research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Syntheses and crystal structures of 2-methyl-1,1,2,3,3-penta­phenyl-2-sila­propane and 2-methyl-1,1,3,3-tetra­phenyl-2-silapropan-2-ol

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Grand Valley State University, 1 Campus Dr., Allendale, MI 49401, USA, and bCenter for Crystallographic Research, Michigan State University, Department of Chemistry and Chemical Biology, East Lansing, MI 48824, USA
*Correspondence e-mail: winchesr@gvsu.edu

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 9 August 2019; accepted 12 August 2019; online 23 August 2019)

The sterically hindered silicon compound 2-methyl-1,1,2,3,3-penta­phenyl-2-sila­propane, C33H30Si (I), was prepared via the reaction of two equivalents of di­phenyl­methyl­lithium (benzhydryllithium) and di­chloro­methyl­phenyl­silane. This bis­benzhydryl-substituted silicon compound was then reacted with tri­fluoro­methane­sulfonic acid, followed by hydrolysis with water to give the silanol 2-methyl-1,1,3,3-tetra­phenyl-2-silapropan-2-ol, C27H26OSi (II). Key geometric features for I are the Si—C bond lengths that range from 1.867 (2) to 1.914 (2) Å and a τ4 descriptor for fourfold coordination around the Si atom of 0.97 (indicating a nearly perfect tetra­hedron). Key geometric features for compound II include Si—C bond lengths that range from 1.835 (4) to 1.905 (3) Å, a Si—O bond length of 1.665 (3) Å, and a τ4 descriptor for fourfold coordination around the Si atom of 0.96. In compound II, there is an intra­molecular C—H⋯O hydrogen bond present. In the crystal of I, mol­ecules are linked by two pairs of C—H⋯π inter­actions, forming dimers that are linked into ribbons propagating along the b-axis direction. In the crystal of II, mol­ecules are linked by C—H⋯π and O—H⋯π inter­actions that result in the formation of ribbons that run along the a-axis direction.

1. Chemical context

The benzhydryl substituent and its derivatives occur in many medicinal compounds, for example: diphenhydramine, modafinil and meclizine (Fig. 1[link]). The addition of the benzhydryl group to a drug significantly increases its lipophilicity and the two aromatic rings add electron density and bulk. There is an active field looking at the switching of silicon for carbon to discover new medicinal compounds and there have been several recent publications and reviews in the area (Franz & Wilson, 2013[Franz, A. K. & Wilson, S. O. (2013). J. Med. Chem. 56, 388-405.]; Geyer et al., 2015[Geyer, M., Wellner, E., Jurva, U., Saloman, S., Armstrong, D. & Tacke, R. (2015). ChemMedChem, 10, 911-924.]; Ramesh & Reddy, 2018[Ramesh, R. & Reddy, D. S. (2018). J. Med. Chem. 61, 3779-3798.]; Tacke & Doerrich, 2016[Tacke, R. & Doerrich, S. (2016). Top. Med. Chem. 17, 29-59.]). It seemed to us that another option is to replace the sulfoxide group with a silanol, in which the silicon has a size that is similar to sulfur and the alcohol will occupy the space of the sulfoxide oxygen. The conversion of a phenyl­silane to a silanol by the reaction with tri­fluoro­methane­sulfonic acid followed by hydrolysis has been used previously (Kira et al., 2007[Kira, M., Kadowaki, T., Yin, D., Sakamoto, K., Iwamoto, T. & Kabuto, C. (2007). Organometallics, 26, 4890-4895.]; Shainyan et al., 2017[Shainyan, B. A., Kirpichenko, S. V. & Kleinpeter, E. (2017). J. Org. Chem. 82, 13414-13422.]), and worked well for the introduction of the silanol in compound II, silanol 2-methyl-1,1,3,3-tetra­phenyl-2-silapropan-2-ol.

[Scheme 1]
[Figure 1]
Figure 1
The benzhydryl group in some representative medicinal compounds.

The steric bulk of the benzhydryl group has been used to advantage in several silyl reagents. It has been reported that the benzhydryldi­methyl­silylgroup is readily synthesized and undergoes facile oxidation with hydrogen peroxide to form alcohols (Peng & Woerpel, 2001[Peng, Z.-H. & Woerpel, K. A. (2001). Org. Lett. 3, 675-678.]). Yoshida and coworkers have started with a tris­(di­phenyl­meth­yl)silane and further substituted aromatic rings using electrophilic aromatic substitution to produce the sterically demanding TEDAMS group (Terao et al., 2010[Terao, K., Watanabe, T., Suehiro, T., Nokami, T. & Yoshida, J.-I. (2010). Tetrahedron Lett. 51, 4107-4109.]). Unno et al. (2006[Unno, M., Murakami, H., Kagawa, S. & Matsumoto, H. (2006). Silicon Chem. 3, 195-198.]) have addressed the influence of bulky silyl groups on the ability of silanols to hydrogen bond, and found that (i-Pr3Si)3SiOH exists as a monomer while (t-BuMe2Si)3SiOH is a hydrogen-bonded dimer. Our observation that compound II is monomeric indicates that the silicon atom is very hindered by the presence of the two benzhydryl groups.

2. Structural commentary

The mol­ecular structure of compound I is shown in Fig. 2[link]. The Si—C bond lengths range from 1.867 (2) to 1.914 (2) Å, with the Si—C1 bond to the methyl group being the shortest. The τ4 descriptor for fourfold coordination around Si1 is 0.97, indicating a nearly perfect tetra­hedral geometry around this silicon atom (where 0 = square planar, 0.85 = trigonal pyramidal, and 1 = tetra­hedral; Yang et al., 2007[Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955-964.]). The Si1—C1 bond and aromatic ring (C4–C9) are nearly co-planar with a C1—Si1—C4—C5 torsion angle of 12.2 (2)°. The orientation of the benzhydryl group bonded to C2 is such that when the mol­ecule is viewed down the C2—Si1 bond the methyl group (C1) is anti to H2 (torsion angle C1—Si1—C2—H2 is 169°), with the aromatic rings gauche. For the benzhydryl group containing C3, the hydrogen atom H3 is gauche to the methyl group (C1) with a C1—Si1—C3—H3 torsion angle of 69°, with the aromatic ring (C22–C27) occupying the anti position.

[Figure 2]
Figure 2
The mol­ecular structure of compound I, with the atom-labeling scheme. Displacement ellipsoids are drawn at the 40% probability level. For clarity, the hydrogen atoms have been omitted.

The mol­ecular structure of compound II is shown in Fig. 3[link]. The Si—C bond lengths range from 1.835 (4) to 1.905 (3) Å, with an Si—O bond length of 1.665 (3) Å. The τ4 descriptor for fourfold coordination around Si1 is 0.96, again indicating an almost perfect tetra­hedral geometry around this silicon atom. The orientation of the C2 benzhydryl group is such that the hydrogen atom H2 is anti to the methyl group (C1) with a C1—Si1—C2—H2 torsion angle of −165°. For the benzhydryl group containing C3, the hydrogen atom H3 is again gauche to the methyl group (C1) with a C1—Si1—C3—H3 torsion angle of 55°, and the aromatic ring C22–C27 occupies the anti position. An intra­molecular C—H⋯O hydrogen bond is present between H27 and O1 with an H⋯A distance of 2.55 Å (Table 2[link]).

Table 2
Hydrogen-bond geometry (Å, °) for II[link]

Cg1 is the centroid of the C4–C9 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C27—H27⋯O1 0.93 2.55 3.237 (4) 131
O1—H1⋯Cg1i 0.75 (8) 2.70 (7) 3.416 (3) 162 (7)
C24—H24⋯Cg1ii 0.93 2.86 3.582 (4) 135
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x, -y+1, -z.
[Figure 3]
Figure 3
The mol­ecular structure of compound II, with the atom-labeling scheme. Displacement ellipsoids are drawn at the 40% probability level. For clarity, the C-bound hydrogen atoms have been omitted.

3. Supra­molecular features

In the crystal of I, mol­ecules are linked by two pairs of inter­molecular C—H⋯π inter­actions involving inversion-related compounds (Fig. 4[link] and Table 1[link]). The result of these inter­actions is the formation of dimers that are linked to form ribbons along the b-axis direction (Fig. 5[link]).

Table 1
Hydrogen-bond geometry (Å, °) for I[link]

Cg2 and Cg4 are the centroids of the C10–C15 and C22–C27 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C20—H20⋯Cg4i 0.95 2.94 3.716 (2) 140
C24—H24⋯Cg2ii 0.95 2.75 3.696 (2) 175
Symmetry codes: (i) -x+2, -y, -z; (ii) -x+2, -y+1, -z.
[Figure 4]
Figure 4
Inter­molecular C—H⋯π inter­actions present in the crystal of compound I; see Table 1[link] for details. Only hydrogen atoms H24 and H20 are shown for clarity, and the C—H⋯π inter­actions are depicted as purple lines. Symmetry codes: (i) −x + 2, −y, −z; (ii) −x + 2, −y + 1, −z.
[Figure 5]
Figure 5
The crystal packing of compound I, viewed along the a-axis, showing the supra­molecular ribbons formed by inter­molecular C—H⋯π inter­actions (Table 1[link]; shown as dashed purple lines). Only hydrogen atoms H20 and H24 are shown for clarity.

In the crystal of II, inversion-related mol­ecules are linked by a pair of O—H⋯π inter­actions, forming dimers (Table 2[link], Fig. 6[link]). Similar inter­actions between aryl groups and OH groups in silanols have been reported previously (Al-Juaid et al., 1992[Al-Juaid, S. S., Al-Nasr, A. K. A., Eaborn, C. & Hitchcock, P. B. (1992). J. Organomet. Chem. 429, C9-C13.]). In the crystal of II, the dimers are linked by a pair of C—H⋯π inter­actions (Table 2[link]), so forming ribbons that propagate along the a-axis direction (Fig. 7[link]).

[Figure 6]
Figure 6
Intra­molecular hydrogen bond (blue dotted lines) and inter­molecular C—H⋯π and O—H⋯π inter­actions (Table 2[link]; purple dashed lines) present in the crystal of compound II. For clarity, only hydrogen atoms H1, H24 and H27 have been included. Symmetry codes: (i) −x + 1, −y + 1, −z; (ii) −x, −y + 1, −z.
[Figure 7]
Figure 7
The crystal packing of compound II, viewed along the c-axis, showing the supra­molecular ribbons formed by O—H⋯π and C—H⋯π inter­actions (Table 2[link]). For clarity, only hydrogen atoms H1, H24 and H27 have been included.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.40, May 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) gave only one hit for a structure in which a silicon atom is bonded to two benz­hydryl groups, viz. bis­(di­ethyl­amino)bis­(di­phenyl­meth­yl)silane (CSD refcode YEPTUI; Huppmann, et al., 1994[Huppmann, F., Noltemeyer, M. & Meller, A. (1994). J. Organomet. Chem. 483, 217-228.]). In this compound, the silicon atom is also bonded to two di­ethyl­amino groups. There are four other structures in the CSD with a silicon atom bonded to one benz­hydryl group and a different alkyl group (this count excludes organometallic compounds). These compounds include, tert-butyl 1′-acetyl-4-[(di­phenyl­meth­yl)(dimeth­yl)sil­yl]-5′-fluoro-2′-oxo-1′,2′-di­hydro­spiro­[cyclo­pentane-1,3′-indole]-2-carboxyl­ate (SOSZIL; Ball-Jones et al., 2014[Ball-Jones, N. R., Badillo, J. J., Tran, N. T. & Franz, A. K. (2014). Angew. Chem. Int. Ed. 53, 9462-9465.]), (3S,4R,5S)-4-[dimeth­yl(di­phenyl­meth­yl)sil­yl]-5-{[dimeth­yl(phen­yl)sil­yl]meth­yl}-3-meth­yl-tetra­hydro­furan-2-one (XICWUB; Peng & Woerpel, 2001[Peng, Z.-H. & Woerpel, K. A. (2001). Org. Lett. 3, 675-678.]), diphen­yl(tri­methyl­sil­yl)methane (MOQWIY; Hill & Hitchcock, 2002[Hill, M. S. & Hitchcock, P. B. (2002). Organometallics, 21, 220-225.]) and diphen­yl[t-but­yl(dimeth­yl)sil­yl]methane (MOQWEU; Hill & Hitchcock, 2002[Hill, M. S. & Hitchcock, P. B. (2002). Organometallics, 21, 220-225.]). This search revealed zero structures in the CSD that contained a silanol group where the silicon atom is bonded to a benz­hydryl group. However, the related structures (tri­phenyl­meth­yl)silanetriol acetone solvate (GAWVUW; Kim, et al., 2005[Kim, J. H., Han, J. S., Lee, M. E., Moon, D. H., Lah, M. S. & Yoo, B. R. (2005). J. Organomet. Chem. 690, 1372-1378.]) and (tri­phen­yl­meth­yl)silanetriol tetra­hydro­furan solvate (BAVQOF; Yoo, et al., 2001[Yoo, B. R., Kim, J. H., Lee, M. E. & Jung, I. N. (2001). Phosphorus Sulfur Silicon, 169, 227-230.]) are both silanetriols that bear a trityl group (–CPh3) coordinated to the central silicon atom.

5. Synthesis and crystallization

Synthesis of 2-methyl-1,1,2,3,3-penta­phenyl-2-sila­propane (I): Di­phenyl­methane (1.68 g, 10 mmol) was added to an oven-dried, argon-flushed 100 ml Schlenk flask along with a magnetic stirbar. Anhydrous tetra­hydro­furan (10 ml) was then added to the flask to dissolve the solid and the solution was cooled to 273 K. After the solution had cooled for 10 min, n-butyl­lithium (6.25 ml, 1.6 M in hexa­nes, 10 mmol) was added and the solution was stirred for 1 h. The reaction mixture was then cooled further to 195 K and di­chloro­methyl­phenyl­silane was added (0.955g, 5 mmol). After warming to room temperature and stirring for 12 h, the solution was poured into hexa­nes (20 ml) and the organic layer was washed with water (20 ml), dilute hydro­chloric acid (3 N, 10 ml), water (10 ml) and finally brine (10 ml). The hexa­nes solution was dried over sodium sulfate, filtered and concentrated in vacuo. The product was purified by dissolving it in 20 ml hexane, cooling to 195 K and isolating the white crystals by filtration. The crystals were then washed with pentane and dried in vacuo (2.1 g, 93% yield). Colorless block-like crystals suitable for analysis by X-ray diffraction were grown by recrystallization of compound I (0.1 g) from hexa­nes (2 ml) with heating (0.08 g isolated yield). FT–IR (ν, cm−1): 3057, 3019, 2869, 1597, 1493, 696; 1H NMR (400 MHz, chloro­form-d) δ 0.39 (s, 3H), 3.87 (s, 2H), 6.8–7.4 (m, 25H); 13C NMR (101 MHz, chloro­form-d) δ −4.77, 42.70, 125.28, 125.67, 127.37, 128.14, 128.49, 129.21, 129.46, 129.81, 134.62, 135.99, 142.02, 142.14; 29Si NMR (79 MHz, chloro­form-d) δ −3.12.

Synthesis of 2-methyl-1,1,3,3-tetra­phenyl-2-silapropan-2-ol (II): Bis(di­phenyl­meth­yl)methyl­phenyl­silane (0.455 g, 1.0 mmol) was added to an oven-dried, argon-flushed 50 ml Schlenk flask along with a stirbar. Anhydrous toluene (5 ml) was added to dissolve the solid and the solution was cooled to 273 K. Tri­fluoro­methane­sulfonic acid was weighed in a vial (150 mg, 1 mmol) and then added to the Schlenk flask using a Pasteur pipette, at which point the solution went from colorless to a bright yellow. The solution was stirred for 2 h at room temperature after which time the solution went from cloudy to clear. At this point a mixture of water (40 mg, 2.2 mmol) and tri­ethyl­amine (200 mg, 2.0 mmol) in ether (2 ml) was prepared and added to the rapidly stirring solution of the triflate in toluene, which caused the yellow solution to immediately turn colorless. After stirring for 1 h, the mixture was poured into hexa­nes (20 ml) and the organic layer was washed with water (20 ml), dilute hydro­chloric acid (3 N, 10 ml), water (10 ml) and finally brine (10 ml). The hexa­nes solution was dried over sodium sulfate, filtered and the solvent was removed in vacuo. The crude product was then dissolved in 5 ml hexane and cooled to 195 K. The white crystals were isolated by vacuum filtration, washed with pentane and dried in vacuo (319 mg, 81% yield). Colourless block-like crystals suitable for analysis by X-ray diffraction were grown by recrystallization of compound II (0.4 g) from hexa­nes (5 ml) with heating (0.3 g isolated yield, m.p. (uncorrected) 375.8–376.2 K). FT–IR (ν, cm−1): 3591, 3057, 3024, 1597, 1491, 696; 1H NMR (400 MHz, chloro­form-d) δ 0.15 (s, 3H), 3.49 (s, 2H), 7.22 (m, 20H). 13C NMR (101 MHz, chloro­form-d) δ −2.34, 44.44, 125.64, 125.68, 128.62, 129.06, 129.28, 141.20, 141.43. 29Si NMR (79 MHz, chloro­form-d) δ 7.98.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. For both compounds, the hydrogen atoms bonded to carbon atoms were placed in calculated positions and refined as riding: C—H = 0.95–1.00 Å with Uiso(H) = 1.5Ueq(C-meth­yl) and 1.2Ueq(C) for other H atoms in compound I, and C—H = 0.93–0.98 Å with 1.2Ueq(C) in compound II. The hydrogen atom bonded to O1 (H1) in compound II was located in an electron-density difference map and freely refined.

Table 3
Experimental details

  I II
Crystal data
Chemical formula C33H30Si C27H26OSi
Mr 454.66 394.57
Crystal system, space group Triclinic, P[\overline{1}] Monoclinic, P21/c
Temperature (K) 173 173
a, b, c (Å) 10.3879 (7), 10.5037 (7), 13.6350 (9) 11.8576 (5), 13.2995 (6), 14.3948 (6)
α, β, γ (°) 68.8212 (7), 70.6364 (7), 84.7947 (8) 90, 110.363 (3), 90
V3) 1308.06 (15) 2128.20 (16)
Z 2 4
Radiation type Mo Kα Cu Kα
μ (mm−1) 0.11 1.08
Crystal size (mm) 0.21 × 0.21 × 0.17 0.10 × 0.09 × 0.08
 
Data collection
Diffractometer Bruker APEXII CCD Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]
Tmin, Tmax 0.695, 0.745 0.624, 0.754
No. of measured, independent and observed [I > 2σ(I)] reflections 16773, 4803, 3734 11901, 4113, 2414
Rint 0.036 0.096
(sin θ/λ)max−1) 0.603 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.120, 1.08 0.062, 0.171, 0.97
No. of reflections 4803 4113
No. of parameters 308 267
H-atom treatment H-atom parameters constrained H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.34, −0.22 0.29, −0.36
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]; Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]) and CrystalMaker (Palmer, 2007[Palmer, D. (2007). CrystalMaker. CrystalMaker Software, Bicester, Oxfordshire , England.]).

Supporting information


Computing details top

For both structures, data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009; Bourhis et al., 2015); software used to prepare material for publication: CrystalMaker (Palmer, 2007).

2-Methyl-1,1,2,3,3-pentaphenyl-2-silapropane (I) top
Crystal data top
C33H30SiZ = 2
Mr = 454.66F(000) = 484
Triclinic, P1Dx = 1.154 Mg m3
a = 10.3879 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.5037 (7) ÅCell parameters from 6620 reflections
c = 13.6350 (9) Åθ = 2.2–25.4°
α = 68.8212 (7)°µ = 0.11 mm1
β = 70.6364 (7)°T = 173 K
γ = 84.7947 (8)°Block, colourless
V = 1308.06 (15) Å30.21 × 0.21 × 0.17 mm
Data collection top
Bruker APEXII CCD
diffractometer
3734 reflections with I > 2σ(I)
φ and ω scansRint = 0.036
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
θmax = 25.4°, θmin = 1.7°
Tmin = 0.695, Tmax = 0.745h = 1212
16773 measured reflectionsk = 1212
4803 independent reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0521P)2 + 0.3536P]
where P = (Fo2 + 2Fc2)/3
4803 reflections(Δ/σ)max < 0.001
308 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.22 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Si10.75666 (5)0.17147 (5)0.27134 (4)0.02998 (15)
C10.58208 (18)0.0942 (2)0.31735 (16)0.0399 (5)
H1A0.5806750.0409990.2716550.060*
H1B0.5160440.1669360.3091130.060*
H1C0.5578920.0342340.3954350.060*
C20.78889 (17)0.32685 (18)0.13751 (14)0.0293 (4)
H20.8755490.3711550.1281370.035*
C30.88432 (17)0.03163 (18)0.25388 (14)0.0290 (4)
H30.8794190.0138830.1879020.035*
C40.77121 (19)0.23587 (18)0.37890 (15)0.0337 (4)
C50.6560 (2)0.2462 (2)0.46416 (16)0.0436 (5)
H50.5691290.2203520.4671140.052*
C60.6643 (3)0.2927 (2)0.54426 (18)0.0549 (6)
H60.5836780.2987640.6011880.066*
C70.7882 (3)0.3304 (2)0.54221 (19)0.0539 (6)
H70.7938960.3611410.5982210.065*
C80.9045 (2)0.3235 (2)0.45856 (19)0.0492 (6)
H80.9906310.3504980.4562970.059*
C90.8961 (2)0.2771 (2)0.37750 (17)0.0401 (5)
H90.9768820.2733020.3199040.048*
C100.67921 (17)0.43090 (18)0.15447 (14)0.0294 (4)
C110.55994 (19)0.4316 (2)0.12873 (16)0.0361 (4)
H110.5462850.3658650.0998900.043*
C120.46085 (19)0.5266 (2)0.14451 (16)0.0415 (5)
H120.3800190.5250250.1268740.050*
C130.4791 (2)0.6233 (2)0.18562 (16)0.0416 (5)
H130.4113250.6884600.1963760.050*
C140.5969 (2)0.6242 (2)0.21100 (16)0.0403 (5)
H140.6101680.6907780.2392200.048*
C150.69603 (19)0.52935 (19)0.19580 (15)0.0348 (4)
H150.7764750.5315100.2138010.042*
C160.81390 (17)0.30119 (18)0.02966 (15)0.0302 (4)
C170.89389 (19)0.3951 (2)0.06919 (16)0.0395 (5)
H170.9295170.4746620.0682640.047*
C180.9227 (2)0.3751 (2)0.16910 (17)0.0481 (5)
H180.9776710.4408450.2357240.058*
C190.8724 (2)0.2603 (2)0.17273 (17)0.0458 (5)
H190.8941100.2455610.2411020.055*
C200.7903 (2)0.1675 (2)0.07596 (18)0.0454 (5)
H200.7534970.0890320.0775900.054*
C210.7611 (2)0.1883 (2)0.02404 (16)0.0387 (5)
H210.7037580.1236850.0901020.046*
C221.03391 (17)0.06948 (17)0.22632 (14)0.0288 (4)
C231.10054 (19)0.16811 (19)0.12395 (15)0.0365 (5)
H231.0514840.2112630.0735560.044*
C241.2365 (2)0.2044 (2)0.09431 (17)0.0438 (5)
H241.2793690.2728640.0246240.053*
C251.3101 (2)0.1413 (2)0.16568 (18)0.0446 (5)
H251.4036990.1657090.1454080.054*
C261.2463 (2)0.0427 (2)0.26653 (17)0.0421 (5)
H261.2965970.0016570.3157500.050*
C271.10940 (19)0.00747 (19)0.29711 (15)0.0341 (4)
H271.0667500.0600270.3674440.041*
C280.82851 (17)0.09864 (18)0.35234 (15)0.0300 (4)
C290.80721 (19)0.10980 (19)0.46160 (15)0.0347 (4)
H290.8339860.0358070.4757960.042*
C300.74772 (19)0.2268 (2)0.54981 (16)0.0388 (5)
H300.7348510.2327530.6236610.047*
C310.7071 (2)0.3347 (2)0.53092 (17)0.0432 (5)
H310.6642580.4140510.5916630.052*
C320.7288 (2)0.3271 (2)0.42349 (18)0.0452 (5)
H320.7026930.4018610.4098900.054*
C330.78895 (19)0.20994 (19)0.33547 (16)0.0365 (4)
H330.8034910.2055650.2617490.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Si10.0258 (3)0.0328 (3)0.0277 (3)0.0011 (2)0.0077 (2)0.0073 (2)
C10.0296 (10)0.0442 (11)0.0373 (11)0.0004 (9)0.0088 (9)0.0059 (9)
C20.0258 (9)0.0315 (10)0.0295 (10)0.0010 (7)0.0094 (8)0.0086 (8)
C30.0280 (9)0.0321 (10)0.0258 (9)0.0014 (7)0.0088 (7)0.0092 (8)
C40.0377 (10)0.0305 (10)0.0282 (10)0.0086 (8)0.0126 (8)0.0050 (8)
C50.0459 (12)0.0458 (12)0.0319 (11)0.0053 (10)0.0075 (9)0.0111 (9)
C60.0677 (16)0.0552 (14)0.0333 (12)0.0104 (12)0.0060 (11)0.0173 (11)
C70.0861 (19)0.0466 (13)0.0412 (13)0.0236 (12)0.0339 (13)0.0222 (11)
C80.0592 (14)0.0445 (12)0.0609 (15)0.0170 (11)0.0375 (12)0.0249 (11)
C90.0383 (11)0.0410 (11)0.0459 (12)0.0115 (9)0.0176 (9)0.0196 (10)
C100.0282 (9)0.0312 (9)0.0241 (9)0.0005 (7)0.0076 (7)0.0048 (8)
C110.0328 (10)0.0414 (11)0.0353 (11)0.0007 (8)0.0139 (8)0.0122 (9)
C120.0290 (10)0.0557 (13)0.0368 (11)0.0079 (9)0.0134 (9)0.0120 (10)
C130.0374 (11)0.0489 (12)0.0340 (11)0.0151 (9)0.0098 (9)0.0141 (10)
C140.0447 (12)0.0412 (11)0.0372 (11)0.0068 (9)0.0121 (9)0.0184 (9)
C150.0340 (10)0.0409 (11)0.0305 (10)0.0027 (8)0.0136 (8)0.0113 (9)
C160.0256 (9)0.0351 (10)0.0304 (10)0.0053 (8)0.0119 (8)0.0106 (8)
C170.0360 (11)0.0473 (12)0.0336 (11)0.0033 (9)0.0106 (9)0.0121 (9)
C180.0414 (12)0.0656 (15)0.0312 (11)0.0012 (11)0.0091 (9)0.0118 (10)
C190.0427 (12)0.0668 (15)0.0368 (12)0.0137 (11)0.0168 (10)0.0274 (11)
C200.0543 (13)0.0442 (12)0.0526 (14)0.0126 (10)0.0287 (11)0.0263 (11)
C210.0429 (11)0.0366 (11)0.0365 (11)0.0002 (9)0.0163 (9)0.0094 (9)
C220.0272 (9)0.0292 (9)0.0303 (10)0.0055 (7)0.0085 (8)0.0126 (8)
C230.0324 (10)0.0384 (11)0.0302 (10)0.0056 (8)0.0082 (8)0.0052 (9)
C240.0336 (11)0.0433 (12)0.0379 (12)0.0025 (9)0.0027 (9)0.0028 (9)
C250.0310 (11)0.0460 (12)0.0513 (13)0.0058 (9)0.0122 (10)0.0101 (10)
C260.0371 (11)0.0444 (12)0.0457 (12)0.0000 (9)0.0211 (9)0.0096 (10)
C270.0350 (10)0.0329 (10)0.0317 (10)0.0004 (8)0.0112 (8)0.0075 (8)
C280.0239 (9)0.0294 (9)0.0328 (10)0.0044 (7)0.0077 (8)0.0086 (8)
C290.0339 (10)0.0343 (10)0.0336 (10)0.0046 (8)0.0097 (8)0.0112 (8)
C300.0337 (10)0.0417 (11)0.0306 (10)0.0069 (9)0.0050 (8)0.0069 (9)
C310.0373 (11)0.0367 (11)0.0401 (12)0.0019 (9)0.0065 (9)0.0007 (9)
C320.0477 (12)0.0345 (11)0.0498 (13)0.0036 (9)0.0161 (10)0.0090 (10)
C330.0354 (10)0.0367 (11)0.0337 (11)0.0015 (8)0.0090 (8)0.0104 (9)
Geometric parameters (Å, º) top
Si1—C11.8669 (18)C15—H150.9500
Si1—C21.9099 (18)C16—C171.388 (3)
Si1—C31.9138 (18)C16—C211.387 (3)
Si1—C41.8744 (19)C17—H170.9500
C1—H1A0.9800C17—C181.384 (3)
C1—H1B0.9800C18—H180.9500
C1—H1C0.9800C18—C191.380 (3)
C2—H21.0000C19—H190.9500
C2—C101.526 (2)C19—C201.376 (3)
C2—C161.524 (2)C20—H200.9500
C3—H31.0000C20—C211.388 (3)
C3—C221.527 (2)C21—H210.9500
C3—C281.520 (2)C22—C231.395 (2)
C4—C51.393 (3)C22—C271.388 (3)
C4—C91.396 (3)C23—H230.9500
C5—H50.9500C23—C241.382 (3)
C5—C61.376 (3)C24—H240.9500
C6—H60.9500C24—C251.381 (3)
C6—C71.369 (3)C25—H250.9500
C7—H70.9500C25—C261.376 (3)
C7—C81.377 (3)C26—H260.9500
C8—H80.9500C26—C271.388 (3)
C8—C91.389 (3)C27—H270.9500
C9—H90.9500C28—C291.394 (3)
C10—C111.394 (2)C28—C331.390 (3)
C10—C151.392 (3)C29—H290.9500
C11—H110.9500C29—C301.384 (3)
C11—C121.387 (3)C30—H300.9500
C12—H120.9500C30—C311.378 (3)
C12—C131.377 (3)C31—H310.9500
C13—H130.9500C31—C321.379 (3)
C13—C141.380 (3)C32—H320.9500
C14—H140.9500C32—C331.386 (3)
C14—C151.385 (3)C33—H330.9500
C1—Si1—C2111.34 (8)C10—C15—H15119.6
C1—Si1—C3107.30 (9)C14—C15—C10120.79 (18)
C1—Si1—C4109.22 (9)C14—C15—H15119.6
C2—Si1—C3111.98 (8)C17—C16—C2118.87 (16)
C4—Si1—C2106.03 (8)C21—C16—C2123.72 (16)
C4—Si1—C3110.98 (8)C21—C16—C17117.42 (17)
Si1—C1—H1A109.5C16—C17—H17119.4
Si1—C1—H1B109.5C18—C17—C16121.26 (19)
Si1—C1—H1C109.5C18—C17—H17119.4
H1A—C1—H1B109.5C17—C18—H18119.7
H1A—C1—H1C109.5C19—C18—C17120.5 (2)
H1B—C1—H1C109.5C19—C18—H18119.7
Si1—C2—H2105.2C18—C19—H19120.5
C10—C2—Si1109.56 (11)C20—C19—C18119.09 (19)
C10—C2—H2105.2C20—C19—H19120.5
C16—C2—Si1117.65 (12)C19—C20—H20119.9
C16—C2—H2105.2C19—C20—C21120.20 (19)
C16—C2—C10112.90 (14)C21—C20—H20119.9
Si1—C3—H3105.4C16—C21—C20121.47 (18)
C22—C3—Si1116.07 (12)C16—C21—H21119.3
C22—C3—H3105.4C20—C21—H21119.3
C28—C3—Si1107.51 (11)C23—C22—C3119.13 (16)
C28—C3—H3105.4C27—C22—C3123.19 (16)
C28—C3—C22116.09 (14)C27—C22—C23117.65 (16)
C5—C4—Si1120.97 (15)C22—C23—H23119.3
C5—C4—C9116.66 (18)C24—C23—C22121.36 (18)
C9—C4—Si1122.36 (15)C24—C23—H23119.3
C4—C5—H5119.0C23—C24—H24119.9
C6—C5—C4122.0 (2)C25—C24—C23120.21 (18)
C6—C5—H5119.0C25—C24—H24119.9
C5—C6—H6119.9C24—C25—H25120.4
C7—C6—C5120.3 (2)C26—C25—C24119.18 (18)
C7—C6—H6119.9C26—C25—H25120.4
C6—C7—H7120.2C25—C26—H26119.6
C6—C7—C8119.7 (2)C25—C26—C27120.72 (19)
C8—C7—H7120.2C27—C26—H26119.6
C7—C8—H8120.0C22—C27—H27119.6
C7—C8—C9120.0 (2)C26—C27—C22120.87 (17)
C9—C8—H8120.0C26—C27—H27119.6
C4—C9—H9119.3C29—C28—C3122.69 (16)
C8—C9—C4121.4 (2)C33—C28—C3119.78 (16)
C8—C9—H9119.3C33—C28—C29117.43 (17)
C11—C10—C2121.61 (16)C28—C29—H29119.4
C15—C10—C2120.62 (16)C30—C29—C28121.16 (18)
C15—C10—C11117.78 (17)C30—C29—H29119.4
C10—C11—H11119.4C29—C30—H30119.9
C12—C11—C10121.14 (18)C31—C30—C29120.25 (19)
C12—C11—H11119.4C31—C30—H30119.9
C11—C12—H12119.8C30—C31—H31120.1
C13—C12—C11120.32 (18)C30—C31—C32119.74 (18)
C13—C12—H12119.8C32—C31—H31120.1
C12—C13—H13120.4C31—C32—H32120.1
C12—C13—C14119.21 (18)C31—C32—C33119.76 (19)
C14—C13—H13120.4C33—C32—H32120.1
C13—C14—H14119.6C28—C33—H33119.2
C13—C14—C15120.76 (19)C32—C33—C28121.64 (19)
C15—C14—H14119.6C32—C33—H33119.2
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg4 are the centroids of the C10–C15 and C22–C27 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C20—H20···Cg4i0.952.943.716 (2)140
C24—H24···Cg2ii0.952.753.696 (2)175
Symmetry codes: (i) x+2, y, z; (ii) x+2, y+1, z.
2-Methyl-1,1,3,3-tetraphenyl-2-silapropan-2-ol (II) top
Crystal data top
C27H26OSiF(000) = 840
Mr = 394.57Dx = 1.231 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
a = 11.8576 (5) ÅCell parameters from 1512 reflections
b = 13.2995 (6) Åθ = 4.0–71.6°
c = 14.3948 (6) ŵ = 1.08 mm1
β = 110.363 (3)°T = 173 K
V = 2128.20 (16) Å3Block, colourless
Z = 40.10 × 0.09 × 0.08 mm
Data collection top
Bruker APEXII CCD
diffractometer
2414 reflections with I > 2σ(I)
φ and ω scansRint = 0.096
Absorption correction: multi-scan
(SADABS; Bruker, 2013
θmax = 72.1°, θmin = 4.0°
Tmin = 0.624, Tmax = 0.754h = 1414
11901 measured reflectionsk = 1416
4113 independent reflectionsl = 1716
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: mixed
wR(F2) = 0.171H atoms treated by a mixture of independent and constrained refinement
S = 0.97 w = 1/[σ2(Fo2) + (0.0793P)2]
where P = (Fo2 + 2Fc2)/3
4113 reflections(Δ/σ)max = 0.001
267 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.35 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Si10.37978 (7)0.60730 (7)0.11066 (6)0.0322 (2)
O10.4586 (2)0.5078 (2)0.0982 (2)0.0478 (7)
H10.525 (6)0.511 (5)0.125 (5)0.14 (3)*
C10.4582 (3)0.7247 (3)0.1046 (3)0.0496 (10)
H1A0.5385100.7225120.1520610.074*
H1B0.4157530.7804730.1192300.074*
H1C0.4614280.7326300.0392500.074*
C20.2251 (3)0.5965 (3)0.0102 (2)0.0311 (7)
H20.1863210.5411540.0326610.037*
C30.3493 (3)0.6018 (3)0.2320 (2)0.0305 (7)
H30.3049830.6635430.2337890.037*
C40.2310 (3)0.5599 (3)0.0879 (2)0.0314 (7)
C50.2221 (3)0.4579 (3)0.1059 (3)0.0465 (9)
H50.2126460.4151050.0580010.056*
C60.2269 (4)0.4173 (3)0.1928 (3)0.0597 (12)
H60.2209220.3480440.2023430.072*
C70.2403 (4)0.4783 (4)0.2651 (3)0.0594 (12)
H70.2427260.4511110.3238990.071*
C80.2500 (4)0.5796 (4)0.2490 (3)0.0558 (11)
H80.2595360.6217040.2973550.067*
C90.2457 (3)0.6210 (3)0.1611 (3)0.0446 (9)
H90.2528400.6902030.1515190.054*
C100.1461 (3)0.6868 (3)0.0079 (2)0.0318 (7)
C110.1675 (3)0.7822 (3)0.0220 (3)0.0402 (8)
H110.2337800.7927190.0411980.048*
C120.0917 (3)0.8616 (3)0.0236 (3)0.0478 (9)
H120.1060840.9241340.0461170.057*
C130.0053 (3)0.8494 (3)0.0078 (3)0.0495 (10)
H130.0558570.9030910.0069780.059*
C140.0253 (3)0.7557 (3)0.0404 (3)0.0463 (9)
H140.0892270.7465800.0628640.056*
C150.0485 (3)0.6755 (3)0.0402 (2)0.0379 (8)
H150.0328700.6128950.0617750.046*
C160.4654 (3)0.6075 (3)0.3226 (2)0.0330 (7)
C170.5172 (3)0.7002 (3)0.3555 (3)0.0417 (9)
H170.4822280.7580480.3212620.050*
C180.6206 (3)0.7080 (3)0.4391 (3)0.0517 (10)
H180.6552910.7707300.4590020.062*
C190.6718 (3)0.6238 (3)0.4923 (3)0.0483 (10)
H190.7396620.6292580.5492670.058*
C200.6213 (3)0.5311 (3)0.4603 (3)0.0485 (10)
H200.6560400.4735770.4952830.058*
C210.5185 (3)0.5229 (3)0.3757 (3)0.0402 (8)
H210.4853350.4599270.3548380.048*
C220.2661 (3)0.5165 (3)0.2345 (2)0.0330 (7)
C230.1654 (3)0.5350 (3)0.2610 (2)0.0401 (8)
H230.1519760.5993650.2801980.048*
C240.0848 (3)0.4581 (3)0.2589 (3)0.0503 (10)
H240.0187340.4712590.2777080.060*
C250.1022 (3)0.3627 (3)0.2294 (3)0.0507 (11)
H250.0472340.3119310.2266940.061*
C260.2021 (4)0.3430 (3)0.2038 (3)0.0459 (9)
H260.2149290.2785640.1843820.055*
C270.2826 (3)0.4188 (3)0.2069 (2)0.0401 (8)
H270.3497620.4043010.1900840.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Si10.0319 (4)0.0348 (5)0.0275 (4)0.0005 (4)0.0074 (3)0.0024 (4)
O10.0406 (14)0.0544 (18)0.0440 (15)0.0134 (13)0.0092 (12)0.0039 (13)
C10.056 (2)0.052 (3)0.0361 (19)0.0172 (19)0.0088 (17)0.0081 (19)
C20.0329 (15)0.0312 (18)0.0273 (15)0.0035 (14)0.0080 (12)0.0031 (15)
C30.0369 (15)0.0296 (17)0.0250 (15)0.0011 (14)0.0109 (13)0.0004 (14)
C40.0295 (14)0.0357 (19)0.0259 (15)0.0000 (14)0.0057 (12)0.0012 (15)
C50.057 (2)0.038 (2)0.044 (2)0.0052 (18)0.0170 (18)0.0050 (18)
C60.064 (3)0.048 (3)0.065 (3)0.000 (2)0.020 (2)0.020 (2)
C70.051 (2)0.075 (3)0.052 (2)0.009 (2)0.018 (2)0.030 (3)
C80.061 (2)0.074 (3)0.036 (2)0.016 (2)0.0224 (18)0.008 (2)
C90.056 (2)0.043 (2)0.0346 (18)0.0080 (18)0.0161 (16)0.0049 (18)
C100.0341 (15)0.0340 (19)0.0224 (15)0.0024 (14)0.0035 (12)0.0004 (14)
C110.0462 (18)0.034 (2)0.043 (2)0.0005 (16)0.0191 (16)0.0010 (17)
C120.057 (2)0.033 (2)0.053 (2)0.0039 (17)0.0201 (19)0.0022 (19)
C130.053 (2)0.040 (2)0.052 (2)0.0144 (18)0.0137 (19)0.0072 (19)
C140.0429 (19)0.051 (3)0.047 (2)0.0037 (17)0.0176 (17)0.0020 (19)
C150.0401 (17)0.036 (2)0.0361 (18)0.0022 (15)0.0110 (14)0.0023 (16)
C160.0344 (15)0.042 (2)0.0239 (14)0.0003 (15)0.0117 (12)0.0022 (15)
C170.0471 (19)0.039 (2)0.0362 (18)0.0033 (16)0.0111 (15)0.0015 (17)
C180.052 (2)0.060 (3)0.038 (2)0.018 (2)0.0100 (17)0.009 (2)
C190.0381 (17)0.073 (3)0.0287 (17)0.0061 (19)0.0054 (14)0.001 (2)
C200.0407 (18)0.063 (3)0.0373 (19)0.0030 (19)0.0075 (16)0.012 (2)
C210.0386 (17)0.043 (2)0.0353 (18)0.0004 (16)0.0085 (15)0.0046 (17)
C220.0366 (16)0.0341 (19)0.0239 (15)0.0030 (14)0.0051 (13)0.0058 (15)
C230.0424 (18)0.045 (2)0.0290 (17)0.0017 (16)0.0072 (14)0.0034 (16)
C240.0377 (18)0.070 (3)0.039 (2)0.0073 (19)0.0075 (16)0.009 (2)
C250.052 (2)0.052 (3)0.0356 (19)0.0222 (19)0.0008 (17)0.0107 (18)
C260.063 (2)0.033 (2)0.0337 (18)0.0076 (18)0.0068 (17)0.0041 (17)
C270.0480 (19)0.037 (2)0.0341 (18)0.0006 (16)0.0128 (15)0.0073 (16)
Geometric parameters (Å, º) top
Si1—O11.666 (3)C12—H120.9300
Si1—C11.835 (4)C12—C131.384 (5)
Si1—C21.905 (3)C13—H130.9300
Si1—C31.904 (3)C13—C141.380 (5)
O1—H10.75 (6)C14—H140.9300
C1—H1A0.9600C14—C151.380 (5)
C1—H1B0.9600C15—H150.9300
C1—H1C0.9600C16—C171.385 (5)
C2—H20.9800C16—C211.383 (5)
C2—C41.518 (4)C17—H170.9300
C2—C101.517 (4)C17—C181.391 (5)
C3—H30.9800C18—H180.9300
C3—C161.533 (4)C18—C191.374 (5)
C3—C221.513 (4)C19—H190.9300
C4—C51.378 (5)C19—C201.378 (6)
C4—C91.389 (5)C20—H200.9300
C5—H50.9300C20—C211.396 (5)
C5—C61.382 (5)C21—H210.9300
C6—H60.9300C22—C231.396 (5)
C6—C71.372 (6)C22—C271.392 (5)
C7—H70.9300C23—H230.9300
C7—C81.366 (6)C23—C241.394 (5)
C8—H80.9300C24—H240.9300
C8—C91.397 (5)C24—C251.376 (6)
C9—H90.9300C25—H250.9300
C10—C111.391 (5)C25—C261.383 (6)
C10—C151.397 (4)C26—H260.9300
C11—H110.9300C26—C271.378 (5)
C11—C121.381 (5)C27—H270.9300
O1—Si1—C1111.00 (17)C11—C12—H12119.5
O1—Si1—C2106.65 (15)C11—C12—C13121.0 (4)
O1—Si1—C3111.15 (15)C13—C12—H12119.5
C1—Si1—C2113.46 (16)C12—C13—H13120.7
C1—Si1—C3109.71 (16)C14—C13—C12118.5 (4)
C3—Si1—C2104.69 (14)C14—C13—H13120.7
Si1—O1—H1116 (5)C13—C14—H14119.6
Si1—C1—H1A109.5C15—C14—C13120.8 (4)
Si1—C1—H1B109.5C15—C14—H14119.6
Si1—C1—H1C109.5C10—C15—H15119.4
H1A—C1—H1B109.5C14—C15—C10121.1 (3)
H1A—C1—H1C109.5C14—C15—H15119.4
H1B—C1—H1C109.5C17—C16—C3119.7 (3)
Si1—C2—H2104.2C21—C16—C3122.1 (3)
C4—C2—Si1112.7 (2)C21—C16—C17118.2 (3)
C4—C2—H2104.2C16—C17—H17119.5
C10—C2—Si1112.4 (2)C16—C17—C18121.0 (4)
C10—C2—H2104.2C18—C17—H17119.5
C10—C2—C4117.5 (3)C17—C18—H18119.8
Si1—C3—H3105.5C19—C18—C17120.5 (4)
C16—C3—Si1112.2 (2)C19—C18—H18119.8
C16—C3—H3105.5C18—C19—H19120.5
C22—C3—Si1112.6 (2)C18—C19—C20119.1 (3)
C22—C3—H3105.5C20—C19—H19120.5
C22—C3—C16114.6 (3)C19—C20—H20119.7
C5—C4—C2117.7 (3)C19—C20—C21120.5 (4)
C5—C4—C9117.1 (3)C21—C20—H20119.7
C9—C4—C2125.2 (3)C16—C21—C20120.7 (4)
C4—C5—H5119.0C16—C21—H21119.7
C4—C5—C6122.0 (4)C20—C21—H21119.7
C6—C5—H5119.0C23—C22—C3120.1 (3)
C5—C6—H6119.7C27—C22—C3122.4 (3)
C7—C6—C5120.5 (4)C27—C22—C23117.5 (3)
C7—C6—H6119.7C22—C23—H23119.7
C6—C7—H7120.6C24—C23—C22120.7 (4)
C8—C7—C6118.7 (4)C24—C23—H23119.7
C8—C7—H7120.6C23—C24—H24119.7
C7—C8—H8119.5C25—C24—C23120.5 (4)
C7—C8—C9121.0 (4)C25—C24—H24119.7
C9—C8—H8119.5C24—C25—H25120.3
C4—C9—C8120.7 (4)C24—C25—C26119.5 (4)
C4—C9—H9119.7C26—C25—H25120.3
C8—C9—H9119.7C25—C26—H26120.0
C11—C10—C2123.5 (3)C27—C26—C25120.0 (4)
C11—C10—C15117.5 (3)C27—C26—H26120.0
C15—C10—C2119.0 (3)C22—C27—H27119.1
C10—C11—H11119.5C26—C27—C22121.9 (4)
C12—C11—C10121.0 (3)C26—C27—H27119.1
C12—C11—H11119.5
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C4–C9 ring.
D—H···AD—HH···AD···AD—H···A
C27—H27···O10.932.553.237 (4)131
O1—H1···Cg1i0.75 (8)2.70 (7)3.416 (3)162 (7)
C24—H24···Cg1ii0.932.863.582 (4)135
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z.
 

Acknowledgements

The authors thank Pfizer, Inc., for the donation of a Varian INOVA 400 MHz NMR. The CCD-based diffractometers at Michigan State University were upgraded and/or replaced with departmental funds.

Funding information

Funding for this research was provided by: National Science Foundation, Directorate for Mathematical and Physical Sciences ( grant No. MRI CHE-1725699); Grand Valley State University (grant No. OURS, CSCE, Chemistry Department's Weldon Fund).

References

First citationAl-Juaid, S. S., Al-Nasr, A. K. A., Eaborn, C. & Hitchcock, P. B. (1992). J. Organomet. Chem. 429, C9–C13.  CAS Google Scholar
First citationBall-Jones, N. R., Badillo, J. J., Tran, N. T. & Franz, A. K. (2014). Angew. Chem. Int. Ed. 53, 9462–9465.  CAS Google Scholar
First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFranz, A. K. & Wilson, S. O. (2013). J. Med. Chem. 56, 388–405.  CrossRef CAS PubMed Google Scholar
First citationGeyer, M., Wellner, E., Jurva, U., Saloman, S., Armstrong, D. & Tacke, R. (2015). ChemMedChem, 10, 911–924.  CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHill, M. S. & Hitchcock, P. B. (2002). Organometallics, 21, 220–225.  CSD CrossRef CAS Google Scholar
First citationHuppmann, F., Noltemeyer, M. & Meller, A. (1994). J. Organomet. Chem. 483, 217–228.  CSD CrossRef CAS Google Scholar
First citationKim, J. H., Han, J. S., Lee, M. E., Moon, D. H., Lah, M. S. & Yoo, B. R. (2005). J. Organomet. Chem. 690, 1372–1378.  CSD CrossRef CAS Google Scholar
First citationKira, M., Kadowaki, T., Yin, D., Sakamoto, K., Iwamoto, T. & Kabuto, C. (2007). Organometallics, 26, 4890–4895.  CSD CrossRef CAS Google Scholar
First citationPalmer, D. (2007). CrystalMaker. CrystalMaker Software, Bicester, Oxfordshire , England.  Google Scholar
First citationPeng, Z.-H. & Woerpel, K. A. (2001). Org. Lett. 3, 675–678.  CSD CrossRef PubMed CAS Google Scholar
First citationRamesh, R. & Reddy, D. S. (2018). J. Med. Chem. 61, 3779–3798.  CrossRef CAS PubMed Google Scholar
First citationShainyan, B. A., Kirpichenko, S. V. & Kleinpeter, E. (2017). J. Org. Chem. 82, 13414–13422.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTacke, R. & Doerrich, S. (2016). Top. Med. Chem. 17, 29–59.  CrossRef CAS Google Scholar
First citationTerao, K., Watanabe, T., Suehiro, T., Nokami, T. & Yoshida, J.-I. (2010). Tetrahedron Lett. 51, 4107–4109.  CrossRef CAS Google Scholar
First citationUnno, M., Murakami, H., Kagawa, S. & Matsumoto, H. (2006). Silicon Chem. 3, 195-198.  CSD CrossRef Google Scholar
First citationYang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationYoo, B. R., Kim, J. H., Lee, M. E. & Jung, I. N. (2001). Phosphorus Sulfur Silicon, 169, 227–230.  CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds