research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 4-(4-methyl­benz­yl)-6-phenyl­pyridazin-3(2H)-one

aLaboratory of Applied Chemistry and Environment (LCAE), Department of Chemistry, Faculty of Sciences, University Mohamed Premier, Oujda 60000, Morocco, bOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Physics, Kurupelit, Samsun, Turkey, cLaboratory of Organic Synthesis, Extraction and Development, Faculty of Sciences, Hassan II University, Casablanca, Morocco, and dLaboratory of Plant Chemistry, Organic and Bioorganic Synthesis, URAC23, Faculty of Science, BP 1014, GEOPAC Research Center, Mohammed V University, Rabat, Morocco
*Correspondence e-mail: saiddaoui26@gmail.com,emineberrin.cinar@omu.edu.tr,necmid@omu.edu.tr

Edited by J. T. Mague, Tulane University, USA (Received 4 July 2019; accepted 17 August 2019; online 23 August 2019)

In this paper, we describe the synthesis of a new di­hydro-2H-pyridazin-3-one derivative. The mol­ecule, C18H16N2O, is not planar; the benzene and pyridazine rings are twisted with respect to each other, making a dihedral angle of 11.47 (2)°, and the toluene ring is nearly perpendicular to the pyridazine ring, with a dihedral angle of 89.624 (1)°. The mol­ecular conformation is stabilized by weak intra­molecular C—H⋯N contacts. In the crystal, pairs of N—H⋯O hydrogen bonds link the mol­ecules into inversion dimers with an R22(8) ring motif. The inter­molecular inter­actions were investigated using Hirshfeld surface analysis and two-dimensional (2D) fingerprint plots, revealing that the most important contributions for the crystal packing are from H⋯H (56.6%), H⋯C/C⋯H (22.6%), O⋯H/H⋯O (10.0%) and N⋯C/C⋯N (3.5%) inter­actions.

1. Chemical context

Pyridazines are an important family of six-membered aromatic heterocycles containing two N atoms. Pyridazinone is an important pharmacophore possessing a wide range of biological applications (Asif, 2014[Asif, M. (2014). Mini Rev. Med. Chem. 14, 1093-1103.]; Akhtar et al., 2016[Akhtar, W., Shaquiquzzaman, M., Akhter, M., Verma, G., Khan, M. F. & Alam, M. M. (2016). Eur. J. Med. Chem. 123, 256-281.]). The chemistry of pyridazinones has been an inter­esting field of study for decades and this nitro­gen heterocycle has become a scaffold of choice for the development of potential drug candidates (Dubey & Bhosle, 2015[Dubey, S. & Bhosle, P. A. (2015). Med. Chem. Res. 24, 3579-3598.]; Thakur et al., 2010[Thakur, A. S., Verma, P. & Chandy, A. (2010). Asian J. Res. Chem. 3, 265-271.]). A review of the literature has revealed that substituted pyridazinones have received a lot of attention in recent years because of their significant potential as anti­microbial (Sönmez et al., 2006[Sönmez, M., Berber, İ. & Akbaş, E. (2006). Eur. J. Med. Chem. 41, 101-105.]), anti­depressant (Boukharsa et al., 2016[Boukharsa, Y., Meddah, B., Tiendrebeogo, R. Y., Ibrahimi, A., Taoufik, J. & Cherrah, Y. (2016). Med. Chem. Res. 25, 494-500.]), anti-inflammatory (Barberot et al., 2018[Barberot, C., Moniot, A., Allart-Simon, I., Malleret, L., Yegorova, T., Laronze-Cochard, M. & SAPI, J. (2018). Eur. J. Med. Chem. 146, 139-146.]), anti­hypertensive (Siddiqui et al., 2011[Siddiqui, A. A., Mishra, R., Shaharyar, M., Husain, A., Rashid, M. & Pal, P. (2011). Bioorg. Med. Chem. Lett. 21, 1023-1026.]), analgesic (Gökçe et al., 2009[Gökçe, M., Utku, S. & Küpeli, E. (2009). Eur. J. Med. Chem. 44, 3760-3764.]), anti-HIV (Livermore et al., 1993[Livermore, D., Bethell, R. C., Cammack, N., Hancock, A. P., Hann, M. M. & Green, D. (1993). J. Med. Chem. 36, 3784-3794.]), anti­convulsant (Partap et al., 2018[Partap, S., Akhtar, M. J., Yar, M. S., Hassan, M. Z. & Siddiqui, A. A. (2018). Bioorg. Chem. 77, 74-83.]; Sharma et al., 2014[Sharma, B., Verma, A., Sharma, U. K. & Prajapati, S. (2014). Med. Chem. Res. 23, 146-157.]), cardiotonic (Wang et al., 2008[Wang, T., Dong, Y., Wang, L.-C., Xiang, B.-R., Chen, Z. & Qu, L.-B. (2008). Arzneimittelforschung, 58, 569-573.]), anti­histaminic (Tao et al., 2012[Tao, M., Aimone, L. D., Gruner, J. A., Mathiasen, J. R., Huang, Z. & Lyons, J. (2012). Bioorg. Med. Chem. Lett. 22, 1073-1077.]), glucan synthase inhibitors (Zhou et al., 2011[Zhou, G., Ting, P. C., Aslanian, R., Cao, J., Kim, D. W., Kuang, R. & Zych, A. J. (2011). Bioorg. Med. Chem. Lett. 21, 2890-2893.]), phospho­diesterase (PDE) inhibitors (Ochiai et al., 2012[Ochiai, K., Takita, S., Eiraku, T., Kojima, A., Iwase, K. & Kishi, T. (2012). Bioorg. Med. Chem. 20, 1644-1658.]) and herbicidal agents (Asif, 2013[Asif, M. (2013). Mini-Rev. Org. Chem. 10, 113-122.]). In continuation of our work in this field (El Kali et al., 2019[El Kali, F., Kansiz, S., Daoui, S., Saddik, R., Dege, N., Karrouchi, K. & Benchat, N. (2019). Acta Cryst. E75, 650-654.]; Chkirate et al., 2019a[Chkirate, K., Kansiz, S., Karrouchi, K., Mague, J. T., Dege, N. & Essassi, E. M. (2019a). Acta Cryst. E75, 154-158.],b[Chkirate, K., Kansiz, S., Karrouchi, K., Mague, J. T., Dege, N. & Essassi, E. M. (2019b). Acta Cryst. E75, 33-37.]; Karrouchi et al., 2015[Karrouchi, K., Ansar, M., Radi, S., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, o890-o891.], 2016a[Karrouchi, K., Radi, S., Ansar, M. H., Taoufik, J., Ghabbour, H. A. & Mabkhot, Y. N. (2016a). Z. Kristallogr. New Cryst. Struct. 231, 883-886.],b[Karrouchi, K., Radi, S., Ansar, M. H., Taoufik, J., Ghabbour, H. A. & Mabkhot, Y. N. (2016b). Z. Kristallogr. New Cryst. Struct. 231, 839-841.]), we report the synthesis and the crystal and mol­ecular structures of the title compound, as well as an analysis of its Hirshfeld surface.

2. Structural commentary

In the title mol­ecule (Fig. 1[link]), the C10=O1 bond length is 1.241 (3) Å while the N1—N2 and C11=N2 bond lengths are 1.347 (3) and 1.311 (4) Å, respectively (Table 1[link]). The C9—C8—C5 bond angle is 113.7 (2)°, while the C4—C5—C8—C9, C6—C5—C8—C9 and C10—C9—C8—C5 torsion angles are 90.0 (3), −87.1 (3) and 169.1 (3)°, respectively. The mol­ecule is not planar as the benzene and pyridazine rings are twisted with respect to each other, making a dihedral angle of 11.469 (2)°. The toluene ring is nearly perpendicular to the pyridazine ring, with a dihedral angle of 89.624 (1)°.

[Scheme 1]

Table 1
Selected geometric parameters (Å, °)

O1—C10 1.241 (3) N1—C10 1.352 (4)
N1—N2 1.347 (3) N2—C11 1.311 (4)
       
O1—C10—N1 120.9 (3) C10—C9—C8 117.5 (2)
O1—C10—C9 123.9 (3) C9—C8—C5 113.7 (2)
       
N1—N2—C11—C13 177.4 (3) C4—C5—C8—C9 90.3 (4)
C10—C9—C8—C5 169.2 (3) C6—C5—C8—C9 −86.8 (4)
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with the atom labelling. Displacement elipsoids are drawn at the 20% probability level.

3. Supra­molecular features

The mol­ecules are connected two-by-two through N1—H1⋯O1 hydrogen bonds (Table 2[link]), with a R22(8) graph-set motif (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]), and form inversion dimers (Fig. 2[link]a). Weak C—H⋯O hydrogen bonds and weak off-set π-stacking stabilize the packing. In the crystal, hydrogen bonds link the chains into a two-dimensional (2D) network parallel to (011) (Fig. 2[link]b and Table 2[link]). The stacking occurs between the pyridazine rings of inversion-related mol­ecules [Cg1⋯Cg3 (at x − 1, y, z)], with a centroid-to-centroid distance of 3.8333 (18) Å and a slippage of 1.460 Å (Cg1 is the centroid of the C9–C11/N1/N2 ring and Cg3 is the centroid of the C13–C18 ring) (Fig. 2[link]a).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 1.98 2.836 (3) 175
C14—H14⋯N2 0.93 2.43 2.764 (3) 101
Symmetry code: (i) -x+2, -y+1, -z+2.
[Figure 2]
Figure 2
(a) A view along the c-axis direction of the title structure. Red dashed lines denote N—H⋯O hydrogen bonds. (b) A view along the a-axis direction of the title compound (Xu et al., 2005[Xu, H., Song, H.-B., Yao, C.-S., Zhu, Y.-Q., Hu, F.-Z., Zou, X.-M. & Yang, H.-Z. (2005). Acta Cryst. E61, o1561-o1563.]).

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.40, update of November 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) using 4-ethyl-6-methyl­pyridazin-3(2H)-one (see A in Scheme[link]) as the main skeleton revealed the presence of two structures containing the pyridazine moiety with different substituents similar to the title compound in this study. The structures are 4-benzyl-6-p-tolyl­pyridazin-3(2H)-one (CSD refcode YOT­VIN; Oubair et al., 2009[Oubair, A., Daran, J.-C., Fihi, R., Majidi, L. & Azrour, M. (2009). Acta Cryst. E65, o1350-o1351.]) and 4-aryl-2,5-dioxo-8-phenyl­pyrido[2,3-d]pyridazines (BARQUG; Pita et al., 2000[Pita, B., Sotelo, E., Suarez, M., Ravina, E., Ochoa, E., Verdecia, Y., Novoa, H., Blaton, N., Ranter, C. & Peeters, O. M. (2000). Tetrahedron, 56, 2473-2479.]). In YOTVIN, the mol­ecules are connected two-by-two through N—H⋯O hydrogen bonds, with an R22(8) graph-set motif, building a pseudo-dimer arranged around the inversion centre. Weak C—H⋯O hydrogen bonds and weak off-set ππ stacking stabilize the packing. In BARQUG, the dihedral angle between the least-squares planes of the substituted phenyl and pyridone rings is 79.78 (2)° and between the pyridazinone ring and the unsubstitued phenyl ring is 57.37 (2)°.

5. Hirshfeld surface (HS) analysis

The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) and the associated 2D fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) were performed with CrystalExplorer17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. http://hirshfeldsurface.net.]). The Hirshfeld surface was calculated using a standard (high) surface resolution with the three-dimensional (3D) dnorm surface plotted over a fixed colour scale of −0.6048 (red) to 1.4188 a.u. (blue). The 3D dnorm surface of the title complex is illustrated in Figs. 3[link](a) and 4[link]. The pale-red spots symbolize short contacts and negative dnorm values on the surface correspond to the N—H⋯O inter­actions (Table 2[link]). The overall 2D fingerprint plot and the 2D fingerprint plots for the H⋯H, H⋯C/C⋯H, H⋯O/O⋯H and N⋯C/C⋯N contacts are shown in Fig. 5[link] (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]), respectively, associated with their relative contributions to the Hirshfeld surface. The largest inter­action is H⋯H, contributing 56.6% to the overall crystal packing. In the fingerprint plot representing H⋯H contacts, the 56.6% contribution to the overall crystal packing, is reflected by widely scattered points of high density due to the large hydrogen content of the mol­ecule. The single spike in the centre at de = di = 0.936 Å in Fig. 5[link](b) is due to short inter­atomic H⋯H contacts. In the absence of C—H⋯π inter­actions in the crystal, the pair of characteristic wings in the fingerprint plot representing H⋯C/C⋯H contacts (22.6% contribution to the HS) have a symmetrical distribution of points (Fig. 5[link]c), with the tips at de + di = 2.797 Å. The O⋯H (Fig. 5[link]d) contacts contribute 10% to the HS and have a symmetrical distribution of points, with the tips at de + di = 1.853 Å. The contribution of the other contact to the Hirshfeld surface is N⋯C/C⋯N (3.5%). The Hirshfeld surface representations with the function dnorm plotted on the surface are shown for the H⋯H, H⋯C/C⋯H, H⋯O/O⋯H, C⋯C and H⋯N/N⋯H inter­actions in Figs. 6[link]. The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯H, H⋯C/C⋯H, H⋯O/O⋯H, C⋯C and H⋯N/N⋯H inter­actions suggest that van der Waals inter­actions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015[Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563-574.]).

[Figure 3]
Figure 3
(a) dnorm mapped on the Hirshfeld surface for visualizing the inter­molecular inter­actions; (b) shape-index map; (c) curvedness map of the title compound.
[Figure 4]
Figure 4
dnorm mapped on the Hirshfeld surface for visualizing the inter­molecular inter­actions and showing the dimer formed by inversion-related N—H⋯O hydrogen bonds.
[Figure 5]
Figure 5
(a) The overall 2D fingerprint plot and (b) H⋯H, (c) C⋯H, (d) O⋯H and (e) N⋯C inter­actions are shown.
[Figure 6]
Figure 6
Hirshfeld surface representation with the function dnorm plotted on the surface for H⋯H, C⋯H, O⋯H and N⋯C inter­actions.

A shape-index map of the title compound was generated in the range −1 to 1 Å (Fig. 3[link]b). The convex blue regions on the shape-index symbolize hydrogen-donor groups and the concave red regions symbolize hydrogen-acceptor groups. The ππ inter­actions on the shape-index map of the Hirshfeld surface are generally indicated by adjacent red and blue triangles.

A curvedness map of the title compound was generated in the range −4 to 0.4 Å (Fig. 3[link]c). This shows large regions of green indicating a relatively flat surface area (planar), while the blue regions indicate areas of curvature. The presence of ππ stacking inter­actions is also evident in the flat regions around the rings on the Hirshfeld surface plotted over curvedness (see the Supra­molecular features section above).

6. Synthesis and crystallization

To a solution (0.15 g, 1 mmol) of 6-phenyl-4,5-di­hydro­pyridazin-3(2H)-one and (0.12 g, 1 mmol) of 4-methyl­benz­aldehyde in ethanol (30 ml), sodium hydroxide (10%, 0.5 g, 3.5 mmol) was added. The solvent was evaporated under vacuum and the residue was purified through silica-gel column chromatography using hexa­ne/ethyl acetate (7:3 v/v). Slow evaporation at room temperature leads to single crystals.

7. Refinement

H atoms were fixed geometrically and treated as riding, with C—H = 0.97 Å and Uiso(H) = 1.5Ueq(C) for methyl, C—H = 0.96 Å and Uiso(H) = 1.2Ueq(C) for methyl­ene, C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic and C—H = 0.98 Å and Uiso(H) = 1.2Ueq(C) for methine H atoms. Crystal data, data collection and structure refinement details are summarized in Table 3[link].

Table 3
Experimental details

Crystal data
Chemical formula C18H16N2O
Mr 276.33
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 5.8479 (5), 8.5738 (7), 15.2439 (12)
α, β, γ (°) 80.693 (6), 83.147 (7), 78.164 (7)
V3) 735.27 (11)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.27 × 0.20 × 0.06
 
Data collection
Diffractometer Stoe IPDS 2
Absorption correction Integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.])
Tmin, Tmax 0.966, 0.996
No. of measured, independent and observed [I > 2σ(I)] reflections 9453, 2887, 1471
Rint 0.086
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.208, 1.05
No. of reflections 2887
No. of parameters 191
No. of restraints 84
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.30, −0.32
Computer programs: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]), X-RED (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]), SHELXT2017 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED (Stoe & Cie, 2002); program(s) used to solve structure: SHELXT2017 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2008) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012), SHELXL2018 (Sheldrick, 2015b), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

4-(4-Methylbenzyl)-6-phenylpyridazin-3(2H)-one top
Crystal data top
C18H16N2OZ = 2
Mr = 276.33F(000) = 292
Triclinic, P1Dx = 1.248 Mg m3
a = 5.8479 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.5738 (7) ÅCell parameters from 8216 reflections
c = 15.2439 (12) Åθ = 2.5–30.7°
α = 80.693 (6)°µ = 0.08 mm1
β = 83.147 (7)°T = 296 K
γ = 78.164 (7)°Prism, colorless
V = 735.27 (11) Å30.27 × 0.20 × 0.06 mm
Data collection top
Stoe IPDS 2
diffractometer
2887 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus1471 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.086
Detector resolution: 6.67 pixels mm-1θmax = 26.0°, θmin = 2.5°
rotation method scansh = 77
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 1010
Tmin = 0.966, Tmax = 0.996l = 1818
9453 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual space
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.208H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0939P)2]
where P = (Fo2 + 2Fc2)/3
2887 reflections(Δ/σ)max < 0.001
191 parametersΔρmax = 0.30 e Å3
84 restraintsΔρmin = 0.32 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.9692 (4)0.6487 (3)0.90252 (15)0.0776 (7)
N10.7762 (4)0.4423 (3)0.94429 (17)0.0653 (7)
H10.8480070.4198600.9921370.078*
N20.6315 (4)0.3435 (3)0.93530 (17)0.0621 (7)
C100.8227 (5)0.5725 (4)0.8874 (2)0.0627 (8)
C130.3636 (6)0.2661 (4)0.8525 (2)0.0728 (8)
C110.5151 (5)0.3799 (4)0.8641 (2)0.0594 (8)
C50.6414 (6)0.7618 (4)0.6536 (2)0.0668 (9)
C90.6964 (5)0.6101 (4)0.8080 (2)0.0630 (8)
C120.5470 (5)0.5134 (4)0.7992 (2)0.0671 (9)
H120.4630500.5352850.7490600.080*
C20.4368 (7)0.7711 (4)0.4949 (2)0.0738 (10)
C180.2108 (6)0.2984 (4)0.7881 (2)0.0750 (8)
H180.2009480.3942240.7488730.090*
C30.3212 (7)0.8506 (5)0.5622 (3)0.0806 (11)
H30.1702920.9091100.5552960.097*
C170.0695 (6)0.1901 (5)0.7802 (3)0.0812 (9)
H170.0342260.2148140.7360290.097*
C80.7452 (7)0.7504 (4)0.7414 (2)0.0793 (11)
H8A0.9136500.7424430.7298720.095*
H8B0.6826220.8486920.7669180.095*
C160.0804 (7)0.0510 (5)0.8351 (3)0.0895 (10)
H160.0164040.0199670.8299420.107*
C40.4200 (7)0.8474 (4)0.6402 (2)0.0770 (10)
H40.3353860.9042400.6844780.092*
C60.7593 (6)0.6817 (5)0.5855 (3)0.0819 (11)
H60.9103920.6231760.5919200.098*
C70.6572 (7)0.6867 (5)0.5077 (3)0.0870 (11)
H70.7410830.6310250.4628850.104*
C10.3250 (8)0.7769 (6)0.4096 (3)0.1041 (14)
H1A0.1644860.8314580.4157490.156*
H1B0.3309860.6692530.3980930.156*
H1C0.4084940.8337100.3608690.156*
C140.3757 (8)0.1221 (5)0.9057 (3)0.1055 (11)
H140.4829670.0942490.9486570.127*
C150.2333 (8)0.0152 (6)0.8979 (3)0.1111 (11)
H150.2433960.0816090.9362900.133*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0901 (16)0.0843 (16)0.0741 (15)0.0425 (13)0.0351 (12)0.0038 (12)
N10.0704 (16)0.0782 (18)0.0577 (16)0.0304 (14)0.0247 (13)0.0051 (14)
N20.0635 (15)0.0736 (18)0.0579 (16)0.0271 (13)0.0179 (12)0.0074 (13)
C100.0695 (19)0.069 (2)0.059 (2)0.0260 (16)0.0192 (15)0.0100 (16)
C130.0799 (18)0.0761 (18)0.0732 (19)0.0356 (16)0.0284 (15)0.0002 (15)
C110.0597 (18)0.066 (2)0.0576 (19)0.0200 (15)0.0160 (15)0.0061 (16)
C50.078 (2)0.0570 (19)0.073 (2)0.0278 (17)0.0288 (18)0.0040 (17)
C90.0674 (19)0.066 (2)0.062 (2)0.0214 (16)0.0219 (15)0.0037 (16)
C120.0689 (19)0.074 (2)0.067 (2)0.0271 (17)0.0306 (16)0.0010 (17)
C20.092 (3)0.077 (2)0.061 (2)0.036 (2)0.0167 (19)0.0020 (18)
C180.0798 (18)0.0817 (18)0.0737 (18)0.0301 (15)0.0258 (15)0.0083 (15)
C30.078 (2)0.086 (3)0.078 (3)0.008 (2)0.028 (2)0.007 (2)
C170.0827 (18)0.093 (2)0.083 (2)0.0327 (16)0.0299 (16)0.0198 (16)
C80.096 (3)0.079 (2)0.075 (2)0.043 (2)0.034 (2)0.0059 (19)
C160.098 (2)0.093 (2)0.095 (2)0.0501 (18)0.0263 (17)0.0138 (17)
C40.087 (3)0.080 (2)0.068 (2)0.012 (2)0.0180 (19)0.0154 (19)
C60.068 (2)0.083 (3)0.095 (3)0.0052 (19)0.020 (2)0.015 (2)
C70.090 (3)0.102 (3)0.073 (3)0.017 (2)0.006 (2)0.026 (2)
C10.132 (4)0.117 (3)0.077 (3)0.044 (3)0.038 (2)0.006 (2)
C140.121 (2)0.101 (2)0.110 (2)0.0590 (19)0.0567 (19)0.0217 (18)
C150.128 (2)0.102 (2)0.119 (2)0.0644 (19)0.0481 (19)0.0192 (19)
Geometric parameters (Å, º) top
O1—C101.241 (3)C18—H180.9300
N1—N21.347 (3)C3—C41.378 (5)
N1—C101.352 (4)C3—H30.9300
N1—H10.8600C17—C161.336 (5)
N2—C111.311 (4)C17—H170.9300
C10—C91.449 (4)C8—H8A0.9700
C13—C141.357 (5)C8—H8B0.9700
C13—C181.364 (4)C16—C151.344 (6)
C13—C111.488 (4)C16—H160.9300
C11—C121.415 (4)C4—H40.9300
C5—C41.372 (5)C6—C71.381 (5)
C5—C61.375 (5)C6—H60.9300
C5—C81.515 (4)C7—H70.9300
C9—C121.353 (4)C1—H1A0.9600
C9—C81.496 (4)C1—H1B0.9600
C12—H120.9300C1—H1C0.9600
C2—C31.359 (5)C14—C151.386 (5)
C2—C71.361 (5)C14—H140.9300
C2—C11.512 (5)C15—H150.9300
C18—C171.391 (4)
N2—N1—C10128.0 (2)C16—C17—H17119.5
N2—N1—H1116.0C18—C17—H17119.5
C10—N1—H1116.0C9—C8—C5113.7 (2)
C11—N2—N1116.5 (3)C9—C8—H8A108.8
O1—C10—N1120.9 (3)C5—C8—H8A108.8
O1—C10—C9123.9 (3)C9—C8—H8B108.8
N1—C10—C9115.1 (2)C5—C8—H8B108.8
C14—C13—C18116.8 (3)H8A—C8—H8B107.7
C14—C13—C11120.7 (3)C17—C16—C15119.1 (3)
C18—C13—C11122.5 (3)C17—C16—H16120.5
N2—C11—C12121.3 (3)C15—C16—H16120.5
N2—C11—C13116.2 (3)C5—C4—C3121.0 (4)
C12—C11—C13122.4 (3)C5—C4—H4119.5
C4—C5—C6117.0 (3)C3—C4—H4119.5
C4—C5—C8121.1 (4)C5—C6—C7121.1 (4)
C6—C5—C8121.9 (3)C5—C6—H6119.4
C12—C9—C10117.4 (3)C7—C6—H6119.4
C12—C9—C8125.0 (3)C2—C7—C6121.7 (4)
C10—C9—C8117.5 (2)C2—C7—H7119.1
C9—C12—C11121.7 (3)C6—C7—H7119.1
C9—C12—H12119.1C2—C1—H1A109.5
C11—C12—H12119.1C2—C1—H1B109.5
C3—C2—C7117.0 (3)H1A—C1—H1B109.5
C3—C2—C1121.2 (4)C2—C1—H1C109.5
C7—C2—C1121.8 (4)H1A—C1—H1C109.5
C13—C18—C17120.9 (4)H1B—C1—H1C109.5
C13—C18—H18119.6C13—C14—C15122.0 (4)
C17—C18—H18119.6C13—C14—H14119.0
C2—C3—C4122.2 (4)C15—C14—H14119.0
C2—C3—H3118.9C16—C15—C14120.1 (4)
C4—C3—H3118.9C16—C15—H15119.9
C16—C17—C18121.0 (3)C14—C15—H15119.9
C10—N1—N2—C112.3 (5)C1—C2—C3—C4179.7 (4)
N2—N1—C10—O1176.7 (3)C13—C18—C17—C160.4 (6)
N2—N1—C10—C91.2 (5)C12—C9—C8—C59.4 (6)
N1—N2—C11—C121.9 (5)C10—C9—C8—C5169.2 (3)
N1—N2—C11—C13177.4 (3)C4—C5—C8—C990.3 (4)
C14—C13—C11—N29.6 (5)C6—C5—C8—C986.8 (4)
C18—C13—C11—N2171.6 (3)C18—C17—C16—C151.0 (7)
C14—C13—C11—C12165.7 (4)C6—C5—C4—C30.7 (5)
C18—C13—C11—C1213.0 (5)C8—C5—C4—C3176.5 (3)
O1—C10—C9—C12178.0 (3)C2—C3—C4—C50.5 (6)
N1—C10—C9—C120.2 (5)C4—C5—C6—C70.6 (5)
O1—C10—C9—C80.7 (5)C8—C5—C6—C7176.6 (3)
N1—C10—C9—C8178.5 (3)C3—C2—C7—C60.0 (6)
C10—C9—C12—C110.4 (5)C1—C2—C7—C6179.9 (4)
C8—C9—C12—C11178.2 (3)C5—C6—C7—C20.2 (6)
N2—C11—C12—C90.7 (5)C18—C13—C14—C152.7 (7)
C13—C11—C12—C9175.9 (3)C11—C13—C14—C15178.5 (4)
C14—C13—C18—C172.2 (6)C17—C16—C15—C140.5 (7)
C11—C13—C18—C17179.0 (3)C13—C14—C15—C161.4 (8)
C7—C2—C3—C40.1 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.861.982.836 (3)175
C14—H14···N20.932.432.764 (3)101
Symmetry code: (i) x+2, y+1, z+2.
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund).

References

First citationAkhtar, W., Shaquiquzzaman, M., Akhter, M., Verma, G., Khan, M. F. & Alam, M. M. (2016). Eur. J. Med. Chem. 123, 256–281.  Web of Science CrossRef CAS PubMed Google Scholar
First citationAsif, M. (2013). Mini-Rev. Org. Chem. 10, 113–122.  Web of Science CrossRef CAS Google Scholar
First citationAsif, M. (2014). Mini Rev. Med. Chem. 14, 1093–1103.  CrossRef CAS Google Scholar
First citationBarberot, C., Moniot, A., Allart-Simon, I., Malleret, L., Yegorova, T., Laronze-Cochard, M. & SAPI, J. (2018). Eur. J. Med. Chem. 146, 139–146.  CrossRef CAS PubMed Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBoukharsa, Y., Meddah, B., Tiendrebeogo, R. Y., Ibrahimi, A., Taoufik, J. & Cherrah, Y. (2016). Med. Chem. Res. 25, 494–500.  CrossRef CAS Google Scholar
First citationChkirate, K., Kansiz, S., Karrouchi, K., Mague, J. T., Dege, N. & Essassi, E. M. (2019a). Acta Cryst. E75, 154–158.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChkirate, K., Kansiz, S., Karrouchi, K., Mague, J. T., Dege, N. & Essassi, E. M. (2019b). Acta Cryst. E75, 33–37.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDubey, S. & Bhosle, P. A. (2015). Med. Chem. Res. 24, 3579–3598.  Web of Science CrossRef CAS Google Scholar
First citationEl Kali, F., Kansiz, S., Daoui, S., Saddik, R., Dege, N., Karrouchi, K. & Benchat, N. (2019). Acta Cryst. E75, 650–654.  CSD CrossRef IUCr Journals Google Scholar
First citationGökçe, M., Utku, S. & Küpeli, E. (2009). Eur. J. Med. Chem. 44, 3760–3764.  Web of Science PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationKarrouchi, K., Ansar, M., Radi, S., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, o890–o891.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKarrouchi, K., Radi, S., Ansar, M. H., Taoufik, J., Ghabbour, H. A. & Mabkhot, Y. N. (2016a). Z. Kristallogr. New Cryst. Struct. 231, 883–886.  CAS Google Scholar
First citationKarrouchi, K., Radi, S., Ansar, M. H., Taoufik, J., Ghabbour, H. A. & Mabkhot, Y. N. (2016b). Z. Kristallogr. New Cryst. Struct. 231, 839–841.  CAS Google Scholar
First citationLivermore, D., Bethell, R. C., Cammack, N., Hancock, A. P., Hann, M. M. & Green, D. (1993). J. Med. Chem. 36, 3784–3794.  CSD CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationOchiai, K., Takita, S., Eiraku, T., Kojima, A., Iwase, K. & Kishi, T. (2012). Bioorg. Med. Chem. 20, 1644–1658.  CrossRef CAS PubMed Google Scholar
First citationOubair, A., Daran, J.-C., Fihi, R., Majidi, L. & Azrour, M. (2009). Acta Cryst. E65, o1350–o1351.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPartap, S., Akhtar, M. J., Yar, M. S., Hassan, M. Z. & Siddiqui, A. A. (2018). Bioorg. Chem. 77, 74–83.  Web of Science CrossRef CAS PubMed Google Scholar
First citationPita, B., Sotelo, E., Suarez, M., Ravina, E., Ochoa, E., Verdecia, Y., Novoa, H., Blaton, N., Ranter, C. & Peeters, O. M. (2000). Tetrahedron, 56, 2473–2479.  CSD CrossRef CAS Google Scholar
First citationSharma, B., Verma, A., Sharma, U. K. & Prajapati, S. (2014). Med. Chem. Res. 23, 146–157.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSiddiqui, A. A., Mishra, R., Shaharyar, M., Husain, A., Rashid, M. & Pal, P. (2011). Bioorg. Med. Chem. Lett. 21, 1023–1026.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSönmez, M., Berber, İ. & Akbaş, E. (2006). Eur. J. Med. Chem. 41, 101–105.  PubMed Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationTao, M., Aimone, L. D., Gruner, J. A., Mathiasen, J. R., Huang, Z. & Lyons, J. (2012). Bioorg. Med. Chem. Lett. 22, 1073–1077.  CrossRef CAS PubMed Google Scholar
First citationThakur, A. S., Verma, P. & Chandy, A. (2010). Asian J. Res. Chem. 3, 265–271.  Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. http://hirshfeldsurface.netGoogle Scholar
First citationWang, T., Dong, Y., Wang, L.-C., Xiang, B.-R., Chen, Z. & Qu, L.-B. (2008). Arzneimittelforschung, 58, 569–573.  Web of Science PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, H., Song, H.-B., Yao, C.-S., Zhu, Y.-Q., Hu, F.-Z., Zou, X.-M. & Yang, H.-Z. (2005). Acta Cryst. E61, o1561–o1563.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhou, G., Ting, P. C., Aslanian, R., Cao, J., Kim, D. W., Kuang, R. & Zych, A. J. (2011). Bioorg. Med. Chem. Lett. 21, 2890–2893.  CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds