research communications
Hirshfeld surface analysis and DFT studies of 5-bromo-1-{2-[2-(2-chloroethoxy)ethoxy]ethyl}indoline-2,3-dione
aLaboratoire de Chimie Organique Appliquée, Université Sidi Mohamed Ben Abdallah, Faculté des Sciences et Techniques, Route d'immouzzer, BP 2202, Fez, Morocco, bDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, and cUniv. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181–UCCS–Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
*Correspondence e-mail: abdellaouiomar10@gmail.com
The title compound, C14H15BrClNO4, consists of a 5-bromoindoline-2,3-dione unit linked to a 1-{2-[2-(2-chloroethoxy)ethoxy]ethyl} moiety. In the crystal, a series of C—H⋯O hydrogen bonds link the molecules to form a supramolecular three-dimensional structure, enclosing R22(8), R22(12), R22(18) and R22(22) ring motifs. π–π contacts between the five-membered dione rings may further stabilize the structure, with a centroid–centroid distance of 3.899 (2) Å. The Hirshfeld surface analysis of the indicates that the most important contributions for the crystal packing are from H⋯H (28.1%), H⋯O/O⋯H (23.5%), H⋯Br/Br⋯H (13.8%), H⋯Cl/Cl⋯H (13.0%) and H⋯C/C⋯H (10.2%) interactions. Hydrogen bonding and van der Waals interactions are the dominant interactions in the crystal packing. Density functional theory (DFT) optimized structures at the B3LYP/6-311G(d,p) level are compared with the experimentally determined molecular structure in the solid state. The HOMO—LUMO behaviour was elucidated to determine the energy gap. The chloroethoxyethoxyethyl side chain atoms are disordered over two sets of sites with an occupancy ratio of 0.665 (8):0.335 (6).
Keywords: crystal structure; bromoindoline; dione; π-stacking; DFT; Hirshfeld surface.
CCDC reference: 1948316
1. Chemical context
Heterocycles are a class of chemical compounds in which one atom or more than one carboxyl group is replaced by a heteroatom such as oxygen, nitrogen, phosphorus or sulfur. They are very interesting chemical compounds because of their potential applications in different fields. The most common heterocycles contain nitrogen and oxygen (Pathak & Bahel, 1980; Naik & Malik, 2010; Srivalli et al., 2011). The chemistry of nitrogen compounds is the preferred source for a large number of study subjects in the laboratory. The N atom is present in several natural molecules of pharmacological interest, so many methods have been developed to access nitrogen compounds, especially Given the biological interest of we have been interested in synthesizing new polyfunctional heterocyclic systems capable of presenting potential applications. The chemistry of isatin is already well documented due to its wide range of applications, especially in organic synthetic chemistry and medicinal chemistry. The first reports on the syntheses of isatin and isatin-based derivatives can be traced back to the first half of the 19th century, and almost one hundred years after those publications, the review `The Chemistry of Isatin' showed the versatility of this molecular fragment. This reaction is also used for the synthesis of natural products, such as sugar derivatives (DeShong et al., 1986), β-lactams (Kametani et al., 1988), amino acids (Annuziata et al., 1986) and (Asrof Ali et al., 1988), and products with pharmacological interest, such as pyrazolines, which have several biological activities (Araino et al., 1996; Harrison et al., 1996). As a continuation of our research devoted to the development of substituted 5-bromoindoline-2,3-dione derivatives, we report herein the synthesis and molecular and crystal structures, along with the Hirshfeld surface analysis and the density functional theory (DFT) computational calculations carried out at the B3LYP/6-311G(d,p) level, of a 5-bromoindoline-2,3-dione derivative by the alkylation reaction of 5-bromo-1H-indole-2,3-dione under conditions using tetra-n-butylammonium bromide (TBAB) as catalyst and potassium carbonate as base, leading to the title compound, (I).
2. Structural commentary
The title compound, (I), consists of an 5-bromoindoline-2,3-dione unit linked to a 1-{2-[2-(2-chloroethoxy)ethoxy]ethyl} moiety (Fig. 1). The planar six- and five-membered benzene and dione rings, i.e. A (atoms C1–C6) and B (N1/C1/C6–C8), are oriented at a dihedral angle of A/B = 2.78 (6)°. Atoms Br1, O1 and C9 are at distances of 0.0415 (4), 0.0464 (8) and −0.0244 (7) Å, respectively, from the best plane of the bromoindoline unit. The 1-{2-[2-(2-chloroethoxy)ethoxy]ethyl} moiety is oriented with respect to the bromoindoline unit by 77.7 (2)°, as defined by the C10—C9—N1—C1 torsion angle.
3. Supramolecular features
In the crystal, intermolecular C—HBrmind⋯ODio, C—HBrmind⋯OEthy, C—HChlethy⋯ODio and C—HChlethy⋯OChlethy (Brmind = bromoindoline, Dio = dione, Ethy = ethoxy and Chlethy = chloroethoxy) hydrogen bonds (Table 1) link the molecules into a three-dimensional structure, enclosing (8), (12), (18) and (22) ring motifs (Fig. 2). π–π contacts between the five-membered rings, Cg1—Cg1i [symmetry code: (i) −x + 1, −y + 1, −z + 1, where Cg1 is the centroid of ring A (atoms N1/C1/C6–C8)], may further stabilize the structure, with a centroid–centroid distance of 3.899 (2) Å. The Hirshfeld surface analysis of the indicates that the most important contributions for the crystal packing are from H⋯H (28.1%), H⋯O/O⋯H (23.5%), H⋯Br/Br⋯H (13.8%), H⋯Cl/Cl⋯H (13.0%) and H⋯C/C⋯H (10.2%) interactions. Hydrogen bonding and van der Waals interactions are the dominant interactions in the crystal packing.
4. Hirshfeld surface analysis
In order to visualize the intermolecular interactions in the crystal of the title compound, a Hirshfeld surface (HS) analysis (Hirshfeld, 1977; Spackman & Jayatilaka, 2009) was carried out using CrystalExplorer17.5 (Turner et al., 2017). In the HS plotted over dnorm (Fig. 3), the white surface indicates contacts with distances equal to the sum of the van der Waals radii, and the red and blue colours indicate distances shorter (in close contact) or longer (distinct contact) than the van der Waals radii, respectively (Venkatesan et al., 2016). The bright-red spots appearing near atoms O1, O2 and O4, and H atoms H2, H14A and H14B, indicate their roles as the respective donors and/or acceptors; they also appear as blue and red regions corresponding to positive and negative potentials on the HS mapped over electrostatic potential (Spackman et al., 2008; Jayatilaka et al., 2005), as shown in Fig. 4. The blue regions indicate the positive electrostatic potential (hydrogen-bond donors), while the red regions indicate the negative electrostatic potential (hydrogen-bond acceptors). The shape-index of the HS is a tool to visualize the π–π stacking by the presence of adjacent red and blue triangles; if there are no adjacent red and/or blue triangles, then there are no π–π interactions. Fig. 5 clearly suggests that there is a π–π interaction in (I). The overall two-dimensional fingerprint plot (Fig. 6a) and those delineated into H⋯H, H⋯O/O⋯H, H⋯Br/Br⋯H, H⋯Cl/Cl⋯H, H⋯C/C⋯H, O⋯C/C⋯O, C⋯C and O⋯Cl/Cl⋯O contacts (McKinnon et al., 2007) are illustrated in Figs. 6(b)–(i), respectively, together with their relative contributions to the Hirshfeld surface. The most important interaction is H⋯H, contributing 28.1% to the overall crystal packing, which is reflected in Fig. 6(b) as widely scattered points of high density due to the large hydrogen content of the molecule with the tip at de = di ∼1.08 Å, due to the short interatomic H⋯H contacts (Table 2). The pair of characteristic wings resulting in the fingerprint plot delineated into H⋯O/O⋯H contacts (Fig. 6c), with a 23.5% contribution to the HS, arises from the H⋯O/O⋯H contacts (Table 2) and is viewed as a pair of spikes with the tips at de + di = 2.10 Å. The pairs of scattered points of wings resulting in the fingerprint plots delineated into H⋯Br/Br⋯H (Fig. 6d) and H⋯Cl/Cl⋯H (Fig. 6e) contacts, with 13.8 and 13.0% contributions to the HS, have nearly symmetrical distributions of points with the edges at de + di = 2.92 (for thin edge) and 3.20 Å (for thick edge) and de + di = 2.78 Å, respectively, arising from the H⋯Br/Br⋯H and H⋯Cl/Cl⋯H contacts (Table 2). In the absence of C—H⋯π interactions, with a pair of characteristic wings resulting in the fingerprint plot delineated into H⋯C/C⋯H contacts (Fig. 6f), a 10.2% contribution to the HS, arises from the H⋯C/C⋯H contacts (Table 2) and is seen as a thick pair of spikes with the tips at de + di = 2.82 Å. The pair of characteristic wings resulting in the fingerprint plot delineated into O⋯C/C⋯O contacts (Fig. 6g), with a 4.0% contribution to the HS, arises from the O⋯C/C⋯O contacts (Table 2) and is seen as a pair of spikes with the tips at de + di = 3.05 Å. The C⋯C contacts (Fig. 6h), with a 2.6% contribution to the HS, have a nearly arrow-shaped distribution of points arising from the C⋯C contacts (Table 2) and is seen with the tip at de = di ∼1.62 Å. Finally, the pair of scattered points of wings resulting in the fingerprint plot delineated into O⋯Cl/Cl⋯O (Fig. 6i) contacts, with a 1.1% contribution to the HS, have nearly symmetrical distributions of points with the edge at de + di = 3.50 Å.
The Hirshfeld surface representations with the function dnorm plotted onto the surface are shown for the H⋯H, H⋯O/O⋯H, H⋯Br/Br⋯H, H⋯Cl/Cl⋯H and H⋯C/C⋯H interactions in Figs. 7(a)–(e), respectively.
The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯H, H⋯C/C⋯H and H⋯O/O⋯H interactions suggest that van der Waals interactions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015).
5. DFT calculations
The optimized structure of the title compound, (I), in the gas phase was generated theoretically via density functional theory (DFT) using standard B3LYP functional and 6-311G(d,p) basis-set calculations (Becke, 1993), as implemented in GAUSSIAN09 (Frisch et al., 2009). The theoretical and experimental results were in good agreement (Table 4). The highest-occupied molecular orbital (HOMO), acting as an and the lowest-unoccupied molecular orbital (LUMO), acting as an are very important parameters for quantum chemistry. When the energy gap is small, the molecule is highly polarizable and has high chemical reactivity. The electron transition from the HOMO to the LUMO energy level is shown in Fig. 8. The HOMO and LUMO are localized in the plane extending from the whole 1-{2-[2-(2-chloroethoxy)ethoxy]ethyl}-5-bromoindoline-2,3-dione ring. The energy band gap (ΔE = ELUMO − EHOMO) of the molecule was about 6.5402 eV, and the frontier molecular orbital energies, i.e. EHOMO and ELUMO, were −7.4517 and −0.9115 eV, respectively.
6. Database survey
A non-alkylated analogue, namely 5-chloroindoline-2,3-dione has been reported (Wei et al., 2010), as well as three similar structures, namely 1-tetradecylindoline-2,3-dione (Mamari et al., 2010), 5-fluoro-1-(prop-2-en-1-yl)-2,3-dihydro-1H-indole-2,3-dione (Qachchachi et al., 2017) and 1-(morpholinomethyl)indoline-2,3-dione (Tang et al., 2010).
7. Synthesis and crystallization
1,2-Bis(2-chloroethoxy)ethane (0.26 ml, 1.86 mmol) was added dropwise to a solution of 5-bromo-1H-indole-2,3-dione (0.4 g, 1.76 mmol) and dimethylformamide (DMF, 20 ml) in potassium carbonate (0.6 g, 4.4 mmol) and tetra-n-butylammonium bromide (0.1 g, 4.4 mmol). The mixture was stirred at 353 K for 48 h. The reaction was controlled by CCM. The solution was filtered and the DMF was removed under vacuum. The product obtained was separated by on a column of silica gel with hexane–ethyl acetate (4:1 v/v) as The isolated solid was recrystallized from ethanol to afford red crystals (yield 48%, m.p. 349 K).
8. Refinement
The experimental details, including the crystal data, data collection and . H atoms were positioned geometrically, with C—H = 0.93 and 0.97 Å for aromatic and methylene H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C). During the process, the disordered chloroethoxyethoxyethyl side-chain atoms were refined with a major–minor occupancy ratio of 0.665 (8):0.335 (6).
are summarized in Table 3
|
Supporting information
CCDC reference: 1948316
https://doi.org/10.1107/S2056989019011617/lh5913sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019011617/lh5913Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989019011617/lh5913Isup3.cdx
Data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C14H15BrClNO4 | F(000) = 760 |
Mr = 376.63 | Dx = 1.641 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 12.4682 (4) Å | Cell parameters from 9939 reflections |
b = 14.6397 (5) Å | θ = 2.8–26.1° |
c = 8.3524 (3) Å | µ = 2.89 mm−1 |
β = 91.392 (2)° | T = 300 K |
V = 1524.12 (9) Å3 | Plate, red |
Z = 4 | 0.25 × 0.22 × 0.07 mm |
Bruker APEXII CCD diffractometer | 3442 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.030 |
Absorption correction: multi-scan (SADABS; Bruker, 2016) | θmax = 30.5°, θmin = 1.6° |
Tmin = 0.573, Tmax = 0.746 | h = −17→17 |
36235 measured reflections | k = −20→20 |
4608 independent reflections | l = −11→11 |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.038 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.099 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0412P)2 + 0.8377P] where P = (Fo2 + 2Fc2)/3 |
4608 reflections | (Δ/σ)max < 0.001 |
245 parameters | Δρmax = 0.77 e Å−3 |
11 restraints | Δρmin = −0.69 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. At the end of the refinement, it remained some residual electronic density pics around O4 and C12. suggesting a disorder. We modeled this disorder considering two positions with following occupancies : 0.665 (7) and 0.335 (7). The R1(Fo > 4sig(Fo)) factor decreased from 5.96% to 3.76%. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Br1 | 0.82107 (2) | 0.34602 (2) | 0.67781 (3) | 0.06075 (11) | |
O1 | 0.57179 (13) | 0.62280 (10) | 0.3141 (2) | 0.0521 (4) | |
O2 | 0.40213 (12) | 0.55268 (11) | 0.09446 (18) | 0.0497 (4) | |
N1 | 0.45304 (12) | 0.41469 (10) | 0.21008 (18) | 0.0339 (3) | |
C1 | 0.53610 (14) | 0.38646 (12) | 0.3166 (2) | 0.0308 (3) | |
C2 | 0.56401 (15) | 0.29844 (12) | 0.3613 (2) | 0.0355 (4) | |
H2 | 0.526977 | 0.248176 | 0.320193 | 0.043* | |
C3 | 0.64948 (16) | 0.28779 (13) | 0.4700 (2) | 0.0380 (4) | |
H3 | 0.670281 | 0.229390 | 0.501726 | 0.046* | |
C4 | 0.70420 (15) | 0.36307 (13) | 0.5319 (2) | 0.0380 (4) | |
C5 | 0.67705 (15) | 0.45129 (13) | 0.4869 (2) | 0.0366 (4) | |
H5 | 0.713826 | 0.501486 | 0.528804 | 0.044* | |
C6 | 0.59299 (14) | 0.46176 (12) | 0.3772 (2) | 0.0320 (3) | |
C7 | 0.54778 (15) | 0.54334 (12) | 0.3003 (2) | 0.0364 (4) | |
C8 | 0.45658 (15) | 0.50726 (13) | 0.1861 (2) | 0.0364 (4) | |
C9 | 0.38069 (16) | 0.35247 (14) | 0.1244 (2) | 0.0410 (4) | |
H9A | 0.422101 | 0.302168 | 0.082394 | 0.049* | |
H9B | 0.347871 | 0.384527 | 0.034163 | 0.049* | |
C10 | 0.29340 (17) | 0.31449 (14) | 0.2271 (3) | 0.0439 (4) | |
H10A | 0.253843 | 0.267628 | 0.168553 | 0.053* | 0.665 (6) |
H10B | 0.324814 | 0.287076 | 0.322966 | 0.053* | 0.665 (6) |
H10C | 0.253843 | 0.267628 | 0.168553 | 0.053* | 0.335 (6) |
H10D | 0.324814 | 0.287076 | 0.322966 | 0.053* | 0.335 (6) |
Cl1 | −0.1661 (2) | 0.5843 (2) | 0.1862 (3) | 0.0789 (6) | 0.665 (6) |
O3 | 0.22328 (11) | 0.38602 (10) | 0.26936 (19) | 0.0453 (3) | 0.665 (6) |
O4 | −0.0082 (4) | 0.4132 (3) | 0.2056 (7) | 0.0581 (10) | 0.665 (6) |
C11 | 0.1364 (4) | 0.3629 (5) | 0.3717 (7) | 0.0464 (14) | 0.665 (6) |
H11A | 0.120622 | 0.414886 | 0.439200 | 0.056* | 0.665 (6) |
H11B | 0.158212 | 0.312658 | 0.440759 | 0.056* | 0.665 (6) |
C12 | 0.0374 (3) | 0.3365 (2) | 0.2790 (5) | 0.0488 (10) | 0.665 (6) |
H12A | 0.055106 | 0.291674 | 0.198247 | 0.059* | 0.665 (6) |
H12B | −0.013752 | 0.309075 | 0.350326 | 0.059* | 0.665 (6) |
C13 | −0.1129 (5) | 0.4046 (4) | 0.1457 (8) | 0.0532 (13) | 0.665 (6) |
H13A | −0.160649 | 0.392928 | 0.233262 | 0.064* | 0.665 (6) |
H13B | −0.117164 | 0.353052 | 0.072902 | 0.064* | 0.665 (6) |
C14 | −0.1476 (9) | 0.4885 (4) | 0.0601 (12) | 0.0487 (18) | 0.665 (6) |
H14A | −0.214573 | 0.476017 | 0.002703 | 0.058* | 0.665 (6) |
H14B | −0.094475 | 0.503776 | −0.018419 | 0.058* | 0.665 (6) |
Cl1A | −0.1226 (6) | 0.5970 (5) | 0.1705 (9) | 0.110 (2) | 0.335 (6) |
O3A | 0.22328 (11) | 0.38602 (10) | 0.26936 (19) | 0.0453 (3) | 0.335 (6) |
O4A | 0.0068 (7) | 0.4519 (9) | 0.2390 (14) | 0.085 (4) | 0.335 (6) |
C11A | 0.1332 (8) | 0.3392 (7) | 0.3356 (18) | 0.054 (4) | 0.335 (6) |
H11C | 0.155056 | 0.306519 | 0.432005 | 0.064* | 0.335 (6) |
H11D | 0.103552 | 0.295654 | 0.258975 | 0.064* | 0.335 (6) |
C12A | 0.0522 (6) | 0.4099 (7) | 0.3732 (10) | 0.074 (3) | 0.335 (6) |
H12C | −0.004449 | 0.381799 | 0.433809 | 0.089* | 0.335 (6) |
H12D | 0.085853 | 0.456161 | 0.440578 | 0.089* | 0.335 (6) |
C13A | −0.0955 (10) | 0.4210 (10) | 0.199 (2) | 0.074 (4) | 0.335 (6) |
H13C | −0.137940 | 0.416172 | 0.294477 | 0.089* | 0.335 (6) |
H13D | −0.091764 | 0.361186 | 0.149635 | 0.089* | 0.335 (6) |
C14A | −0.145 (2) | 0.4874 (8) | 0.086 (2) | 0.074 (7) | 0.335 (6) |
H14C | −0.221538 | 0.475691 | 0.072880 | 0.089* | 0.335 (6) |
H14D | −0.112602 | 0.483019 | −0.018129 | 0.089* | 0.335 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.05356 (15) | 0.06387 (18) | 0.06366 (17) | 0.01132 (11) | −0.02226 (11) | 0.00047 (11) |
O1 | 0.0518 (9) | 0.0271 (7) | 0.0773 (11) | −0.0023 (6) | 0.0000 (8) | 0.0077 (7) |
O2 | 0.0477 (8) | 0.0477 (8) | 0.0536 (9) | 0.0116 (7) | −0.0019 (7) | 0.0146 (7) |
N1 | 0.0340 (7) | 0.0309 (8) | 0.0368 (8) | 0.0009 (6) | −0.0028 (6) | 0.0022 (6) |
C1 | 0.0325 (8) | 0.0280 (8) | 0.0319 (8) | 0.0007 (6) | 0.0024 (6) | 0.0000 (6) |
C2 | 0.0425 (10) | 0.0245 (8) | 0.0395 (9) | 0.0003 (7) | −0.0007 (7) | −0.0035 (7) |
C3 | 0.0445 (10) | 0.0277 (8) | 0.0418 (10) | 0.0067 (7) | 0.0006 (8) | 0.0018 (7) |
C4 | 0.0350 (9) | 0.0396 (10) | 0.0392 (9) | 0.0051 (7) | −0.0035 (7) | 0.0001 (8) |
C5 | 0.0335 (8) | 0.0312 (9) | 0.0450 (10) | −0.0016 (7) | −0.0004 (7) | −0.0046 (7) |
C6 | 0.0325 (8) | 0.0245 (8) | 0.0389 (9) | −0.0001 (6) | 0.0023 (7) | 0.0012 (7) |
C7 | 0.0352 (9) | 0.0280 (9) | 0.0462 (10) | 0.0007 (7) | 0.0063 (7) | 0.0044 (7) |
C8 | 0.0359 (9) | 0.0344 (9) | 0.0392 (9) | 0.0046 (7) | 0.0051 (7) | 0.0067 (7) |
C9 | 0.0412 (10) | 0.0429 (11) | 0.0386 (10) | 0.0024 (8) | −0.0072 (8) | −0.0078 (8) |
C10 | 0.0411 (10) | 0.0328 (9) | 0.0575 (12) | −0.0031 (8) | −0.0088 (9) | −0.0027 (9) |
Cl1 | 0.0912 (14) | 0.0695 (10) | 0.0751 (9) | 0.0155 (10) | −0.0128 (9) | −0.0087 (7) |
O3 | 0.0370 (7) | 0.0433 (8) | 0.0554 (9) | 0.0009 (6) | −0.0002 (6) | 0.0048 (7) |
O4 | 0.0359 (19) | 0.058 (2) | 0.080 (2) | −0.0108 (15) | −0.0116 (14) | 0.0262 (18) |
C11 | 0.040 (2) | 0.058 (3) | 0.041 (2) | −0.0012 (19) | −0.0017 (15) | 0.002 (2) |
C12 | 0.0380 (16) | 0.046 (2) | 0.062 (2) | −0.0052 (13) | −0.0049 (14) | 0.0137 (16) |
C13 | 0.040 (2) | 0.057 (3) | 0.062 (3) | −0.0020 (19) | −0.010 (2) | 0.007 (2) |
C14 | 0.039 (3) | 0.048 (3) | 0.058 (3) | 0.007 (2) | −0.009 (2) | 0.004 (2) |
Cl1A | 0.113 (4) | 0.077 (3) | 0.138 (4) | 0.023 (3) | −0.023 (3) | −0.047 (2) |
O3A | 0.0370 (7) | 0.0433 (8) | 0.0554 (9) | 0.0009 (6) | −0.0002 (6) | 0.0048 (7) |
O4A | 0.030 (3) | 0.127 (9) | 0.098 (7) | 0.001 (5) | −0.001 (3) | 0.064 (7) |
C11A | 0.059 (6) | 0.046 (6) | 0.056 (8) | 0.010 (4) | 0.012 (5) | 0.016 (5) |
C12A | 0.051 (4) | 0.097 (7) | 0.075 (6) | 0.015 (4) | 0.016 (4) | 0.027 (5) |
C13A | 0.061 (8) | 0.074 (8) | 0.087 (10) | −0.007 (6) | −0.009 (6) | 0.027 (7) |
C14A | 0.052 (9) | 0.102 (14) | 0.068 (10) | −0.014 (8) | −0.007 (7) | 0.006 (8) |
Br1—C4 | 1.8934 (19) | O3—C11 | 1.436 (5) |
O1—C7 | 1.206 (2) | O4—C12 | 1.394 (5) |
O2—C8 | 1.210 (2) | O4—C13 | 1.392 (5) |
N1—C1 | 1.411 (2) | C11—H11A | 0.9700 |
N1—C8 | 1.371 (2) | C11—H11B | 0.9700 |
N1—C9 | 1.457 (2) | C11—C12 | 1.493 (6) |
C1—C2 | 1.384 (2) | C12—H12A | 0.9700 |
C1—C6 | 1.399 (2) | C12—H12B | 0.9700 |
C2—H2 | 0.9300 | C13—H13A | 0.9700 |
C2—C3 | 1.392 (3) | C13—H13B | 0.9700 |
C3—H3 | 0.9300 | C13—C14 | 1.480 (6) |
C3—C4 | 1.389 (3) | C14—H14A | 0.9700 |
C4—C5 | 1.385 (3) | C14—H14B | 0.9700 |
C5—H5 | 0.9300 | Cl1A—C14A | 1.773 (9) |
C5—C6 | 1.384 (2) | O3A—C11A | 1.438 (8) |
C6—C7 | 1.463 (2) | O4A—C12A | 1.387 (8) |
C7—C8 | 1.558 (3) | O4A—C13A | 1.385 (8) |
C9—H9A | 0.9700 | C11A—H11C | 0.9700 |
C9—H9B | 0.9700 | C11A—H11D | 0.9700 |
C9—C10 | 1.508 (3) | C11A—C12A | 1.485 (9) |
C10—H10A | 0.9700 | C12A—H12C | 0.9700 |
C10—H10B | 0.9700 | C12A—H12D | 0.9700 |
C10—H10C | 0.9700 | C13A—H13C | 0.9700 |
C10—H10D | 0.9700 | C13A—H13D | 0.9700 |
C10—O3 | 1.415 (3) | C13A—C14A | 1.481 (9) |
C10—O3A | 1.415 (3) | C14A—H14C | 0.9700 |
Cl1—C14 | 1.772 (6) | C14A—H14D | 0.9700 |
Br1···H12Ci | 3.05 | O4···H14Biii | 2.38 |
Cl1···O4 | 3.188 (5) | O4A···H14Diii | 2.48 |
Cl1A···C11Aii | 3.553 (4) | C1···C7v | 3.542 (4) |
Cl1A···O4A | 2.720 (14) | C2···C10 | 3.537 (4) |
Cl1···H9Biii | 2.92 | C5···C7v | 3.356 (5) |
Cl1A···H11Dii | 2.99 | C5···C8v | 3.290 (2) |
O1···C2iv | 3.392 (4) | C6···C7v | 3.251 (4) |
O1···O2 | 2.951 (4) | C6···C6v | 3.327 (2) |
O1···C10iv | 3.294 (5) | C8···C8vi | 3.324 (4) |
O1···C1v | 3.397 (4) | C10···C2 | 3.537 (4) |
O2···C8vi | 3.093 (4) | C12A···O3 | 2.355 (5) |
O2···N1vi | 3.191 (2) | C2···H9A | 2.89 |
O3···C5v | 3.352 (5) | C4···H13Ci | 2.93 |
O3···C14iii | 3.415 (4) | C5···H13Ci | 2.89 |
O3···O4 | 2.953 (4) | C9···H2 | 2.86 |
O3···N1 | 2.949 (5) | C10···H12A | 2.99 |
O3A···C5v | 3.352 (4) | C11···H5v | 2.84 |
O3A···N1 | 2.949 (5) | H2···H9A | 2.48 |
O3A···O4A | 2.866 (4) | H2···H10B | 2.59 |
O4···C14iii | 3.302 (4) | H5···H12Dv | 2.58 |
O4A···C14Aiii | 3.37 (2) | H5···H11Av | 2.41 |
O1···H2iv | 2.47 | H10A···H12A | 2.52 |
O1···H9Aiv | 2.77 | H10A···H11D | 2.09 |
O2···H9B | 2.60 | H10B···H11B | 2.35 |
O2···H3iv | 2.85 | H10B···H11C | 2.34 |
O2···H14Ciii | 2.66 | H12A···H13B | 2.53 |
O2···H14Aiii | 2.50 | H12B···H13A | 2.39 |
O3···H5v | 2.47 | H12C···H13C | 2.07 |
O3A···H5v | 2.47 | H14B···H14Biii | 2.37 |
C1—N1—C9 | 124.25 (15) | O3—C11—C12 | 112.3 (4) |
C8—N1—C1 | 110.85 (15) | H11A—C11—H11B | 107.9 |
C8—N1—C9 | 124.61 (16) | C12—C11—H11A | 109.2 |
C2—C1—N1 | 128.23 (16) | C12—C11—H11B | 109.2 |
C2—C1—C6 | 120.95 (16) | O4—C12—C11 | 110.0 (4) |
C6—C1—N1 | 110.81 (15) | O4—C12—H12A | 109.7 |
C1—C2—H2 | 121.2 | O4—C12—H12B | 109.7 |
C1—C2—C3 | 117.63 (16) | C11—C12—H12A | 109.7 |
C3—C2—H2 | 121.2 | C11—C12—H12B | 109.7 |
C2—C3—H3 | 119.5 | H12A—C12—H12B | 108.2 |
C4—C3—C2 | 121.00 (17) | O4—C13—H13A | 109.4 |
C4—C3—H3 | 119.5 | O4—C13—H13B | 109.4 |
C3—C4—Br1 | 119.88 (14) | O4—C13—C14 | 111.1 (6) |
C5—C4—Br1 | 118.47 (14) | H13A—C13—H13B | 108.0 |
C5—C4—C3 | 121.64 (17) | C14—C13—H13A | 109.4 |
C4—C5—H5 | 121.3 | C14—C13—H13B | 109.4 |
C6—C5—C4 | 117.33 (17) | Cl1—C14—H14A | 108.7 |
C6—C5—H5 | 121.3 | Cl1—C14—H14B | 108.7 |
C1—C6—C7 | 107.34 (15) | C13—C14—Cl1 | 114.2 (6) |
C5—C6—C1 | 121.43 (16) | C13—C14—H14A | 108.7 |
C5—C6—C7 | 131.22 (17) | C13—C14—H14B | 108.7 |
O1—C7—C6 | 130.79 (19) | H14A—C14—H14B | 107.6 |
O1—C7—C8 | 124.15 (18) | C10—O3A—C11A | 103.7 (4) |
C6—C7—C8 | 105.05 (15) | C13A—O4A—C12A | 113.9 (10) |
O2—C8—N1 | 128.03 (19) | O3A—C11A—H11C | 110.3 |
O2—C8—C7 | 126.21 (18) | O3A—C11A—H11D | 110.3 |
N1—C8—C7 | 105.74 (15) | O3A—C11A—C12A | 106.9 (7) |
N1—C9—H9A | 108.9 | H11C—C11A—H11D | 108.6 |
N1—C9—H9B | 108.9 | C12A—C11A—H11C | 110.3 |
N1—C9—C10 | 113.45 (17) | C12A—C11A—H11D | 110.3 |
H9A—C9—H9B | 107.7 | O4A—C12A—C11A | 113.8 (10) |
C10—C9—H9A | 108.9 | O4A—C12A—H12C | 108.8 |
C10—C9—H9B | 108.9 | O4A—C12A—H12D | 108.8 |
C9—C10—H10A | 109.9 | C11A—C12A—H12C | 108.8 |
C9—C10—H10B | 109.9 | C11A—C12A—H12D | 108.8 |
C9—C10—H10C | 109.9 | H12C—C12A—H12D | 107.7 |
C9—C10—H10D | 109.9 | O4A—C13A—H13C | 110.1 |
H10A—C10—H10B | 108.3 | O4A—C13A—H13D | 110.1 |
H10C—C10—H10D | 108.3 | O4A—C13A—C14A | 108.0 (12) |
O3—C10—C9 | 109.14 (17) | H13C—C13A—H13D | 108.4 |
O3—C10—H10A | 109.9 | C14A—C13A—H13C | 110.1 |
O3—C10—H10B | 109.9 | C14A—C13A—H13D | 110.1 |
O3A—C10—C9 | 109.14 (17) | Cl1A—C14A—H14C | 110.5 |
O3A—C10—H10C | 109.9 | Cl1A—C14A—H14D | 110.5 |
O3A—C10—H10D | 109.9 | C13A—C14A—Cl1A | 106.2 (10) |
C10—O3—C11 | 117.0 (3) | C13A—C14A—H14C | 110.5 |
C13—O4—C12 | 117.0 (4) | C13A—C14A—H14D | 110.5 |
O3—C11—H11A | 109.2 | H14C—C14A—H14D | 108.7 |
O3—C11—H11B | 109.2 | ||
Br1—C4—C5—C6 | 178.48 (14) | C6—C1—C2—C3 | 0.9 (3) |
O1—C7—C8—O2 | 2.9 (3) | C6—C7—C8—O2 | −176.38 (18) |
O1—C7—C8—N1 | −178.03 (19) | C6—C7—C8—N1 | 2.66 (19) |
N1—C1—C2—C3 | −179.67 (18) | C8—N1—C1—C2 | −174.80 (18) |
N1—C1—C6—C5 | 178.66 (16) | C8—N1—C1—C6 | 4.7 (2) |
N1—C1—C6—C7 | −2.7 (2) | C8—N1—C9—C10 | −109.2 (2) |
N1—C9—C10—O3 | 67.1 (2) | C9—N1—C1—C2 | −0.8 (3) |
N1—C9—C10—O3A | 67.1 (2) | C9—N1—C1—C6 | 178.69 (16) |
C1—N1—C8—O2 | 174.61 (19) | C9—N1—C8—O2 | 0.7 (3) |
C1—N1—C8—C7 | −4.4 (2) | C9—N1—C8—C7 | −178.36 (16) |
C1—N1—C9—C10 | 77.7 (2) | C9—C10—O3—C11 | −178.2 (3) |
C1—C2—C3—C4 | 0.4 (3) | C9—C10—O3A—C11A | 168.1 (7) |
C1—C6—C7—O1 | −179.2 (2) | C10—O3—C11—C12 | −91.0 (5) |
C1—C6—C7—C8 | 0.04 (19) | C10—O3A—C11A—C12A | −176.3 (8) |
C2—C1—C6—C5 | −1.8 (3) | O3—C11—C12—O4 | −71.5 (6) |
C2—C1—C6—C7 | 176.82 (16) | O4—C13—C14—Cl1 | −69.5 (9) |
C2—C3—C4—Br1 | −179.34 (15) | C12—O4—C13—C14 | −175.5 (6) |
C2—C3—C4—C5 | −0.8 (3) | C13—O4—C12—C11 | −165.7 (5) |
C3—C4—C5—C6 | −0.1 (3) | O3A—C11A—C12A—O4A | 67.7 (13) |
C4—C5—C6—C1 | 1.4 (3) | O4A—C13A—C14A—Cl1A | −48 (2) |
C4—C5—C6—C7 | −176.87 (19) | C12A—O4A—C13A—C14A | 164.5 (14) |
C5—C6—C7—O1 | −0.8 (4) | C13A—O4A—C12A—C11A | 102.8 (13) |
C5—C6—C7—C8 | 178.46 (19) |
Symmetry codes: (i) x+1, y, z; (ii) −x, y+1/2, −z+1/2; (iii) −x, −y+1, −z; (iv) −x+1, y+1/2, −z+1/2; (v) −x+1, −y+1, −z+1; (vi) −x+1, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···O1vii | 0.93 | 2.47 | 3.392 (4) | 174 |
C5—H5···O3v | 0.93 | 2.47 | 3.352 (4) | 158 |
C14—H14A···O2iii | 0.97 | 2.50 | 3.455 (5) | 168 |
C14—H14B···O4iii | 0.97 | 2.38 | 3.302 (6) | 161 |
Symmetry codes: (iii) −x, −y+1, −z; (v) −x+1, −y+1, −z+1; (vii) −x+1, y−1/2, −z+1/2. |
Bonds/angles | X-ray | B3LYP/6-311G(d,p) |
Br1—C4 | 1.8934 (19) | 1.94411 |
Cl1—C14 | 1.772 (6) | 1.88948 |
O3—C10 | 1.415 (3) | 1.45191 |
O3—C11 | 1.436 (5) | 1.45378 |
O2—C8 | 1.210 (2) | 1.23688 |
O1—C7 | 1.206 (2) | 1.23522 |
N1—C1 | 1.411 (2) | 1.41761 |
N1—C8 | 1.371 (2) | 1.39446 |
N1—C9 | 1.457 (2) | 1.46194 |
C10—O3—C11 | 117.0 (3) | 116.04457 |
C1—N1—C9 | 124.25(15 | 125.11525 |
C8—N1—C1 | 110.8 (2) | 110.73581 |
C8—N1—C9 | 124.61 (16) | 126.01387 |
C6—C1—N1 | 110.81 (15) | 109.99463 |
C2—C1—N1 | 128.23 (16) | 129.11525 |
C2—C1—C6 | 120.95 (16) | 120.88664 |
Molecular Energy (a.u.) (eV) | Compound (I) |
Total Energy TE (eV) | -106925,446 |
EHOMO (eV) | -7,4517 |
ELUMO (eV) | -0,9115 |
Gap ΔE (eV) | 6,5402 |
Dipole moment µ (Debye) | 7,9257 |
Ionisation potential I (eV) | 7,4517 |
Electron affinity A | 0,9115 |
Electro negativity χ | 4,1816 |
Hardness η | 3,2701 |
Electrophilicity index ω | 2,6736 |
Softness σ | 0,3058 |
Fraction of electron transferred ΔN | 0,4301 |
Acknowledgements
The Chevreul Institute (FR 2638), Ministry of Higher Education, Research and Innovation, Région Hauts de France and FEDER are recognized for fundings of X-ray diffractometers.
Funding information
Funding for this research was provided by: Hacettepe University Scientific Research Project Unit (grant No. 013 D04 602 004, to TH).
References
Araino, N., Miura, J., Oda, Y. & Nishioka, H. (1996). Chem. Abstr. 125, 300995. Google Scholar
Asrof Ali, S., Khan, J. H. & Wazeer, M. I. M. (1988). Tetrahedron, 44, 5911–5920. CrossRef Google Scholar
Becke, A. D. (1993). J. Chem. Phys. 98, 5648–5652. CrossRef CAS Web of Science Google Scholar
Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
DeShong, P., Leginus, J. M. & Lander, S. W. (1986). J. Org. Chem. 51, 574–576. CrossRef CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Frisch, M. J., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA. Google Scholar
Harrison, C. R., Lett, R. M., Mccann, S. F., Shapiro, R. & Stevenson, T. M. (1996). Chem. Abstr. 124, 202246. Google Scholar
Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138. CrossRef CAS Web of Science Google Scholar
Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO – A System for Computational Chemistry. https://hirshfeldsurface.net/. Google Scholar
Kametani, T., Chu, S. D. & Honda, T. (1988). J. Chem. Soc. Perkin Trans. 1, pp. 1593–1597. CrossRef Google Scholar
Mamari, K., Zouihri, H., Essassi, E. M. & Ng, S. W. (2010). Acta Cryst. E66, o1410. Web of Science CSD CrossRef IUCr Journals Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Naik, C. G. & Malik, C. M. (2010). Orient. J. Chem. 26, 113–116. CAS Google Scholar
Pathak, R. B. & Bahel, S. C. (1980). J. Indian Chem. Soc. 57, 1108–1111. CAS Google Scholar
Qachchachi, F.-Z., Mague, J. T., Kandri Rodi, Y., Haoudi, A., Ouzidan, Y. & Essassi, E. M. (2017). IUCrData, 2, x170028. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388. CAS Google Scholar
Srivalli, T., Satish, K. & Suthakaran, R. (2011). Int. J. Innov. Pharm. Res. 2, 172–174. Google Scholar
Tang, Y., Zhang, J., Miao, Y. & Chen, G. (2010). Acta Cryst. E66, o1748. CrossRef IUCr Journals Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia. Google Scholar
Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 625–636. Web of Science CSD CrossRef CAS PubMed Google Scholar
Wei, W.-B., Tian, S., Zhou, H., Sun, J. & Wang, H.-B. (2010). Acta Cryst. E66, o3024. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.