research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure, Hirshfeld surface analysis and inter­action energy and DFT studies of 4-[(prop-2-en-1-yl­­oxy)meth­yl]-3,6-bis­­(pyridin-2-yl)pyridazine

aLaboratoire de Chimie Organique Appliquée, Université Sidi Mohamed Ben Abdallah, Faculté des Sciences et Techniques, Route d'Immouzzer, BP 2202, Fez, Morocco, bLaboratoire de Chimie Bioorganique Appliquée, Faculté des Sciences, Université Ibn Zohr, Agadir, Morocco, cLaboratoire de Chimie Organique Hétérocyclique URAC 21, Pôle de Compétence Pharmacochimie, Av. Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, dDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, and eDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: nadouchsebbarkheira@gmail.com

Edited by A. J. Lough, University of Toronto, Canada (Received 29 July 2019; accepted 10 August 2019; online 20 August 2019)

The title compound, C18H16N4O, consists of a 3,6-bis­(pyridin-2-yl)pyridazine moiety linked to a 4-[(prop-2-en-1-yl­oxy)meth­yl] group. The pyridine-2-yl rings are oriented at a dihedral angle of 17.34 (4)° and are rotated slightly out of the plane of the pyridazine ring. In the crystal, C—HPyrd⋯NPyrdz (Pyrd = pyridine and Pyrdz = pyridazine) hydrogen bonds and C—HPrp­oxyπ (Prp­oxy = prop-2-en-1-yl­oxy) inter­actions link the mol­ecules, forming deeply corrugated layers approximately parallel to the bc plane and stacked along the a-axis direction. Hirshfeld surface analysis indicates that the most important contributions for the crystal packing are from H⋯H (48.5%), H⋯C/C⋯H (26.0%) and H⋯N/N⋯H (17.1%) contacts, hydrogen bonding and van der Waals inter­actions being the dominant inter­actions in the crystal packing. Computational chemistry indicates that in the crystal, the C—HPyrd⋯NPyrdz hydrogen-bond energy is 64.3 kJ mol−1. Density functional theory (DFT) optimized structures at the B3LYP/6–311 G(d,p) level are compared with the experimentally determined mol­ecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap.

1. Chemical context

3,6-Di(pyridin-2-yl)pyridazine and its derivatives are aromatic heterocyclic organic compounds. The syntheses of 3,6-di(pyridin-2-yl)pyridazine and its derivatives based on polyheterocycles have attracted considerable attention from pharmacists in the last few decades as they function as important pharmacophores in medicinal chemistry and pharmacology (Filali et al., 2019[Filali, M., Elmsellem, H., Hökelek, T., El-Ghayoury, A., Stetsiuk, O., El Hadrami, E. M. & Ben-Tama, A. (2019). Acta Cryst. E75, 1169-1174.]). 5-[3,6-Di(pyridin-2-yl)pyridazine-4-yl]-2′-de­oxy­uridine-5′-O-triphosphate can be used as a potential substrate for fluorescence detection and imaging of DNA (Kore et al., 2015[Kore, A. R., Yang, B. & Srinivasan, B. (2015). Tetrahedron Lett. 56, 808-811.]). The systems containing this moiety have also shown remarkable corrosion inhibitory (Khadiri et al., 2016[Khadiri, A., Saddik, R., Bekkouche, K., Aouniti, A., Hammouti, B., Benchat, N., Bouachrine, M. & Solmaz, R. (2016). J. Taiwan Inst. Chem. Eng. 58, 552-564.]). Heterocyclic mol­ecules such as 3,6-bis(2′-pyrid­yl)-1,2,4,5-tetra­zine have been used in transition-metal chemistry (Kaim & Kohlmann, 1987[Kaim, W. & Kohlmann, S. (1987). Inorg. Chem. 26, 68-77.]). It is a bidentate chelate ligand popular in coordination chemistry and complexes of a wide range of metals, including iridium and palladium (Tsukada et al., 2001[Tsukada, N., Sato, T., Mori, H., Sugawara, S., Kabuto, C., Miyano, S. & Inoue, Y. (2001). J. Organomet. Chem. 627, 121-126.]). As a continuation of our research work devoted to the development of 3,6-di(pyridin-2-yl)pyridazine derivatives (Filali et al., 2019[Filali, M., Elmsellem, H., Hökelek, T., El-Ghayoury, A., Stetsiuk, O., El Hadrami, E. M. & Ben-Tama, A. (2019). Acta Cryst. E75, 1169-1174.]), we report herein the synthesis and the mol­ecular and crystal structures along with the Hirshfeld surface analysis and the inter­molecular inter­action energies and density functional theory (DFT) calculations for 4-[(prop-2-en-1-yl­oxy)meth­yl]-3,6-bis­(pyridin-2-yl)pyridazine.

[Scheme 1]

2. Structural commentary

The title mol­ecule contains two pyridine and one pyradizine rings (Fig. 1[link]). The pyradizine ring of the 3,6-bis­(pyridin-2-yl)pyridazine unit is linked to the 4-[(prop-2-en-1-yl­oxy)meth­yl] moiety (Fig. 1[link]). Pyridazine ring A (N1/N2/C1–C4) is oriented at dihedral angles of 2.64 (3) and 15.06 (4)°, respectively, to the pyridine rings B (N3/C5–C9) and C (N4/C10–C14), while the dihedral angle between the two pyridine rings is 17.34 (4)°. Atom C15 is at a distance of 0.0405 (12) Å from the best plane of pyridazine ring. The 4-[(prop-2-en-1-yl­oxy)meth­yl] moiety is nearly co-planar with the pyradizine ring, as indicated by the O1—C15—C2—C3 torsion angle of −2.59 (14)°.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

In the crystal, C—HPyrd⋯NPyrdz (Pyrd = pyridine, Pyrdz = pyridazine) hydrogen bonds and C—HPrp­oxyCgi [symmetry code: (i) 1 − x, 1 − y, 1 - z; Cg is the centroid of pyridine ring B (N3/C5–C9); Prp­oxy = prop-2-en-1-yl­oxy] (Table 1[link]) inter­actions link the mol­ecules, forming deeply corrugated layers approximately parallel to the bc plane and stacked along the a-axis direction (Figs. 2[link] and 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of pyridine ring B (N3/C5—C9).

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯N1vi 0.966 (16) 2.585 (16) 3.4104 (15) 143.4 (12)
C15—H15BCgv 0.994 (15) 2.990 (15) 3.8760 (13) 149.0 (11)
Symmetry codes: (v) -x+1, -y+1, -z+1; (vi) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 2]
Figure 2
A partial packing diagram viewed along the a-axis direction with C—HPyrd⋯NPyrdz hydrogen bonds and C—HPrp­oxyπ inter­actions shown, respectively, as light blue and green dashed lines.
[Figure 3]
Figure 3
A partial packing diagram viewed along the c-axis direction with C—HPyrd⋯NPyrdz hydrogen bonds and C—HPrp­oxyπ inter­actions shown, respectively, as light-blue and green dashed lines.

4. Hirshfeld surface analysis

In order to visualize the inter­molecular inter­actions, a Hirshfeld surface (HS) analysis (Hirshfeld, 1977[Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129-138.]; Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) was carried out by using CrystalExplorer17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.]). In the HS plotted over dnorm (Fig. 4[link]), white areas indicate contacts with distances equal to the sum of van der Waals radii, and red and blue areas indicate distances shorter (in close contact) or longer (distinct contact) than the van der Waals radii (Venkatesan et al., 2016[Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A, 153, 625-636.]). The bright-red spots appearing near N1 and hydrogen atoms H8 and H15B indicate their roles as donors and/or acceptors; they also appear as blue and red regions corresponding to positive and negative potentials on the HS mapped over electrostatic potential (Spackman et al., 2008[Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377-388.]; Jayatilaka et al., 2005[Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO - A System for Computational Chemistry. Available at: http://hirshfeldsurface.net/]) shown in Fig. 5[link]. The blue regions indicate positive electrostatic potential (hydrogen-bond donors), while the red regions indicate negative electrostatic potential (hydrogen-bond acceptors). The shape-index of the HS is a tool to visualize ππ stacking by the presence of adjacent red and blue triangles; if there are no adjacent red and/or blue triangles, then there are no ππ inter­actions. Fig. 6[link] clearly suggest that there are no ππ inter­actions in (I)[link].

[Figure 4]
Figure 4
View of the three-dimensional Hirshfeld surface of the title compound plotted over dnorm in the range −0.1063 to 1.1444 a.u.
[Figure 5]
Figure 5
View of the three-dimensional Hirshfeld surface of the title compound plotted over electrostatic potential energy in the range −0.0500 to 0.0500 a.u. using the STO-3 G basis set at the Hartree–Fock level of theory. Hydrogen-bond donors and acceptors are shown as blue and red regions, respectively, around the atoms, corresponding to positive and negative potentials.
[Figure 6]
Figure 6
Hirshfeld surface of the title compound plotted over shape-index.

The overall two-dimensional fingerprint plot, Fig. 7[link]a, and those delineated into H ⋯ H, H⋯C/C⋯H, H⋯N/N⋯H, C⋯C, H⋯O/O⋯H, O⋯C/C ⋯ O and C⋯N/N⋯C contacts (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) are illustrated in Fig. 7[link] bh, respectively, together with their relative contributions to the Hirshfeld surface. The most important inter­action is H⋯H (Table 2[link]), contributing 48.5% to the overall crystal packing, which is reflected in Fig. 7[link]b as widely scattered points of high density, due to the large hydrogen content of the mol­ecule, with the tips at de + di ∼2.39 Å. In the presence of C—H⋯π inter­actions, the pair of characteristic wings in the fingerprint plot delineated into H⋯C/C⋯H contacts (26.0% contribution), Fig. 7[link]c, has a pair of spikes with the tips at de + di = 2.72 Å. The pair of the scattered points of wings in the fingerprint plots delineated into H⋯N/N⋯H (17.1% contribution), Fig. 7[link]d, has a symmetrical distribution of points with the edges at de + di = 2.50 Å. The C⋯C contacts, Fig. 7[link]e, have an arrow-shaped distribution of points with the tip at de = di = 1.76 Å. The pair of characteristic wings in the fingerprint plot delineated into H⋯O/O⋯H contacts (1.7% contribution) Fig. 7[link]f, has a pair of spikes with the tips at de + di = 2.82 Å. Finally, in the fingerprint plots delineated into C⋯O/O⋯C (1.3%) and C⋯N/N⋯C (1.2%) contacts, Fig. 7[link]g and Fig. 7[link]h, the tips are at de = di = 1.65 Å and 3.87 Å, respectively.

Table 2
Selected interatomic distances (Å)

O1⋯C11i 3.2992 (16) C3⋯C11i 3.5866 (17)
O1⋯H3 2.232 (14) C6⋯C12iv 3.5808 (18)
O1⋯H11i 2.850 (16) C8⋯C10vi 3.5797 (17)
N1⋯C8ii 3.4105 (15) C11⋯C15i 3.5633 (18)
N4⋯C15 2.7895 (16) C1⋯H7ii 2.925 (17)
N1⋯H8ii 2.586 (15) C6⋯H16Bv 2.933 (15)
N1⋯H11 2.441 (16) C9⋯H15Bv 2.842 (15)
N1⋯H15Ai 2.713 (14) C18⋯H8vii 2.920 (16)
N2⋯H18Biii 2.86 (2) H6⋯H9viii 2.56 (2)
N2⋯H13iv 2.744 (17) H8⋯N1vi 2.586 (16)
N2⋯H6 2.455 (15) H11⋯H16Ai 2.57 (2)
N3⋯H3 2.522 (14) H12⋯C6ix 2.886 (18)
N3⋯H15Bv 2.652 (15) H12⋯H14x 2.53 (3)
N4⋯H15A 2.632 (14) H13⋯H18Bxi 2.55 (3)
N4⋯H15B 2.485 (14) H15A⋯H16A 2.36 (2)
C1⋯C7ii 3.5853 (17) H15B⋯H16B 2.38 (2)
C2⋯C10i 3.5420 (15) H16A⋯H18A 2.33 (2)
Symmetry codes: (i) -x, -y+1, -z+1; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) x, y, z+1; (iv) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (v) -x+1, -y+1, -z+1; (vi) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (vii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (viii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ix) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (x) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (xi) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 7]
Figure 7
The full two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) H⋯C/C⋯H, (d) H⋯N/N⋯H, (e) C⋯C, (f) H⋯O/O⋯H, (g) C⋯O/O⋯C and (h) C ⋯ N/N⋯C inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

The Hirshfeld surface representations with the function dnorm plotted onto the surface are shown for the H⋯H, H⋯C/C⋯H and H⋯N/N⋯H inter­actions in Fig. 8[link]a--c, respectively.

[Figure 8]
Figure 8
The Hirshfeld surface representations with the function dnorm plotted onto the surface for (a) H⋯H, (b) H⋯C/C⋯H and (c) H⋯N/N⋯H inter­actions.

The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯H, H⋯C/C⋯H and H ⋯ N/N⋯H inter­actions suggest that van der Waals inter­actions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015[Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563-574.]).

5. Inter­action energy calculations

The inter­molecular inter­action energies were calculated using the CE–B3LYP/6–31G(d,p) energy model available in CrystalExplorer17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.]), where a cluster of mol­ecules would need to be generated by applying crystallographic symmetry operations with respect to a selected central mol­ecule within the radius of 3.8 Å by default (Turner et al., 2014[Turner, M. J., Grabowsky, S., Jayatilaka, D. & Spackman, M. A. (2014). J. Phys. Chem. Lett. 5, 4249-4255.]). The total inter­molecular energy (Etot) is the sum of electrostatic (Eele), polarization (Epol), dispersion (Edis) and exchange-repulsion (Erep) energies (Turner et al., 2015[Turner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735-3738.]) with scale factors of 1.057, 0.740, 0.871 and 0.618, respectively (Mackenzie et al., 2017[Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575-587.]). The hydrogen-bonding inter­action energy (in kJ mol−1) was calculated as −15.0 (Eele), −3.2 (Epol), −81.9 (Edis), 40.9 (Erep) and −64.3 (Etot) for the C—HPyrd⋯NPyrdz hydrogen bond.

6. DFT calculations

The optimized structure of the title compound in the gas phase was generated theoretically via density functional theory (DFT) using standard B3LYP functional and 6–311 G(d,p) basis-set calculations (Becke, 1993[Becke, A. D. (1993). J. Chem. Phys. 98, 5648-5652.]) as implemented in GAUSSIAN 09 (Frisch et al., 2009[Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.]). The theoretical and experimental results were in good agreement (Table 3[link]). The highest-occupied mol­ecular orbital (HOMO), acting as an electron donor, and the lowest-unoccupied mol­ecular orbital (LUMO), acting as an electron acceptor, are very important parameters for quantum chemistry. When the energy gap is small, the mol­ecule is highly polarizable and has high chemical reactivity. The DFT calculations provide some important information on the reactivity and site selectivity of the mol­ecular framework. EHOMO and ELUMO clarify the inevitable charge-exchange collaboration inside the studied material, and are given in Table 4[link] along with the electronegativity (χ), hardness (η), potential (μ), electrophilicity (ω) and softness (σ). The significance of η and σ is to evaluate both the reactivity and stability. The electron transition from the HOMO to the LUMO energy level is shown in Fig. 9[link]. The HOMO and LUMO are localized in the plane extending from the whole 4-[(prop-2-en-1-yl­oxy)meth­yl]-3,6-bis­(pyridin-2-yl)pyridazine ring. The energy band gap [ΔE = ELUMO − EHOMO] of the mol­ecule is 4.1539 eV, and the frontier mol­ecular orbital energies, EHOMO and ELUMO are −6.0597 and −1.9058 eV, respectively.

Table 3
Comparison of the selected (X-ray and DFT) geometric data (Å, °)

Bonds/angles X-ray B3LYP/6–311G(d,p)
O1—C15 1.4224 (13) 1.45001
O1—C16 1.4237 (14) 1.45647
N1—N2 1.3322 (13) 1.33754
N1—C1 1.3434 (15) 1.36030
N2—C4 1.3386 (14) 1.35694
N3—C9 1.3370 (15) 1.34713
N3—C5 1.3445 (14) 1.35667
N4—C10 1.3362 (15) 1.35644
N4—C14 1.3400 (17) 1.34940
C15—O1—C16 111.09 (9) 112.34477
N2—N1—C1 121.37 (9) 121.70569
N1—N2—C4 119.14 (9) 119.30129
C9—N3—C5 117.07 (10) 118.58051
C10—N4—C14 117.42 (11) 119.00361
N1—C1—C2 121.82 (10) 121.25910
N1—C1—C10 113.24 (10) 113.37034
N2—C4—C3 122.25 (10) 121.78580
N2—C4—C5 115.80 (10) 116.28262
C3—C4—C5 121.95 (10) 121.93158
N3—C5—C6 122.61 (10) 122.07926
N3—C5—C4 116.15 (10) 116.59443

Table 4
Calculated energies for the title compound

Total energy, TE (eV) −26922.3681
EHOMO (eV) −6.0597
ELUMO (eV) −1.9058
Energy gap, ΔE (eV) 4.1539
Dipole moment μ (Debye) 1.6276
Ionization potential, I (eV) 6.0597
Electron affinity, A 1.9058
Electronegativity, χ 3.9827
Hardness, η 2.0769
Electrophilicity index, ω 3.8186
Softness, σ 0.4815
Fraction of electrons transferred, ΔN 0.7264
[Figure 9]
Figure 9
The energy band gap of the title compound.

7. Database survey

Silver(I) complexes supported by 3,6-di(pyridin-2-yl)pyridazine ligands have been reported (Constable et al., 2008[Constable, E. C., Housecroft, C. E., Neuburger, M., Reymann, S. & Schaffner, S. (2008). Aust. J. Chem. 61, 847-853.]). Three other metal complexes including 3,6-di(pyridin-2-yl)pyridazine have also been reported, namely aqua­bis­[3,6-bis­(pyridin-2-yl)pyridazine-κ2N1,N6]copper(II) bis­(tri­fluoro­methane­sulfonate) (Showrilu et al., 2017[Showrilu, K., Rajarajan, K., Martin Britto Dhas, S. A. & Athimoolam, S. (2017). IUCrData, 2, x171142.]), tetra­kis­[μ-3,6-di(pyridin-2-yl)pyridazine]bis­(μ-hydroxo)bis­(μ-aqua)­tetra­nickel(II) hexa­kis­(nitrate) tetra­deca­hydrate (Marino et al., 2019[Marino, N., Bruno, R., Bentama, A., Pascual-Álvarez, A., Lloret, F., Julve, M. & De Munno, G. (2019). CrystEngComm, 21, 917-924.]) and catena-[[μ2-3,6-di(pyridin-2-yl)pyridazine]bis­(μ2-azido)­dizaidodicopper monohydrate] (Mastropietro et al., 2013[Mastropietro, T. F., Marino, N., Armentano, D., De Munno, G., Yuste, C., Lloret, F. & Julve, M. (2013). Cryst. Growth Des. 13, 270-281.]).

8. Synthesis and crystallization

THF (20 ml), [3,6-di(pyridin-2-yl)pyridazin-4-yl]methanol (3 mmol), 1.8 eq. of NaH and 0.04 eq. of 18-crown ether A were added to a conical flask and stirred for 10 min at room temperature. Then 1.2 eq of propargyl allyl chloride was added to the reaction mixture and stirred for 48 h. The solvent was then evaporated off and the required organic compound was obtained by liquid–liquid extraction using di­chloro­methane. The organic phase was dried with sodium sulfate (Na2SO4), and then evaporated. The product obtained was separated by chromatography on a column of silica gel. The isolated solid was recrystallized from hexane-di­chloro­methane (1:1) to afford colourless crystals (yield: 87%, m.p. 376 K).

9. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. The hydrogen atoms were located in a difference-Fourier map and refined freely.

Table 5
Experimental details

Crystal data
Chemical formula C18H16N4O
Mr 304.35
Crystal system, space group Monoclinic, P21/c
Temperature (K) 150
a, b, c (Å) 8.9420 (2), 15.1130 (3), 11.5829 (3)
β (°) 100.132 (1)
V3) 1540.91 (6)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.68
Crystal size (mm) 0.26 × 0.24 × 0.08
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.86, 0.95
No. of measured, independent and observed [I > 2σ(I)] reflections 11678, 3051, 2688
Rint 0.029
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.101, 1.04
No. of reflections 3051
No. of parameters 273
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.18, −0.15
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS . Bruker AXS, Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS . Bruker AXS, Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

4-[(Prop-2-en-1-yloxy)methyl]-3,6-bis(pyridin-2-yl)pyridazine top
Crystal data top
C18H16N4OF(000) = 640
Mr = 304.35Dx = 1.312 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
a = 8.9420 (2) ÅCell parameters from 9267 reflections
b = 15.1130 (3) Åθ = 4.9–74.5°
c = 11.5829 (3) ŵ = 0.68 mm1
β = 100.132 (1)°T = 150 K
V = 1540.91 (6) Å3Plate, colourless
Z = 40.26 × 0.24 × 0.08 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
3051 independent reflections
Radiation source: INCOATEC IµS micro-focus source2688 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.029
Detector resolution: 10.4167 pixels mm-1θmax = 74.5°, θmin = 4.9°
ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1818
Tmin = 0.86, Tmax = 0.95l = 1413
11678 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037All H-atom parameters refined
wR(F2) = 0.101 w = 1/[σ2(Fo2) + (0.0534P)2 + 0.3637P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3051 reflectionsΔρmax = 0.18 e Å3
273 parametersΔρmin = 0.15 e Å3
0 restraintsExtinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: dual spaceExtinction coefficient: 0.0046 (5)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.27225 (10)0.47749 (5)0.30640 (7)0.0319 (2)
N10.19512 (11)0.50876 (6)0.70191 (8)0.0283 (2)
N20.27872 (11)0.58215 (6)0.70850 (8)0.0283 (2)
N30.49183 (11)0.71463 (6)0.53716 (8)0.0299 (2)
N40.07708 (13)0.31558 (7)0.53457 (10)0.0370 (3)
C10.17076 (12)0.45900 (7)0.60429 (10)0.0249 (2)
C20.23110 (12)0.48225 (7)0.50338 (10)0.0244 (2)
C30.31696 (12)0.55846 (7)0.51158 (10)0.0257 (2)
H30.3616 (15)0.5785 (9)0.4416 (12)0.030 (3)*
C40.33924 (12)0.60672 (7)0.61566 (9)0.0244 (2)
C50.43278 (12)0.68871 (7)0.63070 (10)0.0250 (2)
C60.45861 (13)0.73441 (8)0.73683 (10)0.0292 (3)
H60.4125 (17)0.7131 (10)0.8002 (13)0.040 (4)*
C70.54897 (14)0.80913 (8)0.74716 (11)0.0329 (3)
H70.5668 (18)0.8438 (11)0.8229 (15)0.049 (4)*
C80.61156 (14)0.83614 (8)0.65191 (11)0.0326 (3)
H80.6740 (17)0.8887 (10)0.6564 (14)0.042 (4)*
C90.57918 (14)0.78700 (8)0.54977 (11)0.0323 (3)
H90.6207 (17)0.8041 (10)0.4814 (14)0.043 (4)*
C100.07702 (12)0.37891 (7)0.61505 (10)0.0269 (3)
C110.00417 (14)0.37100 (9)0.70670 (11)0.0346 (3)
H110.0048 (18)0.4190 (11)0.7619 (14)0.044 (4)*
C120.08744 (15)0.29497 (9)0.71477 (12)0.0404 (3)
H120.147 (2)0.2897 (11)0.7774 (16)0.058 (5)*
C130.08794 (16)0.22904 (9)0.63254 (12)0.0405 (3)
H130.1415 (19)0.1766 (12)0.6368 (14)0.050 (4)*
C140.00414 (18)0.24243 (9)0.54512 (13)0.0440 (3)
H140.0035 (19)0.1969 (11)0.4852 (15)0.052 (5)*
C150.20351 (13)0.43087 (8)0.39007 (10)0.0279 (3)
H15A0.0898 (16)0.4252 (9)0.3600 (12)0.032 (3)*
H15B0.2466 (16)0.3702 (10)0.4016 (12)0.036 (4)*
C160.23624 (15)0.43750 (8)0.19364 (10)0.0321 (3)
H16A0.1233 (17)0.4420 (9)0.1637 (13)0.037 (4)*
H16B0.2670 (16)0.3739 (10)0.1992 (13)0.038 (4)*
C170.32018 (17)0.48569 (9)0.11329 (11)0.0377 (3)
H170.436 (2)0.4884 (12)0.1409 (17)0.065 (5)*
C180.2574 (2)0.51972 (11)0.01194 (13)0.0497 (4)
H18A0.150 (2)0.5087 (12)0.0128 (17)0.065 (6)*
H18B0.314 (2)0.5515 (13)0.0442 (18)0.068 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0418 (5)0.0330 (4)0.0225 (4)0.0060 (3)0.0099 (3)0.0033 (3)
N10.0316 (5)0.0278 (5)0.0259 (5)0.0019 (4)0.0065 (4)0.0011 (4)
N20.0321 (5)0.0283 (5)0.0251 (5)0.0025 (4)0.0070 (4)0.0001 (4)
N30.0351 (5)0.0306 (5)0.0249 (5)0.0051 (4)0.0079 (4)0.0004 (4)
N40.0503 (7)0.0280 (5)0.0348 (6)0.0061 (4)0.0129 (5)0.0010 (4)
C10.0243 (5)0.0250 (5)0.0252 (6)0.0039 (4)0.0035 (4)0.0027 (4)
C20.0249 (5)0.0246 (5)0.0236 (6)0.0045 (4)0.0034 (4)0.0014 (4)
C30.0272 (5)0.0272 (5)0.0230 (6)0.0019 (4)0.0051 (4)0.0013 (4)
C40.0244 (5)0.0259 (5)0.0229 (5)0.0027 (4)0.0038 (4)0.0020 (4)
C50.0243 (5)0.0270 (5)0.0235 (6)0.0023 (4)0.0034 (4)0.0015 (4)
C60.0302 (6)0.0339 (6)0.0239 (6)0.0026 (5)0.0059 (4)0.0009 (4)
C70.0361 (6)0.0348 (6)0.0274 (6)0.0041 (5)0.0044 (5)0.0053 (5)
C80.0350 (6)0.0297 (6)0.0325 (7)0.0060 (5)0.0047 (5)0.0006 (5)
C90.0381 (6)0.0325 (6)0.0277 (6)0.0065 (5)0.0089 (5)0.0015 (5)
C100.0264 (5)0.0262 (5)0.0274 (6)0.0024 (4)0.0026 (4)0.0042 (4)
C110.0336 (6)0.0361 (6)0.0355 (7)0.0049 (5)0.0101 (5)0.0016 (5)
C120.0378 (7)0.0455 (7)0.0399 (7)0.0096 (6)0.0121 (6)0.0032 (6)
C130.0434 (7)0.0338 (7)0.0437 (8)0.0110 (6)0.0059 (6)0.0055 (5)
C140.0603 (9)0.0310 (6)0.0424 (8)0.0107 (6)0.0140 (6)0.0031 (6)
C150.0320 (6)0.0270 (6)0.0257 (6)0.0007 (4)0.0079 (5)0.0004 (4)
C160.0412 (7)0.0299 (6)0.0254 (6)0.0005 (5)0.0066 (5)0.0052 (4)
C170.0486 (8)0.0373 (7)0.0293 (7)0.0008 (6)0.0131 (6)0.0040 (5)
C180.0689 (11)0.0476 (8)0.0355 (8)0.0083 (7)0.0170 (7)0.0059 (6)
Geometric parameters (Å, º) top
O1—C151.4224 (13)C8—C91.3836 (17)
O1—C161.4237 (14)C8—H80.966 (16)
N1—N21.3322 (13)C9—H90.968 (15)
N1—C11.3434 (15)C10—C111.3926 (17)
N2—C41.3386 (14)C11—C121.3813 (18)
N3—C91.3370 (15)C11—H110.968 (17)
N3—C51.3445 (14)C12—C131.378 (2)
N4—C101.3362 (15)C12—H120.974 (17)
N4—C141.3400 (17)C13—C141.377 (2)
C1—C21.4151 (15)C13—H130.931 (18)
C1—C101.4901 (15)C14—H140.978 (17)
C2—C31.3782 (15)C15—H15A1.019 (14)
C2—C151.5075 (15)C15—H15B0.994 (15)
C3—C41.3930 (15)C16—C171.4851 (18)
C3—H31.012 (14)C16—H16A1.011 (15)
C4—C51.4880 (15)C16—H16B0.999 (15)
C5—C61.3934 (16)C17—C181.314 (2)
C6—C71.3813 (17)C17—H171.03 (2)
C6—H60.959 (15)C18—H18A0.96 (2)
C7—C81.3836 (17)C18—H18B1.01 (2)
C7—H71.010 (17)
O1···C11i3.2992 (16)C3···C11i3.5866 (17)
O1···H32.232 (14)C6···C12iv3.5808 (18)
O1···H11i2.850 (16)C8···C10vi3.5797 (17)
N1···C8ii3.4105 (15)C11···C15i3.5633 (18)
N4···C152.7895 (16)C1···H7ii2.925 (17)
N1···H8ii2.586 (15)C6···H16Bv2.933 (15)
N1···H112.441 (16)C9···H15Bv2.842 (15)
N1···H15Ai2.713 (14)C18···H8vii2.920 (16)
N2···H18Biii2.86 (2)H6···H9viii2.56 (2)
N2···H13iv2.744 (17)H8···N1vi2.586 (16)
N2···H62.455 (15)H11···H16Ai2.57 (2)
N3···H32.522 (14)H12···C6ix2.886 (18)
N3···H15Bv2.652 (15)H12···H14x2.53 (3)
N4···H15A2.632 (14)H13···H18Bxi2.55 (3)
N4···H15B2.485 (14)H15A···H16A2.36 (2)
C1···C7ii3.5853 (17)H15B···H16B2.38 (2)
C2···C10i3.5420 (15)H16A···H18A2.33 (2)
C15—O1—C16111.09 (9)N4—C10—C1117.02 (10)
N2—N1—C1121.37 (9)C11—C10—C1120.65 (10)
N1—N2—C4119.14 (9)C12—C11—C10118.85 (12)
C9—N3—C5117.07 (10)C12—C11—H11120.9 (9)
C10—N4—C14117.42 (11)C10—C11—H11120.3 (10)
N1—C1—C2121.82 (10)C13—C12—C11119.41 (12)
N1—C1—C10113.24 (10)C13—C12—H12121.3 (10)
C2—C1—C10124.93 (10)C11—C12—H12119.3 (10)
C3—C2—C1116.06 (10)C14—C13—C12117.79 (12)
C3—C2—C15119.63 (10)C14—C13—H13121.0 (10)
C1—C2—C15124.29 (10)C12—C13—H13121.2 (10)
C2—C3—C4119.36 (10)N4—C14—C13124.22 (13)
C2—C3—H3119.3 (8)N4—C14—H14116.4 (10)
C4—C3—H3121.3 (8)C13—C14—H14119.4 (10)
N2—C4—C3122.25 (10)O1—C15—C2108.29 (9)
N2—C4—C5115.80 (10)O1—C15—H15A109.5 (8)
C3—C4—C5121.95 (10)C2—C15—H15A110.0 (8)
N3—C5—C6122.61 (10)O1—C15—H15B110.2 (8)
N3—C5—C4116.15 (10)C2—C15—H15B111.0 (8)
C6—C5—C4121.24 (10)H15A—C15—H15B107.9 (11)
C7—C6—C5119.03 (11)O1—C16—C17108.01 (10)
C7—C6—H6122.1 (9)O1—C16—H16A109.7 (8)
C5—C6—H6118.8 (9)C17—C16—H16A109.7 (8)
C6—C7—C8118.99 (11)O1—C16—H16B109.5 (9)
C6—C7—H7120.0 (9)C17—C16—H16B110.4 (8)
C8—C7—H7121.0 (9)H16A—C16—H16B109.5 (12)
C9—C8—C7118.05 (11)C18—C17—C16124.63 (15)
C9—C8—H8121.2 (9)C18—C17—H17120.8 (11)
C7—C8—H8120.7 (9)C16—C17—H17114.5 (11)
N3—C9—C8124.25 (11)C17—C18—H18A116.3 (12)
N3—C9—H9115.5 (9)C17—C18—H18B125.0 (12)
C8—C9—H9120.3 (9)H18A—C18—H18B118.4 (16)
N4—C10—C11122.32 (11)
C1—N1—N2—C40.15 (16)C5—C6—C7—C80.24 (18)
N2—N1—C1—C20.61 (16)C6—C7—C8—C90.57 (18)
N2—N1—C1—C10178.92 (9)C5—N3—C9—C80.14 (18)
N1—C1—C2—C30.42 (15)C7—C8—C9—N30.4 (2)
C10—C1—C2—C3179.06 (10)C14—N4—C10—C110.41 (18)
N1—C1—C2—C15177.88 (10)C14—N4—C10—C1178.51 (11)
C10—C1—C2—C152.64 (17)N1—C1—C10—N4164.56 (10)
C1—C2—C3—C40.20 (15)C2—C1—C10—N414.96 (16)
C15—C2—C3—C4178.58 (10)N1—C1—C10—C1114.38 (15)
N1—N2—C4—C30.49 (16)C2—C1—C10—C11166.10 (11)
N1—N2—C4—C5179.18 (9)N4—C10—C11—C120.07 (19)
C2—C3—C4—N20.66 (16)C1—C10—C11—C12178.81 (11)
C2—C3—C4—C5179.00 (10)C10—C11—C12—C130.1 (2)
C9—N3—C5—C60.51 (17)C11—C12—C13—C140.0 (2)
C9—N3—C5—C4178.47 (10)C10—N4—C14—C130.6 (2)
N2—C4—C5—N3178.91 (10)C12—C13—C14—N40.4 (2)
C3—C4—C5—N31.41 (15)C16—O1—C15—C2173.64 (9)
N2—C4—C5—C62.09 (15)C3—C2—C15—O12.59 (14)
C3—C4—C5—C6177.59 (10)C1—C2—C15—O1175.66 (9)
N3—C5—C6—C70.32 (18)C15—O1—C16—C17176.11 (10)
C4—C5—C6—C7178.61 (10)O1—C16—C17—C18126.92 (14)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y1/2, z+3/2; (iii) x, y, z+1; (iv) x, y+1/2, z+3/2; (v) x+1, y+1, z+1; (vi) x+1, y+1/2, z+3/2; (vii) x+1, y1/2, z+1/2; (viii) x, y+3/2, z+1/2; (ix) x, y1/2, z+3/2; (x) x, y+1/2, z+1/2; (xi) x, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of pyridine ring B (N3/C5—C9).
D—H···AD—HH···AD···AD—H···A
C8—H8···N1vi0.966 (16)2.585 (16)3.4104 (15)143.4 (12)
C15—H15B···Cgv0.994 (15)2.990 (15)3.8760 (13)149.0 (11)
Symmetry codes: (v) x+1, y+1, z+1; (vi) x+1, y+1/2, z+3/2.
Comparison of the selected (X-ray and DFT) geometric data (Å, °) top
Bonds/anglesX-rayB3LYP/6-311G(d,p)
O1—C151.4224 (13)1.45001
O1—C161.4237 (14)1.45647
N1—N21.3322 (13)1.33754
N1—C11.3434 (15)1.36030
N2—C41.3386 (14)1.35694
N3—C91.3370 (15)1.34713
N3—C51.3445 (14)1.35667
N4—C101.3362 (15)1.35644
N4—C141.3400 (17)1.34940
C15—O1—C16111.09 (9)112.34477
N2—N1—C1121.37 (9)121.70569
N1—N2—C4119.14 (9)119.30129
C9—N3—C5117.07 (10)118.58051
C10—N4—C14117.42 (11)119.00361
N1—C1—C2121.82 (10)121.25910
N1—C1—C10113.24 (10)113.37034
N2—C4—C3122.25 (10)121.78580
N2—C4—C5115.80 (10)116.28262
C3—C4—C5121.95 (10)121.93158
N3—C5—C6122.61 (10)122.07926
N3—C5—C4116.15 (10)116.59443
Calculated energies for the title compound top
Total energy, TE (eV)-26922.3681
EHOMO (eV)-6.0597
ELUMO (eV)-1.9058
Energy gap, ΔE (eV)4.1539
Dipole moment µ (Debye)1.6276
Ionization potential, I (eV)6.0597
Electron affinity, A1.9058
Electronegativity, χ3.9827
Hardness, η2.0769
Electrophilicity index, ω3.8186
Softness, σ0.4815
Fraction of electrons transferred, ΔN0.7264
 

Funding information

NSF–MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged. TH is grateful to the Hacettepe University Scientific Research Project Unit (grant No. 013 D04 602 004).

References

First citationBecke, A. D. (1993). J. Chem. Phys. 98, 5648–5652.  CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SAINT and SADABS . Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationConstable, E. C., Housecroft, C. E., Neuburger, M., Reymann, S. & Schaffner, S. (2008). Aust. J. Chem. 61, 847–853.  Web of Science CSD CrossRef CAS Google Scholar
First citationFilali, M., Elmsellem, H., Hökelek, T., El-Ghayoury, A., Stetsiuk, O., El Hadrami, E. M. & Ben-Tama, A. (2019). Acta Cryst. E75, 1169–1174.  CSD CrossRef IUCr Journals Google Scholar
First citationFrisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.  Google Scholar
First citationHathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationHirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138.  CrossRef CAS Web of Science Google Scholar
First citationJayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO - A System for Computational Chemistry. Available at: http://hirshfeldsurface.net/  Google Scholar
First citationKaim, W. & Kohlmann, S. (1987). Inorg. Chem. 26, 68–77.  CrossRef CAS Web of Science Google Scholar
First citationKhadiri, A., Saddik, R., Bekkouche, K., Aouniti, A., Hammouti, B., Benchat, N., Bouachrine, M. & Solmaz, R. (2016). J. Taiwan Inst. Chem. Eng. 58, 552–564.  Web of Science CrossRef CAS Google Scholar
First citationKore, A. R., Yang, B. & Srinivasan, B. (2015). Tetrahedron Lett. 56, 808–811.  Web of Science CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575–587.  Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
First citationMarino, N., Bruno, R., Bentama, A., Pascual-Álvarez, A., Lloret, F., Julve, M. & De Munno, G. (2019). CrystEngComm, 21, 917–924.  Web of Science CSD CrossRef CAS Google Scholar
First citationMastropietro, T. F., Marino, N., Armentano, D., De Munno, G., Yuste, C., Lloret, F. & Julve, M. (2013). Cryst. Growth Des. 13, 270–281.  Web of Science CSD CrossRef CAS Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShowrilu, K., Rajarajan, K., Martin Britto Dhas, S. A. & Athimoolam, S. (2017). IUCrData, 2, x171142.  Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388.  CAS Google Scholar
First citationTsukada, N., Sato, T., Mori, H., Sugawara, S., Kabuto, C., Miyano, S. & Inoue, Y. (2001). J. Organomet. Chem. 627, 121–126.  Web of Science CSD CrossRef CAS Google Scholar
First citationTurner, M. J., Grabowsky, S., Jayatilaka, D. & Spackman, M. A. (2014). J. Phys. Chem. Lett. 5, 4249–4255.  Web of Science CrossRef CAS PubMed Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.  Google Scholar
First citationTurner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735–3738.  Web of Science CrossRef CAS Google Scholar
First citationVenkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A, 153, 625–636.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds