research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, characterization, crystal structure and supra­molecularity of ethyl (E)-2-cyano-3-(3-methyl­thio­phen-2-yl)acrylate and a new polymorph of ethyl (E)-2-cyano-3-(thio­phen-2-yl)acrylate

aDepartment of Chemistry, Al al-Bayt University, Mafraq 25113, Jordan, and bFaculty of Chemistry, Philipps University Marburg, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
*Correspondence e-mail: bfali@aabu.edu.jo

Edited by B. Therrien, University of Neuchâtel, Switzerland (Received 3 August 2019; accepted 14 August 2019; online 23 August 2019)

The synthesis, crystal structure and structural motif of two thio­phene-based cyano­acrylate derivatives, namely, ethyl (E)-2-cyano-3-(3-methyl­thio­phen-2-yl)acrylate (1), C11H11NO2S, and ethyl (E)-2-cyano-3-(thio­phen-2-yl)acrylate (2), C10H9NO2S, are reported. Derivative 1 crystallized with two independent molecules in the asymmetric unit, and derivative 2 represents a new monoclinic (C2/m) polymorph. The mol­ecular conformations of 1 and the two polymorphs of 2 are very similar, as all non-H atoms are planar except for the methyl of the ethyl groups. The inter­molecular inter­actions and crystal packing of 1 and 2 are described and compared with that of the reported monoclinic (C2/m) polymorph of derivative 2 [Castro Agudelo et al. (2017[Castro Agudelo, B., Cárdenas, J. C., Macías, M. A., Ochoa-Puentes, C. & Sierra, C. A. (2017). Acta Cryst. E73, 1287-1289.]). Acta Cryst. E73, 1287–1289].

1. Chemical context

Cyano­acrylate derivatives are of industrial inter­est being subunits used to build many adhesives and polymeric materials (Faggi et al., 2019[Faggi, E., Aguilera, J., Sáez, R., Pujol, F., Marquet, J., Hernando, J. & Sebastián, R. M. (2019). Macromolecules, 52, 2329-2339.]). They are also considered important inter­mediate precursors for the synthesis of different heterocyclic derivatives, see for example Qian et al. (2018[Qian, S., Xie, Z., Liu, J., Li, M., Wang, S., Luo, N. & Wang, C. (2018). J. Org. Chem. 83, 14768-14776.]), and as nitrile-activated species in bioreduction reactions (Brenna et al., 2013[Brenna, E., Gatti, F. G., Manfredi, A., Monti, D. & Parmeggiani, F. (2013). Catal. Sci. Technol. 3, 1136-1146.], 2015[Brenna, E., Crotti, M., Gatti, F. G., Monti, D., Parmeggiani, F., Powell, R. W. III, Santangelo, S. & Stewart, J. D. (2015). Adv. Synth. Catal. 357, 1849-1860.]; Kong et al., 2016[Kong, D., Li, M., Wang, R., Zi, G. & Hou, G. (2016). Org. Biomol. Chem. 14, 1216-1220.]) among others. In addition, they show important practical properties, such as in organic dye-sensitized solar cells (DSSCs) (He et al., 2017[He, J., Liu, Y., Gao, J. & Han, L. (2017). Photochem. Photobiol. Sci. 16, 1049-1056.]; Zhou et al., 2015[Zhou, N., Prabakaran, K., Lee, B., Chang, S. H., Harutyunyan, B., Guo, P., Butler, M. R., Timalsina, A., Bedzyk, M. J., Ratner, M. A., Vegiraju, S., Yau, S., Wu, C.-G., Chang, R. P. H., Facchetti, A., Chen, M.-C. & Marks, T. J. (2015). J. Am. Chem. Soc. 137, 4414-4423.]). Within these voltaic cells, cyano­acrylic acid is one of the most commonly employed acceptors. Thio­phene and its deriv­atives, known to exhibit high charge mobility, serve as π-bridges (donor-π–acceptor structure) to provide conjugation and enhance light absorbance (Liu et al., 2012[Liu, Q., Kong, F.-T., Okujima, T., Yamada, H., Dai, S.-Y., Uno, H., Ono, N., You, X.-Z. & Shen, Z. (2012). Tetrahedron Lett. 53, 3264-3267.]).

An understanding of the structure of thio­phene-based acrylate subunits is necessary to benefit from their properties in photovoltaic cells. In a continuation of our work on the X-ray structural characterization of thio­phene-containing derivatives (Ibrahim et al., 2019[Ibrahim, M. M., Al-Refai, M., Ali, B. F., Geyer, A., Harms, K. & Marsch, M. (2019). IUCrData, 4, x191046.]; Al-Refai et al., 2014[Al-Refai, M., Geyer, A., Marsch, M. & Ali, B. F. (2014). J. Chem. Crystallogr. 44, 407-414.], 2016[Al-Refai, M., Ibrahim, M. M., Geyer, A., Marsch, M. & Ali, B. F. (2016). J. Chem. Crystallogr. 46, 331-340.]), we report here the synthesis, characterization and crystal structures of two thio­phene-based acrylate derivatives, namely, ethyl (E)-2-cyano-3-(3-methyl­thio­phen-2-yl)acrylate (1) and ethyl (E)-2-cyano-3-(3-methyl­thio­phen-2-yl)acrylate (2). Derivative 2 is a polymorph of a reported structure (Castro Agudelo et al., 2017[Castro Agudelo, B., Cárdenas, J. C., Macías, M. A., Ochoa-Puentes, C. & Sierra, C. A. (2017). Acta Cryst. E73, 1287-1289.]), but with no disorder of the eth­oxy group. The crystal supra­molecularity of both com­pounds is also discussed.

[Scheme 1]

2. Structural commentary

The mol­ecular structures of the title compounds are depicted in Fig. 1[link]. The asymmetric unit contains two independent mol­ecules, A and B, in 1 and one mol­ecule in 2. In these mol­ecules, the bond distances and angles fall within similar ranges to those reported for similar compounds (Castro Agudelo et al., 2017[Castro Agudelo, B., Cárdenas, J. C., Macías, M. A., Ochoa-Puentes, C. & Sierra, C. A. (2017). Acta Cryst. E73, 1287-1289.]; Xu et al., 2016[Xu, D., Li, Z., Peng, Y.-X., Geng, J., Qian, H.-F. & Huang, W. (2016). Dyes Pigments, 133, 143-152.]). In both compounds, all non-hydrogen atoms, except for the methyl groups, lie nearly in the same planes. The differences in torsion angles [C1—C2—C3—C4 = −177.78 (14) and C1—O2—C12—C13 = 83.60 (15)° (mol­ecule A), C14—C15—C16—C17 = 179.71 (15)° and C14—O15—C26—C27 = −88.66 (2)° (mol­ecule B) in 1 and C1—C2—C3—C4 = −178.77 (11) and C1—O2—C11—C12 = −83.41 (13)° in 2] indicate an out-of-plane deviation of the methyl group. The planarity of the mol­ecules allows intra­molecular hydrogen bonds to occur [C3—H3⋯O1 (mol­ecule A) and C16—H16⋯O14 (mol­ecule B) in 1; C3—H3⋯O1 in 2] (Fig. 1[link] and Tables 1[link] and 2[link]), forming an S(6) ring motif with the carbonyl O and cyano N atoms consequently exhibiting an anti-configuration to each other. The conformation of the ethene bond is always E [C2=C3 = 1.363 (2) Å (mol­ecule A) and C15=C16 = 1.3625 (19) (mol­ecule B) in 1; C2=C3 = 1.3592 (18) Å in 2].

Table 1
Hydrogen-bond geometry (Å, °) for 1[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O1 0.95 2.43 2.8136 (19) 104
C16—H16⋯O14 0.95 2.38 2.7829 (19) 105
C19—H19⋯O1i 0.95 2.34 3.2708 (19) 165
C22—H22A⋯O15ii 0.98 2.59 3.292 (2) 128
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y, z.

Table 2
Hydrogen-bond geometry (Å, °) for 2[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O1 0.964 (19) 2.444 (19) 2.7998 (18) 101.5 (14)
C3—H3⋯O1i 0.964 (19) 2.45 (2) 3.3436 (18) 153.4 (15)
C6—H6⋯N10ii 0.99 (2) 2.49 (2) 3.465 (2) 169.1 (18)
C8—H8⋯O1i 0.94 (2) 2.50 (2) 3.3047 (19) 143.6 (17)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y+1, -z.
[Figure 1]
Figure 1
Mol­ecular structures of compounds (a) 1 and (b) 2 with the atom-labelling scheme (displacement ellipsoids at 50% probability level). Intra­molecular C—H⋯O inter­actions are presented as red–white multi-band cylinders.

Derivative 2 is a polymorph of ethyl (E)-2-cyano-3-(­thio­phen-2-yl)acrylate (CSD refcode GEHYEA; Castro Agudelo et al., 2017[Castro Agudelo, B., Cárdenas, J. C., Macías, M. A., Ochoa-Puentes, C. & Sierra, C. A. (2017). Acta Cryst. E73, 1287-1289.]). It shows a similar structure to 1, which has an extra methyl substituent on the thio­phene ring. In compound 1 and the two polymorphs of 2, all thio­phene-based cyano­acrylate non-H atoms, except for the ethyl group, lie in the same plane. It is also noteworthy that in the polymorph, the ethyl fragment occurs in more than one conformation, thus resulting in disorder, which is absent in 1 and 2.

3. Supra­molecular features

In the crystal of 1, the A and B mol­ecules each form layers parallel to the ac plane, Fig. 2[link]a. The layers built up from chains of B mol­ecules are connected via C—H⋯O hydrogen bonds along the a axis. These chains are further connected through C—H⋯O inter­actions with stacks of mol­ecules A along the c axis. In the b-axis direction, inter­layered inter­actions through van der Waals forces and/or weak dipolar inter­actions generate a three-dimensional network. In the crystal of 2, inversion dimers are assembled along the c axis through C—H⋯O inter­actions, Fig. 2[link]b. Adjacent dimers (along the c axis) are further connected through C—H⋯N inter­actions, leading to infinite chains propagating along the c-axis direction. The resulting chains interact via van der Waals forces to form sheets parallel to the ac plane (Fig. 2[link]b). The sheets are connected through van der Waals forces and/or weak dipolar inter­actions, thus consolidating the three-dimensional framework structure. Compounds 1, 2 and the polymorph of 2 (Castro Agudelo et al., 2017[Castro Agudelo, B., Cárdenas, J. C., Macías, M. A., Ochoa-Puentes, C. & Sierra, C. A. (2017). Acta Cryst. E73, 1287-1289.]) show no apparent degree of ππ stacking.

[Figure 2]
Figure 2
(a) Partial packing diagram for 1 showing layers of A and B mol­ecules parallel to the ac plane, and connected via C—H⋯O inter­molecular inter­actions (shown as multi-band cylinders). (b) The intra­molecular (black and white) and inter­molecular (red and white) inter­actions in 2 forming chains of dimeric species connected via C—H⋯O and C—H⋯N inter­actions. In both figures, hydrogen atoms not involved in inter­actions are omitted for clarity.

The polymorph of 2 shows a similar crystal packing arrangement, the mol­ecules being connected via C—H⋯O/N inter­actions, generating centrosymmetric dimers. Chains of mol­ecules are further connected by van der Waals forces into sheets.

4. Database survey

Castro Agudelo et al. (2017[Castro Agudelo, B., Cárdenas, J. C., Macías, M. A., Ochoa-Puentes, C. & Sierra, C. A. (2017). Acta Cryst. E73, 1287-1289.]) reported a recent survey on the Cambridge Structural Database [CSD Version 5.37 with two updates; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]] for hits containing the complete thio­phene-based cyano­acrylate fragment, together with the possibility of other five-membered rings and/or the presence of a saturated chain longer than the ethyl fragment. They found three hits containing the main part of the title compounds, the thio­phene-cyano­acrylate, with additional and/or longer substituents, namely ethyl-3-(3-chloro-4-cyano-5-{[4-(di­methyl­amino)­phen­yl]diazen­yl}-2-thien­yl)-2-cyano­acrylate (UMUYAE; Xu et al., 2016[Xu, D., Li, Z., Peng, Y.-X., Geng, J., Qian, H.-F. & Huang, W. (2016). Dyes Pigments, 133, 143-152.]), octyl-2-cyano-3-(4,6-di­bromo-7,7-dimethyl-7H-thieno[3′,4′:4,5]silolo[2,3-b]thio­phen-2-yl)acrylate (QUSKAS; Liu et al., 2016[Liu, L., Song, J., Lu, H., Wang, H. & Bo, Z. (2016). Polym. Chem. 7, 319-329.]) and ethyl-2-cyano-3-(3,3′′′-dihexyl-2,2′:5′,2′′:5′′,2′′′-quaterthio­phen-5-yl)acrylate (AVUFON; Miyazaki et al., 2011[Miyazaki, E., Okanishi, T., Suzuki, Y., Ishine, N., Mori, H., Takimiya, K. & Harima, Y. (2011). Bull. Chem. Soc. Jpn, 84, 459-465.]). In all derivatives AVUFON, UMUYAE and QUSKAS, the non-H thio­phene-based acrylate fragment is almost planar except for the methyl group (or the longer alkyl chain in QUSKAS) being slightly out of the plane. The crystal lattices of AVUFON, UMUYAE and QUSKAS are stabilized by C—H⋯O/S, C—H⋯O/N and C—H⋯N/S inter­molecular inter­actions, respectively.

A further search of the CSD for other five-membered rings instead of thio­phene provided six hits. Of them, the following three are very similar to the title compounds: ethyl-(2E)-2-cyano-3-(1-methyl-1H-pyrrol-2-yl)prop-2-enoate (AYUGEH; Asiri et al., 2011[Asiri, A. M., Al-Youbi, A. O., Alamry, K. A., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2315.]), (E)-ethyl-2-cyano-3-(1H-pyrrol-2-yl)acrylate (EVIZEP; Yuvaraj et al., 2011[Yuvaraj, H., Gayathri, D., Kalkhambkar, R. G., Gupta, V. K. & Rajnikant (2011). Acta Cryst. E67, o2135.]) and (E)-ethyl-2-cyano-3-(furan-2-yl)acrylate (ZAQKIN; Kalkhambkar et al., 2012[Kalkhambkar, R. G., Gayathri, D., Gupta, V. K., Kant, R. & Jeong, Y. T. (2012). Acta Cryst. E68, o1482.]). In both AYUGEH and EVIZEP, all the non-H atoms are nearly in the same plane, while in ZAQKIN the furan-based cyano­acrylate moiety lies in the same plane except for the methyl groups, which are slightly out of plane. As far as crystal packing is concerned, the mol­ecules in EVIZEP and ZAQKIN are linked into dimers via N—H⋯O and C—H⋯O hydrogen bonds, respectively, while in AYUGEH the mol­ecules are linked into tapes via both C—H⋯O and C—H⋯N inter­actions. The tapes are further inter­connected by C—H⋯π inter­actions into a three-dimensional structure.

5. Synthesis and crystallization

All reagents and solvent were purchased from Aldrich and used without further purifications. The title compounds were synthesized as outlined in Fig. 3[link].

[Figure 3]
Figure 3
Syntheis of the title compounds.

In a 250 ml round-bottom flask connected with a condenser, a mixture of the corresponding thio­phene-2-carboxaldehyde (1 mmol), ethyl­cyano­acetate (1.1 mmol) and ammonium acetate (8 mmol) in absolute ethanol was refluxed for 6 h. The reaction was monitored using thin layer chromatography (TLC plates coated with silica gel). After completion, the reaction mixture was cooled to room temperature, and the obtained yellowish-brown precipitate was filtered off, washed with cooled water, dried and recrystallized from ethanol solution to give the final products as pale-yellow crystals (90% yield for both 1 and 2).

Ethyl (E)-2-cyano-3-(3-methyl­thio­phen-2-yl)acrylate (1): m.p. 381–382 K, 1H NMR (CD2Cl2, 300 MHz): δ (ppm) = 1.39 (t, J = 7.12, 3H, CH2CH3), 2.48 (s, 3H, CH3-3′), 4.36 (q, J = 7.12, 2H, CH2CH3), 7.07 (d, J = 5.01,1H, H-4′), 7.74 (d, J = 5.01, 1H, H-5′), 8.46 (s, 1H, H-3). 13C NMR (CD2Cl2, 75 MHz) δ (ppm) = 14.4 (CH2CH3), 14.9 (CH3-3′), 62.7 (CH2CH3), 98.0 (C-2), 116.4 (CN), 131.2 (C-2′), 131.4 (C-4′), 134.3 (C-5′), 145.0 (C-3), 149.9 (C-3′), 163.4 (C-1). (+)-ESIMS m/z = 244 ([M + Na]+, 100%), 465 ([2M + Na]+, 16%).

Ethyl (E)-2-cyano-3-(thio­phen-2-yl)acrylate (2): mp. 371–372 K, 1H NMR (CD2Cl2, 300 MHz): δ (ppm) = 1.39 (t, J = 7.12, 3H, CH2CH3), 4.37 (q, J = 7.12, 2H, CH2CH3), 7.27 (t, J = 4.44,1H, H-4′), 7.85 (d, J = 4.36, 2H, H-3′,5′), 8.38 (s, 1H, H-3). 13C NMR (CD2Cl2, 75 MHz) δ (ppm) = 14.4 (CH2CH3), 62.9 (CH2CH3), 99.8 (C-2), 116.1 (CN), 129.0 (C-4′), 135.5 (C-5′), 136.5 (C-2′), 137.8 (C-3′), 146.9 (C-3), 162.9 (C-1). (+)-ESIMS m/z = 230 ([M + Na]+, 100%), 237 ([2M + Na]+, 11%).

6. Refinement

Detailed crystal data and structure refinement for the title compounds are listed in Table 3[link]. In 1, C-bound hydrogen atoms were included in calculated positions (0.95–0.99 Å) and refined using a riding model with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C-meth­yl). Methyl groups were allowed to rotate to fit best the electron density. All hydrogen atoms in 2 were located in difference-Fourier maps and refined isotropically.

Table 3
Experimental details

  1 2
Crystal data
Chemical formula C11H11NO2S C10H9NO2S
Mr 221.27 207.24
Crystal system, space group Triclinic, P[\overline{1}] Monoclinic, P21/c
Temperature (K) 100 100
a, b, c (Å) 9.2784 (2), 10.7925 (3), 11.6696 (2) 11.5907 (3), 6.6883 (2), 13.4837 (3)
α, β, γ (°) 74.464 (2), 74.179 (2), 85.073 (2) 90, 107.859 (2), 90
V3) 1083.11 (4) 994.92 (5)
Z 4 4
Radiation type Cu Kα Cu Kα
μ (mm−1) 2.49 2.68
Crystal size (mm) 0.26 × 0.24 × 0.11 0.32 × 0.20 × 0.20
 
Data collection
Diffractometer Stoe STADIVARI Stoe STADIVARI
Absorption correction Multi-scan (LANA; Stoe & Cie, 2016[Stoe & Cie (2016). X-AREA and LANA. Stoe & Cie, Darmstadt, Germany.]) Multi-scan (LANA; Stoe & Cie, 2016[Stoe & Cie (2016). X-AREA and LANA. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.074, 0.546 0.051, 0.168
No. of measured, independent and observed [I > 2σ(I)] reflections 21624, 4399, 3911 10400, 2048, 1974
Rint 0.032 0.026
(sin θ/λ)max−1) 0.630 0.630
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.122, 1.10 0.033, 0.100, 1.09
No. of reflections 4399 2048
No. of parameters 275 164
H-atom treatment H-atom parameters constrained All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.37, −0.49 0.29, −0.28
Computer programs: X-AREA Pilatus, Recipe and Integrate (Stoe & Cie, 2016[Stoe & Cie (2016). X-AREA and LANA. Stoe & Cie, Darmstadt, Germany.]) SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and DIAMOND (Crystal Impact, 2014[Crystal Impact (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.]).

Supporting information


Computing details top

For both structures, data collection: X-AREA Pilatus (Stoe & Cie, 2016); cell refinement: X-AREA Recipe (Stoe & Cie, 2015); data reduction: X-AREA Integrate (Stoe & Cie, 2016) and LANA (Stoe & Cie, 2016); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: DIAMOND (Crystal Impact, 2014); software used to prepare material for publication: X-AREA (Stoe & Cie, 2016).

Ethyl (E)-2-cyano-3-(3-methylthiophen-2-yl)acrylate (1) top
Crystal data top
C11H11NO2SZ = 4
Mr = 221.27F(000) = 464
Triclinic, P1Dx = 1.357 Mg m3
a = 9.2784 (2) ÅCu Kα radiation, λ = 1.54186 Å
b = 10.7925 (3) ÅCell parameters from 24144 reflections
c = 11.6696 (2) Åθ = 4.3–76.6°
α = 74.464 (2)°µ = 2.49 mm1
β = 74.179 (2)°T = 100 K
γ = 85.073 (2)°Plate, colourless
V = 1083.11 (4) Å30.26 × 0.24 × 0.11 mm
Data collection top
Stoe STADIVARI
diffractometer
4399 independent reflections
Radiation source: GeniX 3D HF Cu3911 reflections with I > 2σ(I)
Detector resolution: 5.81 pixels mm-1Rint = 0.032
rotation method, ω scansθmax = 76.1°, θmin = 4.3°
Absorption correction: multi-scan
(LANA; Stoe & Cie, 2016)
h = 1111
Tmin = 0.074, Tmax = 0.546k = 913
21624 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0848P)2 + 0.1177P]
where P = (Fo2 + 2Fc2)/3
4399 reflections(Δ/σ)max = 0.001
275 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.49 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.50743 (12)0.18612 (11)0.05309 (9)0.0282 (2)
C10.41104 (16)0.24976 (14)0.00171 (13)0.0244 (3)
O20.26787 (11)0.25753 (11)0.00683 (9)0.0272 (2)
C20.43611 (16)0.33079 (14)0.07627 (13)0.0241 (3)
C30.57815 (16)0.33732 (14)0.08609 (13)0.0237 (3)
H30.6515440.2909860.0388200.028*
C40.63437 (16)0.40276 (14)0.15613 (13)0.0237 (3)
S50.52472 (4)0.48985 (3)0.25473 (3)0.02482 (13)
C60.67767 (17)0.52373 (15)0.29500 (13)0.0279 (3)
H60.6731430.5731490.3521510.033*
C70.80743 (16)0.47210 (15)0.23616 (13)0.0271 (3)
H70.9026160.4815120.2483820.033*
C80.78481 (16)0.40304 (14)0.15496 (13)0.0253 (3)
C90.90876 (16)0.33949 (15)0.07698 (14)0.0288 (3)
H9A1.0024450.3442550.0989730.043*
H9B0.9205180.3835360.0101080.043*
H9C0.8843180.2491670.0911280.043*
C100.30968 (16)0.39583 (15)0.13711 (13)0.0260 (3)
N110.20792 (14)0.44850 (13)0.18585 (12)0.0307 (3)
C120.22775 (17)0.18030 (16)0.07799 (14)0.0293 (3)
H12A0.3113970.1795970.1516550.035*
H12B0.1387130.2188880.1062110.035*
C130.19407 (17)0.04420 (16)0.00130 (15)0.0335 (3)
H13A0.1549600.0032950.0468710.050*
H13B0.1192820.0455150.0760640.050*
H13C0.2861080.0020130.0166920.050*
O140.39990 (12)0.67602 (12)0.40403 (10)0.0326 (3)
C140.29946 (16)0.72830 (15)0.46523 (13)0.0262 (3)
O150.15438 (11)0.72446 (11)0.46857 (10)0.0285 (2)
C150.32273 (16)0.80391 (14)0.54804 (13)0.0251 (3)
C160.46568 (16)0.81134 (14)0.55532 (12)0.0246 (3)
H160.5381420.7662230.5060590.029*
C170.52508 (16)0.87543 (14)0.62444 (13)0.0245 (3)
S180.42127 (4)0.96642 (3)0.72124 (3)0.02552 (13)
C190.57711 (17)0.99953 (15)0.75821 (13)0.0282 (3)
H190.5758101.0508300.8131500.034*
C200.70388 (17)0.94398 (15)0.69991 (13)0.0279 (3)
H200.8003870.9525690.7100770.033*
C220.79644 (17)0.80089 (16)0.54916 (14)0.0306 (3)
H22A0.8941920.8184380.5580370.046*
H22B0.7960910.8293970.4621320.046*
H22C0.7775040.7083540.5793870.046*
C210.67641 (16)0.87201 (15)0.62249 (13)0.0258 (3)
C230.19658 (16)0.86371 (15)0.61513 (13)0.0271 (3)
N240.09612 (15)0.91263 (14)0.67014 (12)0.0324 (3)
C260.11875 (17)0.65600 (15)0.38777 (14)0.0300 (3)
H26A0.0172430.6194280.4248110.036*
H26B0.1911590.5841100.3787260.036*
C270.12498 (19)0.74571 (17)0.26288 (14)0.0360 (4)
H27A0.0926430.7002870.2120520.054*
H27B0.2278780.7752450.2229190.054*
H27C0.0584820.8199320.2724960.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0258 (5)0.0336 (6)0.0305 (5)0.0029 (4)0.0085 (4)0.0166 (4)
C10.0237 (7)0.0275 (8)0.0244 (6)0.0005 (5)0.0079 (5)0.0096 (6)
O20.0232 (5)0.0346 (6)0.0320 (5)0.0020 (4)0.0115 (4)0.0185 (4)
C20.0237 (7)0.0268 (8)0.0249 (6)0.0014 (5)0.0086 (5)0.0101 (6)
C30.0238 (7)0.0258 (7)0.0237 (6)0.0005 (5)0.0065 (5)0.0098 (5)
C40.0230 (7)0.0265 (8)0.0253 (6)0.0019 (5)0.0076 (5)0.0121 (5)
S50.0228 (2)0.0302 (2)0.0267 (2)0.00155 (14)0.00801 (14)0.01489 (15)
C60.0293 (7)0.0315 (8)0.0290 (7)0.0017 (6)0.0115 (6)0.0135 (6)
C70.0253 (7)0.0313 (8)0.0291 (7)0.0012 (6)0.0101 (6)0.0115 (6)
C80.0244 (7)0.0282 (8)0.0251 (6)0.0002 (5)0.0071 (5)0.0095 (6)
C90.0226 (7)0.0357 (9)0.0311 (7)0.0029 (6)0.0068 (6)0.0149 (6)
C100.0256 (7)0.0302 (8)0.0280 (6)0.0005 (6)0.0117 (5)0.0126 (6)
N110.0263 (6)0.0384 (8)0.0342 (6)0.0030 (5)0.0103 (5)0.0190 (6)
C120.0282 (7)0.0361 (9)0.0325 (7)0.0023 (6)0.0134 (6)0.0188 (6)
C130.0303 (7)0.0382 (9)0.0393 (8)0.0019 (6)0.0111 (6)0.0194 (7)
O140.0289 (5)0.0416 (7)0.0359 (6)0.0049 (5)0.0102 (4)0.0239 (5)
C140.0258 (7)0.0296 (8)0.0264 (7)0.0007 (6)0.0088 (5)0.0105 (6)
O150.0249 (5)0.0360 (6)0.0312 (5)0.0003 (4)0.0092 (4)0.0175 (4)
C150.0252 (7)0.0285 (8)0.0248 (6)0.0017 (5)0.0076 (5)0.0116 (5)
C160.0255 (7)0.0277 (8)0.0232 (6)0.0005 (5)0.0068 (5)0.0106 (5)
C170.0247 (7)0.0278 (8)0.0242 (6)0.0014 (5)0.0068 (5)0.0121 (5)
S180.0248 (2)0.0310 (2)0.0255 (2)0.00185 (14)0.00731 (14)0.01494 (15)
C190.0319 (7)0.0306 (8)0.0273 (7)0.0015 (6)0.0111 (6)0.0124 (6)
C200.0281 (7)0.0322 (8)0.0283 (7)0.0023 (6)0.0108 (6)0.0119 (6)
C220.0261 (7)0.0364 (9)0.0325 (7)0.0043 (6)0.0077 (6)0.0158 (6)
C210.0245 (7)0.0294 (8)0.0259 (7)0.0005 (6)0.0073 (5)0.0105 (6)
C230.0268 (7)0.0312 (8)0.0278 (7)0.0002 (6)0.0105 (6)0.0117 (6)
N240.0272 (6)0.0403 (8)0.0342 (7)0.0025 (5)0.0078 (5)0.0178 (6)
C260.0300 (7)0.0338 (9)0.0337 (8)0.0012 (6)0.0112 (6)0.0179 (6)
C270.0377 (8)0.0441 (10)0.0341 (8)0.0029 (7)0.0139 (6)0.0179 (7)
Geometric parameters (Å, º) top
O1—C11.2057 (17)O14—C141.2081 (18)
C1—O21.3404 (17)C14—O151.3399 (17)
C1—C21.4912 (19)C14—C151.4876 (19)
O2—C121.4545 (16)O15—C261.4593 (16)
C2—C31.363 (2)C15—C161.3625 (19)
C2—C101.4298 (19)C15—C231.428 (2)
C3—C41.4296 (19)C16—C171.4282 (19)
C3—H30.9500C16—H160.9500
C4—C81.3925 (19)C17—C211.3955 (19)
C4—S51.7375 (14)C17—S181.7339 (14)
S5—C61.7068 (14)S18—C191.7076 (15)
C6—C71.368 (2)C19—C201.366 (2)
C6—H60.9500C19—H190.9500
C7—C81.4181 (19)C20—C211.421 (2)
C7—H70.9500C20—H200.9500
C8—C91.4997 (19)C22—C211.499 (2)
C9—H9A0.9800C22—H22A0.9800
C9—H9B0.9800C22—H22B0.9800
C9—H9C0.9800C22—H22C0.9800
C10—N111.1517 (19)C23—N241.153 (2)
C12—C131.509 (2)C26—C271.508 (2)
C12—H12A0.9900C26—H26A0.9900
C12—H12B0.9900C26—H26B0.9900
C13—H13A0.9800C27—H27A0.9800
C13—H13B0.9800C27—H27B0.9800
C13—H13C0.9800C27—H27C0.9800
O1—C1—O2124.91 (13)O14—C14—O15124.76 (13)
O1—C1—C2124.13 (13)O14—C14—C15123.55 (13)
O2—C1—C2110.96 (12)O15—C14—C15111.68 (12)
C1—O2—C12116.44 (11)C14—O15—C26116.44 (11)
C3—C2—C10123.99 (13)C16—C15—C23123.75 (13)
C3—C2—C1117.90 (13)C16—C15—C14117.06 (13)
C10—C2—C1118.10 (12)C23—C15—C14119.19 (12)
C2—C3—C4130.33 (14)C15—C16—C17130.94 (14)
C2—C3—H3114.8C15—C16—H16114.5
C4—C3—H3114.8C17—C16—H16114.5
C8—C4—C3123.93 (13)C21—C17—C16123.66 (14)
C8—C4—S5111.36 (10)C21—C17—S18111.12 (11)
C3—C4—S5124.71 (11)C16—C17—S18125.22 (11)
C6—S5—C491.34 (7)C19—S18—C1791.77 (7)
C7—C6—S5112.77 (11)C20—C19—S18112.44 (11)
C7—C6—H6123.6C20—C19—H19123.8
S5—C6—H6123.6S18—C19—H19123.8
C6—C7—C8112.84 (13)C19—C20—C21113.02 (13)
C6—C7—H7123.6C19—C20—H20123.5
C8—C7—H7123.6C21—C20—H20123.5
C4—C8—C7111.68 (13)C21—C22—H22A109.5
C4—C8—C9124.57 (13)C21—C22—H22B109.5
C7—C8—C9123.75 (13)H22A—C22—H22B109.5
C8—C9—H9A109.5C21—C22—H22C109.5
C8—C9—H9B109.5H22A—C22—H22C109.5
H9A—C9—H9B109.5H22B—C22—H22C109.5
C8—C9—H9C109.5C17—C21—C20111.66 (13)
H9A—C9—H9C109.5C17—C21—C22124.81 (13)
H9B—C9—H9C109.5C20—C21—C22123.53 (13)
N11—C10—C2179.8 (2)N24—C23—C15178.96 (15)
O2—C12—C13110.63 (12)O15—C26—C27110.46 (12)
O2—C12—H12A109.5O15—C26—H26A109.6
C13—C12—H12A109.5C27—C26—H26A109.6
O2—C12—H12B109.5O15—C26—H26B109.6
C13—C12—H12B109.5C27—C26—H26B109.6
H12A—C12—H12B108.1H26A—C26—H26B108.1
C12—C13—H13A109.5C26—C27—H27A109.5
C12—C13—H13B109.5C26—C27—H27B109.5
H13A—C13—H13B109.5H27A—C27—H27B109.5
C12—C13—H13C109.5C26—C27—H27C109.5
H13A—C13—H13C109.5H27A—C27—H27C109.5
H13B—C13—H13C109.5H27B—C27—H27C109.5
O1—C1—O2—C121.4 (2)O14—C14—O15—C262.6 (2)
C2—C1—O2—C12178.63 (12)C15—C14—O15—C26178.16 (12)
O1—C1—C2—C32.7 (2)O14—C14—C15—C161.2 (2)
O2—C1—C2—C3177.20 (13)O15—C14—C15—C16178.04 (13)
O1—C1—C2—C10176.67 (14)O14—C14—C15—C23179.03 (15)
O2—C1—C2—C103.39 (18)O15—C14—C15—C231.8 (2)
C10—C2—C3—C41.6 (3)C23—C15—C16—C170.5 (3)
C1—C2—C3—C4177.78 (14)C14—C15—C16—C17179.71 (15)
C2—C3—C4—C8178.52 (15)C15—C16—C17—C21179.19 (16)
C2—C3—C4—S52.4 (2)C15—C16—C17—S180.6 (2)
C8—C4—S5—C60.81 (12)C21—C17—S18—C190.10 (12)
C3—C4—S5—C6178.37 (14)C16—C17—S18—C19179.92 (14)
C4—S5—C6—C70.29 (12)C17—S18—C19—C200.07 (13)
S5—C6—C7—C80.30 (17)S18—C19—C20—C210.02 (18)
C3—C4—C8—C7178.06 (14)C16—C17—C21—C20179.93 (14)
S5—C4—C8—C71.12 (16)S18—C17—C21—C200.11 (17)
C3—C4—C8—C92.5 (2)C16—C17—C21—C220.4 (2)
S5—C4—C8—C9178.36 (12)S18—C17—C21—C22179.43 (12)
C6—C7—C8—C40.93 (19)C19—C20—C21—C170.1 (2)
C6—C7—C8—C9178.56 (14)C19—C20—C21—C22179.49 (14)
C1—O2—C12—C1383.60 (15)C14—O15—C26—C2788.66 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O10.952.432.8136 (19)104
C16—H16···O140.952.382.7829 (19)105
C19—H19···O1i0.952.343.2708 (19)165
C22—H22A···O15ii0.982.593.292 (2)128
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y, z.
Ethyl (E)-2-cyano-3-(thiophen-2-yl)acrylate (2) top
Crystal data top
C10H9NO2SF(000) = 432
Mr = 207.24Dx = 1.384 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54186 Å
a = 11.5907 (3) ÅCell parameters from 15380 reflections
b = 6.6883 (2) Åθ = 3.5–76.4°
c = 13.4837 (3) ŵ = 2.68 mm1
β = 107.859 (2)°T = 100 K
V = 994.92 (5) Å3Block, colourless
Z = 40.32 × 0.20 × 0.20 mm
Data collection top
Stoe STADIVARI
diffractometer
2048 independent reflections
Radiation source: GeniX 3D HF Cu1974 reflections with I > 2σ(I)
Detector resolution: 5.81 pixels mm-1Rint = 0.026
rotation method, ω scansθmax = 76.3°, θmin = 6.8°
Absorption correction: multi-scan
(LANA; Stoe & Cie, 2016)
h = 1414
Tmin = 0.051, Tmax = 0.168k = 88
10400 measured reflectionsl = 1610
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033All H-atom parameters refined
wR(F2) = 0.100 w = 1/[σ2(Fo2) + (0.0688P)2 + 0.2209P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
2048 reflectionsΔρmax = 0.29 e Å3
164 parametersΔρmin = 0.28 e Å3
0 restraintsExtinction correction: SHELXL-2018/3 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: dualExtinction coefficient: 0.0030 (6)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.67411 (9)0.47068 (14)0.54042 (8)0.0266 (3)
C10.72087 (12)0.46539 (17)0.47233 (11)0.0214 (3)
O20.84079 (8)0.45263 (13)0.48771 (8)0.0238 (2)
C20.65241 (12)0.46897 (17)0.35943 (11)0.0211 (3)
C30.52935 (12)0.47114 (18)0.33171 (11)0.0215 (3)
H30.4938 (17)0.475 (2)0.3876 (14)0.025 (4)*
C40.44161 (12)0.47115 (17)0.23001 (11)0.0210 (3)
S50.47197 (3)0.46815 (5)0.11198 (2)0.02218 (16)
C60.32131 (13)0.47018 (18)0.04368 (12)0.0250 (3)
H60.301 (2)0.470 (3)0.0329 (19)0.044 (6)*
C70.24983 (13)0.47201 (19)0.10750 (12)0.0256 (3)
H70.158 (2)0.472 (3)0.0817 (19)0.053 (6)*
C80.31729 (13)0.47269 (18)0.21394 (12)0.0229 (3)
H80.2819 (18)0.476 (2)0.2678 (16)0.031 (5)*
C90.71814 (12)0.46836 (18)0.28517 (11)0.0223 (3)
H90.8744 (14)0.354 (3)0.6320 (12)0.026 (4)*
N100.76940 (11)0.46866 (17)0.22440 (10)0.0272 (3)
H100.9901 (15)0.379 (3)0.5923 (13)0.029 (4)*
C110.91574 (13)0.4415 (2)0.59654 (12)0.0277 (3)
H110.8636 (16)0.712 (3)0.6428 (13)0.039 (5)*
C120.94012 (13)0.6466 (3)0.64456 (12)0.0355 (3)
H120.9946 (17)0.630 (3)0.7176 (16)0.051 (5)*
H130.9802 (15)0.731 (3)0.6063 (14)0.044 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0208 (5)0.0392 (6)0.0210 (5)0.0009 (4)0.0081 (4)0.0005 (4)
C10.0179 (6)0.0224 (6)0.0235 (7)0.0005 (4)0.0055 (5)0.0001 (4)
O20.0170 (5)0.0334 (5)0.0205 (5)0.0013 (3)0.0050 (4)0.0002 (3)
C20.0196 (6)0.0236 (6)0.0203 (7)0.0004 (4)0.0062 (5)0.0002 (4)
C30.0205 (7)0.0220 (7)0.0225 (7)0.0002 (4)0.0071 (5)0.0001 (4)
C40.0202 (7)0.0236 (6)0.0203 (7)0.0006 (4)0.0077 (5)0.0004 (4)
S50.0193 (2)0.0285 (2)0.0190 (2)0.00064 (10)0.00624 (14)0.00010 (10)
C60.0221 (6)0.0269 (7)0.0234 (7)0.0009 (5)0.0033 (5)0.0002 (5)
C70.0196 (6)0.0290 (7)0.0264 (8)0.0006 (5)0.0046 (5)0.0004 (5)
C80.0210 (7)0.0240 (6)0.0236 (7)0.0003 (4)0.0068 (5)0.0001 (4)
C90.0178 (6)0.0245 (7)0.0231 (7)0.0000 (4)0.0040 (5)0.0003 (4)
N100.0213 (6)0.0371 (7)0.0236 (6)0.0006 (4)0.0073 (5)0.0007 (4)
C110.0195 (6)0.0398 (7)0.0212 (7)0.0042 (5)0.0024 (5)0.0014 (5)
C120.0229 (6)0.0484 (9)0.0318 (8)0.0018 (6)0.0032 (5)0.0091 (7)
Geometric parameters (Å, º) top
O1—C11.2012 (18)C6—H60.99 (2)
C1—O21.3438 (15)C7—C81.408 (2)
C1—C21.4855 (19)C7—H71.01 (2)
O2—C111.4600 (16)C8—H80.938 (19)
C2—C31.3592 (18)C9—N101.1501 (19)
C2—C91.4322 (18)C11—C121.506 (2)
C3—C41.4350 (19)C11—H90.969 (16)
C3—H30.964 (18)C11—H100.976 (16)
C4—C81.3899 (19)C12—H110.982 (18)
C4—S51.7323 (14)C12—H121.00 (2)
S5—C61.7062 (15)C12—H130.974 (19)
C6—C71.365 (2)
O1—C1—O2124.87 (13)C6—C7—H7124.0 (14)
O1—C1—C2123.94 (12)C8—C7—H7123.2 (14)
O2—C1—C2111.18 (11)C4—C8—C7112.58 (13)
C1—O2—C11115.27 (10)C4—C8—H8123.9 (13)
C3—C2—C9123.10 (13)C7—C8—H8123.5 (13)
C3—C2—C1117.88 (12)N10—C9—C2178.99 (14)
C9—C2—C1119.01 (11)O2—C11—C12111.16 (12)
C2—C3—C4129.73 (13)O2—C11—H9107.1 (10)
C2—C3—H3116.7 (11)C12—C11—H9113.1 (10)
C4—C3—H3113.5 (11)O2—C11—H10103.1 (10)
C8—C4—C3123.09 (13)C12—C11—H10111.3 (10)
C8—C4—S5110.48 (11)H9—C11—H10110.5 (13)
C3—C4—S5126.43 (10)C11—C12—H11110.2 (11)
C6—S5—C491.90 (7)C11—C12—H12107.6 (13)
C7—C6—S5112.23 (11)H11—C12—H12111.4 (15)
C7—C6—H6131.8 (13)C11—C12—H13111.0 (11)
S5—C6—H6116.0 (13)H11—C12—H13107.7 (15)
C6—C7—C8112.81 (12)H12—C12—H13109.0 (15)
O1—C1—O2—C111.03 (17)C2—C3—C4—S50.03 (19)
C2—C1—O2—C11178.07 (10)C8—C4—S5—C60.27 (9)
O1—C1—C2—C32.45 (17)C3—C4—S5—C6179.99 (11)
O2—C1—C2—C3176.65 (10)C4—S5—C6—C70.31 (10)
O1—C1—C2—C9178.04 (11)S5—C6—C7—C80.27 (14)
O2—C1—C2—C92.85 (15)C3—C4—C8—C7179.90 (11)
C9—C2—C3—C40.7 (2)S5—C4—C8—C70.17 (13)
C1—C2—C3—C4178.77 (11)C6—C7—C8—C40.06 (16)
C2—C3—C4—C8179.71 (12)C1—O2—C11—C1283.41 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O10.964 (19)2.444 (19)2.7998 (18)101.5 (14)
C3—H3···O1i0.964 (19)2.45 (2)3.3436 (18)153.4 (15)
C6—H6···N10ii0.99 (2)2.49 (2)3.465 (2)169.1 (18)
C8—H8···O1i0.94 (2)2.50 (2)3.3047 (19)143.6 (17)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z.
 

Funding information

The authors thank Al al-Bayt University for financial support. Thanks are also due to the DFG (Deutsche Forschungsgemeinschaft) for financial support (research visit fellowship to Dr Mahmoud Al-Refai).

References

First citationAl-Refai, M., Geyer, A., Marsch, M. & Ali, B. F. (2014). J. Chem. Crystallogr. 44, 407–414.  CAS Google Scholar
First citationAl-Refai, M., Ibrahim, M. M., Geyer, A., Marsch, M. & Ali, B. F. (2016). J. Chem. Crystallogr. 46, 331–340.  CAS Google Scholar
First citationAsiri, A. M., Al-Youbi, A. O., Alamry, K. A., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2315.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrenna, E., Crotti, M., Gatti, F. G., Monti, D., Parmeggiani, F., Powell, R. W. III, Santangelo, S. & Stewart, J. D. (2015). Adv. Synth. Catal. 357, 1849–1860.  CrossRef CAS Google Scholar
First citationBrenna, E., Gatti, F. G., Manfredi, A., Monti, D. & Parmeggiani, F. (2013). Catal. Sci. Technol. 3, 1136–1146.  CrossRef CAS Google Scholar
First citationCastro Agudelo, B., Cárdenas, J. C., Macías, M. A., Ochoa-Puentes, C. & Sierra, C. A. (2017). Acta Cryst. E73, 1287–1289.  CSD CrossRef IUCr Journals Google Scholar
First citationCrystal Impact (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFaggi, E., Aguilera, J., Sáez, R., Pujol, F., Marquet, J., Hernando, J. & Sebastián, R. M. (2019). Macromolecules, 52, 2329–2339.  CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHe, J., Liu, Y., Gao, J. & Han, L. (2017). Photochem. Photobiol. Sci. 16, 1049–1056.  CrossRef CAS PubMed Google Scholar
First citationIbrahim, M. M., Al-Refai, M., Ali, B. F., Geyer, A., Harms, K. & Marsch, M. (2019). IUCrData, 4, x191046.  Google Scholar
First citationKalkhambkar, R. G., Gayathri, D., Gupta, V. K., Kant, R. & Jeong, Y. T. (2012). Acta Cryst. E68, o1482.  CSD CrossRef IUCr Journals Google Scholar
First citationKong, D., Li, M., Wang, R., Zi, G. & Hou, G. (2016). Org. Biomol. Chem. 14, 1216–1220.  CrossRef CAS PubMed Google Scholar
First citationLiu, L., Song, J., Lu, H., Wang, H. & Bo, Z. (2016). Polym. Chem. 7, 319–329.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, Q., Kong, F.-T., Okujima, T., Yamada, H., Dai, S.-Y., Uno, H., Ono, N., You, X.-Z. & Shen, Z. (2012). Tetrahedron Lett. 53, 3264–3267.  CrossRef CAS Google Scholar
First citationMiyazaki, E., Okanishi, T., Suzuki, Y., Ishine, N., Mori, H., Takimiya, K. & Harima, Y. (2011). Bull. Chem. Soc. Jpn, 84, 459–465.  Web of Science CSD CrossRef CAS Google Scholar
First citationQian, S., Xie, Z., Liu, J., Li, M., Wang, S., Luo, N. & Wang, C. (2018). J. Org. Chem. 83, 14768–14776.  CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2016). X-AREA and LANA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationXu, D., Li, Z., Peng, Y.-X., Geng, J., Qian, H.-F. & Huang, W. (2016). Dyes Pigments, 133, 143–152.  CSD CrossRef CAS Google Scholar
First citationYuvaraj, H., Gayathri, D., Kalkhambkar, R. G., Gupta, V. K. & Rajnikant (2011). Acta Cryst. E67, o2135.  Google Scholar
First citationZhou, N., Prabakaran, K., Lee, B., Chang, S. H., Harutyunyan, B., Guo, P., Butler, M. R., Timalsina, A., Bedzyk, M. J., Ratner, M. A., Vegiraju, S., Yau, S., Wu, C.-G., Chang, R. P. H., Facchetti, A., Chen, M.-C. & Marks, T. J. (2015). J. Am. Chem. Soc. 137, 4414–4423.  CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds