research communications
Synthesis, characterization, E)-2-cyano-3-(3-methylthiophen-2-yl)acrylate and a new polymorph of ethyl (E)-2-cyano-3-(thiophen-2-yl)acrylate
and supramolecularity of ethyl (aDepartment of Chemistry, Al al-Bayt University, Mafraq 25113, Jordan, and bFaculty of Chemistry, Philipps University Marburg, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
*Correspondence e-mail: bfali@aabu.edu.jo
The synthesis, E)-2-cyano-3-(3-methylthiophen-2-yl)acrylate (1), C11H11NO2S, and ethyl (E)-2-cyano-3-(thiophen-2-yl)acrylate (2), C10H9NO2S, are reported. Derivative 1 crystallized with two independent molecules in the and derivative 2 represents a new monoclinic (C2/m) polymorph. The molecular conformations of 1 and the two polymorphs of 2 are very similar, as all non-H atoms are planar except for the methyl of the ethyl groups. The intermolecular interactions and crystal packing of 1 and 2 are described and compared with that of the reported monoclinic (C2/m) polymorph of derivative 2 [Castro Agudelo et al. (2017). Acta Cryst. E73, 1287–1289].
and structural motif of two thiophene-based cyanoacrylate derivatives, namely, ethyl (1. Chemical context
Cyanoacrylate derivatives are of industrial interest being subunits used to build many adhesives and polymeric materials (Faggi et al., 2019). They are also considered important intermediate precursors for the synthesis of different heterocyclic derivatives, see for example Qian et al. (2018), and as nitrile-activated species in bioreduction reactions (Brenna et al., 2013, 2015; Kong et al., 2016) among others. In addition, they show important practical properties, such as in organic dye-sensitized solar cells (DSSCs) (He et al., 2017; Zhou et al., 2015). Within these voltaic cells, cyanoacrylic acid is one of the most commonly employed acceptors. Thiophene and its derivatives, known to exhibit high charge mobility, serve as π-bridges (donor-π–acceptor structure) to provide conjugation and enhance light absorbance (Liu et al., 2012).
An understanding of the structure of thiophene-based acrylate subunits is necessary to benefit from their properties in photovoltaic cells. In a continuation of our work on the X-ray structural characterization of thiophene-containing derivatives (Ibrahim et al., 2019; Al-Refai et al., 2014, 2016), we report here the synthesis, characterization and crystal structures of two thiophene-based acrylate derivatives, namely, ethyl (E)-2-cyano-3-(3-methylthiophen-2-yl)acrylate (1) and ethyl (E)-2-cyano-3-(3-methylthiophen-2-yl)acrylate (2). Derivative 2 is a polymorph of a reported structure (Castro Agudelo et al., 2017), but with no disorder of the ethoxy group. The crystal supramolecularity of both compounds is also discussed.
2. Structural commentary
The molecular structures of the title compounds are depicted in Fig. 1. The contains two independent molecules, A and B, in 1 and one molecule in 2. In these molecules, the bond distances and angles fall within similar ranges to those reported for similar compounds (Castro Agudelo et al., 2017; Xu et al., 2016). In both compounds, all non-hydrogen atoms, except for the methyl groups, lie nearly in the same planes. The differences in torsion angles [C1—C2—C3—C4 = −177.78 (14) and C1—O2—C12—C13 = 83.60 (15)° (molecule A), C14—C15—C16—C17 = 179.71 (15)° and C14—O15—C26—C27 = −88.66 (2)° (molecule B) in 1 and C1—C2—C3—C4 = −178.77 (11) and C1—O2—C11—C12 = −83.41 (13)° in 2] indicate an out-of-plane deviation of the methyl group. The planarity of the molecules allows intramolecular hydrogen bonds to occur [C3—H3⋯O1 (molecule A) and C16—H16⋯O14 (molecule B) in 1; C3—H3⋯O1 in 2] (Fig. 1 and Tables 1 and 2), forming an S(6) ring motif with the carbonyl O and cyano N atoms consequently exhibiting an anti-configuration to each other. The conformation of the ethene bond is always E [C2=C3 = 1.363 (2) Å (molecule A) and C15=C16 = 1.3625 (19) (molecule B) in 1; C2=C3 = 1.3592 (18) Å in 2].
|
Derivative 2 is a polymorph of ethyl (E)-2-cyano-3-(thiophen-2-yl)acrylate (CSD refcode GEHYEA; Castro Agudelo et al., 2017). It shows a similar structure to 1, which has an extra methyl substituent on the thiophene ring. In compound 1 and the two polymorphs of 2, all thiophene-based cyanoacrylate non-H atoms, except for the ethyl group, lie in the same plane. It is also noteworthy that in the polymorph, the ethyl fragment occurs in more than one conformation, thus resulting in disorder, which is absent in 1 and 2.
3. Supramolecular features
In the crystal of 1, the A and B molecules each form layers parallel to the ac plane, Fig. 2a. The layers built up from chains of B molecules are connected via C—H⋯O hydrogen bonds along the a axis. These chains are further connected through C—H⋯O interactions with stacks of molecules A along the c axis. In the b-axis direction, interlayered interactions through and/or weak dipolar interactions generate a three-dimensional network. In the crystal of 2, inversion dimers are assembled along the c axis through C—H⋯O interactions, Fig. 2b. Adjacent dimers (along the c axis) are further connected through C—H⋯N interactions, leading to infinite chains propagating along the c-axis direction. The resulting chains interact via to form sheets parallel to the ac plane (Fig. 2b). The sheets are connected through and/or weak dipolar interactions, thus consolidating the three-dimensional framework structure. Compounds 1, 2 and the polymorph of 2 (Castro Agudelo et al., 2017) show no apparent degree of π–π stacking.
The polymorph of 2 shows a similar crystal packing arrangement, the molecules being connected via C—H⋯O/N interactions, generating centrosymmetric dimers. Chains of molecules are further connected by into sheets.
4. Database survey
Castro Agudelo et al. (2017) reported a recent survey on the Cambridge Structural Database [CSD Version 5.37 with two updates; Groom et al., 2016] for hits containing the complete thiophene-based cyanoacrylate fragment, together with the possibility of other five-membered rings and/or the presence of a saturated chain longer than the ethyl fragment. They found three hits containing the main part of the title compounds, the thiophene-cyanoacrylate, with additional and/or longer substituents, namely ethyl-3-(3-chloro-4-cyano-5-{[4-(dimethylamino)phenyl]diazenyl}-2-thienyl)-2-cyanoacrylate (UMUYAE; Xu et al., 2016), octyl-2-cyano-3-(4,6-dibromo-7,7-dimethyl-7H-thieno[3′,4′:4,5]silolo[2,3-b]thiophen-2-yl)acrylate (QUSKAS; Liu et al., 2016) and ethyl-2-cyano-3-(3,3′′′-dihexyl-2,2′:5′,2′′:5′′,2′′′-quaterthiophen-5-yl)acrylate (AVUFON; Miyazaki et al., 2011). In all derivatives AVUFON, UMUYAE and QUSKAS, the non-H thiophene-based acrylate fragment is almost planar except for the methyl group (or the longer alkyl chain in QUSKAS) being slightly out of the plane. The crystal lattices of AVUFON, UMUYAE and QUSKAS are stabilized by C—H⋯O/S, C—H⋯O/N and C—H⋯N/S intermolecular interactions, respectively.
A further search of the CSD for other five-membered rings instead of thiophene provided six hits. Of them, the following three are very similar to the title compounds: ethyl-(2E)-2-cyano-3-(1-methyl-1H-pyrrol-2-yl)prop-2-enoate (AYUGEH; Asiri et al., 2011), (E)-ethyl-2-cyano-3-(1H-pyrrol-2-yl)acrylate (EVIZEP; Yuvaraj et al., 2011) and (E)-ethyl-2-cyano-3-(furan-2-yl)acrylate (ZAQKIN; Kalkhambkar et al., 2012). In both AYUGEH and EVIZEP, all the non-H atoms are nearly in the same plane, while in ZAQKIN the furan-based cyanoacrylate moiety lies in the same plane except for the methyl groups, which are slightly out of plane. As far as crystal packing is concerned, the molecules in EVIZEP and ZAQKIN are linked into dimers via N—H⋯O and C—H⋯O hydrogen bonds, respectively, while in AYUGEH the molecules are linked into tapes via both C—H⋯O and C—H⋯N interactions. The tapes are further interconnected by C—H⋯π interactions into a three-dimensional structure.
5. Synthesis and crystallization
All reagents and solvent were purchased from Aldrich and used without further purifications. The title compounds were synthesized as outlined in Fig. 3.
In a 250 ml round-bottom flask connected with a condenser, a mixture of the corresponding thiophene-2-carboxaldehyde (1 mmol), ethylcyanoacetate (1.1 mmol) and ammonium acetate (8 mmol) in absolute ethanol was refluxed for 6 h. The reaction was monitored using thin layer 1 and 2).
(TLC plates coated with silica gel). After completion, the reaction mixture was cooled to room temperature, and the obtained yellowish-brown precipitate was filtered off, washed with cooled water, dried and recrystallized from ethanol solution to give the final products as pale-yellow crystals (90% yield for bothEthyl (E)-2-cyano-3-(3-methylthiophen-2-yl)acrylate (1): m.p. 381–382 K, 1H NMR (CD2Cl2, 300 MHz): δ (ppm) = 1.39 (t, J = 7.12, 3H, CH2CH3), 2.48 (s, 3H, CH3-3′), 4.36 (q, J = 7.12, 2H, CH2CH3), 7.07 (d, J = 5.01,1H, H-4′), 7.74 (d, J = 5.01, 1H, H-5′), 8.46 (s, 1H, H-3). 13C NMR (CD2Cl2, 75 MHz) δ (ppm) = 14.4 (CH2CH3), 14.9 (CH3-3′), 62.7 (CH2CH3), 98.0 (C-2), 116.4 (CN), 131.2 (C-2′), 131.4 (C-4′), 134.3 (C-5′), 145.0 (C-3), 149.9 (C-3′), 163.4 (C-1). (+)-ESIMS m/z = 244 ([M + Na]+, 100%), 465 ([2M + Na]+, 16%).
Ethyl (E)-2-cyano-3-(thiophen-2-yl)acrylate (2): mp. 371–372 K, 1H NMR (CD2Cl2, 300 MHz): δ (ppm) = 1.39 (t, J = 7.12, 3H, CH2CH3), 4.37 (q, J = 7.12, 2H, CH2CH3), 7.27 (t, J = 4.44,1H, H-4′), 7.85 (d, J = 4.36, 2H, H-3′,5′), 8.38 (s, 1H, H-3). 13C NMR (CD2Cl2, 75 MHz) δ (ppm) = 14.4 (CH2CH3), 62.9 (CH2CH3), 99.8 (C-2), 116.1 (CN), 129.0 (C-4′), 135.5 (C-5′), 136.5 (C-2′), 137.8 (C-3′), 146.9 (C-3), 162.9 (C-1). (+)-ESIMS m/z = 230 ([M + Na]+, 100%), 237 ([2M + Na]+, 11%).
6. Refinement
Detailed crystal data and structure . In 1, C-bound hydrogen atoms were included in calculated positions (0.95–0.99 Å) and refined using a riding model with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C-methyl). Methyl groups were allowed to rotate to fit best the electron density. All hydrogen atoms in 2 were located in difference-Fourier maps and refined isotropically.
for the title compounds are listed in Table 3
|
Supporting information
https://doi.org/10.1107/S2056989019011435/tx2012sup1.cif
contains datablocks 1, 2, New_Global_Publ_Block. DOI:Structure factors: contains datablock 1. DOI: https://doi.org/10.1107/S2056989019011435/tx20121sup2.hkl
Structure factors: contains datablock 2. DOI: https://doi.org/10.1107/S2056989019011435/tx20122sup3.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989019011435/tx20121sup4.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989019011435/tx20122sup5.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989019011435/tx2012sup6.pdf
For both structures, data collection: X-AREA Pilatus (Stoe & Cie, 2016); cell
X-AREA Recipe (Stoe & Cie, 2015); data reduction: X-AREA Integrate (Stoe & Cie, 2016) and LANA (Stoe & Cie, 2016); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: DIAMOND (Crystal Impact, 2014); software used to prepare material for publication: X-AREA (Stoe & Cie, 2016).C11H11NO2S | Z = 4 |
Mr = 221.27 | F(000) = 464 |
Triclinic, P1 | Dx = 1.357 Mg m−3 |
a = 9.2784 (2) Å | Cu Kα radiation, λ = 1.54186 Å |
b = 10.7925 (3) Å | Cell parameters from 24144 reflections |
c = 11.6696 (2) Å | θ = 4.3–76.6° |
α = 74.464 (2)° | µ = 2.49 mm−1 |
β = 74.179 (2)° | T = 100 K |
γ = 85.073 (2)° | Plate, colourless |
V = 1083.11 (4) Å3 | 0.26 × 0.24 × 0.11 mm |
Stoe STADIVARI diffractometer | 4399 independent reflections |
Radiation source: GeniX 3D HF Cu | 3911 reflections with I > 2σ(I) |
Detector resolution: 5.81 pixels mm-1 | Rint = 0.032 |
rotation method, ω scans | θmax = 76.1°, θmin = 4.3° |
Absorption correction: multi-scan (LANA; Stoe & Cie, 2016) | h = −11→11 |
Tmin = 0.074, Tmax = 0.546 | k = −9→13 |
21624 measured reflections | l = −14→14 |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.041 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.122 | H-atom parameters constrained |
S = 1.10 | w = 1/[σ2(Fo2) + (0.0848P)2 + 0.1177P] where P = (Fo2 + 2Fc2)/3 |
4399 reflections | (Δ/σ)max = 0.001 |
275 parameters | Δρmax = 0.37 e Å−3 |
0 restraints | Δρmin = −0.49 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.50743 (12) | 0.18612 (11) | −0.05309 (9) | 0.0282 (2) | |
C1 | 0.41104 (16) | 0.24976 (14) | −0.00171 (13) | 0.0244 (3) | |
O2 | 0.26787 (11) | 0.25753 (11) | −0.00683 (9) | 0.0272 (2) | |
C2 | 0.43611 (16) | 0.33079 (14) | 0.07627 (13) | 0.0241 (3) | |
C3 | 0.57815 (16) | 0.33732 (14) | 0.08609 (13) | 0.0237 (3) | |
H3 | 0.651544 | 0.290986 | 0.038820 | 0.028* | |
C4 | 0.63437 (16) | 0.40276 (14) | 0.15613 (13) | 0.0237 (3) | |
S5 | 0.52472 (4) | 0.48985 (3) | 0.25473 (3) | 0.02482 (13) | |
C6 | 0.67767 (17) | 0.52373 (15) | 0.29500 (13) | 0.0279 (3) | |
H6 | 0.673143 | 0.573149 | 0.352151 | 0.033* | |
C7 | 0.80743 (16) | 0.47210 (15) | 0.23616 (13) | 0.0271 (3) | |
H7 | 0.902616 | 0.481512 | 0.248382 | 0.033* | |
C8 | 0.78481 (16) | 0.40304 (14) | 0.15496 (13) | 0.0253 (3) | |
C9 | 0.90876 (16) | 0.33949 (15) | 0.07698 (14) | 0.0288 (3) | |
H9A | 1.002445 | 0.344255 | 0.098973 | 0.043* | |
H9B | 0.920518 | 0.383536 | −0.010108 | 0.043* | |
H9C | 0.884318 | 0.249167 | 0.091128 | 0.043* | |
C10 | 0.30968 (16) | 0.39583 (15) | 0.13711 (13) | 0.0260 (3) | |
N11 | 0.20792 (14) | 0.44850 (13) | 0.18585 (12) | 0.0307 (3) | |
C12 | 0.22775 (17) | 0.18030 (16) | −0.07799 (14) | 0.0293 (3) | |
H12A | 0.311397 | 0.179597 | −0.151655 | 0.035* | |
H12B | 0.138713 | 0.218888 | −0.106211 | 0.035* | |
C13 | 0.19407 (17) | 0.04420 (16) | −0.00130 (15) | 0.0335 (3) | |
H13A | 0.154960 | −0.003295 | −0.046871 | 0.050* | |
H13B | 0.119282 | 0.045515 | 0.076064 | 0.050* | |
H13C | 0.286108 | 0.002013 | 0.016692 | 0.050* | |
O14 | 0.39990 (12) | 0.67602 (12) | 0.40403 (10) | 0.0326 (3) | |
C14 | 0.29946 (16) | 0.72830 (15) | 0.46523 (13) | 0.0262 (3) | |
O15 | 0.15438 (11) | 0.72446 (11) | 0.46857 (10) | 0.0285 (2) | |
C15 | 0.32273 (16) | 0.80391 (14) | 0.54804 (13) | 0.0251 (3) | |
C16 | 0.46568 (16) | 0.81134 (14) | 0.55532 (12) | 0.0246 (3) | |
H16 | 0.538142 | 0.766223 | 0.506059 | 0.029* | |
C17 | 0.52508 (16) | 0.87543 (14) | 0.62444 (13) | 0.0245 (3) | |
S18 | 0.42127 (4) | 0.96642 (3) | 0.72124 (3) | 0.02552 (13) | |
C19 | 0.57711 (17) | 0.99953 (15) | 0.75821 (13) | 0.0282 (3) | |
H19 | 0.575810 | 1.050830 | 0.813150 | 0.034* | |
C20 | 0.70388 (17) | 0.94398 (15) | 0.69991 (13) | 0.0279 (3) | |
H20 | 0.800387 | 0.952569 | 0.710077 | 0.033* | |
C22 | 0.79644 (17) | 0.80089 (16) | 0.54916 (14) | 0.0306 (3) | |
H22A | 0.894192 | 0.818438 | 0.558037 | 0.046* | |
H22B | 0.796091 | 0.829397 | 0.462132 | 0.046* | |
H22C | 0.777504 | 0.708354 | 0.579387 | 0.046* | |
C21 | 0.67641 (16) | 0.87201 (15) | 0.62249 (13) | 0.0258 (3) | |
C23 | 0.19658 (16) | 0.86371 (15) | 0.61513 (13) | 0.0271 (3) | |
N24 | 0.09612 (15) | 0.91263 (14) | 0.67014 (12) | 0.0324 (3) | |
C26 | 0.11875 (17) | 0.65600 (15) | 0.38777 (14) | 0.0300 (3) | |
H26A | 0.017243 | 0.619428 | 0.424811 | 0.036* | |
H26B | 0.191159 | 0.584110 | 0.378726 | 0.036* | |
C27 | 0.12498 (19) | 0.74571 (17) | 0.26288 (14) | 0.0360 (4) | |
H27A | 0.092643 | 0.700287 | 0.212052 | 0.054* | |
H27B | 0.227878 | 0.775245 | 0.222919 | 0.054* | |
H27C | 0.058482 | 0.819932 | 0.272496 | 0.054* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0258 (5) | 0.0336 (6) | 0.0305 (5) | 0.0029 (4) | −0.0085 (4) | −0.0166 (4) |
C1 | 0.0237 (7) | 0.0275 (8) | 0.0244 (6) | 0.0005 (5) | −0.0079 (5) | −0.0096 (6) |
O2 | 0.0232 (5) | 0.0346 (6) | 0.0320 (5) | 0.0020 (4) | −0.0115 (4) | −0.0185 (4) |
C2 | 0.0237 (7) | 0.0268 (8) | 0.0249 (6) | 0.0014 (5) | −0.0086 (5) | −0.0101 (6) |
C3 | 0.0238 (7) | 0.0258 (7) | 0.0237 (6) | 0.0005 (5) | −0.0065 (5) | −0.0098 (5) |
C4 | 0.0230 (7) | 0.0265 (8) | 0.0253 (6) | 0.0019 (5) | −0.0076 (5) | −0.0121 (5) |
S5 | 0.0228 (2) | 0.0302 (2) | 0.0267 (2) | 0.00155 (14) | −0.00801 (14) | −0.01489 (15) |
C6 | 0.0293 (7) | 0.0315 (8) | 0.0290 (7) | −0.0017 (6) | −0.0115 (6) | −0.0135 (6) |
C7 | 0.0253 (7) | 0.0313 (8) | 0.0291 (7) | −0.0012 (6) | −0.0101 (6) | −0.0115 (6) |
C8 | 0.0244 (7) | 0.0282 (8) | 0.0251 (6) | 0.0002 (5) | −0.0071 (5) | −0.0095 (6) |
C9 | 0.0226 (7) | 0.0357 (9) | 0.0311 (7) | 0.0029 (6) | −0.0068 (6) | −0.0149 (6) |
C10 | 0.0256 (7) | 0.0302 (8) | 0.0280 (6) | 0.0005 (6) | −0.0117 (5) | −0.0126 (6) |
N11 | 0.0263 (6) | 0.0384 (8) | 0.0342 (6) | 0.0030 (5) | −0.0103 (5) | −0.0190 (6) |
C12 | 0.0282 (7) | 0.0361 (9) | 0.0325 (7) | 0.0023 (6) | −0.0134 (6) | −0.0188 (6) |
C13 | 0.0303 (7) | 0.0382 (9) | 0.0393 (8) | −0.0019 (6) | −0.0111 (6) | −0.0194 (7) |
O14 | 0.0289 (5) | 0.0416 (7) | 0.0359 (6) | 0.0049 (5) | −0.0102 (4) | −0.0239 (5) |
C14 | 0.0258 (7) | 0.0296 (8) | 0.0264 (7) | 0.0007 (6) | −0.0088 (5) | −0.0105 (6) |
O15 | 0.0249 (5) | 0.0360 (6) | 0.0312 (5) | −0.0003 (4) | −0.0092 (4) | −0.0175 (4) |
C15 | 0.0252 (7) | 0.0285 (8) | 0.0248 (6) | 0.0017 (5) | −0.0076 (5) | −0.0116 (5) |
C16 | 0.0255 (7) | 0.0277 (8) | 0.0232 (6) | 0.0005 (5) | −0.0068 (5) | −0.0106 (5) |
C17 | 0.0247 (7) | 0.0278 (8) | 0.0242 (6) | 0.0014 (5) | −0.0068 (5) | −0.0121 (5) |
S18 | 0.0248 (2) | 0.0310 (2) | 0.0255 (2) | 0.00185 (14) | −0.00731 (14) | −0.01494 (15) |
C19 | 0.0319 (7) | 0.0306 (8) | 0.0273 (7) | −0.0015 (6) | −0.0111 (6) | −0.0124 (6) |
C20 | 0.0281 (7) | 0.0322 (8) | 0.0283 (7) | −0.0023 (6) | −0.0108 (6) | −0.0119 (6) |
C22 | 0.0261 (7) | 0.0364 (9) | 0.0325 (7) | 0.0043 (6) | −0.0077 (6) | −0.0158 (6) |
C21 | 0.0245 (7) | 0.0294 (8) | 0.0259 (7) | 0.0005 (6) | −0.0073 (5) | −0.0105 (6) |
C23 | 0.0268 (7) | 0.0312 (8) | 0.0278 (7) | 0.0002 (6) | −0.0105 (6) | −0.0117 (6) |
N24 | 0.0272 (6) | 0.0403 (8) | 0.0342 (7) | 0.0025 (5) | −0.0078 (5) | −0.0178 (6) |
C26 | 0.0300 (7) | 0.0338 (9) | 0.0337 (8) | −0.0012 (6) | −0.0112 (6) | −0.0179 (6) |
C27 | 0.0377 (8) | 0.0441 (10) | 0.0341 (8) | −0.0029 (7) | −0.0139 (6) | −0.0179 (7) |
O1—C1 | 1.2057 (17) | O14—C14 | 1.2081 (18) |
C1—O2 | 1.3404 (17) | C14—O15 | 1.3399 (17) |
C1—C2 | 1.4912 (19) | C14—C15 | 1.4876 (19) |
O2—C12 | 1.4545 (16) | O15—C26 | 1.4593 (16) |
C2—C3 | 1.363 (2) | C15—C16 | 1.3625 (19) |
C2—C10 | 1.4298 (19) | C15—C23 | 1.428 (2) |
C3—C4 | 1.4296 (19) | C16—C17 | 1.4282 (19) |
C3—H3 | 0.9500 | C16—H16 | 0.9500 |
C4—C8 | 1.3925 (19) | C17—C21 | 1.3955 (19) |
C4—S5 | 1.7375 (14) | C17—S18 | 1.7339 (14) |
S5—C6 | 1.7068 (14) | S18—C19 | 1.7076 (15) |
C6—C7 | 1.368 (2) | C19—C20 | 1.366 (2) |
C6—H6 | 0.9500 | C19—H19 | 0.9500 |
C7—C8 | 1.4181 (19) | C20—C21 | 1.421 (2) |
C7—H7 | 0.9500 | C20—H20 | 0.9500 |
C8—C9 | 1.4997 (19) | C22—C21 | 1.499 (2) |
C9—H9A | 0.9800 | C22—H22A | 0.9800 |
C9—H9B | 0.9800 | C22—H22B | 0.9800 |
C9—H9C | 0.9800 | C22—H22C | 0.9800 |
C10—N11 | 1.1517 (19) | C23—N24 | 1.153 (2) |
C12—C13 | 1.509 (2) | C26—C27 | 1.508 (2) |
C12—H12A | 0.9900 | C26—H26A | 0.9900 |
C12—H12B | 0.9900 | C26—H26B | 0.9900 |
C13—H13A | 0.9800 | C27—H27A | 0.9800 |
C13—H13B | 0.9800 | C27—H27B | 0.9800 |
C13—H13C | 0.9800 | C27—H27C | 0.9800 |
O1—C1—O2 | 124.91 (13) | O14—C14—O15 | 124.76 (13) |
O1—C1—C2 | 124.13 (13) | O14—C14—C15 | 123.55 (13) |
O2—C1—C2 | 110.96 (12) | O15—C14—C15 | 111.68 (12) |
C1—O2—C12 | 116.44 (11) | C14—O15—C26 | 116.44 (11) |
C3—C2—C10 | 123.99 (13) | C16—C15—C23 | 123.75 (13) |
C3—C2—C1 | 117.90 (13) | C16—C15—C14 | 117.06 (13) |
C10—C2—C1 | 118.10 (12) | C23—C15—C14 | 119.19 (12) |
C2—C3—C4 | 130.33 (14) | C15—C16—C17 | 130.94 (14) |
C2—C3—H3 | 114.8 | C15—C16—H16 | 114.5 |
C4—C3—H3 | 114.8 | C17—C16—H16 | 114.5 |
C8—C4—C3 | 123.93 (13) | C21—C17—C16 | 123.66 (14) |
C8—C4—S5 | 111.36 (10) | C21—C17—S18 | 111.12 (11) |
C3—C4—S5 | 124.71 (11) | C16—C17—S18 | 125.22 (11) |
C6—S5—C4 | 91.34 (7) | C19—S18—C17 | 91.77 (7) |
C7—C6—S5 | 112.77 (11) | C20—C19—S18 | 112.44 (11) |
C7—C6—H6 | 123.6 | C20—C19—H19 | 123.8 |
S5—C6—H6 | 123.6 | S18—C19—H19 | 123.8 |
C6—C7—C8 | 112.84 (13) | C19—C20—C21 | 113.02 (13) |
C6—C7—H7 | 123.6 | C19—C20—H20 | 123.5 |
C8—C7—H7 | 123.6 | C21—C20—H20 | 123.5 |
C4—C8—C7 | 111.68 (13) | C21—C22—H22A | 109.5 |
C4—C8—C9 | 124.57 (13) | C21—C22—H22B | 109.5 |
C7—C8—C9 | 123.75 (13) | H22A—C22—H22B | 109.5 |
C8—C9—H9A | 109.5 | C21—C22—H22C | 109.5 |
C8—C9—H9B | 109.5 | H22A—C22—H22C | 109.5 |
H9A—C9—H9B | 109.5 | H22B—C22—H22C | 109.5 |
C8—C9—H9C | 109.5 | C17—C21—C20 | 111.66 (13) |
H9A—C9—H9C | 109.5 | C17—C21—C22 | 124.81 (13) |
H9B—C9—H9C | 109.5 | C20—C21—C22 | 123.53 (13) |
N11—C10—C2 | 179.8 (2) | N24—C23—C15 | 178.96 (15) |
O2—C12—C13 | 110.63 (12) | O15—C26—C27 | 110.46 (12) |
O2—C12—H12A | 109.5 | O15—C26—H26A | 109.6 |
C13—C12—H12A | 109.5 | C27—C26—H26A | 109.6 |
O2—C12—H12B | 109.5 | O15—C26—H26B | 109.6 |
C13—C12—H12B | 109.5 | C27—C26—H26B | 109.6 |
H12A—C12—H12B | 108.1 | H26A—C26—H26B | 108.1 |
C12—C13—H13A | 109.5 | C26—C27—H27A | 109.5 |
C12—C13—H13B | 109.5 | C26—C27—H27B | 109.5 |
H13A—C13—H13B | 109.5 | H27A—C27—H27B | 109.5 |
C12—C13—H13C | 109.5 | C26—C27—H27C | 109.5 |
H13A—C13—H13C | 109.5 | H27A—C27—H27C | 109.5 |
H13B—C13—H13C | 109.5 | H27B—C27—H27C | 109.5 |
O1—C1—O2—C12 | 1.4 (2) | O14—C14—O15—C26 | −2.6 (2) |
C2—C1—O2—C12 | −178.63 (12) | C15—C14—O15—C26 | 178.16 (12) |
O1—C1—C2—C3 | 2.7 (2) | O14—C14—C15—C16 | −1.2 (2) |
O2—C1—C2—C3 | −177.20 (13) | O15—C14—C15—C16 | 178.04 (13) |
O1—C1—C2—C10 | −176.67 (14) | O14—C14—C15—C23 | 179.03 (15) |
O2—C1—C2—C10 | 3.39 (18) | O15—C14—C15—C23 | −1.8 (2) |
C10—C2—C3—C4 | 1.6 (3) | C23—C15—C16—C17 | −0.5 (3) |
C1—C2—C3—C4 | −177.78 (14) | C14—C15—C16—C17 | 179.71 (15) |
C2—C3—C4—C8 | −178.52 (15) | C15—C16—C17—C21 | 179.19 (16) |
C2—C3—C4—S5 | 2.4 (2) | C15—C16—C17—S18 | −0.6 (2) |
C8—C4—S5—C6 | −0.81 (12) | C21—C17—S18—C19 | 0.10 (12) |
C3—C4—S5—C6 | 178.37 (14) | C16—C17—S18—C19 | 179.92 (14) |
C4—S5—C6—C7 | 0.29 (12) | C17—S18—C19—C20 | −0.07 (13) |
S5—C6—C7—C8 | 0.30 (17) | S18—C19—C20—C21 | 0.02 (18) |
C3—C4—C8—C7 | −178.06 (14) | C16—C17—C21—C20 | −179.93 (14) |
S5—C4—C8—C7 | 1.12 (16) | S18—C17—C21—C20 | −0.11 (17) |
C3—C4—C8—C9 | 2.5 (2) | C16—C17—C21—C22 | −0.4 (2) |
S5—C4—C8—C9 | −178.36 (12) | S18—C17—C21—C22 | 179.43 (12) |
C6—C7—C8—C4 | −0.93 (19) | C19—C20—C21—C17 | 0.1 (2) |
C6—C7—C8—C9 | 178.56 (14) | C19—C20—C21—C22 | −179.49 (14) |
C1—O2—C12—C13 | 83.60 (15) | C14—O15—C26—C27 | −88.66 (16) |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···O1 | 0.95 | 2.43 | 2.8136 (19) | 104 |
C16—H16···O14 | 0.95 | 2.38 | 2.7829 (19) | 105 |
C19—H19···O1i | 0.95 | 2.34 | 3.2708 (19) | 165 |
C22—H22A···O15ii | 0.98 | 2.59 | 3.292 (2) | 128 |
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y, z. |
C10H9NO2S | F(000) = 432 |
Mr = 207.24 | Dx = 1.384 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54186 Å |
a = 11.5907 (3) Å | Cell parameters from 15380 reflections |
b = 6.6883 (2) Å | θ = 3.5–76.4° |
c = 13.4837 (3) Å | µ = 2.68 mm−1 |
β = 107.859 (2)° | T = 100 K |
V = 994.92 (5) Å3 | Block, colourless |
Z = 4 | 0.32 × 0.20 × 0.20 mm |
Stoe STADIVARI diffractometer | 2048 independent reflections |
Radiation source: GeniX 3D HF Cu | 1974 reflections with I > 2σ(I) |
Detector resolution: 5.81 pixels mm-1 | Rint = 0.026 |
rotation method, ω scans | θmax = 76.3°, θmin = 6.8° |
Absorption correction: multi-scan (LANA; Stoe & Cie, 2016) | h = −14→14 |
Tmin = 0.051, Tmax = 0.168 | k = −8→8 |
10400 measured reflections | l = −16→10 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.033 | All H-atom parameters refined |
wR(F2) = 0.100 | w = 1/[σ2(Fo2) + (0.0688P)2 + 0.2209P] where P = (Fo2 + 2Fc2)/3 |
S = 1.09 | (Δ/σ)max < 0.001 |
2048 reflections | Δρmax = 0.29 e Å−3 |
164 parameters | Δρmin = −0.28 e Å−3 |
0 restraints | Extinction correction: SHELXL-2018/3 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: dual | Extinction coefficient: 0.0030 (6) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.67411 (9) | 0.47068 (14) | 0.54042 (8) | 0.0266 (3) | |
C1 | 0.72087 (12) | 0.46539 (17) | 0.47233 (11) | 0.0214 (3) | |
O2 | 0.84079 (8) | 0.45263 (13) | 0.48771 (8) | 0.0238 (2) | |
C2 | 0.65241 (12) | 0.46897 (17) | 0.35943 (11) | 0.0211 (3) | |
C3 | 0.52935 (12) | 0.47114 (18) | 0.33171 (11) | 0.0215 (3) | |
H3 | 0.4938 (17) | 0.475 (2) | 0.3876 (14) | 0.025 (4)* | |
C4 | 0.44161 (12) | 0.47115 (17) | 0.23001 (11) | 0.0210 (3) | |
S5 | 0.47197 (3) | 0.46815 (5) | 0.11198 (2) | 0.02218 (16) | |
C6 | 0.32131 (13) | 0.47018 (18) | 0.04368 (12) | 0.0250 (3) | |
H6 | 0.301 (2) | 0.470 (3) | −0.0329 (19) | 0.044 (6)* | |
C7 | 0.24983 (13) | 0.47201 (19) | 0.10750 (12) | 0.0256 (3) | |
H7 | 0.158 (2) | 0.472 (3) | 0.0817 (19) | 0.053 (6)* | |
C8 | 0.31729 (13) | 0.47269 (18) | 0.21394 (12) | 0.0229 (3) | |
H8 | 0.2819 (18) | 0.476 (2) | 0.2678 (16) | 0.031 (5)* | |
C9 | 0.71814 (12) | 0.46836 (18) | 0.28517 (11) | 0.0223 (3) | |
H9 | 0.8744 (14) | 0.354 (3) | 0.6320 (12) | 0.026 (4)* | |
N10 | 0.76940 (11) | 0.46866 (17) | 0.22440 (10) | 0.0272 (3) | |
H10 | 0.9901 (15) | 0.379 (3) | 0.5923 (13) | 0.029 (4)* | |
C11 | 0.91574 (13) | 0.4415 (2) | 0.59654 (12) | 0.0277 (3) | |
H11 | 0.8636 (16) | 0.712 (3) | 0.6428 (13) | 0.039 (5)* | |
C12 | 0.94012 (13) | 0.6466 (3) | 0.64456 (12) | 0.0355 (3) | |
H12 | 0.9946 (17) | 0.630 (3) | 0.7176 (16) | 0.051 (5)* | |
H13 | 0.9802 (15) | 0.731 (3) | 0.6063 (14) | 0.044 (5)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0208 (5) | 0.0392 (6) | 0.0210 (5) | 0.0009 (4) | 0.0081 (4) | 0.0005 (4) |
C1 | 0.0179 (6) | 0.0224 (6) | 0.0235 (7) | −0.0005 (4) | 0.0055 (5) | −0.0001 (4) |
O2 | 0.0170 (5) | 0.0334 (5) | 0.0205 (5) | 0.0013 (3) | 0.0050 (4) | 0.0002 (3) |
C2 | 0.0196 (6) | 0.0236 (6) | 0.0203 (7) | 0.0004 (4) | 0.0062 (5) | 0.0002 (4) |
C3 | 0.0205 (7) | 0.0220 (7) | 0.0225 (7) | 0.0002 (4) | 0.0071 (5) | −0.0001 (4) |
C4 | 0.0202 (7) | 0.0236 (6) | 0.0203 (7) | −0.0006 (4) | 0.0077 (5) | −0.0004 (4) |
S5 | 0.0193 (2) | 0.0285 (2) | 0.0190 (2) | −0.00064 (10) | 0.00624 (14) | −0.00010 (10) |
C6 | 0.0221 (6) | 0.0269 (7) | 0.0234 (7) | −0.0009 (5) | 0.0033 (5) | 0.0002 (5) |
C7 | 0.0196 (6) | 0.0290 (7) | 0.0264 (8) | −0.0006 (5) | 0.0046 (5) | 0.0004 (5) |
C8 | 0.0210 (7) | 0.0240 (6) | 0.0236 (7) | −0.0003 (4) | 0.0068 (5) | −0.0001 (4) |
C9 | 0.0178 (6) | 0.0245 (7) | 0.0231 (7) | 0.0000 (4) | 0.0040 (5) | 0.0003 (4) |
N10 | 0.0213 (6) | 0.0371 (7) | 0.0236 (6) | 0.0006 (4) | 0.0073 (5) | 0.0007 (4) |
C11 | 0.0195 (6) | 0.0398 (7) | 0.0212 (7) | 0.0042 (5) | 0.0024 (5) | 0.0014 (5) |
C12 | 0.0229 (6) | 0.0484 (9) | 0.0318 (8) | 0.0018 (6) | 0.0032 (5) | −0.0091 (7) |
O1—C1 | 1.2012 (18) | C6—H6 | 0.99 (2) |
C1—O2 | 1.3438 (15) | C7—C8 | 1.408 (2) |
C1—C2 | 1.4855 (19) | C7—H7 | 1.01 (2) |
O2—C11 | 1.4600 (16) | C8—H8 | 0.938 (19) |
C2—C3 | 1.3592 (18) | C9—N10 | 1.1501 (19) |
C2—C9 | 1.4322 (18) | C11—C12 | 1.506 (2) |
C3—C4 | 1.4350 (19) | C11—H9 | 0.969 (16) |
C3—H3 | 0.964 (18) | C11—H10 | 0.976 (16) |
C4—C8 | 1.3899 (19) | C12—H11 | 0.982 (18) |
C4—S5 | 1.7323 (14) | C12—H12 | 1.00 (2) |
S5—C6 | 1.7062 (15) | C12—H13 | 0.974 (19) |
C6—C7 | 1.365 (2) | ||
O1—C1—O2 | 124.87 (13) | C6—C7—H7 | 124.0 (14) |
O1—C1—C2 | 123.94 (12) | C8—C7—H7 | 123.2 (14) |
O2—C1—C2 | 111.18 (11) | C4—C8—C7 | 112.58 (13) |
C1—O2—C11 | 115.27 (10) | C4—C8—H8 | 123.9 (13) |
C3—C2—C9 | 123.10 (13) | C7—C8—H8 | 123.5 (13) |
C3—C2—C1 | 117.88 (12) | N10—C9—C2 | 178.99 (14) |
C9—C2—C1 | 119.01 (11) | O2—C11—C12 | 111.16 (12) |
C2—C3—C4 | 129.73 (13) | O2—C11—H9 | 107.1 (10) |
C2—C3—H3 | 116.7 (11) | C12—C11—H9 | 113.1 (10) |
C4—C3—H3 | 113.5 (11) | O2—C11—H10 | 103.1 (10) |
C8—C4—C3 | 123.09 (13) | C12—C11—H10 | 111.3 (10) |
C8—C4—S5 | 110.48 (11) | H9—C11—H10 | 110.5 (13) |
C3—C4—S5 | 126.43 (10) | C11—C12—H11 | 110.2 (11) |
C6—S5—C4 | 91.90 (7) | C11—C12—H12 | 107.6 (13) |
C7—C6—S5 | 112.23 (11) | H11—C12—H12 | 111.4 (15) |
C7—C6—H6 | 131.8 (13) | C11—C12—H13 | 111.0 (11) |
S5—C6—H6 | 116.0 (13) | H11—C12—H13 | 107.7 (15) |
C6—C7—C8 | 112.81 (12) | H12—C12—H13 | 109.0 (15) |
O1—C1—O2—C11 | 1.03 (17) | C2—C3—C4—S5 | 0.03 (19) |
C2—C1—O2—C11 | −178.07 (10) | C8—C4—S5—C6 | 0.27 (9) |
O1—C1—C2—C3 | −2.45 (17) | C3—C4—S5—C6 | 179.99 (11) |
O2—C1—C2—C3 | 176.65 (10) | C4—S5—C6—C7 | −0.31 (10) |
O1—C1—C2—C9 | 178.04 (11) | S5—C6—C7—C8 | 0.27 (14) |
O2—C1—C2—C9 | −2.85 (15) | C3—C4—C8—C7 | −179.90 (11) |
C9—C2—C3—C4 | 0.7 (2) | S5—C4—C8—C7 | −0.17 (13) |
C1—C2—C3—C4 | −178.77 (11) | C6—C7—C8—C4 | −0.06 (16) |
C2—C3—C4—C8 | 179.71 (12) | C1—O2—C11—C12 | −83.41 (13) |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···O1 | 0.964 (19) | 2.444 (19) | 2.7998 (18) | 101.5 (14) |
C3—H3···O1i | 0.964 (19) | 2.45 (2) | 3.3436 (18) | 153.4 (15) |
C6—H6···N10ii | 0.99 (2) | 2.49 (2) | 3.465 (2) | 169.1 (18) |
C8—H8···O1i | 0.94 (2) | 2.50 (2) | 3.3047 (19) | 143.6 (17) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y+1, −z. |
Funding information
The authors thank Al al-Bayt University for financial support. Thanks are also due to the DFG (Deutsche Forschungsgemeinschaft) for financial support (research visit fellowship to Dr Mahmoud Al-Refai).
References
Al-Refai, M., Geyer, A., Marsch, M. & Ali, B. F. (2014). J. Chem. Crystallogr. 44, 407–414. CAS Google Scholar
Al-Refai, M., Ibrahim, M. M., Geyer, A., Marsch, M. & Ali, B. F. (2016). J. Chem. Crystallogr. 46, 331–340. CAS Google Scholar
Asiri, A. M., Al-Youbi, A. O., Alamry, K. A., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2315. Web of Science CSD CrossRef IUCr Journals Google Scholar
Brenna, E., Crotti, M., Gatti, F. G., Monti, D., Parmeggiani, F., Powell, R. W. III, Santangelo, S. & Stewart, J. D. (2015). Adv. Synth. Catal. 357, 1849–1860. CrossRef CAS Google Scholar
Brenna, E., Gatti, F. G., Manfredi, A., Monti, D. & Parmeggiani, F. (2013). Catal. Sci. Technol. 3, 1136–1146. CrossRef CAS Google Scholar
Castro Agudelo, B., Cárdenas, J. C., Macías, M. A., Ochoa-Puentes, C. & Sierra, C. A. (2017). Acta Cryst. E73, 1287–1289. CSD CrossRef IUCr Journals Google Scholar
Crystal Impact (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Faggi, E., Aguilera, J., Sáez, R., Pujol, F., Marquet, J., Hernando, J. & Sebastián, R. M. (2019). Macromolecules, 52, 2329–2339. CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
He, J., Liu, Y., Gao, J. & Han, L. (2017). Photochem. Photobiol. Sci. 16, 1049–1056. CrossRef CAS PubMed Google Scholar
Ibrahim, M. M., Al-Refai, M., Ali, B. F., Geyer, A., Harms, K. & Marsch, M. (2019). IUCrData, 4, x191046. Google Scholar
Kalkhambkar, R. G., Gayathri, D., Gupta, V. K., Kant, R. & Jeong, Y. T. (2012). Acta Cryst. E68, o1482. CSD CrossRef IUCr Journals Google Scholar
Kong, D., Li, M., Wang, R., Zi, G. & Hou, G. (2016). Org. Biomol. Chem. 14, 1216–1220. CrossRef CAS PubMed Google Scholar
Liu, L., Song, J., Lu, H., Wang, H. & Bo, Z. (2016). Polym. Chem. 7, 319–329. Web of Science CSD CrossRef CAS Google Scholar
Liu, Q., Kong, F.-T., Okujima, T., Yamada, H., Dai, S.-Y., Uno, H., Ono, N., You, X.-Z. & Shen, Z. (2012). Tetrahedron Lett. 53, 3264–3267. CrossRef CAS Google Scholar
Miyazaki, E., Okanishi, T., Suzuki, Y., Ishine, N., Mori, H., Takimiya, K. & Harima, Y. (2011). Bull. Chem. Soc. Jpn, 84, 459–465. Web of Science CSD CrossRef CAS Google Scholar
Qian, S., Xie, Z., Liu, J., Li, M., Wang, S., Luo, N. & Wang, C. (2018). J. Org. Chem. 83, 14768–14776. CSD CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Stoe & Cie (2016). X-AREA and LANA. Stoe & Cie, Darmstadt, Germany. Google Scholar
Xu, D., Li, Z., Peng, Y.-X., Geng, J., Qian, H.-F. & Huang, W. (2016). Dyes Pigments, 133, 143–152. CSD CrossRef CAS Google Scholar
Yuvaraj, H., Gayathri, D., Kalkhambkar, R. G., Gupta, V. K. & Rajnikant (2011). Acta Cryst. E67, o2135. Google Scholar
Zhou, N., Prabakaran, K., Lee, B., Chang, S. H., Harutyunyan, B., Guo, P., Butler, M. R., Timalsina, A., Bedzyk, M. J., Ratner, M. A., Vegiraju, S., Yau, S., Wu, C.-G., Chang, R. P. H., Facchetti, A., Chen, M.-C. & Marks, T. J. (2015). J. Am. Chem. Soc. 137, 4414–4423. CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.