Chem. Abstr. 124, 202246.]). As a continuation of our research devoted to the development of substituted 5-bromo­indoline-2,3-dione derivatives, we report herein the synthesis and mol­ecular and crystal structures, along with the Hirshfeld surface analysis and the density functional theory (DFT) computational calculations carried out at the B3LYP/6-311G(d,p) level, of a 5-bromo­indoline-2,3-dione derivative by the alkyl­ation reaction of 5-bromo-1H-indole-2,3-dione under phase-transfer catalysis conditions using tetra-n-butyl­ammonium bromide (TBAB) as catalyst and potassium carbonate as base, leading to the title compound, (I)[link].

[Scheme 1]

2. Structural commentary

The title compound, (I)[link], consists of an 5-bromo­indoline-2,3-dione unit linked to a 1-{2-[2-(2-chloro­eth­oxy)eth­oxy]eth­yl} moiety (Fig. 1[link]). The planar six- and five-membered benzene and dione rings, i.e. A (atoms C1–C6) and B (N1/C1/C6–C8), are oriented at a dihedral angle of A/B = 2.78 (6)°. Atoms Br1, O1 and C9 are at distances of 0.0415 (4), 0.0464 (8) and −0.0244 (7) Å, respectively, from the best plane of the bromo­indoline unit. The 1-{2-[2-(2-chloro­eth­oxy)eth­oxy]eth­yl} moiety is oriented with respect to the bromo­indoline unit by 77.7 (2)°, as defined by the C10—C9—N1—C1 torsion angle.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Only the major component of disorder is shown for clarity.

3. Supra­molecular features

In the crystal, inter­molecular C—HBrmind⋯ODio, C—HBrmind⋯OEthy, C—HChlethy⋯ODio and C—HChlethy⋯OChlethy (Brmind = bromo­indoline, Dio = dione, Ethy = eth­oxy and Chlethy = chloro­eth­oxy) hydrogen bonds (Table 1[link]) link the mol­ecules into a three-dimensional structure, enclosing [R_{2}^{2}](8), [R_{2}^{2}](12), [R_{2}^{2}](18) and [R_{2}^{2}](22) ring motifs (Fig. 2[link]). ππ contacts between the five-membered rings, Cg1—Cg1i [symmetry code: (i) −x + 1, −y + 1, −z + 1, where Cg1 is the centroid of ring A (atoms N1/C1/C6–C8)], may further stabilize the structure, with a centroid–centroid distance of 3.899 (2) Å. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (28.1%), H⋯O/O⋯H (23.5%), H⋯Br/Br⋯H (13.8%), H⋯Cl/Cl⋯H (13.0%) and H⋯C/C⋯H (10.2%) inter­actions. Hydrogen bonding and van der Waals inter­actions are the dominant inter­actions in the crystal packing.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1vii 0.93 2.47 3.392 (4) 174
C5—H5⋯O3v 0.93 2.47 3.352 (4) 158
C14—H14A⋯O2iii 0.97 2.50 3.455 (5) 168
C14—H14B⋯O4iii 0.97 2.38 3.302 (6) 161
Symmetry codes: (iii) -x, -y+1, -z; (v) -x+1, -y+1, -z+1; (vii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
A partial packing diagram, viewed down the c-axis direction. C—HBrmind⋯ODio, C—HBrmind⋯OEthy, C—HChlethy⋯ODio and C—HChlethy⋯OChlethy (Brmind = bromo­indoline, Dio = dione, Ethy = eth­oxy and Chlethy = chloro­eth­oxy) hydrogen bonds are indicated by dashed lines. Only the major component of disorder is shown for clarity.

4. Hirshfeld surface analysis

In order to visualize the inter­molecular inter­actions in the crystal of the title compound, a Hirshfeld surface (HS) analysis (Hirshfeld, 1977[Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129-138.]; Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) was carried out using CrystalExplorer17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.]). In the HS plotted over dnorm (Fig. 3[link]), the white surface indicates contacts with distances equal to the sum of the van der Waals radii, and the red and blue colours indicate distances shorter (in close contact) or longer (distinct contact) than the van der Waals radii, respectively (Venkatesan et al., 2016[Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 625-636.]). The bright-red spots appearing near atoms O1, O2 and O4, and H atoms H2, H14A and H14B, indicate their roles as the respective donors and/or acceptors; they also appear as blue and red regions corresponding to positive and negative potentials on the HS mapped over electrostatic potential (Spackman et al., 2008[Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377-388.]; Jayatilaka et al., 2005[Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO - A System for Computational Chemistry. http://hirshfeldsurface.net/.]), as shown in Fig. 4[link]. The blue regions indicate the positive electrostatic potential (hydrogen-bond donors), while the red regions indicate the negative electrostatic potential (hydrogen-bond acceptors). The shape-index of the HS is a tool to visualize the ππ stacking by the presence of adjacent red and blue triangles; if there are no adjacent red and/or blue triangles, then there are no ππ inter­actions. Fig. 5[link] clearly suggests that there is a ππ inter­action in (I)[link]. The overall two-dimensional fingerprint plot (Fig. 6[link]a) and those delineated into H⋯H, H⋯O/O⋯H, H⋯Br/Br⋯H, H⋯Cl/Cl⋯H, H⋯C/C⋯H, O⋯C/C⋯O, C⋯C and O⋯Cl/Cl⋯O contacts (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) are illustrated in Figs. 6[link](b)–(i), respectively, together with their relative contributions to the Hirshfeld surface. The most important inter­action is H⋯H, contributing 28.1% to the overall crystal packing, which is reflected in Fig. 6[link](b) as widely scattered points of high density due to the large hydrogen content of the mol­ecule with the tip at de = di ∼1.08 Å, due to the short inter­atomic H⋯H contacts (Table 2[link]). The pair of characteristic wings resulting in the fingerprint plot delineated into H⋯O/O⋯H contacts (Fig. 6[link]c), with a 23.5% contribution to the HS, arises from the H⋯O/O⋯H contacts (Table 2[link]) and is viewed as a pair of spikes with the tips at de + di = 2.10 Å. The pairs of scattered points of wings resulting in the fingerprint plots delineated into H⋯Br/Br⋯H (Fig. 6[link]d) and H⋯Cl/Cl⋯H (Fig. 6[link]e) contacts, with 13.8 and 13.0% contributions to the HS, have nearly symmetrical distributions of points with the edges at de + di = 2.92 (for thin edge) and 3.20 Å (for thick edge) and de + di = 2.78 Å, respectively, arising from the H⋯Br/Br⋯H and H⋯Cl/Cl⋯H contacts (Table 2[link]). In the absence of C—H⋯π inter­actions, with a pair of characteristic wings resulting in the fingerprint plot delineated into H⋯C/C⋯H contacts (Fig. 6[link]f), a 10.2% contribution to the HS, arises from the H⋯C/C⋯H contacts (Table 2[link]) and is seen as a thick pair of spikes with the tips at de + di = 2.82 Å. The pair of characteristic wings resulting in the fingerprint plot delineated into O⋯C/C⋯O contacts (Fig. 6[link]g), with a 4.0% contribution to the HS, arises from the O⋯C/C⋯O contacts (Table 2[link]) and is seen as a pair of spikes with the tips at de + di = 3.05 Å. The C⋯C contacts (Fig. 6[link]h), with a 2.6% contribution to the HS, have a nearly arrow-shaped distribution of points arising from the C⋯C contacts (Table 2[link]) and is seen with the tip at de = di ∼1.62 Å. Finally, the pair of scattered points of wings resulting in the fingerprint plot delineated into O⋯Cl/Cl⋯O (Fig. 6[link]i) contacts, with a 1.1% contribution to the HS, have nearly symmetrical distributions of points with the edge at de + di = 3.50 Å.

Table 2
Summary of short interatomic contacts (Å)

Br1⋯H12Ci 3.05 O4⋯H14Biii 2.38
Cl1⋯O4 3.188 (5) O4A⋯H14Diii 2.48
Cl1A⋯C11Aii 3.553 (4) C1⋯C7v 3.542 (4)
Cl1A⋯O4A 2.720 (14) C2⋯C10 3.537 (4)
Cl1⋯H9Biii 2.92 C5⋯C7v 3.356 (5)
Cl1A⋯H11Dii 2.99 C5⋯C8v 3.290 (2)
O1⋯C2iv 3.392 (4) C6⋯C7v 3.251 (4)
O1⋯O2 2.951 (4) C6⋯C6v 3.327 (2)
O1⋯C10iv 3.294 (5) C8⋯C8vi 3.324 (4)
O1⋯C1v 3.397 (4) C10⋯C2 3.537 (4)
O2⋯C8vi 3.093 (4) C12A⋯O3 2.355 (5)
O2⋯N1vi 3.191 (2) C2⋯H9A 2.89
O3⋯C5v 3.352 (5) C4⋯H13Ci 2.93
O3⋯C14iii 3.415 (4) C5⋯H13Ci 2.89
O3⋯O4 2.953 (4) C9⋯H2 2.86
O3⋯N1 2.949 (5) C10⋯H12A 2.99
O3A⋯C5v 3.352 (4) C11⋯H5v 2.84
O3A⋯N1 2.949 (5) H2⋯H9A 2.48
O3A⋯O4A 2.866 (4) H2⋯H10B 2.59
O4⋯C14iii 3.302 (4) H5⋯H12Dv 2.58
O4A⋯C14Aiii 3.37 (2) H5⋯H11Av 2.41
O1⋯H2iv 2.47 H10A⋯H12A 2.52
O1⋯H9Aiv 2.77 H10A⋯H11D 2.09
O2⋯H9B 2.60 H10B⋯H11B 2.35
O2⋯H3iv 2.85 H10B⋯H11C 2.34
O2⋯H14Ciii 2.66 H12A⋯H13B 2.53
O2⋯H14Aiii 2.50 H12B⋯H13A 2.39
O3⋯H5v 2.47 H12C⋯H13C 2.07
O3A⋯H5v 2.47 H14B⋯H14Biii 2.37
Symmetry codes: (i) x+1, y, z; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x, -y+1, -z; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) -x+1, -y+1, -z+1; (vi) -x+1, -y+1, -z.
[Figure 3]
Figure 3
View of the three-dimensional Hirshfeld surface of the title compound plotted over dnorm in the range −0.3481 to 1.0316 a.u.
[Figure 4]
Figure 4
View of the three-dimensional Hirshfeld surface of the title compound plotted over electrostatic potential energy in the range −0.0500 to 0.0500 a.u. using the STO-3G basis set at the Hartree–Fock level of theory. Hydrogen-bond donors and acceptors are shown as blue and red regions around the atoms corresponding to positive and negative potentials, respectively.
[Figure 5]
Figure 5
Hirshfeld surface of the title compound plotted over shape-index.
[Figure 6]
Figure 6
The full two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) H⋯O/O⋯H, (d) H⋯Br/Br⋯H, (e) H⋯Cl/Cl⋯H, (f) H⋯C/C⋯H, (g) O⋯C/C⋯O, (h) C⋯C and (i) O⋯Cl/Cl⋯O inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface contacts.

The Hirshfeld surface representations with the function dnorm plotted onto the surface are shown for the H⋯H, H⋯O/O⋯H, H⋯Br/Br⋯H, H⋯Cl/Cl⋯H and H⋯C/C⋯H inter­actions in Figs. 7[link](a)–(e), respectively.

[Figure 7]
Figure 7
The Hirshfeld surface representations with the function dnorm plotted onto the surface for (a) H⋯H, (b) H⋯O/O⋯H, (c) H⋯Br/Br⋯H, (d) H⋯Cl/Cl⋯H and (e) H⋯C/C⋯H inter­actions.

The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯H, H⋯C/C⋯H and H⋯O/O⋯H inter­actions suggest that van der Waals inter­actions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015[Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563-574.]).

5. DFT calculations

The optimized structure of the title compound, (I)[link], in the gas phase was generated theoretically via density functional theory (DFT) using standard B3LYP functional and 6-311G(d,p) basis-set calculations (Becke, 1993[Becke, A. D. (1993). J. Chem. Phys. 98, 5648-5652.]), as implemented in GAUSSIAN09 (Frisch et al., 2009[Frisch, M. J., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.]). The theoretical and experimental results were in good agreement (Table 4). The highest-occupied mol­ecular orbital (HOMO), acting as an electron donor, and the lowest-unoccupied mol­ecular orbital (LUMO), acting as an electron acceptor, are very important parameters for quantum chemistry. When the energy gap is small, the mol­ecule is highly polarizable and has high chemical reactivity. The electron transition from the HOMO to the LUMO energy level is shown in Fig. 8[link]. The HOMO and LUMO are localized in the plane extending from the whole 1-{2-[2-(2-chloro­eth­oxy)eth­oxy]eth­yl}-5-bromo­indoline-2,3-dione ring. The energy band gap (ΔE = ELUMOEHOMO) of the mol­ecule was about 6.5402 eV, and the frontier mol­ecular orbital energies, i.e. EHOMO and ELUMO, were −7.4517 and −0.9115 eV, respectively.

[Figure 8]
Figure 8
The energy band gap of the title compound.

6. Database survey

A non-alkyl­ated analogue, namely 5-chloro­indoline-2,3-dione has been reported (Wei et al., 2010[Wei, W.-B., Tian, S., Zhou, H., Sun, J. & Wang, H.-B. (2010). Acta Cryst. E66, o3024.]), as well as three similar structures, namely 1-tetra­decyl­indoline-2,3-dione (Mamari et al., 2010[Mamari, K., Zouihri, H., Essassi, E. M. & Ng, S. W. (2010). Acta Cryst. E66, o1410.]), 5-fluoro-1-(prop-2-en-1-yl)-2,3-di­hydro-1H-indole-2,3-dione (Qachchachi et al., 2017[Qachchachi, F.-Z., Mague, J. T., Kandri Rodi, Y., Haoudi, A., Ouzidan, Y. & Essassi, E. M. (2017). IUCrData, 2, x170028.]) and 1-(morpholino­meth­yl)indoline-2,3-dione (Tang et al., 2010[Tang, Y., Zhang, J., Miao, Y. & Chen, G. (2010). Acta Cryst. E66, o1748.]).

7. Synthesis and crystallization

1,2-Bis(2-chloro­eth­oxy)ethane (0.26 ml, 1.86 mmol) was added dropwise to a solution of 5-bromo-1H-indole-2,3-dione (0.4 g, 1.76 mmol) and di­methyl­formamide (DMF, 20 ml) in potassium carbonate (0.6 g, 4.4 mmol) and tetra-n-butyl­ammonium bromide (0.1 g, 4.4 mmol). The mixture was stirred at 353 K for 48 h. The reaction was controlled by CCM. The solution was filtered and the DMF was removed under vacuum. The product obtained was separated by chromatography on a column of silica gel with hexa­ne–ethyl acetate (4:1 v/v) as eluent. The isolated solid was recrystallized from ethanol to afford red crystals (yield 48%, m.p. 349 K).

8. Refinement

The experimental details, including the crystal data, data collection and refinement, are summarized in Table 3[link]. H atoms were positioned geometrically, with C—H = 0.93 and 0.97 Å for aromatic and methyl­ene H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C). During the refinement process, the disordered chloro­eth­oxy­ethoxyethyl side-chain atoms were refined with a major–minor occupancy ratio of 0.665 (8):0.335 (6).

Table 3
Experimental details

Crystal data
Chemical formula C14H15BrClNO4
Mr 376.63
Crystal system, space group Monoclinic, P21/c
Temperature (K) 300
a, b, c (Å) 12.4682 (4), 14.6397 (5), 8.3524 (3)
β (°) 91.392 (2)
V3) 1524.12 (9)
Z 4
Radiation type Mo Kα
μ (mm−1) 2.89
Crystal size (mm) 0.25 × 0.22 × 0.07
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.573, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 36235, 4608, 3442
Rint 0.030
(sin θ/λ)max−1) 0.713
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.099, 1.04
No. of reflections 4608
No. of parameters 245
No. of restraints 11
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.77, −0.69
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

5-Bromo-1-{2-[2-(2-chloroethoxy)ethoxy]ethyl}indoline-2,3-dione top
Crystal data top
C14H15BrClNO4F(000) = 760
Mr = 376.63Dx = 1.641 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.4682 (4) ÅCell parameters from 9939 reflections
b = 14.6397 (5) Åθ = 2.8–26.1°
c = 8.3524 (3) ŵ = 2.89 mm1
β = 91.392 (2)°T = 300 K
V = 1524.12 (9) Å3Plate, red
Z = 40.25 × 0.22 × 0.07 mm
Data collection top
Bruker APEXII CCD
diffractometer
3442 reflections with I > 2σ(I)
φ and ω scansRint = 0.030
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
θmax = 30.5°, θmin = 1.6°
Tmin = 0.573, Tmax = 0.746h = 1717
36235 measured reflectionsk = 2020
4608 independent reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0412P)2 + 0.8377P]
where P = (Fo2 + 2Fc2)/3
4608 reflections(Δ/σ)max < 0.001
245 parametersΔρmax = 0.77 e Å3
11 restraintsΔρmin = 0.69 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. At the end of the refinement, it remained some residual electronic density pics around O4 and C12. suggesting a disorder. We modeled this disorder considering two positions with following occupancies : 0.665 (7) and 0.335 (7). The R1(Fo > 4sig(Fo)) factor decreased from 5.96% to 3.76%.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.82107 (2)0.34602 (2)0.67781 (3)0.06075 (11)
O10.57179 (13)0.62280 (10)0.3141 (2)0.0521 (4)
O20.40213 (12)0.55268 (11)0.09446 (18)0.0497 (4)
N10.45304 (12)0.41469 (10)0.21008 (18)0.0339 (3)
C10.53610 (14)0.38646 (12)0.3166 (2)0.0308 (3)
C20.56401 (15)0.29844 (12)0.3613 (2)0.0355 (4)
H20.5269770.2481760.3201930.043*
C30.64948 (16)0.28779 (13)0.4700 (2)0.0380 (4)
H30.6702810.2293900.5017260.046*
C40.70420 (15)0.36307 (13)0.5319 (2)0.0380 (4)
C50.67705 (15)0.45129 (13)0.4869 (2)0.0366 (4)
H50.7138260.5014860.5288040.044*
C60.59299 (14)0.46176 (12)0.3772 (2)0.0320 (3)
C70.54778 (15)0.54334 (12)0.3003 (2)0.0364 (4)
C80.45658 (15)0.50726 (13)0.1861 (2)0.0364 (4)
C90.38069 (16)0.35247 (14)0.1244 (2)0.0410 (4)
H9A0.4221010.3021680.0823940.049*
H9B0.3478710.3845270.0341630.049*
C100.29340 (17)0.31449 (14)0.2271 (3)0.0439 (4)
H10A0.2538430.2676280.1685530.053*0.665 (6)
H10B0.3248140.2870760.3229660.053*0.665 (6)
H10C0.2538430.2676280.1685530.053*0.335 (6)
H10D0.3248140.2870760.3229660.053*0.335 (6)
Cl10.1661 (2)0.5843 (2)0.1862 (3)0.0789 (6)0.665 (6)
O30.22328 (11)0.38602 (10)0.26936 (19)0.0453 (3)0.665 (6)
O40.0082 (4)0.4132 (3)0.2056 (7)0.0581 (10)0.665 (6)
C110.1364 (4)0.3629 (5)0.3717 (7)0.0464 (14)0.665 (6)
H11A0.1206220.4148860.4392000.056*0.665 (6)
H11B0.1582120.3126580.4407590.056*0.665 (6)
C120.0374 (3)0.3365 (2)0.2790 (5)0.0488 (10)0.665 (6)
H12A0.0551060.2916740.1982470.059*0.665 (6)
H12B0.0137520.3090750.3503260.059*0.665 (6)
C130.1129 (5)0.4046 (4)0.1457 (8)0.0532 (13)0.665 (6)
H13A0.1606490.3929280.2332620.064*0.665 (6)
H13B0.1171640.3530520.0729020.064*0.665 (6)
C140.1476 (9)0.4885 (4)0.0601 (12)0.0487 (18)0.665 (6)
H14A0.2145730.4760170.0027030.058*0.665 (6)
H14B0.0944750.5037760.0184190.058*0.665 (6)
Cl1A0.1226 (6)0.5970 (5)0.1705 (9)0.110 (2)0.335 (6)
O3A0.22328 (11)0.38602 (10)0.26936 (19)0.0453 (3)0.335 (6)
O4A0.0068 (7)0.4519 (9)0.2390 (14)0.085 (4)0.335 (6)
C11A0.1332 (8)0.3392 (7)0.3356 (18)0.054 (4)0.335 (6)
H11C0.1550560.3065190.4320050.064*0.335 (6)
H11D0.1035520.2956540.2589750.064*0.335 (6)
C12A0.0522 (6)0.4099 (7)0.3732 (10)0.074 (3)0.335 (6)
H12C0.0044490.3817990.4338090.089*0.335 (6)
H12D0.0858530.4561610.4405780.089*0.335 (6)
C13A0.0955 (10)0.4210 (10)0.199 (2)0.074 (4)0.335 (6)
H13C0.1379400.4161720.2944770.089*0.335 (6)
H13D0.0917640.3611860.1496350.089*0.335 (6)
C14A0.145 (2)0.4874 (8)0.086 (2)0.074 (7)0.335 (6)
H14C0.2215380.4756910.0728800.089*0.335 (6)
H14D0.1126020.4830190.0181290.089*0.335 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.05356 (15)0.06387 (18)0.06366 (17)0.01132 (11)0.02226 (11)0.00047 (11)
O10.0518 (9)0.0271 (7)0.0773 (11)0.0023 (6)0.0000 (8)0.0077 (7)
O20.0477 (8)0.0477 (8)0.0536 (9)0.0116 (7)0.0019 (7)0.0146 (7)
N10.0340 (7)0.0309 (8)0.0368 (8)0.0009 (6)0.0028 (6)0.0022 (6)
C10.0325 (8)0.0280 (8)0.0319 (8)0.0007 (6)0.0024 (6)0.0000 (6)
C20.0425 (10)0.0245 (8)0.0395 (9)0.0003 (7)0.0007 (7)0.0035 (7)
C30.0445 (10)0.0277 (8)0.0418 (10)0.0067 (7)0.0006 (8)0.0018 (7)
C40.0350 (9)0.0396 (10)0.0392 (9)0.0051 (7)0.0035 (7)0.0001 (8)
C50.0335 (8)0.0312 (9)0.0450 (10)0.0016 (7)0.0004 (7)0.0046 (7)
C60.0325 (8)0.0245 (8)0.0389 (9)0.0001 (6)0.0023 (7)0.0012 (7)
C70.0352 (9)0.0280 (9)0.0462 (10)0.0007 (7)0.0063 (7)0.0044 (7)
C80.0359 (9)0.0344 (9)0.0392 (9)0.0046 (7)0.0051 (7)0.0067 (7)
C90.0412 (10)0.0429 (11)0.0386 (10)0.0024 (8)0.0072 (8)0.0078 (8)
C100.0411 (10)0.0328 (9)0.0575 (12)0.0031 (8)0.0088 (9)0.0027 (9)
Cl10.0912 (14)0.0695 (10)0.0751 (9)0.0155 (10)0.0128 (9)0.0087 (7)
O30.0370 (7)0.0433 (8)0.0554 (9)0.0009 (6)0.0002 (6)0.0048 (7)
O40.0359 (19)0.058 (2)0.080 (2)0.0108 (15)0.0116 (14)0.0262 (18)
C110.040 (2)0.058 (3)0.041 (2)0.0012 (19)0.0017 (15)0.002 (2)
C120.0380 (16)0.046 (2)0.062 (2)0.0052 (13)0.0049 (14)0.0137 (16)
C130.040 (2)0.057 (3)0.062 (3)0.0020 (19)0.010 (2)0.007 (2)
C140.039 (3)0.048 (3)0.058 (3)0.007 (2)0.009 (2)0.004 (2)
Cl1A0.113 (4)0.077 (3)0.138 (4)0.023 (3)0.023 (3)0.047 (2)
O3A0.0370 (7)0.0433 (8)0.0554 (9)0.0009 (6)0.0002 (6)0.0048 (7)
O4A0.030 (3)0.127 (9)0.098 (7)0.001 (5)0.001 (3)0.064 (7)
C11A0.059 (6)0.046 (6)0.056 (8)0.010 (4)0.012 (5)0.016 (5)
C12A0.051 (4)0.097 (7)0.075 (6)0.015 (4)0.016 (4)0.027 (5)
C13A0.061 (8)0.074 (8)0.087 (10)0.007 (6)0.009 (6)0.027 (7)
C14A0.052 (9)0.102 (14)0.068 (10)0.014 (8)0.007 (7)0.006 (8)
Geometric parameters (Å, º) top
Br1—C41.8934 (19)O3—C111.436 (5)
O1—C71.206 (2)O4—C121.394 (5)
O2—C81.210 (2)O4—C131.392 (5)
N1—C11.411 (2)C11—H11A0.9700
N1—C81.371 (2)C11—H11B0.9700
N1—C91.457 (2)C11—C121.493 (6)
C1—C21.384 (2)C12—H12A0.9700
C1—C61.399 (2)C12—H12B0.9700
C2—H20.9300C13—H13A0.9700
C2—C31.392 (3)C13—H13B0.9700
C3—H30.9300C13—C141.480 (6)
C3—C41.389 (3)C14—H14A0.9700
C4—C51.385 (3)C14—H14B0.9700
C5—H50.9300Cl1A—C14A1.773 (9)
C5—C61.384 (2)O3A—C11A1.438 (8)
C6—C71.463 (2)O4A—C12A1.387 (8)
C7—C81.558 (3)O4A—C13A1.385 (8)
C9—H9A0.9700C11A—H11C0.9700
C9—H9B0.9700C11A—H11D0.9700
C9—C101.508 (3)C11A—C12A1.485 (9)
C10—H10A0.9700C12A—H12C0.9700
C10—H10B0.9700C12A—H12D0.9700
C10—H10C0.9700C13A—H13C0.9700
C10—H10D0.9700C13A—H13D0.9700
C10—O31.415 (3)C13A—C14A1.481 (9)
C10—O3A1.415 (3)C14A—H14C0.9700
Cl1—C141.772 (6)C14A—H14D0.9700
Br1···H12Ci3.05O4···H14Biii2.38
Cl1···O43.188 (5)O4A···H14Diii2.48
Cl1A···C11Aii3.553 (4)C1···C7v3.542 (4)
Cl1A···O4A2.720 (14)C2···C103.537 (4)
Cl1···H9Biii2.92C5···C7v3.356 (5)
Cl1A···H11Dii2.99C5···C8v3.290 (2)
O1···C2iv3.392 (4)C6···C7v3.251 (4)
O1···O22.951 (4)C6···C6v3.327 (2)
O1···C10iv3.294 (5)C8···C8vi3.324 (4)
O1···C1v3.397 (4)C10···C23.537 (4)
O2···C8vi3.093 (4)C12A···O32.355 (5)
O2···N1vi3.191 (2)C2···H9A2.89
O3···C5v3.352 (5)C4···H13Ci2.93
O3···C14iii3.415 (4)C5···H13Ci2.89
O3···O42.953 (4)C9···H22.86
O3···N12.949 (5)C10···H12A2.99
O3A···C5v3.352 (4)C11···H5v2.84
O3A···N12.949 (5)H2···H9A2.48
O3A···O4A2.866 (4)H2···H10B2.59
O4···C14iii3.302 (4)H5···H12Dv2.58
O4A···C14Aiii3.37 (2)H5···H11Av2.41
O1···H2iv2.47H10A···H12A2.52
O1···H9Aiv2.77H10A···H11D2.09
O2···H9B2.60H10B···H11B2.35
O2···H3iv2.85H10B···H11C2.34
O2···H14Ciii2.66H12A···H13B2.53
O2···H14Aiii2.50H12B···H13A2.39
O3···H5v2.47H12C···H13C2.07
O3A···H5v2.47H14B···H14Biii2.37
C1—N1—C9124.25 (15)O3—C11—C12112.3 (4)
C8—N1—C1110.85 (15)H11A—C11—H11B107.9
C8—N1—C9124.61 (16)C12—C11—H11A109.2
C2—C1—N1128.23 (16)C12—C11—H11B109.2
C2—C1—C6120.95 (16)O4—C12—C11110.0 (4)
C6—C1—N1110.81 (15)O4—C12—H12A109.7
C1—C2—H2121.2O4—C12—H12B109.7
C1—C2—C3117.63 (16)C11—C12—H12A109.7
C3—C2—H2121.2C11—C12—H12B109.7
C2—C3—H3119.5H12A—C12—H12B108.2
C4—C3—C2121.00 (17)O4—C13—H13A109.4
C4—C3—H3119.5O4—C13—H13B109.4
C3—C4—Br1119.88 (14)O4—C13—C14111.1 (6)
C5—C4—Br1118.47 (14)H13A—C13—H13B108.0
C5—C4—C3121.64 (17)C14—C13—H13A109.4
C4—C5—H5121.3C14—C13—H13B109.4
C6—C5—C4117.33 (17)Cl1—C14—H14A108.7
C6—C5—H5121.3Cl1—C14—H14B108.7
C1—C6—C7107.34 (15)C13—C14—Cl1114.2 (6)
C5—C6—C1121.43 (16)C13—C14—H14A108.7
C5—C6—C7131.22 (17)C13—C14—H14B108.7
O1—C7—C6130.79 (19)H14A—C14—H14B107.6
O1—C7—C8124.15 (18)C10—O3A—C11A103.7 (4)
C6—C7—C8105.05 (15)C13A—O4A—C12A113.9 (10)
O2—C8—N1128.03 (19)O3A—C11A—H11C110.3
O2—C8—C7126.21 (18)O3A—C11A—H11D110.3
N1—C8—C7105.74 (15)O3A—C11A—C12A106.9 (7)
N1—C9—H9A108.9H11C—C11A—H11D108.6
N1—C9—H9B108.9C12A—C11A—H11C110.3
N1—C9—C10113.45 (17)C12A—C11A—H11D110.3
H9A—C9—H9B107.7O4A—C12A—C11A113.8 (10)
C10—C9—H9A108.9O4A—C12A—H12C108.8
C10—C9—H9B108.9O4A—C12A—H12D108.8
C9—C10—H10A109.9C11A—C12A—H12C108.8
C9—C10—H10B109.9C11A—C12A—H12D108.8
C9—C10—H10C109.9H12C—C12A—H12D107.7
C9—C10—H10D109.9O4A—C13A—H13C110.1
H10A—C10—H10B108.3O4A—C13A—H13D110.1
H10C—C10—H10D108.3O4A—C13A—C14A108.0 (12)
O3—C10—C9109.14 (17)H13C—C13A—H13D108.4
O3—C10—H10A109.9C14A—C13A—H13C110.1
O3—C10—H10B109.9C14A—C13A—H13D110.1
O3A—C10—C9109.14 (17)Cl1A—C14A—H14C110.5
O3A—C10—H10C109.9Cl1A—C14A—H14D110.5
O3A—C10—H10D109.9C13A—C14A—Cl1A106.2 (10)
C10—O3—C11117.0 (3)C13A—C14A—H14C110.5
C13—O4—C12117.0 (4)C13A—C14A—H14D110.5
O3—C11—H11A109.2H14C—C14A—H14D108.7
O3—C11—H11B109.2
Br1—C4—C5—C6178.48 (14)C6—C1—C2—C30.9 (3)
O1—C7—C8—O22.9 (3)C6—C7—C8—O2176.38 (18)
O1—C7—C8—N1178.03 (19)C6—C7—C8—N12.66 (19)
N1—C1—C2—C3179.67 (18)C8—N1—C1—C2174.80 (18)
N1—C1—C6—C5178.66 (16)C8—N1—C1—C64.7 (2)
N1—C1—C6—C72.7 (2)C8—N1—C9—C10109.2 (2)
N1—C9—C10—O367.1 (2)C9—N1—C1—C20.8 (3)
N1—C9—C10—O3A67.1 (2)C9—N1—C1—C6178.69 (16)
C1—N1—C8—O2174.61 (19)C9—N1—C8—O20.7 (3)
C1—N1—C8—C74.4 (2)C9—N1—C8—C7178.36 (16)
C1—N1—C9—C1077.7 (2)C9—C10—O3—C11178.2 (3)
C1—C2—C3—C40.4 (3)C9—C10—O3A—C11A168.1 (7)
C1—C6—C7—O1179.2 (2)C10—O3—C11—C1291.0 (5)
C1—C6—C7—C80.04 (19)C10—O3A—C11A—C12A176.3 (8)
C2—C1—C6—C51.8 (3)O3—C11—C12—O471.5 (6)
C2—C1—C6—C7176.82 (16)O4—C13—C14—Cl169.5 (9)
C2—C3—C4—Br1179.34 (15)C12—O4—C13—C14175.5 (6)
C2—C3—C4—C50.8 (3)C13—O4—C12—C11165.7 (5)
C3—C4—C5—C60.1 (3)O3A—C11A—C12A—O4A67.7 (13)
C4—C5—C6—C11.4 (3)O4A—C13A—C14A—Cl1A48 (2)
C4—C5—C6—C7176.87 (19)C12A—O4A—C13A—C14A164.5 (14)
C5—C6—C7—O10.8 (4)C13A—O4A—C12A—C11A102.8 (13)
C5—C6—C7—C8178.46 (19)
Symmetry codes: (i) x+1, y, z; (ii) x, y+1/2, z+1/2; (iii) x, y+1, z; (iv) x+1, y+1/2, z+1/2; (v) x+1, y+1, z+1; (vi) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1vii0.932.473.392 (4)174
C5—H5···O3v0.932.473.352 (4)158
C14—H14A···O2iii0.972.503.455 (5)168
C14—H14B···O4iii0.972.383.302 (6)161
Symmetry codes: (iii) x, y+1, z; (v) x+1, y+1, z+1; (vii) x+1, y1/2, z+1/2.
Table 4. Comparison of the selected (X-ray and DFT) geometric data (Å, °). top
Bonds/anglesX-rayB3LYP/6-311G(d,p)
Br1—C41.8934 (19)1.94411
Cl1—C141.772 (6)1.88948
O3—C101.415 (3)1.45191
O3—C111.436 (5)1.45378
O2—C81.210 (2)1.23688
O1—C71.206 (2)1.23522
N1—C11.411 (2)1.41761
N1—C81.371 (2)1.39446
N1—C91.457 (2)1.46194
C10—O3—C11117.0 (3)116.04457
C1—N1—C9124.25(15125.11525
C8—N1—C1110.8 (2)110.73581
C8—N1—C9124.61 (16)126.01387
C6—C1—N1110.81 (15)109.99463
C2—C1—N1128.23 (16)129.11525
C2—C1—C6120.95 (16)120.88664
Table 5. Calculated energies. top
Molecular Energy (a.u.) (eV)Compound (I)
Total Energy TE (eV)-106925,446
EHOMO (eV)-7,4517
ELUMO (eV)-0,9115
Gap ΔE (eV)6,5402
Dipole moment µ (Debye)7,9257
Ionisation potential I (eV)7,4517
Electron affinity A0,9115
Electro negativity χ4,1816
Hardness η3,2701
Electrophilicity index ω2,6736
Softness σ0,3058
Fraction of electron transferred ΔN0,4301

Acknowledgements

The Chevreul Institute (FR 2638), Ministry of Higher Education, Research and Innovation, Région Hauts de France and FEDER are recognized for fundings of X-ray diffractometers.

Funding information

Funding for this research was provided by: Hacettepe University Scientific Research Project Unit (grant No. 013 D04 602 004, to TH).

References

First citationAraino, N., Miura, J., Oda, Y. & Nishioka, H. (1996). Chem. Abstr. 125, 300995.  Google Scholar
First citationAsrof Ali, S., Khan, J. H. & Wazeer, M. I. M. (1988). Tetrahedron, 44, 5911–5920.  CrossRef Google Scholar
First citationBecke, A. D. (1993). J. Chem. Phys. 98, 5648–5652.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDeShong, P., Leginus, J. M. & Lander, S. W. (1986). J. Org. Chem. 51, 574–576.  CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFrisch, M. J., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.  Google Scholar
First citationHarrison, C. R., Lett, R. M., Mccann, S. F., Shapiro, R. & Stevenson, T. M. (1996). Chem. Abstr. 124, 202246.  Google Scholar
First citationHathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationHirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138.  CrossRef CAS Web of Science Google Scholar
First citationJayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO – A System for Computational Chemistry. http://hirshfeldsurface.net/.  Google Scholar
First citationKametani, T., Chu, S. D. & Honda, T. (1988). J. Chem. Soc. Perkin Trans. 1, pp. 1593–1597.  CrossRef Google Scholar
First citationMamari, K., Zouihri, H., Essassi, E. M. & Ng, S. W. (2010). Acta Cryst. E66, o1410.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationNaik, C. G. & Malik, C. M. (2010). Orient. J. Chem. 26, 113–116.  CAS Google Scholar
First citationPathak, R. B. & Bahel, S. C. (1980). J. Indian Chem. Soc. 57, 1108–1111.  CAS Google Scholar
First citationQachchachi, F.-Z., Mague, J. T., Kandri Rodi, Y., Haoudi, A., Ouzidan, Y. & Essassi, E. M. (2017). IUCrData, 2, x170028.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388.  CAS Google Scholar
First citationSrivalli, T., Satish, K. & Suthakaran, R. (2011). Int. J. Innov. Pharm. Res. 2, 172–174.  Google Scholar
First citationTang, Y., Zhang, J., Miao, Y. & Chen, G. (2010). Acta Cryst. E66, o1748.  CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.  Google Scholar
First citationVenkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 625–636.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWei, W.-B., Tian, S., Zhou, H., Sun, J. & Wang, H.-B. (2010). Acta Cryst. E66, o3024.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds