research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and redetermination of the crystal structure of salicyl­aldehyde N(4)-morpholino­thio­semi­carbazone

CROSSMARK_Color_square_no_text.svg

aFaculty of Chemistry, Ho Chi Minh City University of Education, 280 An Duong Vuong Street, District No. 5, Ho Chi Minh City, Vietnam, bVietnam National University, Ho Chi Minh City High School for the Gifted, 153 Nguyen Chi Thanh, District 5, Ho Chi Minh City, Vietnam, cFaculty of Chemistry, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi, Vietnam, dPublishing House for Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam, and eDepartment of Chemistry, KU Leuven, Biomolecular Architecture, Celestijnenlaan 200F, Leuven (Heverlee), B-3001, Belgium
*Correspondence e-mail: trungvq@hnue.edu.vn, luc.vanmeervelt@kuleuven.be

Edited by J. T. Mague, Tulane University, USA (Received 5 August 2019; accepted 27 August 2019; online 30 August 2019)

The structure of the title compound (systematic name: N-{[(2-hy­droxy­phen­yl)methyl­idene]amino}­morpholine-4-carbo­thio­amide), C12H15N3O2S, was prev­iously determined (Koo et al., 1977[Koo, C. H., Kim, H. S. & Ahn, C. H. (1977). J. Korean Chem. Soc. 21, 3-15.]) using multiple-film equi-inclination Weissenberg data, but has been redetermined with higher precision to explore its conformation and the hydrogen-bonding patterns and supra­molecular inter­actions. The mol­ecular structure shows intra­molecular O—H⋯N and C—H⋯S inter­actions. The configuration of the C=N bond is E. The mol­ecule is slightly twisted about the central N—N bond. The best planes through the phenyl ring and the morpholino ring make an angle of 43.44 (17)°. In the crystal, the mol­ecules are connected into chains by N—H⋯O and C—H⋯O hydrogen bonds, which combine to generate sheets lying parallel to (002). The most prominent contribution to the surface contacts are H⋯H contacts (51.6%), as concluded from a Hirshfeld surface analysis.

1. Chemical context

For many years, scientific studies on cancer have attracted a lot of attention, especially in the field of anti­tumor drugs. Cisplatin is well known as an effective therapy to prohibit the proliferation of tumor cells (Berners-Price, 2011[Berners-Price, S. J. (2011). Angew. Chem. Int. Ed. 50, 804-805.]). However, this drug has some unforeseen side effects with detrimental effects on the patient's health (Lévi et al., 2000[Lévi, F., Metzger, G., Massari, C. & Milano, G. (2000). Clin. Pharmacokinet. 38, 1-21.]; Go & Adjei, 1999[Go, R. S. & Adjei, A. A. (1999). J. Clin. Oncol. 17, 409-422.]; Harbour et al., 1996[Harbour, J. W., Murray, T. G., Hamasaki, D., Cicciarelli, N., Hernández, E., Smith, B., Windle, J. & O'Brien, J. M. (1996). Invest. Ophthalmol. Vis. Sci. 37, 1892-1898.]). In a search for anti­tumour drugs with fewer harmful side effects, thio­semicarbazides were examined since this organic class of thio­urea derivatives was known to possess a diversity of biological activities such as anti­tumoral, anti­bacterial, and anti­fungal activities owing to presence of the N—N—C=S system (Dilović et al., 2008[Dilović, I., Rubcić, M., Vrdoljak, V., Kraljević Pavelić, S., Kralj, M., Piantanida, I. & Cindrić, M. (2008). Bioorg. Med. Chem. 16, 5189-5198.]; Liberta & West, 1992[Liberta, A. E. & West, D. X. (1992). Biometals, 5, 121-126.]). Many mechanisms have been advanced to probe the role of this conjugated system. In general, thio­semicarbazones can bind to nucleotides of tumour cells by the nitro­gen and sulfur atoms, which prevents the distorted DNA from translation and encryption for their growth (Dilović et al., 2008[Dilović, I., Rubcić, M., Vrdoljak, V., Kraljević Pavelić, S., Kralj, M., Piantanida, I. & Cindrić, M. (2008). Bioorg. Med. Chem. 16, 5189-5198.]).

Thio­semicarbazones are synthesized by the condensation between an aldehyde or ketone and an N(4)-substituted thio­semicarbazide. Many reports have demonstrated that N(4)-aromatic or heterocyclic substituted thio­semicarbazides are biologically more active than thio­semicarbazones without substituted groups (Dilović et al., 2008[Dilović, I., Rubcić, M., Vrdoljak, V., Kraljević Pavelić, S., Kralj, M., Piantanida, I. & Cindrić, M. (2008). Bioorg. Med. Chem. 16, 5189-5198.]; Chen et al., 2004[Chen, J., Huang, Y. W., Liu, G., Afrasiabi, Z., Sinn, E., Padhye, S. & Ma, Y. (2004). Toxicol. Appl. Pharmacol. 197, 40-48.]; Shi et al., 2009[Shi, L., Mao, W. J., Yang, Y. & Zhu, H. L. (2009). J. Coord. Chem. 62, 3471-3477.]). In addition, salicyl­aldehyde is a key compound in the synthesis of a variety of potential therapeutic products (Bindu et al., 1998[Bindu, P., Kurup, M. R. P. & Satyakeerty, T. R. (1998). Polyhedron, 18, 321-331.]).

[Scheme 1]

The crystal and mol­ecular structure of salicyl­aldehyde N(4)-morpholino­thio­semicarbazone was published previously (Koo et al., 1977[Koo, C. H., Kim, H. S. & Ahn, C. H. (1977). J. Korean Chem. Soc. 21, 3-15.]) based on multiple-film equi-inclination Weissenberg data using Cu Kα radiation and refined to an R value of 0.11. In this study, we present the synthesis of salicyl­aldehyde N(4)-morpholino­thio­semicarbazone (3) together with its structural characteristics and crystal structure redetermination using present-day technology.

2. Structural commentary

The title compound crystallizes in the ortho­rhom­bic space group Pna21 with one mol­ecule in the asymmetric unit (Fig. 1[link]). The N9—N10 and C11=N10 bond lengths are 1.371 (3) and 1.275 (3) Å, respectively (compared to 1.40 and 1.30 Å in the previous structure determination; Koo et al., 1977[Koo, C. H., Kim, H. S. & Ahn, C. H. (1977). J. Korean Chem. Soc. 21, 3-15.]). The configuration of the C11=N10 bond is E [the N9—N10—C11—C12 torsion angle is −179.9 (3)°], which gives rise to an intra­molecular O18—H18⋯N10 hydrogen bond with an S11(6) graph-set motif (Table 1[link]). The planes of the phenyl ring (r.m.s. deviation = 0.0020 Å) and the thio­semicarbazone function (N1/C7–C11; r.m.s. deviation = 0.0911 Å) make an angle of 16.26 (5)°. The mol­ecule is slightly twisted about the N9—N10 bond [torsion angle C7—N9—N10—C11 is 162.4 (3)°; +ap conformation].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N9—H9⋯O4i 0.86 (3) 2.33 (3) 3.141 (3) 157 (3)
O18—H18⋯N10 0.80 (4) 1.91 (5) 2.597 (3) 145 (4)
C6—H6A⋯S8 0.97 2.62 3.121 (3) 112
C15—H15⋯O18ii 0.93 2.48 3.404 (4) 176
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z]; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z].
[Figure 1]
Figure 1
A view of the mol­ecular structure of (3), with atom labels and displacement ellipsoids drawn at the 50% probability level. H atoms are shown as small circles of arbitrary radii and the intra­molecular O—H⋯N and C—H⋯S inter­actions, respectively, by blue and grey dashed lines.

The morpholino ring adopts a chair conformation [puckering parameters Q = 0.554 (3) Å, θ = 173.2 (3)° and φ = 214 (3)°] with the thio­semicarbazone function in an equatorial position. The plane of the phenyl ring forms a dihedral angle of 43.44 (17)° with the best plane through the morpholino ring. A second intra­molecular C6—H6A⋯S8 inter­action is observed (Table 1[link]).

3. Supra­molecular features

The crystal packing of (3) is dominated by N9—H9⋯O4 hydrogen bonds (Table 1[link]), resulting in the formation of chains of mol­ecules with graph-set motif C11(7) propagating along the a-axis direction (Fig. 2[link]). Furthermore, a second parallel chain of mol­ecules with graph-set motif C11(5) running along the a-axis direction is formed by C15—H15⋯O18 inter­actions (Fig. 3[link]). These two chain motifs combine to generate a sheet lying parallel to (002). No voids or ππ stackings are observed in the crystal packing of (3).

[Figure 2]
Figure 2
Partial crystal packing of (3), showing the N—H⋯O inter­actions (red dashed lines) resulting in chain formation in the a-axis direction [see Table 1[link]; symmetry code: (i) x + [{1\over 2}], −y + [{1\over 2}], z].
[Figure 3]
Figure 3
Partial crystal packing of (3), showing the C—H⋯O inter­actions (red dashed lines) resulting in chain formation in the a-direction [see Table 1[link]; symmetry code: (ii) x + [{1\over 2}], −y + [{3\over 2}], z].

A Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814-3816.]) were performed in order to further investigate the supra­molecular network. The Hirshfeld surface calculated using CrystalExplorer (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net]) and mapped over dnorm is given in Fig. 4[link]. The bright-red spots near atoms O4 and N9 in Fig. 4[link]a refer to the N9—H9⋯O4 hydrogen bond, and near atoms C15 and O18 in Fig. 4[link]b to the C15—H15⋯O18 hydrogen bond. The faint-red spots near atoms C5 and S8 illustrate a short contact in the crystal packing of (3) (H5B⋯S8 = 2.913 Å). The fingerprint plots (Fig. 5[link]) further indicate a major contribution by H⋯H contacts, corresponding to 51.6% of the two-dimensional fingerprint plot (Fig. 5[link]b). Significant contributions by reciprocal O⋯H/H⋯O (13.4%) and S⋯H/H⋯S (12.5%) contacts appear as two symmetrical spikes at de + di ≃ 2.2 and 2.8 Å, respectively (Fig. 5[link]c,d). Smaller contributions are from C⋯H/H⋯C (11.7%, Fig. 5[link]e), N⋯C/C⋯N (5.3%, Fig. 5[link]f), C⋯C (3.2%), N⋯H/H⋯N (1.6%), C⋯O/O⋯C (0.3%), C⋯S/S⋯C (0.3%) and O⋯O contacts (0.1%).

[Figure 4]
Figure 4
The Hirshfeld surface mapped over dnorm for (3) in the range −0.3153 to 1.2662 a.u.
[Figure 5]
Figure 5
Full two-dimensional fingerprint plots for (3), showing (a) all inter­actions, and delineated into (b) H⋯H, (c) O⋯H/H⋯O, (d) S⋯H/H⋯S, (e) C⋯H/H⋯C and (f) N⋯C/C⋯N inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from a given point on the Hirshfeld surface.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.40, update of May 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the central N—C(=S)—NH—N=C moiety (Fig. 6[link]a) present in the title compound gave 583 hits. Fig. 6[link]b,c illustrate the histograms of the distribution of torsion angles τ1 and τ2. The histogram of τ1 shows a major preference for the −sp/+sp (or cis) conformation and a minor preference for the −ap/+ap (or trans) conformation. For torsion angle τ2, only one region is preferred: a narrow spread in the region −ap/+ap (or trans). For (3), the torsion angles τ1 and τ2 are both in the +ap region [τ1 = 173.8 (3) and τ2 = 162.4 (3)°].

[Figure 6]
Figure 6
(a) Fragment used for a search in the CSD. (b),(c) Histograms of torsion angles τ1 and τ2. The vertical pink lines show the torsion angle observed in (3).

The most similar compound present in the CSD is the 2-hy­droxy­naphthaldehyde-based thio­semicarbazone (refcode IDEQAM; Aneesrahman et al., 2018[Aneesrahman, K. N., Rohini, G., Bhuvanesh, N. S. P., Sundararaj, S., Musthafa, M. & Sreekanth, A. (2018). ChemistrySelect 3, 8118-8130.]). The asymmetric unit contains two mol­ecules (one morpholino ring shows disorder). The mean plane of the non-disordered morpholino ring makes an angle of 36.9 (7)° with the naphthalene ring system. The torsion angles τ1 [175.89 (15) and −175.97 (15)°] and τ2 [166.51 (16) and −174.99 (16)°] are similar to those observed for the title compound. An intra­molecular hydrogen bond similar to O18—H18⋯N10 is also observed.

5. Synthesis and crystallization

The reaction scheme for the synthesis of (3) is given in Fig. 7[link].

[Figure 7]
Figure 7
Reaction scheme for the synthesis of (3).

Synthesis of 2-((morpholine-4-carbono­thio­yl)thio)­acetic acid (1):

A mixture consisting of carbon di­sulfide (0.2 mol) and concentrated ammonia (25 mL) was stirred to form a homogeneous solution at 278 K. Then, morpholine (0.2 mol) was added dropwise to this solution. The yellow solid that separated from the solution was filtered off and immediately dissolved in deionized water (300 mL) at room temperature to generate a yellow solution. Sodium chloro­acetate (0.2 mol) was added to this solution and the reaction mixture maintained for 6 h at room temperature. The yellowish solution was acidified with concentrated hydro­chloric acid and the resulting white precipitate was filtered off and recrystallized from ethanol.

Synthesis of N(4)-morpholino­thio­semicarbazide (2):

A mixture composed of (1) (50 mmol), deionized water (10 mL) and hydrazine hydrate (25 mL) was refluxed for 30 minutes at 353 K. The white solid which precipitated from the transparent solution was filtered off and recrystallized from ethanol to give (2).

Synthesis of salicyl­aldehyde N(4)-morpholino­thio­semicarbazone (3):

After dissolving (2) in hot ethanol, the solution was added to an equivalent amount of salicyl­aldehyde. The final solution was refluxed at 353 K for 2 h in the presence of acetic acid as a catalyst. The resulting solution was gradually reduced in volume at room temperature overnight. The needle-shaped crystals that formed were filtered off and recrystallized from ethanol to give (3) in the form of transparent crystals (yield 60%), m.p. 461–463 K. FT–IR (cm−1): 3436 (O—H), 3279 (N—H), 1617 (CAr—H), 1540 (C=N), 1061 (N—N), 1348 and 959 (C=S). 1H NMR [Bruker 500 MHz, d6-DMSO, δ (ppm), J (Hz)]: 3.67 (4H, t, H2 and H6); 3.92 (4H, t, H3 and H5); 6.90 (2H, m, H14 and H16); 7.28 (1H, m, J = 7.5, H15); 7.41 (1H, d, J = 7.0, H17); 8.47 (1H, s, H11); 11.49 (1H, br, N—H); 11.55 (1H, br, O—H). 13C NMR [Bruker 125 MHz, d6-DMSO, δ (ppm)]: 49.4 (C2 and C6), 66.2 (C3 and C5), 117.0 (C14), 118.9 (C12), 119.5 (C16), 130.4 (C17), 131.3 (C15), 146.9 (C13), 157.6 (C11), 180.1 (C7). UV–Vis (ethanol, nm): 200 (ππ*); 300 and 350 (n→π*).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Both H atoms H9 and H18 were located from difference electron density maps and refined freely. The other H atoms were placed in idealized positions and included as riding contributions with Uiso(H) values 1.2Ueq of the parent atoms, with C—H distances of 0.93 (aromatic, CH=N) and 0.97 Å (CH2). In the final cycles of refinement, 4 outliers were omitted.

Table 2
Experimental details

Crystal data
Chemical formula C12H15N3O2S
Mr 265.33
Crystal system, space group Orthorhombic, Pna21
Temperature (K) 293
a, b, c (Å) 11.7579 (4), 15.0584 (5), 7.1103 (3)
V3) 1258.92 (8)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.26
Crystal size (mm) 0.5 × 0.2 × 0.1
 
Data collection
Diffractometer Rigaku Oxford Diffraction SuperNova, Single source at offset/far, Eos
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, UK.])
Tmin, Tmax 0.483, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 12278, 2565, 2314
Rint 0.025
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.087, 1.07
No. of reflections 2565
No. of parameters 171
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.17, −0.17
Absolute structure Flack x determined using 938 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.02 (3)
Computer programs: CrysAlis PRO (Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, UK.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2018); cell refinement: CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

N-{[(2-Hydroxyphenyl)methylidene]amino}morpholine-4-carbothioamide top
Crystal data top
C12H15N3O2SDx = 1.400 Mg m3
Mr = 265.33Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21Cell parameters from 5842 reflections
a = 11.7579 (4) Åθ = 3.2–27.3°
b = 15.0584 (5) ŵ = 0.26 mm1
c = 7.1103 (3) ÅT = 293 K
V = 1258.92 (8) Å3Block, colourless
Z = 40.5 × 0.2 × 0.1 mm
F(000) = 560
Data collection top
Rigaku Oxford Diffraction SuperNova, Single source at offset/far, Eos
diffractometer
2565 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Mo) X-ray Source2314 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.025
Detector resolution: 15.9631 pixels mm-1θmax = 26.4°, θmin = 2.7°
ω scansh = 1414
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2018)
k = 1818
Tmin = 0.483, Tmax = 1.000l = 88
12278 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.087 w = 1/[σ2(Fo2) + (0.0434P)2 + 0.1653P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2565 reflectionsΔρmax = 0.17 e Å3
171 parametersΔρmin = 0.17 e Å3
1 restraintAbsolute structure: Flack x determined using 938 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: dual spaceAbsolute structure parameter: 0.02 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.12956 (17)0.37994 (13)0.5311 (5)0.0441 (5)
C20.1602 (2)0.28850 (18)0.4815 (5)0.0438 (7)
H2A0.1749110.2543900.5946720.053*
H2B0.2286210.2882740.4051920.053*
C30.0625 (3)0.2474 (2)0.3728 (5)0.0552 (8)
H3A0.0509610.2803510.2571360.066*
H3B0.0818330.1867950.3397470.066*
O40.04027 (17)0.24774 (14)0.4794 (3)0.0545 (6)
C50.0710 (2)0.3379 (2)0.5178 (7)0.0615 (9)
H5A0.1414360.3387280.5888790.074*
H5B0.0844190.3685310.3998140.074*
C60.0177 (3)0.3860 (2)0.6249 (6)0.0597 (9)
H6A0.0038730.4479340.6369010.072*
H6B0.0232180.3610890.7503980.072*
C70.2028 (2)0.44909 (15)0.5299 (5)0.0388 (6)
S80.16206 (6)0.55578 (4)0.54532 (17)0.0552 (2)
N90.31482 (18)0.42656 (14)0.5168 (4)0.0406 (6)
H90.337 (2)0.3724 (19)0.521 (6)0.044 (8)*
N100.39379 (18)0.49289 (14)0.4965 (3)0.0384 (6)
C110.4978 (2)0.47549 (15)0.5317 (5)0.0366 (5)
H110.5190300.4188140.5699940.044*
C120.5829 (2)0.54502 (15)0.5115 (4)0.0353 (6)
C130.5532 (2)0.63316 (17)0.4666 (4)0.0394 (6)
C140.6374 (3)0.69733 (19)0.4546 (5)0.0512 (8)
H140.6178150.7556280.4260000.061*
C150.7497 (3)0.6758 (2)0.4845 (4)0.0542 (8)
H150.8050970.7196080.4755210.065*
C160.7811 (2)0.5896 (2)0.5277 (6)0.0537 (7)
H160.8570370.5751380.5474030.064*
C170.6977 (2)0.52566 (18)0.5408 (6)0.0466 (6)
H170.7184950.4677200.5702420.056*
O180.44378 (18)0.65822 (14)0.4336 (4)0.0513 (6)
H180.402 (3)0.617 (3)0.446 (6)0.073 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0326 (10)0.0409 (10)0.0590 (14)0.0031 (9)0.0038 (14)0.0046 (15)
C20.0354 (13)0.0407 (13)0.0551 (19)0.0024 (11)0.0056 (13)0.0046 (13)
C30.0576 (18)0.0553 (18)0.0528 (19)0.0181 (15)0.0075 (16)0.0038 (15)
O40.0436 (11)0.0530 (11)0.0670 (16)0.0148 (9)0.0020 (11)0.0020 (11)
C50.0376 (14)0.0584 (17)0.088 (3)0.0044 (13)0.0064 (19)0.014 (2)
C60.0370 (16)0.0545 (17)0.088 (3)0.0016 (14)0.0139 (17)0.0090 (18)
C70.0360 (12)0.0418 (12)0.0387 (14)0.0009 (10)0.0011 (15)0.0015 (15)
S80.0481 (4)0.0396 (3)0.0780 (6)0.0056 (3)0.0010 (5)0.0010 (5)
N90.0333 (11)0.0329 (10)0.0556 (16)0.0031 (8)0.0009 (12)0.0040 (12)
N100.0336 (11)0.0359 (10)0.0458 (15)0.0050 (9)0.0004 (10)0.0032 (10)
C110.0388 (13)0.0329 (10)0.0380 (13)0.0003 (9)0.0010 (14)0.0021 (14)
C120.0353 (12)0.0354 (11)0.0353 (16)0.0029 (9)0.0002 (12)0.0007 (12)
C130.0418 (14)0.0356 (12)0.0408 (15)0.0001 (11)0.0026 (12)0.0019 (12)
C140.0605 (19)0.0351 (13)0.0581 (19)0.0111 (13)0.0005 (16)0.0001 (14)
C150.0534 (17)0.0585 (17)0.0507 (19)0.0249 (15)0.0003 (15)0.0007 (15)
C160.0363 (14)0.0681 (17)0.0567 (18)0.0104 (13)0.0022 (17)0.0016 (19)
C170.0389 (14)0.0465 (13)0.0545 (16)0.0001 (11)0.0039 (18)0.0019 (18)
O180.0448 (11)0.0349 (10)0.0744 (15)0.0042 (9)0.0019 (11)0.0049 (10)
Geometric parameters (Å, º) top
N1—C21.466 (3)N9—H90.86 (3)
N1—C61.478 (4)N9—N101.371 (3)
N1—C71.351 (3)N10—C111.275 (3)
C2—H2A0.9700C11—H110.9300
C2—H2B0.9700C11—C121.456 (3)
C2—C31.516 (4)C12—C131.409 (3)
C3—H3A0.9700C12—C171.396 (4)
C3—H3B0.9700C13—C141.386 (4)
C3—O41.426 (3)C13—O181.361 (3)
O4—C51.432 (4)C14—H140.9300
C5—H5A0.9700C14—C151.376 (4)
C5—H5B0.9700C15—H150.9300
C5—C61.481 (5)C15—C161.383 (4)
C6—H6A0.9700C16—H160.9300
C6—H6B0.9700C16—C171.377 (4)
C7—S81.680 (2)C17—H170.9300
C7—N91.364 (3)O18—H180.80 (4)
C2—N1—C6112.7 (2)N1—C7—N9115.1 (2)
C7—N1—C2124.4 (2)N9—C7—S8121.17 (18)
C7—N1—C6121.5 (2)C7—N9—H9121.8 (18)
N1—C2—H2A110.0C7—N9—N10118.7 (2)
N1—C2—H2B110.0N10—N9—H9119.5 (18)
N1—C2—C3108.6 (2)C11—N10—N9118.6 (2)
H2A—C2—H2B108.4N10—C11—H11120.3
C3—C2—H2A110.0N10—C11—C12119.5 (2)
C3—C2—H2B110.0C12—C11—H11120.3
C2—C3—H3A109.3C13—C12—C11121.9 (2)
C2—C3—H3B109.3C17—C12—C11120.0 (2)
H3A—C3—H3B107.9C17—C12—C13118.1 (2)
O4—C3—C2111.7 (3)C14—C13—C12119.5 (3)
O4—C3—H3A109.3O18—C13—C12122.3 (2)
O4—C3—H3B109.3O18—C13—C14118.1 (3)
C3—O4—C5108.6 (2)C13—C14—H14119.6
O4—C5—H5A109.1C15—C14—C13120.7 (3)
O4—C5—H5B109.1C15—C14—H14119.6
O4—C5—C6112.6 (2)C14—C15—H15119.6
H5A—C5—H5B107.8C14—C15—C16120.8 (3)
C6—C5—H5A109.1C16—C15—H15119.6
C6—C5—H5B109.1C15—C16—H16120.6
N1—C6—C5111.4 (3)C17—C16—C15118.7 (3)
N1—C6—H6A109.4C17—C16—H16120.6
N1—C6—H6B109.4C12—C17—H17118.9
C5—C6—H6A109.4C16—C17—C12122.1 (3)
C5—C6—H6B109.4C16—C17—H17118.9
H6A—C6—H6B108.0C13—O18—H18110 (3)
N1—C7—S8123.73 (19)
N1—C2—C3—O458.7 (4)N9—N10—C11—C12179.9 (3)
N1—C7—N9—N10173.8 (3)N10—C11—C12—C134.5 (5)
C2—N1—C6—C550.2 (4)N10—C11—C12—C17176.9 (3)
C2—N1—C7—S8167.6 (3)C11—C12—C13—C14178.1 (3)
C2—N1—C7—N913.0 (5)C11—C12—C13—O182.1 (4)
C2—C3—O4—C562.2 (4)C11—C12—C17—C16178.5 (4)
C3—O4—C5—C659.5 (4)C12—C13—C14—C150.6 (5)
O4—C5—C6—N153.7 (4)C13—C12—C17—C160.2 (5)
C6—N1—C2—C351.7 (4)C13—C14—C15—C160.2 (5)
C6—N1—C7—S827.0 (5)C14—C15—C16—C170.2 (5)
C6—N1—C7—N9152.5 (3)C15—C16—C17—C120.2 (6)
C7—N1—C2—C3141.7 (3)C17—C12—C13—C140.6 (4)
C7—N1—C6—C5142.7 (3)C17—C12—C13—O18179.3 (3)
C7—N9—N10—C11162.4 (3)O18—C13—C14—C15179.3 (3)
S8—C7—N9—N106.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N9—H9···O4i0.86 (3)2.33 (3)3.141 (3)157 (3)
O18—H18···N100.80 (4)1.91 (5)2.597 (3)145 (4)
C6—H6A···S80.972.623.121 (3)112
C15—H15···O18ii0.932.483.404 (4)176
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1/2, y+3/2, z.
 

Acknowledgements

LVM thanks the Hercules Foundation for supporting the purchase of the diffractometer through project AKUL/09/0035.

References

First citationAneesrahman, K. N., Rohini, G., Bhuvanesh, N. S. P., Sundararaj, S., Musthafa, M. & Sreekanth, A. (2018). ChemistrySelect 3, 8118–8130.  CrossRef CAS Google Scholar
First citationBerners-Price, S. J. (2011). Angew. Chem. Int. Ed. 50, 804–805.  CAS Google Scholar
First citationBindu, P., Kurup, M. R. P. & Satyakeerty, T. R. (1998). Polyhedron, 18, 321–331.  CrossRef Google Scholar
First citationChen, J., Huang, Y. W., Liu, G., Afrasiabi, Z., Sinn, E., Padhye, S. & Ma, Y. (2004). Toxicol. Appl. Pharmacol. 197, 40–48.  CrossRef PubMed CAS Google Scholar
First citationDilović, I., Rubcić, M., Vrdoljak, V., Kraljević Pavelić, S., Kralj, M., Piantanida, I. & Cindrić, M. (2008). Bioorg. Med. Chem. 16, 5189–5198.  PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGo, R. S. & Adjei, A. A. (1999). J. Clin. Oncol. 17, 409–422.  CrossRef PubMed CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHarbour, J. W., Murray, T. G., Hamasaki, D., Cicciarelli, N., Hernández, E., Smith, B., Windle, J. & O'Brien, J. M. (1996). Invest. Ophthalmol. Vis. Sci. 37, 1892–1898.  CAS PubMed Google Scholar
First citationKoo, C. H., Kim, H. S. & Ahn, C. H. (1977). J. Korean Chem. Soc. 21, 3–15.  CAS Google Scholar
First citationLévi, F., Metzger, G., Massari, C. & Milano, G. (2000). Clin. Pharmacokinet. 38, 1–21.  PubMed Google Scholar
First citationLiberta, A. E. & West, D. X. (1992). Biometals, 5, 121–126.  CrossRef PubMed CAS Web of Science Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814–3816.  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, UK.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShi, L., Mao, W. J., Yang, Y. & Zhu, H. L. (2009). J. Coord. Chem. 62, 3471–3477.  CrossRef CAS Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds