research communications
Syntheses and crystal structures of 2-methyl-1,1,2,3,3-pentaphenyl-2-silapropane and 2-methyl-1,1,3,3-tetraphenyl-2-silapropan-2-ol
aDepartment of Chemistry, Grand Valley State University, 1 Campus Dr., Allendale, MI 49401, USA, and bCenter for Crystallographic Research, Michigan State University, Department of Chemistry and Chemical Biology, East Lansing, MI 48824, USA
*Correspondence e-mail: winchesr@gvsu.edu
The sterically hindered silicon compound 2-methyl-1,1,2,3,3-pentaphenyl-2-silapropane, C33H30Si (I), was prepared via the reaction of two equivalents of diphenylmethyllithium (benzhydryllithium) and dichloromethylphenylsilane. This bisbenzhydryl-substituted silicon compound was then reacted with trifluoromethanesulfonic acid, followed by hydrolysis with water to give the silanol 2-methyl-1,1,3,3-tetraphenyl-2-silapropan-2-ol, C27H26OSi (II). Key geometric features for I are the Si—C bond lengths that range from 1.867 (2) to 1.914 (2) Å and a τ4 descriptor for fourfold coordination around the Si atom of 0.97 (indicating a nearly perfect tetrahedron). Key geometric features for compound II include Si—C bond lengths that range from 1.835 (4) to 1.905 (3) Å, a Si—O bond length of 1.665 (3) Å, and a τ4 descriptor for fourfold coordination around the Si atom of 0.96. In compound II, there is an intramolecular C—H⋯O hydrogen bond present. In the crystal of I, molecules are linked by two pairs of C—H⋯π interactions, forming dimers that are linked into ribbons propagating along the b-axis direction. In the crystal of II, molecules are linked by C—H⋯π and O—H⋯π interactions that result in the formation of ribbons that run along the a-axis direction.
1. Chemical context
The benzhydryl substituent and its derivatives occur in many medicinal compounds, for example: diphenhydramine, modafinil and meclizine (Fig. 1). The addition of the benzhydryl group to a drug significantly increases its and the two aromatic rings add electron density and bulk. There is an active field looking at the switching of silicon for carbon to discover new medicinal compounds and there have been several recent publications and reviews in the area (Franz & Wilson, 2013; Geyer et al., 2015; Ramesh & Reddy, 2018; Tacke & Doerrich, 2016). It seemed to us that another option is to replace the sulfoxide group with a silanol, in which the silicon has a size that is similar to sulfur and the alcohol will occupy the space of the sulfoxide oxygen. The conversion of a phenylsilane to a silanol by the reaction with trifluoromethanesulfonic acid followed by hydrolysis has been used previously (Kira et al., 2007; Shainyan et al., 2017), and worked well for the introduction of the silanol in compound II, silanol 2-methyl-1,1,3,3-tetraphenyl-2-silapropan-2-ol.
The steric bulk of the benzhydryl group has been used to advantage in several silyl reagents. It has been reported that the benzhydryldimethylsilylgroup is readily synthesized and undergoes facile oxidation with hydrogen peroxide to form ). Yoshida and coworkers have started with a tris(diphenylmethyl)silane and further substituted aromatic rings using electrophilic aromatic substitution to produce the sterically demanding TEDAMS group (Terao et al., 2010). Unno et al. (2006) have addressed the influence of bulky on the ability of to hydrogen bond, and found that (i-Pr3Si)3SiOH exists as a monomer while (t-BuMe2Si)3SiOH is a hydrogen-bonded dimer. Our observation that compound II is monomeric indicates that the silicon atom is very hindered by the presence of the two benzhydryl groups.
(Peng & Woerpel, 20012. Structural commentary
The molecular structure of compound I is shown in Fig. 2. The Si—C bond lengths range from 1.867 (2) to 1.914 (2) Å, with the Si—C1 bond to the methyl group being the shortest. The τ4 descriptor for fourfold coordination around Si1 is 0.97, indicating a nearly perfect tetrahedral geometry around this silicon atom (where 0 = square planar, 0.85 = trigonal pyramidal, and 1 = tetrahedral; Yang et al., 2007). The Si1—C1 bond and aromatic ring (C4–C9) are nearly co-planar with a C1—Si1—C4—C5 torsion angle of 12.2 (2)°. The orientation of the benzhydryl group bonded to C2 is such that when the molecule is viewed down the C2—Si1 bond the methyl group (C1) is anti to H2 (torsion angle C1—Si1—C2—H2 is 169°), with the aromatic rings gauche. For the benzhydryl group containing C3, the hydrogen atom H3 is gauche to the methyl group (C1) with a C1—Si1—C3—H3 torsion angle of 69°, with the aromatic ring (C22–C27) occupying the anti position.
The molecular structure of compound II is shown in Fig. 3. The Si—C bond lengths range from 1.835 (4) to 1.905 (3) Å, with an Si—O bond length of 1.665 (3) Å. The τ4 descriptor for fourfold coordination around Si1 is 0.96, again indicating an almost perfect tetrahedral geometry around this silicon atom. The orientation of the C2 benzhydryl group is such that the hydrogen atom H2 is anti to the methyl group (C1) with a C1—Si1—C2—H2 torsion angle of −165°. For the benzhydryl group containing C3, the hydrogen atom H3 is again gauche to the methyl group (C1) with a C1—Si1—C3—H3 torsion angle of 55°, and the aromatic ring C22–C27 occupies the anti position. An intramolecular C—H⋯O hydrogen bond is present between H27 and O1 with an H⋯A distance of 2.55 Å (Table 2).
3. Supramolecular features
In the crystal of I, molecules are linked by two pairs of intermolecular C—H⋯π interactions involving inversion-related compounds (Fig. 4 and Table 1). The result of these interactions is the formation of dimers that are linked to form ribbons along the b-axis direction (Fig. 5).
In the crystal of II, inversion-related molecules are linked by a pair of O—H⋯π interactions, forming dimers (Table 2, Fig. 6). Similar interactions between and OH groups in have been reported previously (Al-Juaid et al., 1992). In the crystal of II, the dimers are linked by a pair of C—H⋯π interactions (Table 2), so forming ribbons that propagate along the a-axis direction (Fig. 7).
4. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.40, May 2019; Groom et al., 2016) gave only one hit for a structure in which a silicon atom is bonded to two benzhydryl groups, viz. bis(diethylamino)bis(diphenylmethyl)silane (CSD refcode YEPTUI; Huppmann, et al., 1994). In this compound, the silicon atom is also bonded to two diethylamino groups. There are four other structures in the CSD with a silicon atom bonded to one benzhydryl group and a different alkyl group (this count excludes organometallic compounds). These compounds include, tert-butyl 1′-acetyl-4-[(diphenylmethyl)(dimethyl)silyl]-5′-fluoro-2′-oxo-1′,2′-dihydrospiro[cyclopentane-1,3′-indole]-2-carboxylate (SOSZIL; Ball-Jones et al., 2014), (3S,4R,5S)-4-[dimethyl(diphenylmethyl)silyl]-5-{[dimethyl(phenyl)silyl]methyl}-3-methyl-tetrahydrofuran-2-one (XICWUB; Peng & Woerpel, 2001), diphenyl(trimethylsilyl)methane (MOQWIY; Hill & Hitchcock, 2002) and diphenyl[t-butyl(dimethyl)silyl]methane (MOQWEU; Hill & Hitchcock, 2002). This search revealed zero structures in the CSD that contained a silanol group where the silicon atom is bonded to a benzhydryl group. However, the related structures (triphenylmethyl)silanetriol acetone solvate (GAWVUW; Kim, et al., 2005) and (triphenylmethyl)silanetriol tetrahydrofuran solvate (BAVQOF; Yoo, et al., 2001) are both silanetriols that bear a trityl group (–CPh3) coordinated to the central silicon atom.
5. Synthesis and crystallization
Synthesis of 2-methyl-1,1,2,3,3-pentaphenyl-2-silapropane (I): Diphenylmethane (1.68 g, 10 mmol) was added to an oven-dried, argon-flushed 100 ml Schlenk flask along with a magnetic stirbar. Anhydrous tetrahydrofuran (10 ml) was then added to the flask to dissolve the solid and the solution was cooled to 273 K. After the solution had cooled for 10 min, n-butyllithium (6.25 ml, 1.6 M in hexanes, 10 mmol) was added and the solution was stirred for 1 h. The reaction mixture was then cooled further to 195 K and dichloromethylphenylsilane was added (0.955g, 5 mmol). After warming to room temperature and stirring for 12 h, the solution was poured into hexanes (20 ml) and the organic layer was washed with water (20 ml), dilute hydrochloric acid (3 N, 10 ml), water (10 ml) and finally brine (10 ml). The hexanes solution was dried over sodium sulfate, filtered and concentrated in vacuo. The product was purified by dissolving it in 20 ml hexane, cooling to 195 K and isolating the white crystals by filtration. The crystals were then washed with pentane and dried in vacuo (2.1 g, 93% yield). Colorless block-like crystals suitable for analysis by X-ray diffraction were grown by recrystallization of compound I (0.1 g) from hexanes (2 ml) with heating (0.08 g isolated yield). FT–IR (ν, cm−1): 3057, 3019, 2869, 1597, 1493, 696; 1H NMR (400 MHz, chloroform-d) δ 0.39 (s, 3H), 3.87 (s, 2H), 6.8–7.4 (m, 25H); 13C NMR (101 MHz, chloroform-d) δ −4.77, 42.70, 125.28, 125.67, 127.37, 128.14, 128.49, 129.21, 129.46, 129.81, 134.62, 135.99, 142.02, 142.14; 29Si NMR (79 MHz, chloroform-d) δ −3.12.
Synthesis of 2-methyl-1,1,3,3-tetraphenyl-2-silapropan-2-ol (II): Bis(diphenylmethyl)methylphenylsilane (0.455 g, 1.0 mmol) was added to an oven-dried, argon-flushed 50 ml Schlenk flask along with a stirbar. Anhydrous toluene (5 ml) was added to dissolve the solid and the solution was cooled to 273 K. Trifluoromethanesulfonic acid was weighed in a vial (150 mg, 1 mmol) and then added to the Schlenk flask using a Pasteur pipette, at which point the solution went from colorless to a bright yellow. The solution was stirred for 2 h at room temperature after which time the solution went from cloudy to clear. At this point a mixture of water (40 mg, 2.2 mmol) and triethylamine (200 mg, 2.0 mmol) in ether (2 ml) was prepared and added to the rapidly stirring solution of the triflate in toluene, which caused the yellow solution to immediately turn colorless. After stirring for 1 h, the mixture was poured into hexanes (20 ml) and the organic layer was washed with water (20 ml), dilute hydrochloric acid (3 N, 10 ml), water (10 ml) and finally brine (10 ml). The hexanes solution was dried over sodium sulfate, filtered and the solvent was removed in vacuo. The crude product was then dissolved in 5 ml hexane and cooled to 195 K. The white crystals were isolated by vacuum filtration, washed with pentane and dried in vacuo (319 mg, 81% yield). Colourless block-like crystals suitable for analysis by X-ray diffraction were grown by recrystallization of compound II (0.4 g) from hexanes (5 ml) with heating (0.3 g isolated yield, m.p. (uncorrected) 375.8–376.2 K). FT–IR (ν, cm−1): 3591, 3057, 3024, 1597, 1491, 696; 1H NMR (400 MHz, chloroform-d) δ 0.15 (s, 3H), 3.49 (s, 2H), 7.22 (m, 20H). 13C NMR (101 MHz, chloroform-d) δ −2.34, 44.44, 125.64, 125.68, 128.62, 129.06, 129.28, 141.20, 141.43. 29Si NMR (79 MHz, chloroform-d) δ 7.98.
6. Refinement
Crystal data, data collection and structure . For both compounds, the hydrogen atoms bonded to carbon atoms were placed in calculated positions and refined as riding: C—H = 0.95–1.00 Å with Uiso(H) = 1.5Ueq(C-methyl) and 1.2Ueq(C) for other H atoms in compound I, and C—H = 0.93–0.98 Å with 1.2Ueq(C) in compound II. The hydrogen atom bonded to O1 (H1) in compound II was located in an electron-density difference map and freely refined.
details are summarized in Table 3
|
Supporting information
https://doi.org/10.1107/S2056989019011265/su5509sup1.cif
contains datablocks Global, II, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019011265/su5509Isup2.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989019011265/su5509IIsup3.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989019011265/su5509Isup4.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989019011265/su5509IIsup5.cml
For both structures, data collection: APEX2 (Bruker, 2013); cell
SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009; Bourhis et al., 2015); software used to prepare material for publication: CrystalMaker (Palmer, 2007).C33H30Si | Z = 2 |
Mr = 454.66 | F(000) = 484 |
Triclinic, P1 | Dx = 1.154 Mg m−3 |
a = 10.3879 (7) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 10.5037 (7) Å | Cell parameters from 6620 reflections |
c = 13.6350 (9) Å | θ = 2.2–25.4° |
α = 68.8212 (7)° | µ = 0.11 mm−1 |
β = 70.6364 (7)° | T = 173 K |
γ = 84.7947 (8)° | Block, colourless |
V = 1308.06 (15) Å3 | 0.21 × 0.21 × 0.17 mm |
Bruker APEXII CCD diffractometer | 3734 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.036 |
Absorption correction: multi-scan (SADABS; Bruker, 2013) | θmax = 25.4°, θmin = 1.7° |
Tmin = 0.695, Tmax = 0.745 | h = −12→12 |
16773 measured reflections | k = −12→12 |
4803 independent reflections | l = −16→16 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.045 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.120 | H-atom parameters constrained |
S = 1.08 | w = 1/[σ2(Fo2) + (0.0521P)2 + 0.3536P] where P = (Fo2 + 2Fc2)/3 |
4803 reflections | (Δ/σ)max < 0.001 |
308 parameters | Δρmax = 0.34 e Å−3 |
0 restraints | Δρmin = −0.22 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Si1 | 0.75666 (5) | 0.17147 (5) | 0.27134 (4) | 0.02998 (15) | |
C1 | 0.58208 (18) | 0.0942 (2) | 0.31735 (16) | 0.0399 (5) | |
H1A | 0.580675 | 0.040999 | 0.271655 | 0.060* | |
H1B | 0.516044 | 0.166936 | 0.309113 | 0.060* | |
H1C | 0.557892 | 0.034234 | 0.395435 | 0.060* | |
C2 | 0.78889 (17) | 0.32685 (18) | 0.13751 (14) | 0.0293 (4) | |
H2 | 0.875549 | 0.371155 | 0.128137 | 0.035* | |
C3 | 0.88432 (17) | 0.03163 (18) | 0.25388 (14) | 0.0290 (4) | |
H3 | 0.879419 | 0.013883 | 0.187902 | 0.035* | |
C4 | 0.77121 (19) | 0.23587 (18) | 0.37890 (15) | 0.0337 (4) | |
C5 | 0.6560 (2) | 0.2462 (2) | 0.46416 (16) | 0.0436 (5) | |
H5 | 0.569129 | 0.220352 | 0.467114 | 0.052* | |
C6 | 0.6643 (3) | 0.2927 (2) | 0.54426 (18) | 0.0549 (6) | |
H6 | 0.583678 | 0.298764 | 0.601188 | 0.066* | |
C7 | 0.7882 (3) | 0.3304 (2) | 0.54221 (19) | 0.0539 (6) | |
H7 | 0.793896 | 0.361141 | 0.598221 | 0.065* | |
C8 | 0.9045 (2) | 0.3235 (2) | 0.45856 (19) | 0.0492 (6) | |
H8 | 0.990631 | 0.350498 | 0.456297 | 0.059* | |
C9 | 0.8961 (2) | 0.2771 (2) | 0.37750 (17) | 0.0401 (5) | |
H9 | 0.976882 | 0.273302 | 0.319904 | 0.048* | |
C10 | 0.67921 (17) | 0.43090 (18) | 0.15447 (14) | 0.0294 (4) | |
C11 | 0.55994 (19) | 0.4316 (2) | 0.12873 (16) | 0.0361 (4) | |
H11 | 0.546285 | 0.365865 | 0.099890 | 0.043* | |
C12 | 0.46085 (19) | 0.5266 (2) | 0.14451 (16) | 0.0415 (5) | |
H12 | 0.380019 | 0.525025 | 0.126874 | 0.050* | |
C13 | 0.4791 (2) | 0.6233 (2) | 0.18562 (16) | 0.0416 (5) | |
H13 | 0.411325 | 0.688460 | 0.196376 | 0.050* | |
C14 | 0.5969 (2) | 0.6242 (2) | 0.21100 (16) | 0.0403 (5) | |
H14 | 0.610168 | 0.690778 | 0.239220 | 0.048* | |
C15 | 0.69603 (19) | 0.52935 (19) | 0.19580 (15) | 0.0348 (4) | |
H15 | 0.776475 | 0.531510 | 0.213801 | 0.042* | |
C16 | 0.81390 (17) | 0.30119 (18) | 0.02966 (15) | 0.0302 (4) | |
C17 | 0.89389 (19) | 0.3951 (2) | −0.06919 (16) | 0.0395 (5) | |
H17 | 0.929517 | 0.474662 | −0.068264 | 0.047* | |
C18 | 0.9227 (2) | 0.3751 (2) | −0.16910 (17) | 0.0481 (5) | |
H18 | 0.977671 | 0.440845 | −0.235724 | 0.058* | |
C19 | 0.8724 (2) | 0.2603 (2) | −0.17273 (17) | 0.0458 (5) | |
H19 | 0.894110 | 0.245561 | −0.241102 | 0.055* | |
C20 | 0.7903 (2) | 0.1675 (2) | −0.07596 (18) | 0.0454 (5) | |
H20 | 0.753497 | 0.089032 | −0.077590 | 0.054* | |
C21 | 0.7611 (2) | 0.1883 (2) | 0.02404 (16) | 0.0387 (5) | |
H21 | 0.703758 | 0.123685 | 0.090102 | 0.046* | |
C22 | 1.03391 (17) | 0.06948 (17) | 0.22632 (14) | 0.0288 (4) | |
C23 | 1.10054 (19) | 0.16811 (19) | 0.12395 (15) | 0.0365 (5) | |
H23 | 1.051484 | 0.211263 | 0.073556 | 0.044* | |
C24 | 1.2365 (2) | 0.2044 (2) | 0.09431 (17) | 0.0438 (5) | |
H24 | 1.279369 | 0.272864 | 0.024624 | 0.053* | |
C25 | 1.3101 (2) | 0.1413 (2) | 0.16568 (18) | 0.0446 (5) | |
H25 | 1.403699 | 0.165709 | 0.145408 | 0.054* | |
C26 | 1.2463 (2) | 0.0427 (2) | 0.26653 (17) | 0.0421 (5) | |
H26 | 1.296597 | −0.001657 | 0.315750 | 0.050* | |
C27 | 1.10940 (19) | 0.00747 (19) | 0.29711 (15) | 0.0341 (4) | |
H27 | 1.066750 | −0.060027 | 0.367444 | 0.041* | |
C28 | 0.82851 (17) | −0.09864 (18) | 0.35234 (15) | 0.0300 (4) | |
C29 | 0.80721 (19) | −0.10980 (19) | 0.46160 (15) | 0.0347 (4) | |
H29 | 0.833986 | −0.035807 | 0.475796 | 0.042* | |
C30 | 0.74772 (19) | −0.2268 (2) | 0.54981 (16) | 0.0388 (5) | |
H30 | 0.734851 | −0.232753 | 0.623661 | 0.047* | |
C31 | 0.7071 (2) | −0.3347 (2) | 0.53092 (17) | 0.0432 (5) | |
H31 | 0.664258 | −0.414051 | 0.591663 | 0.052* | |
C32 | 0.7288 (2) | −0.3271 (2) | 0.42349 (18) | 0.0452 (5) | |
H32 | 0.702693 | −0.401861 | 0.409890 | 0.054* | |
C33 | 0.78895 (19) | −0.20994 (19) | 0.33547 (16) | 0.0365 (4) | |
H33 | 0.803491 | −0.205565 | 0.261749 | 0.044* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Si1 | 0.0258 (3) | 0.0328 (3) | 0.0277 (3) | 0.0011 (2) | −0.0077 (2) | −0.0073 (2) |
C1 | 0.0296 (10) | 0.0442 (11) | 0.0373 (11) | −0.0004 (9) | −0.0088 (9) | −0.0059 (9) |
C2 | 0.0258 (9) | 0.0315 (10) | 0.0295 (10) | −0.0010 (7) | −0.0094 (8) | −0.0086 (8) |
C3 | 0.0280 (9) | 0.0321 (10) | 0.0258 (9) | 0.0014 (7) | −0.0088 (7) | −0.0092 (8) |
C4 | 0.0377 (10) | 0.0305 (10) | 0.0282 (10) | 0.0086 (8) | −0.0126 (8) | −0.0050 (8) |
C5 | 0.0459 (12) | 0.0458 (12) | 0.0319 (11) | 0.0053 (10) | −0.0075 (9) | −0.0111 (9) |
C6 | 0.0677 (16) | 0.0552 (14) | 0.0333 (12) | 0.0104 (12) | −0.0060 (11) | −0.0173 (11) |
C7 | 0.0861 (19) | 0.0466 (13) | 0.0412 (13) | 0.0236 (12) | −0.0339 (13) | −0.0222 (11) |
C8 | 0.0592 (14) | 0.0445 (12) | 0.0609 (15) | 0.0170 (11) | −0.0375 (12) | −0.0249 (11) |
C9 | 0.0383 (11) | 0.0410 (11) | 0.0459 (12) | 0.0115 (9) | −0.0176 (9) | −0.0196 (10) |
C10 | 0.0282 (9) | 0.0312 (9) | 0.0241 (9) | −0.0005 (7) | −0.0076 (7) | −0.0048 (8) |
C11 | 0.0328 (10) | 0.0414 (11) | 0.0353 (11) | 0.0007 (8) | −0.0139 (8) | −0.0122 (9) |
C12 | 0.0290 (10) | 0.0557 (13) | 0.0368 (11) | 0.0079 (9) | −0.0134 (9) | −0.0120 (10) |
C13 | 0.0374 (11) | 0.0489 (12) | 0.0340 (11) | 0.0151 (9) | −0.0098 (9) | −0.0141 (10) |
C14 | 0.0447 (12) | 0.0412 (11) | 0.0372 (11) | 0.0068 (9) | −0.0121 (9) | −0.0184 (9) |
C15 | 0.0340 (10) | 0.0409 (11) | 0.0305 (10) | 0.0027 (8) | −0.0136 (8) | −0.0113 (9) |
C16 | 0.0256 (9) | 0.0351 (10) | 0.0304 (10) | 0.0053 (8) | −0.0119 (8) | −0.0106 (8) |
C17 | 0.0360 (11) | 0.0473 (12) | 0.0336 (11) | −0.0033 (9) | −0.0106 (9) | −0.0121 (9) |
C18 | 0.0414 (12) | 0.0656 (15) | 0.0312 (11) | −0.0012 (11) | −0.0091 (9) | −0.0118 (10) |
C19 | 0.0427 (12) | 0.0668 (15) | 0.0368 (12) | 0.0137 (11) | −0.0168 (10) | −0.0274 (11) |
C20 | 0.0543 (13) | 0.0442 (12) | 0.0526 (14) | 0.0126 (10) | −0.0287 (11) | −0.0263 (11) |
C21 | 0.0429 (11) | 0.0366 (11) | 0.0365 (11) | 0.0002 (9) | −0.0163 (9) | −0.0094 (9) |
C22 | 0.0272 (9) | 0.0292 (9) | 0.0303 (10) | 0.0055 (7) | −0.0085 (8) | −0.0126 (8) |
C23 | 0.0324 (10) | 0.0384 (11) | 0.0302 (10) | 0.0056 (8) | −0.0082 (8) | −0.0052 (9) |
C24 | 0.0336 (11) | 0.0433 (12) | 0.0379 (12) | −0.0025 (9) | −0.0027 (9) | −0.0028 (9) |
C25 | 0.0310 (11) | 0.0460 (12) | 0.0513 (13) | −0.0058 (9) | −0.0122 (10) | −0.0101 (10) |
C26 | 0.0371 (11) | 0.0444 (12) | 0.0457 (12) | 0.0000 (9) | −0.0211 (9) | −0.0096 (10) |
C27 | 0.0350 (10) | 0.0329 (10) | 0.0317 (10) | −0.0004 (8) | −0.0112 (8) | −0.0075 (8) |
C28 | 0.0239 (9) | 0.0294 (9) | 0.0328 (10) | 0.0044 (7) | −0.0077 (8) | −0.0086 (8) |
C29 | 0.0339 (10) | 0.0343 (10) | 0.0336 (10) | 0.0046 (8) | −0.0097 (8) | −0.0112 (8) |
C30 | 0.0337 (10) | 0.0417 (11) | 0.0306 (10) | 0.0069 (9) | −0.0050 (8) | −0.0069 (9) |
C31 | 0.0373 (11) | 0.0367 (11) | 0.0401 (12) | −0.0019 (9) | −0.0065 (9) | −0.0007 (9) |
C32 | 0.0477 (12) | 0.0345 (11) | 0.0498 (13) | −0.0036 (9) | −0.0161 (10) | −0.0090 (10) |
C33 | 0.0354 (10) | 0.0367 (11) | 0.0337 (11) | 0.0015 (8) | −0.0090 (8) | −0.0104 (9) |
Si1—C1 | 1.8669 (18) | C15—H15 | 0.9500 |
Si1—C2 | 1.9099 (18) | C16—C17 | 1.388 (3) |
Si1—C3 | 1.9138 (18) | C16—C21 | 1.387 (3) |
Si1—C4 | 1.8744 (19) | C17—H17 | 0.9500 |
C1—H1A | 0.9800 | C17—C18 | 1.384 (3) |
C1—H1B | 0.9800 | C18—H18 | 0.9500 |
C1—H1C | 0.9800 | C18—C19 | 1.380 (3) |
C2—H2 | 1.0000 | C19—H19 | 0.9500 |
C2—C10 | 1.526 (2) | C19—C20 | 1.376 (3) |
C2—C16 | 1.524 (2) | C20—H20 | 0.9500 |
C3—H3 | 1.0000 | C20—C21 | 1.388 (3) |
C3—C22 | 1.527 (2) | C21—H21 | 0.9500 |
C3—C28 | 1.520 (2) | C22—C23 | 1.395 (2) |
C4—C5 | 1.393 (3) | C22—C27 | 1.388 (3) |
C4—C9 | 1.396 (3) | C23—H23 | 0.9500 |
C5—H5 | 0.9500 | C23—C24 | 1.382 (3) |
C5—C6 | 1.376 (3) | C24—H24 | 0.9500 |
C6—H6 | 0.9500 | C24—C25 | 1.381 (3) |
C6—C7 | 1.369 (3) | C25—H25 | 0.9500 |
C7—H7 | 0.9500 | C25—C26 | 1.376 (3) |
C7—C8 | 1.377 (3) | C26—H26 | 0.9500 |
C8—H8 | 0.9500 | C26—C27 | 1.388 (3) |
C8—C9 | 1.389 (3) | C27—H27 | 0.9500 |
C9—H9 | 0.9500 | C28—C29 | 1.394 (3) |
C10—C11 | 1.394 (2) | C28—C33 | 1.390 (3) |
C10—C15 | 1.392 (3) | C29—H29 | 0.9500 |
C11—H11 | 0.9500 | C29—C30 | 1.384 (3) |
C11—C12 | 1.387 (3) | C30—H30 | 0.9500 |
C12—H12 | 0.9500 | C30—C31 | 1.378 (3) |
C12—C13 | 1.377 (3) | C31—H31 | 0.9500 |
C13—H13 | 0.9500 | C31—C32 | 1.379 (3) |
C13—C14 | 1.380 (3) | C32—H32 | 0.9500 |
C14—H14 | 0.9500 | C32—C33 | 1.386 (3) |
C14—C15 | 1.385 (3) | C33—H33 | 0.9500 |
C1—Si1—C2 | 111.34 (8) | C10—C15—H15 | 119.6 |
C1—Si1—C3 | 107.30 (9) | C14—C15—C10 | 120.79 (18) |
C1—Si1—C4 | 109.22 (9) | C14—C15—H15 | 119.6 |
C2—Si1—C3 | 111.98 (8) | C17—C16—C2 | 118.87 (16) |
C4—Si1—C2 | 106.03 (8) | C21—C16—C2 | 123.72 (16) |
C4—Si1—C3 | 110.98 (8) | C21—C16—C17 | 117.42 (17) |
Si1—C1—H1A | 109.5 | C16—C17—H17 | 119.4 |
Si1—C1—H1B | 109.5 | C18—C17—C16 | 121.26 (19) |
Si1—C1—H1C | 109.5 | C18—C17—H17 | 119.4 |
H1A—C1—H1B | 109.5 | C17—C18—H18 | 119.7 |
H1A—C1—H1C | 109.5 | C19—C18—C17 | 120.5 (2) |
H1B—C1—H1C | 109.5 | C19—C18—H18 | 119.7 |
Si1—C2—H2 | 105.2 | C18—C19—H19 | 120.5 |
C10—C2—Si1 | 109.56 (11) | C20—C19—C18 | 119.09 (19) |
C10—C2—H2 | 105.2 | C20—C19—H19 | 120.5 |
C16—C2—Si1 | 117.65 (12) | C19—C20—H20 | 119.9 |
C16—C2—H2 | 105.2 | C19—C20—C21 | 120.20 (19) |
C16—C2—C10 | 112.90 (14) | C21—C20—H20 | 119.9 |
Si1—C3—H3 | 105.4 | C16—C21—C20 | 121.47 (18) |
C22—C3—Si1 | 116.07 (12) | C16—C21—H21 | 119.3 |
C22—C3—H3 | 105.4 | C20—C21—H21 | 119.3 |
C28—C3—Si1 | 107.51 (11) | C23—C22—C3 | 119.13 (16) |
C28—C3—H3 | 105.4 | C27—C22—C3 | 123.19 (16) |
C28—C3—C22 | 116.09 (14) | C27—C22—C23 | 117.65 (16) |
C5—C4—Si1 | 120.97 (15) | C22—C23—H23 | 119.3 |
C5—C4—C9 | 116.66 (18) | C24—C23—C22 | 121.36 (18) |
C9—C4—Si1 | 122.36 (15) | C24—C23—H23 | 119.3 |
C4—C5—H5 | 119.0 | C23—C24—H24 | 119.9 |
C6—C5—C4 | 122.0 (2) | C25—C24—C23 | 120.21 (18) |
C6—C5—H5 | 119.0 | C25—C24—H24 | 119.9 |
C5—C6—H6 | 119.9 | C24—C25—H25 | 120.4 |
C7—C6—C5 | 120.3 (2) | C26—C25—C24 | 119.18 (18) |
C7—C6—H6 | 119.9 | C26—C25—H25 | 120.4 |
C6—C7—H7 | 120.2 | C25—C26—H26 | 119.6 |
C6—C7—C8 | 119.7 (2) | C25—C26—C27 | 120.72 (19) |
C8—C7—H7 | 120.2 | C27—C26—H26 | 119.6 |
C7—C8—H8 | 120.0 | C22—C27—H27 | 119.6 |
C7—C8—C9 | 120.0 (2) | C26—C27—C22 | 120.87 (17) |
C9—C8—H8 | 120.0 | C26—C27—H27 | 119.6 |
C4—C9—H9 | 119.3 | C29—C28—C3 | 122.69 (16) |
C8—C9—C4 | 121.4 (2) | C33—C28—C3 | 119.78 (16) |
C8—C9—H9 | 119.3 | C33—C28—C29 | 117.43 (17) |
C11—C10—C2 | 121.61 (16) | C28—C29—H29 | 119.4 |
C15—C10—C2 | 120.62 (16) | C30—C29—C28 | 121.16 (18) |
C15—C10—C11 | 117.78 (17) | C30—C29—H29 | 119.4 |
C10—C11—H11 | 119.4 | C29—C30—H30 | 119.9 |
C12—C11—C10 | 121.14 (18) | C31—C30—C29 | 120.25 (19) |
C12—C11—H11 | 119.4 | C31—C30—H30 | 119.9 |
C11—C12—H12 | 119.8 | C30—C31—H31 | 120.1 |
C13—C12—C11 | 120.32 (18) | C30—C31—C32 | 119.74 (18) |
C13—C12—H12 | 119.8 | C32—C31—H31 | 120.1 |
C12—C13—H13 | 120.4 | C31—C32—H32 | 120.1 |
C12—C13—C14 | 119.21 (18) | C31—C32—C33 | 119.76 (19) |
C14—C13—H13 | 120.4 | C33—C32—H32 | 120.1 |
C13—C14—H14 | 119.6 | C28—C33—H33 | 119.2 |
C13—C14—C15 | 120.76 (19) | C32—C33—C28 | 121.64 (19) |
C15—C14—H14 | 119.6 | C32—C33—H33 | 119.2 |
Cg2 and Cg4 are the centroids of the C10–C15 and C22–C27 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C20—H20···Cg4i | 0.95 | 2.94 | 3.716 (2) | 140 |
C24—H24···Cg2ii | 0.95 | 2.75 | 3.696 (2) | 175 |
Symmetry codes: (i) −x+2, −y, −z; (ii) −x+2, −y+1, −z. |
C27H26OSi | F(000) = 840 |
Mr = 394.57 | Dx = 1.231 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54178 Å |
a = 11.8576 (5) Å | Cell parameters from 1512 reflections |
b = 13.2995 (6) Å | θ = 4.0–71.6° |
c = 14.3948 (6) Å | µ = 1.08 mm−1 |
β = 110.363 (3)° | T = 173 K |
V = 2128.20 (16) Å3 | Block, colourless |
Z = 4 | 0.10 × 0.09 × 0.08 mm |
Bruker APEXII CCD diffractometer | 2414 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.096 |
Absorption correction: multi-scan (SADABS; Bruker, 2013 | θmax = 72.1°, θmin = 4.0° |
Tmin = 0.624, Tmax = 0.754 | h = −14→14 |
11901 measured reflections | k = −14→16 |
4113 independent reflections | l = −17→16 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.062 | Hydrogen site location: mixed |
wR(F2) = 0.171 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.97 | w = 1/[σ2(Fo2) + (0.0793P)2] where P = (Fo2 + 2Fc2)/3 |
4113 reflections | (Δ/σ)max = 0.001 |
267 parameters | Δρmax = 0.29 e Å−3 |
0 restraints | Δρmin = −0.35 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Si1 | 0.37978 (7) | 0.60730 (7) | 0.11066 (6) | 0.0322 (2) | |
O1 | 0.4586 (2) | 0.5078 (2) | 0.0982 (2) | 0.0478 (7) | |
H1 | 0.525 (6) | 0.511 (5) | 0.125 (5) | 0.14 (3)* | |
C1 | 0.4582 (3) | 0.7247 (3) | 0.1046 (3) | 0.0496 (10) | |
H1A | 0.538510 | 0.722512 | 0.152061 | 0.074* | |
H1B | 0.415753 | 0.780473 | 0.119230 | 0.074* | |
H1C | 0.461428 | 0.732630 | 0.039250 | 0.074* | |
C2 | 0.2251 (3) | 0.5965 (3) | 0.0102 (2) | 0.0311 (7) | |
H2 | 0.186321 | 0.541154 | 0.032661 | 0.037* | |
C3 | 0.3493 (3) | 0.6018 (3) | 0.2320 (2) | 0.0305 (7) | |
H3 | 0.304983 | 0.663543 | 0.233789 | 0.037* | |
C4 | 0.2310 (3) | 0.5599 (3) | −0.0879 (2) | 0.0314 (7) | |
C5 | 0.2221 (3) | 0.4579 (3) | −0.1059 (3) | 0.0465 (9) | |
H5 | 0.212646 | 0.415105 | −0.058001 | 0.056* | |
C6 | 0.2269 (4) | 0.4173 (3) | −0.1928 (3) | 0.0597 (12) | |
H6 | 0.220922 | 0.348044 | −0.202343 | 0.072* | |
C7 | 0.2403 (4) | 0.4783 (4) | −0.2651 (3) | 0.0594 (12) | |
H7 | 0.242726 | 0.451111 | −0.323899 | 0.071* | |
C8 | 0.2500 (4) | 0.5796 (4) | −0.2490 (3) | 0.0558 (11) | |
H8 | 0.259536 | 0.621704 | −0.297355 | 0.067* | |
C9 | 0.2457 (3) | 0.6210 (3) | −0.1611 (3) | 0.0446 (9) | |
H9 | 0.252840 | 0.690203 | −0.151519 | 0.054* | |
C10 | 0.1461 (3) | 0.6868 (3) | 0.0079 (2) | 0.0318 (7) | |
C11 | 0.1675 (3) | 0.7822 (3) | −0.0220 (3) | 0.0402 (8) | |
H11 | 0.233780 | 0.792719 | −0.041198 | 0.048* | |
C12 | 0.0917 (3) | 0.8616 (3) | −0.0236 (3) | 0.0478 (9) | |
H12 | 0.106084 | 0.924134 | −0.046117 | 0.057* | |
C13 | −0.0053 (3) | 0.8494 (3) | 0.0078 (3) | 0.0495 (10) | |
H13 | −0.055857 | 0.903091 | 0.006978 | 0.059* | |
C14 | −0.0253 (3) | 0.7557 (3) | 0.0404 (3) | 0.0463 (9) | |
H14 | −0.089227 | 0.746580 | 0.062864 | 0.056* | |
C15 | 0.0485 (3) | 0.6755 (3) | 0.0402 (2) | 0.0379 (8) | |
H15 | 0.032870 | 0.612895 | 0.061775 | 0.046* | |
C16 | 0.4654 (3) | 0.6075 (3) | 0.3226 (2) | 0.0330 (7) | |
C17 | 0.5172 (3) | 0.7002 (3) | 0.3555 (3) | 0.0417 (9) | |
H17 | 0.482228 | 0.758048 | 0.321262 | 0.050* | |
C18 | 0.6206 (3) | 0.7080 (3) | 0.4391 (3) | 0.0517 (10) | |
H18 | 0.655291 | 0.770730 | 0.459002 | 0.062* | |
C19 | 0.6718 (3) | 0.6238 (3) | 0.4923 (3) | 0.0483 (10) | |
H19 | 0.739662 | 0.629258 | 0.549267 | 0.058* | |
C20 | 0.6213 (3) | 0.5311 (3) | 0.4603 (3) | 0.0485 (10) | |
H20 | 0.656040 | 0.473577 | 0.495283 | 0.058* | |
C21 | 0.5185 (3) | 0.5229 (3) | 0.3757 (3) | 0.0402 (8) | |
H21 | 0.485335 | 0.459927 | 0.354838 | 0.048* | |
C22 | 0.2661 (3) | 0.5165 (3) | 0.2345 (2) | 0.0330 (7) | |
C23 | 0.1654 (3) | 0.5350 (3) | 0.2610 (2) | 0.0401 (8) | |
H23 | 0.151976 | 0.599365 | 0.280198 | 0.048* | |
C24 | 0.0848 (3) | 0.4581 (3) | 0.2589 (3) | 0.0503 (10) | |
H24 | 0.018734 | 0.471259 | 0.277708 | 0.060* | |
C25 | 0.1022 (3) | 0.3627 (3) | 0.2294 (3) | 0.0507 (11) | |
H25 | 0.047234 | 0.311931 | 0.226694 | 0.061* | |
C26 | 0.2021 (4) | 0.3430 (3) | 0.2038 (3) | 0.0459 (9) | |
H26 | 0.214929 | 0.278564 | 0.184382 | 0.055* | |
C27 | 0.2826 (3) | 0.4188 (3) | 0.2069 (2) | 0.0401 (8) | |
H27 | 0.349762 | 0.404301 | 0.190084 | 0.048* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Si1 | 0.0319 (4) | 0.0348 (5) | 0.0275 (4) | 0.0005 (4) | 0.0074 (3) | 0.0024 (4) |
O1 | 0.0406 (14) | 0.0544 (18) | 0.0440 (15) | 0.0134 (13) | 0.0092 (12) | −0.0039 (13) |
C1 | 0.056 (2) | 0.052 (3) | 0.0361 (19) | −0.0172 (19) | 0.0088 (17) | 0.0081 (19) |
C2 | 0.0329 (15) | 0.0312 (18) | 0.0273 (15) | −0.0035 (14) | 0.0080 (12) | 0.0031 (15) |
C3 | 0.0369 (15) | 0.0296 (17) | 0.0250 (15) | 0.0011 (14) | 0.0109 (13) | −0.0004 (14) |
C4 | 0.0295 (14) | 0.0357 (19) | 0.0259 (15) | 0.0000 (14) | 0.0057 (12) | −0.0012 (15) |
C5 | 0.057 (2) | 0.038 (2) | 0.044 (2) | 0.0052 (18) | 0.0170 (18) | −0.0050 (18) |
C6 | 0.064 (3) | 0.048 (3) | 0.065 (3) | 0.000 (2) | 0.020 (2) | −0.020 (2) |
C7 | 0.051 (2) | 0.075 (3) | 0.052 (2) | −0.009 (2) | 0.018 (2) | −0.030 (3) |
C8 | 0.061 (2) | 0.074 (3) | 0.036 (2) | −0.016 (2) | 0.0224 (18) | −0.008 (2) |
C9 | 0.056 (2) | 0.043 (2) | 0.0346 (18) | −0.0080 (18) | 0.0161 (16) | −0.0049 (18) |
C10 | 0.0341 (15) | 0.0340 (19) | 0.0224 (15) | 0.0024 (14) | 0.0035 (12) | 0.0004 (14) |
C11 | 0.0462 (18) | 0.034 (2) | 0.043 (2) | 0.0005 (16) | 0.0191 (16) | 0.0010 (17) |
C12 | 0.057 (2) | 0.033 (2) | 0.053 (2) | 0.0039 (17) | 0.0201 (19) | 0.0022 (19) |
C13 | 0.053 (2) | 0.040 (2) | 0.052 (2) | 0.0144 (18) | 0.0137 (19) | −0.0072 (19) |
C14 | 0.0429 (19) | 0.051 (3) | 0.047 (2) | 0.0037 (17) | 0.0176 (17) | −0.0020 (19) |
C15 | 0.0401 (17) | 0.036 (2) | 0.0361 (18) | 0.0022 (15) | 0.0110 (14) | 0.0023 (16) |
C16 | 0.0344 (15) | 0.042 (2) | 0.0239 (14) | 0.0003 (15) | 0.0117 (12) | 0.0022 (15) |
C17 | 0.0471 (19) | 0.039 (2) | 0.0362 (18) | −0.0033 (16) | 0.0111 (15) | −0.0015 (17) |
C18 | 0.052 (2) | 0.060 (3) | 0.038 (2) | −0.018 (2) | 0.0100 (17) | −0.009 (2) |
C19 | 0.0381 (17) | 0.073 (3) | 0.0287 (17) | −0.0061 (19) | 0.0054 (14) | 0.001 (2) |
C20 | 0.0407 (18) | 0.063 (3) | 0.0373 (19) | 0.0030 (19) | 0.0075 (16) | 0.012 (2) |
C21 | 0.0386 (17) | 0.043 (2) | 0.0353 (18) | −0.0004 (16) | 0.0085 (15) | 0.0046 (17) |
C22 | 0.0366 (16) | 0.0341 (19) | 0.0239 (15) | −0.0030 (14) | 0.0051 (13) | 0.0058 (15) |
C23 | 0.0424 (18) | 0.045 (2) | 0.0290 (17) | 0.0017 (16) | 0.0072 (14) | 0.0034 (16) |
C24 | 0.0377 (18) | 0.070 (3) | 0.039 (2) | −0.0073 (19) | 0.0075 (16) | 0.009 (2) |
C25 | 0.052 (2) | 0.052 (3) | 0.0356 (19) | −0.0222 (19) | −0.0008 (17) | 0.0107 (18) |
C26 | 0.063 (2) | 0.033 (2) | 0.0337 (18) | −0.0076 (18) | 0.0068 (17) | 0.0041 (17) |
C27 | 0.0480 (19) | 0.037 (2) | 0.0341 (18) | 0.0006 (16) | 0.0128 (15) | 0.0073 (16) |
Si1—O1 | 1.666 (3) | C12—H12 | 0.9300 |
Si1—C1 | 1.835 (4) | C12—C13 | 1.384 (5) |
Si1—C2 | 1.905 (3) | C13—H13 | 0.9300 |
Si1—C3 | 1.904 (3) | C13—C14 | 1.380 (5) |
O1—H1 | 0.75 (6) | C14—H14 | 0.9300 |
C1—H1A | 0.9600 | C14—C15 | 1.380 (5) |
C1—H1B | 0.9600 | C15—H15 | 0.9300 |
C1—H1C | 0.9600 | C16—C17 | 1.385 (5) |
C2—H2 | 0.9800 | C16—C21 | 1.383 (5) |
C2—C4 | 1.518 (4) | C17—H17 | 0.9300 |
C2—C10 | 1.517 (4) | C17—C18 | 1.391 (5) |
C3—H3 | 0.9800 | C18—H18 | 0.9300 |
C3—C16 | 1.533 (4) | C18—C19 | 1.374 (5) |
C3—C22 | 1.513 (4) | C19—H19 | 0.9300 |
C4—C5 | 1.378 (5) | C19—C20 | 1.378 (6) |
C4—C9 | 1.389 (5) | C20—H20 | 0.9300 |
C5—H5 | 0.9300 | C20—C21 | 1.396 (5) |
C5—C6 | 1.382 (5) | C21—H21 | 0.9300 |
C6—H6 | 0.9300 | C22—C23 | 1.396 (5) |
C6—C7 | 1.372 (6) | C22—C27 | 1.392 (5) |
C7—H7 | 0.9300 | C23—H23 | 0.9300 |
C7—C8 | 1.366 (6) | C23—C24 | 1.394 (5) |
C8—H8 | 0.9300 | C24—H24 | 0.9300 |
C8—C9 | 1.397 (5) | C24—C25 | 1.376 (6) |
C9—H9 | 0.9300 | C25—H25 | 0.9300 |
C10—C11 | 1.391 (5) | C25—C26 | 1.383 (6) |
C10—C15 | 1.397 (4) | C26—H26 | 0.9300 |
C11—H11 | 0.9300 | C26—C27 | 1.378 (5) |
C11—C12 | 1.381 (5) | C27—H27 | 0.9300 |
O1—Si1—C1 | 111.00 (17) | C11—C12—H12 | 119.5 |
O1—Si1—C2 | 106.65 (15) | C11—C12—C13 | 121.0 (4) |
O1—Si1—C3 | 111.15 (15) | C13—C12—H12 | 119.5 |
C1—Si1—C2 | 113.46 (16) | C12—C13—H13 | 120.7 |
C1—Si1—C3 | 109.71 (16) | C14—C13—C12 | 118.5 (4) |
C3—Si1—C2 | 104.69 (14) | C14—C13—H13 | 120.7 |
Si1—O1—H1 | 116 (5) | C13—C14—H14 | 119.6 |
Si1—C1—H1A | 109.5 | C15—C14—C13 | 120.8 (4) |
Si1—C1—H1B | 109.5 | C15—C14—H14 | 119.6 |
Si1—C1—H1C | 109.5 | C10—C15—H15 | 119.4 |
H1A—C1—H1B | 109.5 | C14—C15—C10 | 121.1 (3) |
H1A—C1—H1C | 109.5 | C14—C15—H15 | 119.4 |
H1B—C1—H1C | 109.5 | C17—C16—C3 | 119.7 (3) |
Si1—C2—H2 | 104.2 | C21—C16—C3 | 122.1 (3) |
C4—C2—Si1 | 112.7 (2) | C21—C16—C17 | 118.2 (3) |
C4—C2—H2 | 104.2 | C16—C17—H17 | 119.5 |
C10—C2—Si1 | 112.4 (2) | C16—C17—C18 | 121.0 (4) |
C10—C2—H2 | 104.2 | C18—C17—H17 | 119.5 |
C10—C2—C4 | 117.5 (3) | C17—C18—H18 | 119.8 |
Si1—C3—H3 | 105.5 | C19—C18—C17 | 120.5 (4) |
C16—C3—Si1 | 112.2 (2) | C19—C18—H18 | 119.8 |
C16—C3—H3 | 105.5 | C18—C19—H19 | 120.5 |
C22—C3—Si1 | 112.6 (2) | C18—C19—C20 | 119.1 (3) |
C22—C3—H3 | 105.5 | C20—C19—H19 | 120.5 |
C22—C3—C16 | 114.6 (3) | C19—C20—H20 | 119.7 |
C5—C4—C2 | 117.7 (3) | C19—C20—C21 | 120.5 (4) |
C5—C4—C9 | 117.1 (3) | C21—C20—H20 | 119.7 |
C9—C4—C2 | 125.2 (3) | C16—C21—C20 | 120.7 (4) |
C4—C5—H5 | 119.0 | C16—C21—H21 | 119.7 |
C4—C5—C6 | 122.0 (4) | C20—C21—H21 | 119.7 |
C6—C5—H5 | 119.0 | C23—C22—C3 | 120.1 (3) |
C5—C6—H6 | 119.7 | C27—C22—C3 | 122.4 (3) |
C7—C6—C5 | 120.5 (4) | C27—C22—C23 | 117.5 (3) |
C7—C6—H6 | 119.7 | C22—C23—H23 | 119.7 |
C6—C7—H7 | 120.6 | C24—C23—C22 | 120.7 (4) |
C8—C7—C6 | 118.7 (4) | C24—C23—H23 | 119.7 |
C8—C7—H7 | 120.6 | C23—C24—H24 | 119.7 |
C7—C8—H8 | 119.5 | C25—C24—C23 | 120.5 (4) |
C7—C8—C9 | 121.0 (4) | C25—C24—H24 | 119.7 |
C9—C8—H8 | 119.5 | C24—C25—H25 | 120.3 |
C4—C9—C8 | 120.7 (4) | C24—C25—C26 | 119.5 (4) |
C4—C9—H9 | 119.7 | C26—C25—H25 | 120.3 |
C8—C9—H9 | 119.7 | C25—C26—H26 | 120.0 |
C11—C10—C2 | 123.5 (3) | C27—C26—C25 | 120.0 (4) |
C11—C10—C15 | 117.5 (3) | C27—C26—H26 | 120.0 |
C15—C10—C2 | 119.0 (3) | C22—C27—H27 | 119.1 |
C10—C11—H11 | 119.5 | C26—C27—C22 | 121.9 (4) |
C12—C11—C10 | 121.0 (3) | C26—C27—H27 | 119.1 |
C12—C11—H11 | 119.5 |
Cg1 is the centroid of the C4–C9 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C27—H27···O1 | 0.93 | 2.55 | 3.237 (4) | 131 |
O1—H1···Cg1i | 0.75 (8) | 2.70 (7) | 3.416 (3) | 162 (7) |
C24—H24···Cg1ii | 0.93 | 2.86 | 3.582 (4) | 135 |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x, −y+1, −z. |
Acknowledgements
The authors thank Pfizer, Inc., for the donation of a Varian INOVA 400 MHz NMR. The CCD-based diffractometers at Michigan State University were upgraded and/or replaced with departmental funds.
Funding information
Funding for this research was provided by: National Science Foundation, Directorate for Mathematical and Physical Sciences ( grant No. MRI CHE-1725699); Grand Valley State University (grant No. OURS, CSCE, Chemistry Department's Weldon Fund).
References
Al-Juaid, S. S., Al-Nasr, A. K. A., Eaborn, C. & Hitchcock, P. B. (1992). J. Organomet. Chem. 429, C9–C13. CAS Google Scholar
Ball-Jones, N. R., Badillo, J. J., Tran, N. T. & Franz, A. K. (2014). Angew. Chem. Int. Ed. 53, 9462–9465. CAS Google Scholar
Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75. Web of Science CrossRef IUCr Journals Google Scholar
Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Franz, A. K. & Wilson, S. O. (2013). J. Med. Chem. 56, 388–405. CrossRef CAS PubMed Google Scholar
Geyer, M., Wellner, E., Jurva, U., Saloman, S., Armstrong, D. & Tacke, R. (2015). ChemMedChem, 10, 911–924. CrossRef CAS PubMed Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hill, M. S. & Hitchcock, P. B. (2002). Organometallics, 21, 220–225. CSD CrossRef CAS Google Scholar
Huppmann, F., Noltemeyer, M. & Meller, A. (1994). J. Organomet. Chem. 483, 217–228. CSD CrossRef CAS Google Scholar
Kim, J. H., Han, J. S., Lee, M. E., Moon, D. H., Lah, M. S. & Yoo, B. R. (2005). J. Organomet. Chem. 690, 1372–1378. CSD CrossRef CAS Google Scholar
Kira, M., Kadowaki, T., Yin, D., Sakamoto, K., Iwamoto, T. & Kabuto, C. (2007). Organometallics, 26, 4890–4895. CSD CrossRef CAS Google Scholar
Palmer, D. (2007). CrystalMaker. CrystalMaker Software, Bicester, Oxfordshire , England. Google Scholar
Peng, Z.-H. & Woerpel, K. A. (2001). Org. Lett. 3, 675–678. CSD CrossRef PubMed CAS Google Scholar
Ramesh, R. & Reddy, D. S. (2018). J. Med. Chem. 61, 3779–3798. CrossRef CAS PubMed Google Scholar
Shainyan, B. A., Kirpichenko, S. V. & Kleinpeter, E. (2017). J. Org. Chem. 82, 13414–13422. CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Tacke, R. & Doerrich, S. (2016). Top. Med. Chem. 17, 29–59. CrossRef CAS Google Scholar
Terao, K., Watanabe, T., Suehiro, T., Nokami, T. & Yoshida, J.-I. (2010). Tetrahedron Lett. 51, 4107–4109. CrossRef CAS Google Scholar
Unno, M., Murakami, H., Kagawa, S. & Matsumoto, H. (2006). Silicon Chem. 3, 195-198. CSD CrossRef Google Scholar
Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964. Web of Science CSD CrossRef PubMed CAS Google Scholar
Yoo, B. R., Kim, J. H., Lee, M. E. & Jung, I. N. (2001). Phosphorus Sulfur Silicon, 169, 227–230. CSD CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.