research communications
H)-one
and Hirshfeld surface analysis of 4-(4-methylbenzyl)-6-phenylpyridazin-3(2aLaboratory of Applied Chemistry and Environment (LCAE), Department of Chemistry, Faculty of Sciences, University Mohamed Premier, Oujda 60000, Morocco, bOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Physics, Kurupelit, Samsun, Turkey, cLaboratory of Organic Synthesis, Extraction and Development, Faculty of Sciences, Hassan II University, Casablanca, Morocco, and dLaboratory of Plant Chemistry, Organic and Bioorganic Synthesis, URAC23, Faculty of Science, BP 1014, GEOPAC Research Center, Mohammed V University, Rabat, Morocco
*Correspondence e-mail: saiddaoui26@gmail.com,emineberrin.cinar@omu.edu.tr,necmid@omu.edu.tr
In this paper, we describe the synthesis of a new dihydro-2H-pyridazin-3-one derivative. The molecule, C18H16N2O, is not planar; the benzene and pyridazine rings are twisted with respect to each other, making a dihedral angle of 11.47 (2)°, and the toluene ring is nearly perpendicular to the pyridazine ring, with a dihedral angle of 89.624 (1)°. The molecular conformation is stabilized by weak intramolecular C—H⋯N contacts. In the crystal, pairs of N—H⋯O hydrogen bonds link the molecules into inversion dimers with an R22(8) ring motif. The intermolecular interactions were investigated using Hirshfeld surface analysis and two-dimensional (2D) fingerprint plots, revealing that the most important contributions for the crystal packing are from H⋯H (56.6%), H⋯C/C⋯H (22.6%), O⋯H/H⋯O (10.0%) and N⋯C/C⋯N (3.5%) interactions.
Keywords: crystal structure; Hirshfeld surface analysis; pyridazine; pyridazine derivative; pyridazinone.
CCDC reference: 1947718
1. Chemical context
Pyridazines are an important family of six-membered aromatic heterocycles containing two N atoms. Pyridazinone is an important pharmacophore possessing a wide range of biological applications (Asif, 2014; Akhtar et al., 2016). The chemistry of pyridazinones has been an interesting field of study for decades and this nitrogen heterocycle has become a scaffold of choice for the development of potential drug candidates (Dubey & Bhosle, 2015; Thakur et al., 2010). A review of the literature has revealed that substituted pyridazinones have received a lot of attention in recent years because of their significant potential as antimicrobial (Sönmez et al., 2006), antidepressant (Boukharsa et al., 2016), anti-inflammatory (Barberot et al., 2018), antihypertensive (Siddiqui et al., 2011), analgesic (Gökçe et al., 2009), anti-HIV (Livermore et al., 1993), anticonvulsant (Partap et al., 2018; Sharma et al., 2014), cardiotonic (Wang et al., 2008), antihistaminic (Tao et al., 2012), glucan synthase inhibitors (Zhou et al., 2011), phosphodiesterase (PDE) inhibitors (Ochiai et al., 2012) and herbicidal agents (Asif, 2013). In continuation of our work in this field (El Kali et al., 2019; Chkirate et al., 2019a,b; Karrouchi et al., 2015, 2016a,b), we report the synthesis and the crystal and molecular structures of the title compound, as well as an analysis of its Hirshfeld surface.
2. Structural commentary
In the title molecule (Fig. 1), the C10=O1 bond length is 1.241 (3) Å while the N1—N2 and C11=N2 bond lengths are 1.347 (3) and 1.311 (4) Å, respectively (Table 1). The C9—C8—C5 bond angle is 113.7 (2)°, while the C4—C5—C8—C9, C6—C5—C8—C9 and C10—C9—C8—C5 torsion angles are 90.0 (3), −87.1 (3) and 169.1 (3)°, respectively. The molecule is not planar as the benzene and pyridazine rings are twisted with respect to each other, making a dihedral angle of 11.469 (2)°. The toluene ring is nearly perpendicular to the pyridazine ring, with a dihedral angle of 89.624 (1)°.
|
3. Supramolecular features
The molecules are connected two-by-two through N1—H1⋯O1 hydrogen bonds (Table 2), with a R22(8) graph-set motif (Bernstein et al., 1995), and form inversion dimers (Fig. 2a). Weak C—H⋯O hydrogen bonds and weak off-set π-stacking stabilize the packing. In the crystal, hydrogen bonds link the chains into a two-dimensional (2D) network parallel to (011) (Fig. 2b and Table 2). The stacking occurs between the pyridazine rings of inversion-related molecules [Cg1⋯Cg3 (at x − 1, y, z)], with a centroid-to-centroid distance of 3.8333 (18) Å and a slippage of 1.460 Å (Cg1 is the centroid of the C9–C11/N1/N2 ring and Cg3 is the centroid of the C13–C18 ring) (Fig. 2a).
4. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.40, update of November 2018; Groom et al., 2016) using 4-ethyl-6-methylpyridazin-3(2H)-one (see A in Scheme) as the main skeleton revealed the presence of two structures containing the pyridazine moiety with different substituents similar to the title compound in this study. The structures are 4-benzyl-6-p-tolylpyridazin-3(2H)-one (CSD refcode YOTVIN; Oubair et al., 2009) and 4-aryl-2,5-dioxo-8-phenylpyrido[2,3-d]pyridazines (BARQUG; Pita et al., 2000). In YOTVIN, the molecules are connected two-by-two through N—H⋯O hydrogen bonds, with an R22(8) graph-set motif, building a pseudo-dimer arranged around the inversion centre. Weak C—H⋯O hydrogen bonds and weak off-set π–π stacking stabilize the packing. In BARQUG, the dihedral angle between the least-squares planes of the substituted phenyl and pyridone rings is 79.78 (2)° and between the pyridazinone ring and the unsubstitued phenyl ring is 57.37 (2)°.
5. Hirshfeld surface (HS) analysis
The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) and the associated 2D fingerprint plots (McKinnon et al., 2007) were performed with CrystalExplorer17 (Turner et al., 2017). The Hirshfeld surface was calculated using a standard (high) surface resolution with the three-dimensional (3D) dnorm surface plotted over a fixed colour scale of −0.6048 (red) to 1.4188 a.u. (blue). The 3D dnorm surface of the title complex is illustrated in Figs. 3(a) and 4. The pale-red spots symbolize short contacts and negative dnorm values on the surface correspond to the N—H⋯O interactions (Table 2). The overall 2D fingerprint plot and the 2D fingerprint plots for the H⋯H, H⋯C/C⋯H, H⋯O/O⋯H and N⋯C/C⋯N contacts are shown in Fig. 5 (McKinnon et al., 2007), respectively, associated with their relative contributions to the Hirshfeld surface. The largest interaction is H⋯H, contributing 56.6% to the overall crystal packing. In the fingerprint plot representing H⋯H contacts, the 56.6% contribution to the overall crystal packing, is reflected by widely scattered points of high density due to the large hydrogen content of the molecule. The single spike in the centre at de = di = 0.936 Å in Fig. 5(b) is due to short interatomic H⋯H contacts. In the absence of C—H⋯π interactions in the crystal, the pair of characteristic wings in the fingerprint plot representing H⋯C/C⋯H contacts (22.6% contribution to the HS) have a symmetrical distribution of points (Fig. 5c), with the tips at de + di = 2.797 Å. The O⋯H (Fig. 5d) contacts contribute 10% to the HS and have a symmetrical distribution of points, with the tips at de + di = 1.853 Å. The contribution of the other contact to the Hirshfeld surface is N⋯C/C⋯N (3.5%). The Hirshfeld surface representations with the function dnorm plotted on the surface are shown for the H⋯H, H⋯C/C⋯H, H⋯O/O⋯H, C⋯C and H⋯N/N⋯H interactions in Figs. 6. The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯H, H⋯C/C⋯H, H⋯O/O⋯H, C⋯C and H⋯N/N⋯H interactions suggest that van der Waals interactions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015).
A shape-index map of the title compound was generated in the range −1 to 1 Å (Fig. 3b). The convex blue regions on the shape-index symbolize hydrogen-donor groups and the concave red regions symbolize hydrogen-acceptor groups. The π–π interactions on the shape-index map of the Hirshfeld surface are generally indicated by adjacent red and blue triangles.
A curvedness map of the title compound was generated in the range −4 to 0.4 Å (Fig. 3c). This shows large regions of green indicating a relatively flat surface area (planar), while the blue regions indicate areas of curvature. The presence of π–π stacking interactions is also evident in the flat regions around the rings on the Hirshfeld surface plotted over curvedness (see the Supramolecular features section above).
6. Synthesis and crystallization
To a solution (0.15 g, 1 mmol) of 6-phenyl-4,5-dihydropyridazin-3(2H)-one and (0.12 g, 1 mmol) of 4-methylbenzaldehyde in ethanol (30 ml), sodium hydroxide (10%, 0.5 g, 3.5 mmol) was added. The solvent was evaporated under vacuum and the residue was purified through silica-gel using hexane/ethyl acetate (7:3 v/v). Slow evaporation at room temperature leads to single crystals.
7. Refinement
H atoms were fixed geometrically and treated as riding, with C—H = 0.97 Å and Uiso(H) = 1.5Ueq(C) for methyl, C—H = 0.96 Å and Uiso(H) = 1.2Ueq(C) for methylene, C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic and C—H = 0.98 Å and Uiso(H) = 1.2Ueq(C) for methine H atoms. Crystal data, data collection and structure details are summarized in Table 3.
Supporting information
CCDC reference: 1947718
https://doi.org/10.1107/S2056989019011551/mw2146sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019011551/mw2146Isup3.hkl
Data collection: X-AREA (Stoe & Cie, 2002); cell
X-AREA (Stoe & Cie, 2002); data reduction: X-RED (Stoe & Cie, 2002); program(s) used to solve structure: SHELXT2017 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2008) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012), SHELXL2018 (Sheldrick, 2015b), PLATON (Spek, 2009) and publCIF (Westrip, 2010).C18H16N2O | Z = 2 |
Mr = 276.33 | F(000) = 292 |
Triclinic, P1 | Dx = 1.248 Mg m−3 |
a = 5.8479 (5) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 8.5738 (7) Å | Cell parameters from 8216 reflections |
c = 15.2439 (12) Å | θ = 2.5–30.7° |
α = 80.693 (6)° | µ = 0.08 mm−1 |
β = 83.147 (7)° | T = 296 K |
γ = 78.164 (7)° | Prism, colorless |
V = 735.27 (11) Å3 | 0.27 × 0.20 × 0.06 mm |
Stoe IPDS 2 diffractometer | 2887 independent reflections |
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus | 1471 reflections with I > 2σ(I) |
Plane graphite monochromator | Rint = 0.086 |
Detector resolution: 6.67 pixels mm-1 | θmax = 26.0°, θmin = 2.5° |
rotation method scans | h = −7→7 |
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) | k = −10→10 |
Tmin = 0.966, Tmax = 0.996 | l = −18→18 |
9453 measured reflections |
Refinement on F2 | Primary atom site location: dual space |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.068 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.208 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0939P)2] where P = (Fo2 + 2Fc2)/3 |
2887 reflections | (Δ/σ)max < 0.001 |
191 parameters | Δρmax = 0.30 e Å−3 |
84 restraints | Δρmin = −0.32 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.9692 (4) | 0.6487 (3) | 0.90252 (15) | 0.0776 (7) | |
N1 | 0.7762 (4) | 0.4423 (3) | 0.94429 (17) | 0.0653 (7) | |
H1 | 0.848007 | 0.419860 | 0.992137 | 0.078* | |
N2 | 0.6315 (4) | 0.3435 (3) | 0.93530 (17) | 0.0621 (7) | |
C10 | 0.8227 (5) | 0.5725 (4) | 0.8874 (2) | 0.0627 (8) | |
C13 | 0.3636 (6) | 0.2661 (4) | 0.8525 (2) | 0.0728 (8) | |
C11 | 0.5151 (5) | 0.3799 (4) | 0.8641 (2) | 0.0594 (8) | |
C5 | 0.6414 (6) | 0.7618 (4) | 0.6536 (2) | 0.0668 (9) | |
C9 | 0.6964 (5) | 0.6101 (4) | 0.8080 (2) | 0.0630 (8) | |
C12 | 0.5470 (5) | 0.5134 (4) | 0.7992 (2) | 0.0671 (9) | |
H12 | 0.463050 | 0.535285 | 0.749060 | 0.080* | |
C2 | 0.4368 (7) | 0.7711 (4) | 0.4949 (2) | 0.0738 (10) | |
C18 | 0.2108 (6) | 0.2984 (4) | 0.7881 (2) | 0.0750 (8) | |
H18 | 0.200948 | 0.394224 | 0.748873 | 0.090* | |
C3 | 0.3212 (7) | 0.8506 (5) | 0.5622 (3) | 0.0806 (11) | |
H3 | 0.170292 | 0.909110 | 0.555296 | 0.097* | |
C17 | 0.0695 (6) | 0.1901 (5) | 0.7802 (3) | 0.0812 (9) | |
H17 | −0.034226 | 0.214814 | 0.736029 | 0.097* | |
C8 | 0.7452 (7) | 0.7504 (4) | 0.7414 (2) | 0.0793 (11) | |
H8A | 0.913650 | 0.742443 | 0.729872 | 0.095* | |
H8B | 0.682622 | 0.848692 | 0.766918 | 0.095* | |
C16 | 0.0804 (7) | 0.0510 (5) | 0.8351 (3) | 0.0895 (10) | |
H16 | −0.016404 | −0.019967 | 0.829942 | 0.107* | |
C4 | 0.4200 (7) | 0.8474 (4) | 0.6402 (2) | 0.0770 (10) | |
H4 | 0.335386 | 0.904240 | 0.684478 | 0.092* | |
C6 | 0.7593 (6) | 0.6817 (5) | 0.5855 (3) | 0.0819 (11) | |
H6 | 0.910392 | 0.623176 | 0.591920 | 0.098* | |
C7 | 0.6572 (7) | 0.6867 (5) | 0.5077 (3) | 0.0870 (11) | |
H7 | 0.741083 | 0.631025 | 0.462885 | 0.104* | |
C1 | 0.3250 (8) | 0.7769 (6) | 0.4096 (3) | 0.1041 (14) | |
H1A | 0.164486 | 0.831458 | 0.415749 | 0.156* | |
H1B | 0.330986 | 0.669253 | 0.398093 | 0.156* | |
H1C | 0.408494 | 0.833710 | 0.360869 | 0.156* | |
C14 | 0.3757 (8) | 0.1221 (5) | 0.9057 (3) | 0.1055 (11) | |
H14 | 0.482967 | 0.094249 | 0.948657 | 0.127* | |
C15 | 0.2333 (8) | 0.0152 (6) | 0.8979 (3) | 0.1111 (11) | |
H15 | 0.243396 | −0.081609 | 0.936290 | 0.133* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0901 (16) | 0.0843 (16) | 0.0741 (15) | −0.0425 (13) | −0.0351 (12) | −0.0038 (12) |
N1 | 0.0704 (16) | 0.0782 (18) | 0.0577 (16) | −0.0304 (14) | −0.0247 (13) | −0.0051 (14) |
N2 | 0.0635 (15) | 0.0736 (18) | 0.0579 (16) | −0.0271 (13) | −0.0179 (12) | −0.0074 (13) |
C10 | 0.0695 (19) | 0.069 (2) | 0.059 (2) | −0.0260 (16) | −0.0192 (15) | −0.0100 (16) |
C13 | 0.0799 (18) | 0.0761 (18) | 0.0732 (19) | −0.0356 (16) | −0.0284 (15) | −0.0002 (15) |
C11 | 0.0597 (18) | 0.066 (2) | 0.0576 (19) | −0.0200 (15) | −0.0160 (15) | −0.0061 (16) |
C5 | 0.078 (2) | 0.0570 (19) | 0.073 (2) | −0.0278 (17) | −0.0288 (18) | 0.0040 (17) |
C9 | 0.0674 (19) | 0.066 (2) | 0.062 (2) | −0.0214 (16) | −0.0219 (15) | −0.0037 (16) |
C12 | 0.0689 (19) | 0.074 (2) | 0.067 (2) | −0.0271 (17) | −0.0306 (16) | −0.0010 (17) |
C2 | 0.092 (3) | 0.077 (2) | 0.061 (2) | −0.036 (2) | −0.0167 (19) | −0.0020 (18) |
C18 | 0.0798 (18) | 0.0817 (18) | 0.0737 (18) | −0.0301 (15) | −0.0258 (15) | −0.0083 (15) |
C3 | 0.078 (2) | 0.086 (3) | 0.078 (3) | −0.008 (2) | −0.028 (2) | −0.007 (2) |
C17 | 0.0827 (18) | 0.093 (2) | 0.083 (2) | −0.0327 (16) | −0.0299 (16) | −0.0198 (16) |
C8 | 0.096 (3) | 0.079 (2) | 0.075 (2) | −0.043 (2) | −0.034 (2) | 0.0059 (19) |
C16 | 0.098 (2) | 0.093 (2) | 0.095 (2) | −0.0501 (18) | −0.0263 (17) | −0.0138 (17) |
C4 | 0.087 (3) | 0.080 (2) | 0.068 (2) | −0.012 (2) | −0.0180 (19) | −0.0154 (19) |
C6 | 0.068 (2) | 0.083 (3) | 0.095 (3) | −0.0052 (19) | −0.020 (2) | −0.015 (2) |
C7 | 0.090 (3) | 0.102 (3) | 0.073 (3) | −0.017 (2) | −0.006 (2) | −0.026 (2) |
C1 | 0.132 (4) | 0.117 (3) | 0.077 (3) | −0.044 (3) | −0.038 (2) | −0.006 (2) |
C14 | 0.121 (2) | 0.101 (2) | 0.110 (2) | −0.0590 (19) | −0.0567 (19) | 0.0217 (18) |
C15 | 0.128 (2) | 0.102 (2) | 0.119 (2) | −0.0644 (19) | −0.0481 (19) | 0.0192 (19) |
O1—C10 | 1.241 (3) | C18—H18 | 0.9300 |
N1—N2 | 1.347 (3) | C3—C4 | 1.378 (5) |
N1—C10 | 1.352 (4) | C3—H3 | 0.9300 |
N1—H1 | 0.8600 | C17—C16 | 1.336 (5) |
N2—C11 | 1.311 (4) | C17—H17 | 0.9300 |
C10—C9 | 1.449 (4) | C8—H8A | 0.9700 |
C13—C14 | 1.357 (5) | C8—H8B | 0.9700 |
C13—C18 | 1.364 (4) | C16—C15 | 1.344 (6) |
C13—C11 | 1.488 (4) | C16—H16 | 0.9300 |
C11—C12 | 1.415 (4) | C4—H4 | 0.9300 |
C5—C4 | 1.372 (5) | C6—C7 | 1.381 (5) |
C5—C6 | 1.375 (5) | C6—H6 | 0.9300 |
C5—C8 | 1.515 (4) | C7—H7 | 0.9300 |
C9—C12 | 1.353 (4) | C1—H1A | 0.9600 |
C9—C8 | 1.496 (4) | C1—H1B | 0.9600 |
C12—H12 | 0.9300 | C1—H1C | 0.9600 |
C2—C3 | 1.359 (5) | C14—C15 | 1.386 (5) |
C2—C7 | 1.361 (5) | C14—H14 | 0.9300 |
C2—C1 | 1.512 (5) | C15—H15 | 0.9300 |
C18—C17 | 1.391 (4) | ||
N2—N1—C10 | 128.0 (2) | C16—C17—H17 | 119.5 |
N2—N1—H1 | 116.0 | C18—C17—H17 | 119.5 |
C10—N1—H1 | 116.0 | C9—C8—C5 | 113.7 (2) |
C11—N2—N1 | 116.5 (3) | C9—C8—H8A | 108.8 |
O1—C10—N1 | 120.9 (3) | C5—C8—H8A | 108.8 |
O1—C10—C9 | 123.9 (3) | C9—C8—H8B | 108.8 |
N1—C10—C9 | 115.1 (2) | C5—C8—H8B | 108.8 |
C14—C13—C18 | 116.8 (3) | H8A—C8—H8B | 107.7 |
C14—C13—C11 | 120.7 (3) | C17—C16—C15 | 119.1 (3) |
C18—C13—C11 | 122.5 (3) | C17—C16—H16 | 120.5 |
N2—C11—C12 | 121.3 (3) | C15—C16—H16 | 120.5 |
N2—C11—C13 | 116.2 (3) | C5—C4—C3 | 121.0 (4) |
C12—C11—C13 | 122.4 (3) | C5—C4—H4 | 119.5 |
C4—C5—C6 | 117.0 (3) | C3—C4—H4 | 119.5 |
C4—C5—C8 | 121.1 (4) | C5—C6—C7 | 121.1 (4) |
C6—C5—C8 | 121.9 (3) | C5—C6—H6 | 119.4 |
C12—C9—C10 | 117.4 (3) | C7—C6—H6 | 119.4 |
C12—C9—C8 | 125.0 (3) | C2—C7—C6 | 121.7 (4) |
C10—C9—C8 | 117.5 (2) | C2—C7—H7 | 119.1 |
C9—C12—C11 | 121.7 (3) | C6—C7—H7 | 119.1 |
C9—C12—H12 | 119.1 | C2—C1—H1A | 109.5 |
C11—C12—H12 | 119.1 | C2—C1—H1B | 109.5 |
C3—C2—C7 | 117.0 (3) | H1A—C1—H1B | 109.5 |
C3—C2—C1 | 121.2 (4) | C2—C1—H1C | 109.5 |
C7—C2—C1 | 121.8 (4) | H1A—C1—H1C | 109.5 |
C13—C18—C17 | 120.9 (4) | H1B—C1—H1C | 109.5 |
C13—C18—H18 | 119.6 | C13—C14—C15 | 122.0 (4) |
C17—C18—H18 | 119.6 | C13—C14—H14 | 119.0 |
C2—C3—C4 | 122.2 (4) | C15—C14—H14 | 119.0 |
C2—C3—H3 | 118.9 | C16—C15—C14 | 120.1 (4) |
C4—C3—H3 | 118.9 | C16—C15—H15 | 119.9 |
C16—C17—C18 | 121.0 (3) | C14—C15—H15 | 119.9 |
C10—N1—N2—C11 | −2.3 (5) | C1—C2—C3—C4 | −179.7 (4) |
N2—N1—C10—O1 | −176.7 (3) | C13—C18—C17—C16 | −0.4 (6) |
N2—N1—C10—C9 | 1.2 (5) | C12—C9—C8—C5 | −9.4 (6) |
N1—N2—C11—C12 | 1.9 (5) | C10—C9—C8—C5 | 169.2 (3) |
N1—N2—C11—C13 | 177.4 (3) | C4—C5—C8—C9 | 90.3 (4) |
C14—C13—C11—N2 | −9.6 (5) | C6—C5—C8—C9 | −86.8 (4) |
C18—C13—C11—N2 | 171.6 (3) | C18—C17—C16—C15 | −1.0 (7) |
C14—C13—C11—C12 | 165.7 (4) | C6—C5—C4—C3 | 0.7 (5) |
C18—C13—C11—C12 | −13.0 (5) | C8—C5—C4—C3 | −176.5 (3) |
O1—C10—C9—C12 | 178.0 (3) | C2—C3—C4—C5 | −0.5 (6) |
N1—C10—C9—C12 | 0.2 (5) | C4—C5—C6—C7 | −0.6 (5) |
O1—C10—C9—C8 | −0.7 (5) | C8—C5—C6—C7 | 176.6 (3) |
N1—C10—C9—C8 | −178.5 (3) | C3—C2—C7—C6 | 0.0 (6) |
C10—C9—C12—C11 | −0.4 (5) | C1—C2—C7—C6 | 179.9 (4) |
C8—C9—C12—C11 | 178.2 (3) | C5—C6—C7—C2 | 0.2 (6) |
N2—C11—C12—C9 | −0.7 (5) | C18—C13—C14—C15 | −2.7 (7) |
C13—C11—C12—C9 | −175.9 (3) | C11—C13—C14—C15 | 178.5 (4) |
C14—C13—C18—C17 | 2.2 (6) | C17—C16—C15—C14 | 0.5 (7) |
C11—C13—C18—C17 | −179.0 (3) | C13—C14—C15—C16 | 1.4 (8) |
C7—C2—C3—C4 | 0.1 (6) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1i | 0.86 | 1.98 | 2.836 (3) | 175 |
C14—H14···N2 | 0.93 | 2.43 | 2.764 (3) | 101 |
Symmetry code: (i) −x+2, −y+1, −z+2. |
Acknowledgements
The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund).
References
Akhtar, W., Shaquiquzzaman, M., Akhter, M., Verma, G., Khan, M. F. & Alam, M. M. (2016). Eur. J. Med. Chem. 123, 256–281. Web of Science CrossRef CAS PubMed Google Scholar
Asif, M. (2013). Mini-Rev. Org. Chem. 10, 113–122. Web of Science CrossRef CAS Google Scholar
Asif, M. (2014). Mini Rev. Med. Chem. 14, 1093–1103. CrossRef CAS Google Scholar
Barberot, C., Moniot, A., Allart-Simon, I., Malleret, L., Yegorova, T., Laronze-Cochard, M. & SAPI, J. (2018). Eur. J. Med. Chem. 146, 139–146. CrossRef CAS PubMed Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Boukharsa, Y., Meddah, B., Tiendrebeogo, R. Y., Ibrahimi, A., Taoufik, J. & Cherrah, Y. (2016). Med. Chem. Res. 25, 494–500. CrossRef CAS Google Scholar
Chkirate, K., Kansiz, S., Karrouchi, K., Mague, J. T., Dege, N. & Essassi, E. M. (2019a). Acta Cryst. E75, 154–158. Web of Science CSD CrossRef IUCr Journals Google Scholar
Chkirate, K., Kansiz, S., Karrouchi, K., Mague, J. T., Dege, N. & Essassi, E. M. (2019b). Acta Cryst. E75, 33–37. Web of Science CSD CrossRef IUCr Journals Google Scholar
Dubey, S. & Bhosle, P. A. (2015). Med. Chem. Res. 24, 3579–3598. Web of Science CrossRef CAS Google Scholar
El Kali, F., Kansiz, S., Daoui, S., Saddik, R., Dege, N., Karrouchi, K. & Benchat, N. (2019). Acta Cryst. E75, 650–654. CSD CrossRef IUCr Journals Google Scholar
Gökçe, M., Utku, S. & Küpeli, E. (2009). Eur. J. Med. Chem. 44, 3760–3764. Web of Science PubMed Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
Karrouchi, K., Ansar, M., Radi, S., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, o890–o891. Web of Science CSD CrossRef IUCr Journals Google Scholar
Karrouchi, K., Radi, S., Ansar, M. H., Taoufik, J., Ghabbour, H. A. & Mabkhot, Y. N. (2016a). Z. Kristallogr. New Cryst. Struct. 231, 883–886. CAS Google Scholar
Karrouchi, K., Radi, S., Ansar, M. H., Taoufik, J., Ghabbour, H. A. & Mabkhot, Y. N. (2016b). Z. Kristallogr. New Cryst. Struct. 231, 839–841. CAS Google Scholar
Livermore, D., Bethell, R. C., Cammack, N., Hancock, A. P., Hann, M. M. & Green, D. (1993). J. Med. Chem. 36, 3784–3794. CSD CrossRef CAS PubMed Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Ochiai, K., Takita, S., Eiraku, T., Kojima, A., Iwase, K. & Kishi, T. (2012). Bioorg. Med. Chem. 20, 1644–1658. CrossRef CAS PubMed Google Scholar
Oubair, A., Daran, J.-C., Fihi, R., Majidi, L. & Azrour, M. (2009). Acta Cryst. E65, o1350–o1351. Web of Science CSD CrossRef IUCr Journals Google Scholar
Partap, S., Akhtar, M. J., Yar, M. S., Hassan, M. Z. & Siddiqui, A. A. (2018). Bioorg. Chem. 77, 74–83. Web of Science CrossRef CAS PubMed Google Scholar
Pita, B., Sotelo, E., Suarez, M., Ravina, E., Ochoa, E., Verdecia, Y., Novoa, H., Blaton, N., Ranter, C. & Peeters, O. M. (2000). Tetrahedron, 56, 2473–2479. CSD CrossRef CAS Google Scholar
Sharma, B., Verma, A., Sharma, U. K. & Prajapati, S. (2014). Med. Chem. Res. 23, 146–157. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Siddiqui, A. A., Mishra, R., Shaharyar, M., Husain, A., Rashid, M. & Pal, P. (2011). Bioorg. Med. Chem. Lett. 21, 1023–1026. Web of Science CrossRef CAS PubMed Google Scholar
Sönmez, M., Berber, İ. & Akbaş, E. (2006). Eur. J. Med. Chem. 41, 101–105. PubMed Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany. Google Scholar
Tao, M., Aimone, L. D., Gruner, J. A., Mathiasen, J. R., Huang, Z. & Lyons, J. (2012). Bioorg. Med. Chem. Lett. 22, 1073–1077. CrossRef CAS PubMed Google Scholar
Thakur, A. S., Verma, P. & Chandy, A. (2010). Asian J. Res. Chem. 3, 265–271. Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net. Google Scholar
Wang, T., Dong, Y., Wang, L.-C., Xiang, B.-R., Chen, Z. & Qu, L.-B. (2008). Arzneimittelforschung, 58, 569–573. Web of Science PubMed CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Xu, H., Song, H.-B., Yao, C.-S., Zhu, Y.-Q., Hu, F.-Z., Zou, X.-M. & Yang, H.-Z. (2005). Acta Cryst. E61, o1561–o1563. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zhou, G., Ting, P. C., Aslanian, R., Cao, J., Kim, D. W., Kuang, R. & Zych, A. J. (2011). Bioorg. Med. Chem. Lett. 21, 2890–2893. CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.