research communications
Hirshfeld surface analysis and interaction energy and DFT studies of 4-[(prop-2-en-1-yloxy)methyl]-3,6-bis(pyridin-2-yl)pyridazine
aLaboratoire de Chimie Organique Appliquée, Université Sidi Mohamed Ben Abdallah, Faculté des Sciences et Techniques, Route d'Immouzzer, BP 2202, Fez, Morocco, bLaboratoire de Chimie Bioorganique Appliquée, Faculté des Sciences, Université Ibn Zohr, Agadir, Morocco, cLaboratoire de Chimie Organique Hétérocyclique URAC 21, Pôle de Compétence Pharmacochimie, Av. Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, dDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, and eDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: nadouchsebbarkheira@gmail.com
The title compound, C18H16N4O, consists of a 3,6-bis(pyridin-2-yl)pyridazine moiety linked to a 4-[(prop-2-en-1-yloxy)methyl] group. The pyridine-2-yl rings are oriented at a dihedral angle of 17.34 (4)° and are rotated slightly out of the plane of the pyridazine ring. In the crystal, C—HPyrd⋯NPyrdz (Pyrd = pyridine and Pyrdz = pyridazine) hydrogen bonds and C—HPrpoxy⋯π (Prpoxy = prop-2-en-1-yloxy) interactions link the molecules, forming deeply corrugated layers approximately parallel to the bc plane and stacked along the a-axis direction. Hirshfeld surface analysis indicates that the most important contributions for the crystal packing are from H⋯H (48.5%), H⋯C/C⋯H (26.0%) and H⋯N/N⋯H (17.1%) contacts, hydrogen bonding and van der Waals interactions being the dominant interactions in the crystal packing. Computational chemistry indicates that in the crystal, the C—HPyrd⋯NPyrdz hydrogen-bond energy is 64.3 kJ mol−1. Density functional theory (DFT) optimized structures at the B3LYP/6–311 G(d,p) level are compared with the experimentally determined molecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap.
Keywords: crystal structure; pyridine; pyridazine; π-stacking; DFT; Hirshfeld surface.
CCDC reference: 1946685
1. Chemical context
3,6-Di(pyridin-2-yl)pyridazine and its derivatives are aromatic heterocyclic organic compounds. The syntheses of 3,6-di(pyridin-2-yl)pyridazine and its derivatives based on polyheterocycles have attracted considerable attention from pharmacists in the last few decades as they function as important pharmacophores in medicinal chemistry and pharmacology (Filali et al., 2019). 5-[3,6-Di(pyridin-2-yl)pyridazine-4-yl]-2′-deoxyuridine-5′-O-triphosphate can be used as a potential substrate for fluorescence detection and imaging of DNA (Kore et al., 2015). The systems containing this moiety have also shown remarkable corrosion inhibitory (Khadiri et al., 2016). Heterocyclic molecules such as 3,6-bis(2′-pyridyl)-1,2,4,5-tetrazine have been used in transition-metal chemistry (Kaim & Kohlmann, 1987). It is a bidentate chelate ligand popular in coordination chemistry and complexes of a wide range of metals, including iridium and palladium (Tsukada et al., 2001). As a continuation of our research work devoted to the development of 3,6-di(pyridin-2-yl)pyridazine derivatives (Filali et al., 2019), we report herein the synthesis and the molecular and crystal structures along with the Hirshfeld surface analysis and the intermolecular interaction energies and density functional theory (DFT) calculations for 4-[(prop-2-en-1-yloxy)methyl]-3,6-bis(pyridin-2-yl)pyridazine.
2. Structural commentary
The title molecule contains two pyridine and one pyradizine rings (Fig. 1). The pyradizine ring of the 3,6-bis(pyridin-2-yl)pyridazine unit is linked to the 4-[(prop-2-en-1-yloxy)methyl] moiety (Fig. 1). Pyridazine ring A (N1/N2/C1–C4) is oriented at dihedral angles of 2.64 (3) and 15.06 (4)°, respectively, to the pyridine rings B (N3/C5–C9) and C (N4/C10–C14), while the dihedral angle between the two pyridine rings is 17.34 (4)°. Atom C15 is at a distance of 0.0405 (12) Å from the best plane of pyridazine ring. The 4-[(prop-2-en-1-yloxy)methyl] moiety is nearly co-planar with the pyradizine ring, as indicated by the O1—C15—C2—C3 torsion angle of −2.59 (14)°.
3. Supramolecular features
In the crystal, C—HPyrd⋯NPyrdz (Pyrd = pyridine, Pyrdz = pyridazine) hydrogen bonds and C—HPrpoxy⋯Cgi [symmetry code: (i) 1 − x, 1 − y, 1 - z; Cg is the centroid of pyridine ring B (N3/C5–C9); Prpoxy = prop-2-en-1-yloxy] (Table 1) interactions link the molecules, forming deeply corrugated layers approximately parallel to the bc plane and stacked along the a-axis direction (Figs. 2 and 3).
4. Hirshfeld surface analysis
In order to visualize the intermolecular interactions, a Hirshfeld surface (HS) analysis (Hirshfeld, 1977; Spackman & Jayatilaka, 2009) was carried out by using CrystalExplorer17.5 (Turner et al., 2017). In the HS plotted over dnorm (Fig. 4), white areas indicate contacts with distances equal to the sum of van der Waals radii, and red and blue areas indicate distances shorter (in close contact) or longer (distinct contact) than the van der Waals radii (Venkatesan et al., 2016). The bright-red spots appearing near N1 and hydrogen atoms H8 and H15B indicate their roles as donors and/or acceptors; they also appear as blue and red regions corresponding to positive and negative potentials on the HS mapped over electrostatic potential (Spackman et al., 2008; Jayatilaka et al., 2005) shown in Fig. 5. The blue regions indicate positive electrostatic potential (hydrogen-bond donors), while the red regions indicate negative electrostatic potential (hydrogen-bond acceptors). The shape-index of the HS is a tool to visualize π–π stacking by the presence of adjacent red and blue triangles; if there are no adjacent red and/or blue triangles, then there are no π–π interactions. Fig. 6 clearly suggest that there are no π–π interactions in (I).
The overall two-dimensional fingerprint plot, Fig. 7a, and those delineated into H ⋯ H, H⋯C/C⋯H, H⋯N/N⋯H, C⋯C, H⋯O/O⋯H, O⋯C/C ⋯ O and C⋯N/N⋯C contacts (McKinnon et al., 2007) are illustrated in Fig. 7 b–h, respectively, together with their relative contributions to the Hirshfeld surface. The most important interaction is H⋯H (Table 2), contributing 48.5% to the overall crystal packing, which is reflected in Fig. 7b as widely scattered points of high density, due to the large hydrogen content of the molecule, with the tips at de + di ∼2.39 Å. In the presence of C—H⋯π interactions, the pair of characteristic wings in the fingerprint plot delineated into H⋯C/C⋯H contacts (26.0% contribution), Fig. 7c, has a pair of spikes with the tips at de + di = 2.72 Å. The pair of the scattered points of wings in the fingerprint plots delineated into H⋯N/N⋯H (17.1% contribution), Fig. 7d, has a symmetrical distribution of points with the edges at de + di = 2.50 Å. The C⋯C contacts, Fig. 7e, have an arrow-shaped distribution of points with the tip at de = di = 1.76 Å. The pair of characteristic wings in the fingerprint plot delineated into H⋯O/O⋯H contacts (1.7% contribution) Fig. 7f, has a pair of spikes with the tips at de + di = 2.82 Å. Finally, in the fingerprint plots delineated into C⋯O/O⋯C (1.3%) and C⋯N/N⋯C (1.2%) contacts, Fig. 7g and Fig. 7h, the tips are at de = di = 1.65 Å and 3.87 Å, respectively.
The Hirshfeld surface representations with the function dnorm plotted onto the surface are shown for the H⋯H, H⋯C/C⋯H and H⋯N/N⋯H interactions in Fig. 8a--c, respectively.
The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯H, H⋯C/C⋯H and H ⋯ N/N⋯H interactions suggest that van der Waals interactions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015).
5. Interaction energy calculations
The intermolecular interaction energies were calculated using the CE–B3LYP/6–31G(d,p) energy model available in CrystalExplorer17.5 (Turner et al., 2017), where a cluster of molecules would need to be generated by applying operations with respect to a selected central molecule within the radius of 3.8 Å by default (Turner et al., 2014). The total intermolecular energy (Etot) is the sum of electrostatic (Eele), polarization (Epol), dispersion (Edis) and exchange-repulsion (Erep) energies (Turner et al., 2015) with scale factors of 1.057, 0.740, 0.871 and 0.618, respectively (Mackenzie et al., 2017). The hydrogen-bonding interaction energy (in kJ mol−1) was calculated as −15.0 (Eele), −3.2 (Epol), −81.9 (Edis), 40.9 (Erep) and −64.3 (Etot) for the C—HPyrd⋯NPyrdz hydrogen bond.
6. DFT calculations
The optimized structure of the title compound in the gas phase was generated theoretically via density functional theory (DFT) using standard B3LYP functional and 6–311 G(d,p) basis-set calculations (Becke, 1993) as implemented in GAUSSIAN 09 (Frisch et al., 2009). The theoretical and experimental results were in good agreement (Table 3). The highest-occupied molecular orbital (HOMO), acting as an and the lowest-unoccupied molecular orbital (LUMO), acting as an are very important parameters for quantum chemistry. When the energy gap is small, the molecule is highly polarizable and has high chemical reactivity. The DFT calculations provide some important information on the reactivity and site selectivity of the molecular framework. EHOMO and ELUMO clarify the inevitable charge-exchange collaboration inside the studied material, and are given in Table 4 along with the (χ), hardness (η), potential (μ), (ω) and softness (σ). The significance of η and σ is to evaluate both the reactivity and stability. The electron transition from the HOMO to the LUMO energy level is shown in Fig. 9. The HOMO and LUMO are localized in the plane extending from the whole 4-[(prop-2-en-1-yloxy)methyl]-3,6-bis(pyridin-2-yl)pyridazine ring. The energy band gap [ΔE = ELUMO − EHOMO] of the molecule is 4.1539 eV, and the frontier molecular orbital energies, EHOMO and ELUMO are −6.0597 and −1.9058 eV, respectively.
|
|
7. Database survey
Silver(I) complexes supported by 3,6-di(pyridin-2-yl)pyridazine ligands have been reported (Constable et al., 2008). Three other metal complexes including 3,6-di(pyridin-2-yl)pyridazine have also been reported, namely aquabis[3,6-bis(pyridin-2-yl)pyridazine-κ2N1,N6]copper(II) bis(trifluoromethanesulfonate) (Showrilu et al., 2017), tetrakis[μ-3,6-di(pyridin-2-yl)pyridazine]bis(μ-hydroxo)bis(μ-aqua)tetranickel(II) hexakis(nitrate) tetradecahydrate (Marino et al., 2019) and catena-[[μ2-3,6-di(pyridin-2-yl)pyridazine]bis(μ2-azido)dizaidodicopper monohydrate] (Mastropietro et al., 2013).
8. Synthesis and crystallization
THF (20 ml), [3,6-di(pyridin-2-yl)pyridazin-4-yl]methanol (3 mmol), 1.8 eq. of NaH and 0.04 eq. of 18-crown ether A were added to a conical flask and stirred for 10 min at room temperature. Then 1.2 eq of propargyl allyl chloride was added to the reaction mixture and stirred for 48 h. The solvent was then evaporated off and the required organic compound was obtained by liquid–liquid extraction using dichloromethane. The organic phase was dried with sodium sulfate (Na2SO4), and then evaporated. The product obtained was separated by on a column of silica gel. The isolated solid was recrystallized from hexane-dichloromethane (1:1) to afford colourless crystals (yield: 87%, m.p. 376 K).
9. Refinement
Crystal data, data collection and structure . The hydrogen atoms were located in a difference-Fourier map and refined freely.
details are summarized in Table 5
|
Supporting information
CCDC reference: 1946685
https://doi.org/10.1107/S2056989019011186/lh5915sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019011186/lh5915Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989019011186/lh5915Isup3.cdx
Supporting information file. DOI: https://doi.org/10.1107/S2056989019011186/lh5915Isup4.cml
Data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C18H16N4O | F(000) = 640 |
Mr = 304.35 | Dx = 1.312 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54178 Å |
a = 8.9420 (2) Å | Cell parameters from 9267 reflections |
b = 15.1130 (3) Å | θ = 4.9–74.5° |
c = 11.5829 (3) Å | µ = 0.68 mm−1 |
β = 100.132 (1)° | T = 150 K |
V = 1540.91 (6) Å3 | Plate, colourless |
Z = 4 | 0.26 × 0.24 × 0.08 mm |
Bruker D8 VENTURE PHOTON 100 CMOS diffractometer | 3051 independent reflections |
Radiation source: INCOATEC IµS micro-focus source | 2688 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.029 |
Detector resolution: 10.4167 pixels mm-1 | θmax = 74.5°, θmin = 4.9° |
ω scans | h = −10→10 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −18→18 |
Tmin = 0.86, Tmax = 0.95 | l = −14→13 |
11678 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.037 | All H-atom parameters refined |
wR(F2) = 0.101 | w = 1/[σ2(Fo2) + (0.0534P)2 + 0.3637P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max < 0.001 |
3051 reflections | Δρmax = 0.18 e Å−3 |
273 parameters | Δρmin = −0.15 e Å−3 |
0 restraints | Extinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: dual space | Extinction coefficient: 0.0046 (5) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.27225 (10) | 0.47749 (5) | 0.30640 (7) | 0.0319 (2) | |
N1 | 0.19512 (11) | 0.50876 (6) | 0.70191 (8) | 0.0283 (2) | |
N2 | 0.27872 (11) | 0.58215 (6) | 0.70850 (8) | 0.0283 (2) | |
N3 | 0.49183 (11) | 0.71463 (6) | 0.53716 (8) | 0.0299 (2) | |
N4 | 0.07708 (13) | 0.31558 (7) | 0.53457 (10) | 0.0370 (3) | |
C1 | 0.17076 (12) | 0.45900 (7) | 0.60429 (10) | 0.0249 (2) | |
C2 | 0.23110 (12) | 0.48225 (7) | 0.50338 (10) | 0.0244 (2) | |
C3 | 0.31696 (12) | 0.55846 (7) | 0.51158 (10) | 0.0257 (2) | |
H3 | 0.3616 (15) | 0.5785 (9) | 0.4416 (12) | 0.030 (3)* | |
C4 | 0.33924 (12) | 0.60672 (7) | 0.61566 (9) | 0.0244 (2) | |
C5 | 0.43278 (12) | 0.68871 (7) | 0.63070 (10) | 0.0250 (2) | |
C6 | 0.45861 (13) | 0.73441 (8) | 0.73683 (10) | 0.0292 (3) | |
H6 | 0.4125 (17) | 0.7131 (10) | 0.8002 (13) | 0.040 (4)* | |
C7 | 0.54897 (14) | 0.80913 (8) | 0.74716 (11) | 0.0329 (3) | |
H7 | 0.5668 (18) | 0.8438 (11) | 0.8229 (15) | 0.049 (4)* | |
C8 | 0.61156 (14) | 0.83614 (8) | 0.65191 (11) | 0.0326 (3) | |
H8 | 0.6740 (17) | 0.8887 (10) | 0.6564 (14) | 0.042 (4)* | |
C9 | 0.57918 (14) | 0.78700 (8) | 0.54977 (11) | 0.0323 (3) | |
H9 | 0.6207 (17) | 0.8041 (10) | 0.4814 (14) | 0.043 (4)* | |
C10 | 0.07702 (12) | 0.37891 (7) | 0.61505 (10) | 0.0269 (3) | |
C11 | −0.00417 (14) | 0.37100 (9) | 0.70670 (11) | 0.0346 (3) | |
H11 | −0.0048 (18) | 0.4190 (11) | 0.7619 (14) | 0.044 (4)* | |
C12 | −0.08744 (15) | 0.29497 (9) | 0.71477 (12) | 0.0404 (3) | |
H12 | −0.147 (2) | 0.2897 (11) | 0.7774 (16) | 0.058 (5)* | |
C13 | −0.08794 (16) | 0.22904 (9) | 0.63254 (12) | 0.0405 (3) | |
H13 | −0.1415 (19) | 0.1766 (12) | 0.6368 (14) | 0.050 (4)* | |
C14 | −0.00414 (18) | 0.24243 (9) | 0.54512 (13) | 0.0440 (3) | |
H14 | −0.0035 (19) | 0.1969 (11) | 0.4852 (15) | 0.052 (5)* | |
C15 | 0.20351 (13) | 0.43087 (8) | 0.39007 (10) | 0.0279 (3) | |
H15A | 0.0898 (16) | 0.4252 (9) | 0.3600 (12) | 0.032 (3)* | |
H15B | 0.2466 (16) | 0.3702 (10) | 0.4016 (12) | 0.036 (4)* | |
C16 | 0.23624 (15) | 0.43750 (8) | 0.19364 (10) | 0.0321 (3) | |
H16A | 0.1233 (17) | 0.4420 (9) | 0.1637 (13) | 0.037 (4)* | |
H16B | 0.2670 (16) | 0.3739 (10) | 0.1992 (13) | 0.038 (4)* | |
C17 | 0.32018 (17) | 0.48569 (9) | 0.11329 (11) | 0.0377 (3) | |
H17 | 0.436 (2) | 0.4884 (12) | 0.1409 (17) | 0.065 (5)* | |
C18 | 0.2574 (2) | 0.51972 (11) | 0.01194 (13) | 0.0497 (4) | |
H18A | 0.150 (2) | 0.5087 (12) | −0.0128 (17) | 0.065 (6)* | |
H18B | 0.314 (2) | 0.5515 (13) | −0.0442 (18) | 0.068 (5)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0418 (5) | 0.0330 (4) | 0.0225 (4) | −0.0060 (3) | 0.0099 (3) | −0.0033 (3) |
N1 | 0.0316 (5) | 0.0278 (5) | 0.0259 (5) | −0.0019 (4) | 0.0065 (4) | 0.0011 (4) |
N2 | 0.0321 (5) | 0.0283 (5) | 0.0251 (5) | −0.0025 (4) | 0.0070 (4) | 0.0001 (4) |
N3 | 0.0351 (5) | 0.0306 (5) | 0.0249 (5) | −0.0051 (4) | 0.0079 (4) | −0.0004 (4) |
N4 | 0.0503 (7) | 0.0280 (5) | 0.0348 (6) | −0.0061 (4) | 0.0129 (5) | −0.0010 (4) |
C1 | 0.0243 (5) | 0.0250 (5) | 0.0252 (6) | 0.0039 (4) | 0.0035 (4) | 0.0027 (4) |
C2 | 0.0249 (5) | 0.0246 (5) | 0.0236 (6) | 0.0045 (4) | 0.0034 (4) | 0.0014 (4) |
C3 | 0.0272 (5) | 0.0272 (5) | 0.0230 (6) | 0.0019 (4) | 0.0051 (4) | 0.0013 (4) |
C4 | 0.0244 (5) | 0.0259 (5) | 0.0229 (5) | 0.0027 (4) | 0.0038 (4) | 0.0020 (4) |
C5 | 0.0243 (5) | 0.0270 (5) | 0.0235 (6) | 0.0023 (4) | 0.0034 (4) | 0.0015 (4) |
C6 | 0.0302 (6) | 0.0339 (6) | 0.0239 (6) | −0.0026 (5) | 0.0059 (4) | −0.0009 (4) |
C7 | 0.0361 (6) | 0.0348 (6) | 0.0274 (6) | −0.0041 (5) | 0.0044 (5) | −0.0053 (5) |
C8 | 0.0350 (6) | 0.0297 (6) | 0.0325 (7) | −0.0060 (5) | 0.0047 (5) | −0.0006 (5) |
C9 | 0.0381 (6) | 0.0325 (6) | 0.0277 (6) | −0.0065 (5) | 0.0089 (5) | 0.0015 (5) |
C10 | 0.0264 (5) | 0.0262 (5) | 0.0274 (6) | 0.0024 (4) | 0.0026 (4) | 0.0042 (4) |
C11 | 0.0336 (6) | 0.0361 (6) | 0.0355 (7) | −0.0049 (5) | 0.0101 (5) | −0.0016 (5) |
C12 | 0.0378 (7) | 0.0455 (7) | 0.0399 (7) | −0.0096 (6) | 0.0121 (6) | 0.0032 (6) |
C13 | 0.0434 (7) | 0.0338 (7) | 0.0437 (8) | −0.0110 (6) | 0.0059 (6) | 0.0055 (5) |
C14 | 0.0603 (9) | 0.0310 (6) | 0.0424 (8) | −0.0107 (6) | 0.0140 (6) | −0.0031 (6) |
C15 | 0.0320 (6) | 0.0270 (6) | 0.0257 (6) | −0.0007 (4) | 0.0079 (5) | −0.0004 (4) |
C16 | 0.0412 (7) | 0.0299 (6) | 0.0254 (6) | 0.0005 (5) | 0.0066 (5) | −0.0052 (4) |
C17 | 0.0486 (8) | 0.0373 (7) | 0.0293 (7) | 0.0008 (6) | 0.0131 (6) | −0.0040 (5) |
C18 | 0.0689 (11) | 0.0476 (8) | 0.0355 (8) | 0.0083 (7) | 0.0170 (7) | 0.0059 (6) |
O1—C15 | 1.4224 (13) | C8—C9 | 1.3836 (17) |
O1—C16 | 1.4237 (14) | C8—H8 | 0.966 (16) |
N1—N2 | 1.3322 (13) | C9—H9 | 0.968 (15) |
N1—C1 | 1.3434 (15) | C10—C11 | 1.3926 (17) |
N2—C4 | 1.3386 (14) | C11—C12 | 1.3813 (18) |
N3—C9 | 1.3370 (15) | C11—H11 | 0.968 (17) |
N3—C5 | 1.3445 (14) | C12—C13 | 1.378 (2) |
N4—C10 | 1.3362 (15) | C12—H12 | 0.974 (17) |
N4—C14 | 1.3400 (17) | C13—C14 | 1.377 (2) |
C1—C2 | 1.4151 (15) | C13—H13 | 0.931 (18) |
C1—C10 | 1.4901 (15) | C14—H14 | 0.978 (17) |
C2—C3 | 1.3782 (15) | C15—H15A | 1.019 (14) |
C2—C15 | 1.5075 (15) | C15—H15B | 0.994 (15) |
C3—C4 | 1.3930 (15) | C16—C17 | 1.4851 (18) |
C3—H3 | 1.012 (14) | C16—H16A | 1.011 (15) |
C4—C5 | 1.4880 (15) | C16—H16B | 0.999 (15) |
C5—C6 | 1.3934 (16) | C17—C18 | 1.314 (2) |
C6—C7 | 1.3813 (17) | C17—H17 | 1.03 (2) |
C6—H6 | 0.959 (15) | C18—H18A | 0.96 (2) |
C7—C8 | 1.3836 (17) | C18—H18B | 1.01 (2) |
C7—H7 | 1.010 (17) | ||
O1···C11i | 3.2992 (16) | C3···C11i | 3.5866 (17) |
O1···H3 | 2.232 (14) | C6···C12iv | 3.5808 (18) |
O1···H11i | 2.850 (16) | C8···C10vi | 3.5797 (17) |
N1···C8ii | 3.4105 (15) | C11···C15i | 3.5633 (18) |
N4···C15 | 2.7895 (16) | C1···H7ii | 2.925 (17) |
N1···H8ii | 2.586 (15) | C6···H16Bv | 2.933 (15) |
N1···H11 | 2.441 (16) | C9···H15Bv | 2.842 (15) |
N1···H15Ai | 2.713 (14) | C18···H8vii | 2.920 (16) |
N2···H18Biii | 2.86 (2) | H6···H9viii | 2.56 (2) |
N2···H13iv | 2.744 (17) | H8···N1vi | 2.586 (16) |
N2···H6 | 2.455 (15) | H11···H16Ai | 2.57 (2) |
N3···H3 | 2.522 (14) | H12···C6ix | 2.886 (18) |
N3···H15Bv | 2.652 (15) | H12···H14x | 2.53 (3) |
N4···H15A | 2.632 (14) | H13···H18Bxi | 2.55 (3) |
N4···H15B | 2.485 (14) | H15A···H16A | 2.36 (2) |
C1···C7ii | 3.5853 (17) | H15B···H16B | 2.38 (2) |
C2···C10i | 3.5420 (15) | H16A···H18A | 2.33 (2) |
C15—O1—C16 | 111.09 (9) | N4—C10—C1 | 117.02 (10) |
N2—N1—C1 | 121.37 (9) | C11—C10—C1 | 120.65 (10) |
N1—N2—C4 | 119.14 (9) | C12—C11—C10 | 118.85 (12) |
C9—N3—C5 | 117.07 (10) | C12—C11—H11 | 120.9 (9) |
C10—N4—C14 | 117.42 (11) | C10—C11—H11 | 120.3 (10) |
N1—C1—C2 | 121.82 (10) | C13—C12—C11 | 119.41 (12) |
N1—C1—C10 | 113.24 (10) | C13—C12—H12 | 121.3 (10) |
C2—C1—C10 | 124.93 (10) | C11—C12—H12 | 119.3 (10) |
C3—C2—C1 | 116.06 (10) | C14—C13—C12 | 117.79 (12) |
C3—C2—C15 | 119.63 (10) | C14—C13—H13 | 121.0 (10) |
C1—C2—C15 | 124.29 (10) | C12—C13—H13 | 121.2 (10) |
C2—C3—C4 | 119.36 (10) | N4—C14—C13 | 124.22 (13) |
C2—C3—H3 | 119.3 (8) | N4—C14—H14 | 116.4 (10) |
C4—C3—H3 | 121.3 (8) | C13—C14—H14 | 119.4 (10) |
N2—C4—C3 | 122.25 (10) | O1—C15—C2 | 108.29 (9) |
N2—C4—C5 | 115.80 (10) | O1—C15—H15A | 109.5 (8) |
C3—C4—C5 | 121.95 (10) | C2—C15—H15A | 110.0 (8) |
N3—C5—C6 | 122.61 (10) | O1—C15—H15B | 110.2 (8) |
N3—C5—C4 | 116.15 (10) | C2—C15—H15B | 111.0 (8) |
C6—C5—C4 | 121.24 (10) | H15A—C15—H15B | 107.9 (11) |
C7—C6—C5 | 119.03 (11) | O1—C16—C17 | 108.01 (10) |
C7—C6—H6 | 122.1 (9) | O1—C16—H16A | 109.7 (8) |
C5—C6—H6 | 118.8 (9) | C17—C16—H16A | 109.7 (8) |
C6—C7—C8 | 118.99 (11) | O1—C16—H16B | 109.5 (9) |
C6—C7—H7 | 120.0 (9) | C17—C16—H16B | 110.4 (8) |
C8—C7—H7 | 121.0 (9) | H16A—C16—H16B | 109.5 (12) |
C9—C8—C7 | 118.05 (11) | C18—C17—C16 | 124.63 (15) |
C9—C8—H8 | 121.2 (9) | C18—C17—H17 | 120.8 (11) |
C7—C8—H8 | 120.7 (9) | C16—C17—H17 | 114.5 (11) |
N3—C9—C8 | 124.25 (11) | C17—C18—H18A | 116.3 (12) |
N3—C9—H9 | 115.5 (9) | C17—C18—H18B | 125.0 (12) |
C8—C9—H9 | 120.3 (9) | H18A—C18—H18B | 118.4 (16) |
N4—C10—C11 | 122.32 (11) | ||
C1—N1—N2—C4 | 0.15 (16) | C5—C6—C7—C8 | −0.24 (18) |
N2—N1—C1—C2 | −0.61 (16) | C6—C7—C8—C9 | 0.57 (18) |
N2—N1—C1—C10 | 178.92 (9) | C5—N3—C9—C8 | −0.14 (18) |
N1—C1—C2—C3 | 0.42 (15) | C7—C8—C9—N3 | −0.4 (2) |
C10—C1—C2—C3 | −179.06 (10) | C14—N4—C10—C11 | −0.41 (18) |
N1—C1—C2—C15 | −177.88 (10) | C14—N4—C10—C1 | 178.51 (11) |
C10—C1—C2—C15 | 2.64 (17) | N1—C1—C10—N4 | −164.56 (10) |
C1—C2—C3—C4 | 0.20 (15) | C2—C1—C10—N4 | 14.96 (16) |
C15—C2—C3—C4 | 178.58 (10) | N1—C1—C10—C11 | 14.38 (15) |
N1—N2—C4—C3 | 0.49 (16) | C2—C1—C10—C11 | −166.10 (11) |
N1—N2—C4—C5 | −179.18 (9) | N4—C10—C11—C12 | 0.07 (19) |
C2—C3—C4—N2 | −0.66 (16) | C1—C10—C11—C12 | −178.81 (11) |
C2—C3—C4—C5 | 179.00 (10) | C10—C11—C12—C13 | 0.1 (2) |
C9—N3—C5—C6 | 0.51 (17) | C11—C12—C13—C14 | 0.0 (2) |
C9—N3—C5—C4 | −178.47 (10) | C10—N4—C14—C13 | 0.6 (2) |
N2—C4—C5—N3 | −178.91 (10) | C12—C13—C14—N4 | −0.4 (2) |
C3—C4—C5—N3 | 1.41 (15) | C16—O1—C15—C2 | −173.64 (9) |
N2—C4—C5—C6 | 2.09 (15) | C3—C2—C15—O1 | −2.59 (14) |
C3—C4—C5—C6 | −177.59 (10) | C1—C2—C15—O1 | 175.66 (9) |
N3—C5—C6—C7 | −0.32 (18) | C15—O1—C16—C17 | −176.11 (10) |
C4—C5—C6—C7 | 178.61 (10) | O1—C16—C17—C18 | −126.92 (14) |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+1, y−1/2, −z+3/2; (iii) x, y, z+1; (iv) −x, y+1/2, −z+3/2; (v) −x+1, −y+1, −z+1; (vi) −x+1, y+1/2, −z+3/2; (vii) −x+1, y−1/2, −z+1/2; (viii) x, −y+3/2, z+1/2; (ix) −x, y−1/2, −z+3/2; (x) x, −y+1/2, z+1/2; (xi) −x, y−1/2, −z+1/2. |
Cg is the centroid of pyridine ring B (N3/C5—C9). |
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8···N1vi | 0.966 (16) | 2.585 (16) | 3.4104 (15) | 143.4 (12) |
C15—H15B···Cgv | 0.994 (15) | 2.990 (15) | 3.8760 (13) | 149.0 (11) |
Symmetry codes: (v) −x+1, −y+1, −z+1; (vi) −x+1, y+1/2, −z+3/2. |
Bonds/angles | X-ray | B3LYP/6-311G(d,p) |
O1—C15 | 1.4224 (13) | 1.45001 |
O1—C16 | 1.4237 (14) | 1.45647 |
N1—N2 | 1.3322 (13) | 1.33754 |
N1—C1 | 1.3434 (15) | 1.36030 |
N2—C4 | 1.3386 (14) | 1.35694 |
N3—C9 | 1.3370 (15) | 1.34713 |
N3—C5 | 1.3445 (14) | 1.35667 |
N4—C10 | 1.3362 (15) | 1.35644 |
N4—C14 | 1.3400 (17) | 1.34940 |
C15—O1—C16 | 111.09 (9) | 112.34477 |
N2—N1—C1 | 121.37 (9) | 121.70569 |
N1—N2—C4 | 119.14 (9) | 119.30129 |
C9—N3—C5 | 117.07 (10) | 118.58051 |
C10—N4—C14 | 117.42 (11) | 119.00361 |
N1—C1—C2 | 121.82 (10) | 121.25910 |
N1—C1—C10 | 113.24 (10) | 113.37034 |
N2—C4—C3 | 122.25 (10) | 121.78580 |
N2—C4—C5 | 115.80 (10) | 116.28262 |
C3—C4—C5 | 121.95 (10) | 121.93158 |
N3—C5—C6 | 122.61 (10) | 122.07926 |
N3—C5—C4 | 116.15 (10) | 116.59443 |
Total energy, TE (eV) | -26922.3681 |
EHOMO (eV) | -6.0597 |
ELUMO (eV) | -1.9058 |
Energy gap, ΔE (eV) | 4.1539 |
Dipole moment µ (Debye) | 1.6276 |
Ionization potential, I (eV) | 6.0597 |
Electron affinity, A | 1.9058 |
Electronegativity, χ | 3.9827 |
Hardness, η | 2.0769 |
Electrophilicity index, ω | 3.8186 |
Softness, σ | 0.4815 |
Fraction of electrons transferred, ΔN | 0.7264 |
Funding information
NSF–MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged. TH is grateful to the Hacettepe University Scientific Research Project Unit (grant No. 013 D04 602 004).
References
Becke, A. D. (1993). J. Chem. Phys. 98, 5648–5652. CrossRef CAS Web of Science Google Scholar
Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2016). APEX3, SAINT and SADABS . Bruker AXS, Inc., Madison, Wisconsin, USA. Google Scholar
Constable, E. C., Housecroft, C. E., Neuburger, M., Reymann, S. & Schaffner, S. (2008). Aust. J. Chem. 61, 847–853. Web of Science CSD CrossRef CAS Google Scholar
Filali, M., Elmsellem, H., Hökelek, T., El-Ghayoury, A., Stetsiuk, O., El Hadrami, E. M. & Ben-Tama, A. (2019). Acta Cryst. E75, 1169–1174. CSD CrossRef IUCr Journals Google Scholar
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA. Google Scholar
Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138. CrossRef CAS Web of Science Google Scholar
Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO - A System for Computational Chemistry. Available at: https://hirshfeldsurface.net/ Google Scholar
Kaim, W. & Kohlmann, S. (1987). Inorg. Chem. 26, 68–77. CrossRef CAS Web of Science Google Scholar
Khadiri, A., Saddik, R., Bekkouche, K., Aouniti, A., Hammouti, B., Benchat, N., Bouachrine, M. & Solmaz, R. (2016). J. Taiwan Inst. Chem. Eng. 58, 552–564. Web of Science CrossRef CAS Google Scholar
Kore, A. R., Yang, B. & Srinivasan, B. (2015). Tetrahedron Lett. 56, 808–811. Web of Science CrossRef CAS Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575–587. Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
Marino, N., Bruno, R., Bentama, A., Pascual-Álvarez, A., Lloret, F., Julve, M. & De Munno, G. (2019). CrystEngComm, 21, 917–924. Web of Science CSD CrossRef CAS Google Scholar
Mastropietro, T. F., Marino, N., Armentano, D., De Munno, G., Yuste, C., Lloret, F. & Julve, M. (2013). Cryst. Growth Des. 13, 270–281. Web of Science CSD CrossRef CAS Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Showrilu, K., Rajarajan, K., Martin Britto Dhas, S. A. & Athimoolam, S. (2017). IUCrData, 2, x171142. Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388. CAS Google Scholar
Tsukada, N., Sato, T., Mori, H., Sugawara, S., Kabuto, C., Miyano, S. & Inoue, Y. (2001). J. Organomet. Chem. 627, 121–126. Web of Science CSD CrossRef CAS Google Scholar
Turner, M. J., Grabowsky, S., Jayatilaka, D. & Spackman, M. A. (2014). J. Phys. Chem. Lett. 5, 4249–4255. Web of Science CrossRef CAS PubMed Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia. Google Scholar
Turner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735–3738. Web of Science CrossRef CAS Google Scholar
Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A, 153, 625–636. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.