research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and structure of push–pull merocyanines based on barbituric and thio­barbituric acid

aDepartment of Chemistry, New Mexico Highlands University, Las Vegas, New Mexico, 87701, USA, and bSchool of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA
*Correspondence e-mail: bogdgv@gmail.com

Edited by A. V. Yatsenko, Moscow State University, Russia (Received 31 July 2019; accepted 8 August 2019; online 16 August 2019)

Two compounds, 1,3-diethyl-5-{(2E,4E)-6-[(E)-1,3,3-tri­methyl­indolin-2-yl­idene]hexa-2,4-dien-1-yl­idene}pyrimidine-2,4,6(1H,3H,5H)-trione or TMI, C25H29N3O3, and 1,3-diethyl-2-sulfanyl­idene-5-[2-(1,3,3-tri­methyl­indolin-2-yl­idene)ethyl­idene]di­hydro­pyrimidine-4,6(1H,5H)-dione or DTB, C21H25N3O2S, have been crystallized and studied. These compounds contain the same indole derivative donor group and differ in their acceptor groups (in TMI it contains oxygen in the para position, and in DTB sulfur) and the length of the π-bridge. In both materials, mol­ecules are packed in a herringbone manner with differences in the twist and fold angles. In both structures, the mol­ecules are connected by weak C—H⋯O and/or C—H⋯S bonds.

1. Chemical context

The structures and properties of merocyanine dyes that lead to their potential use as non-linear optical materials have been studied widely over the past several decades (Del Zoppo et al., 1998[Del Zoppo, M., Castiglioni, C., Gerola, V., Zuliani, P. & Zerbi, G. (1998). J. Opt. Soc. Am. B, 15, 308-317.]; Bublitz & Boxer, 1998[Bublitz, G. U. & Boxer, S. G. (1998). J. Am. Chem. Soc. 120, 3988-3992.]; Kulinich et al., 2007[Kulinich, A. V., Derevyanko, N. A. & Ishchenko, A. A. (2007). J. Photochem. Photobiol. Chem. 188, 207-217.]; Liess et al., 2015[Liess, A., Huang, L., Arjona-Esteban, A., Lv, A., Gsänger, M., Stepanenko, V., Stolte, M. & Würthner, F. (2015). Adv. Funct. Mater. 25, 44-57.]). For so-called push–pull systems with donor and acceptor groups connected by a π-conjugated bridge, non-linear optical applications are possible as a result of the charge-transfer phenomenon within one mol­ecule. As previously reported (Klikar et al., 2013[Klikar, M., Bureš, F., Pytela, O., Mikysek, T., Padělková, Z., Barsella, A., Dorkenoo, K. & Achelle, S. (2013). New J. Chem. 37, 4230-4240.]; Bideau et al., 1976[Bideau, J. P., Huong, P. V. & Toure, S. (1976). Acta Cryst. B32, 481-488.], 1977[Bideau, J.-P., Bravic, G. & Filhol, A. (1977). Acta Cryst. B33, 3847-3849.]; Bublitz, Ortiz, Marder et al., 1997[Bublitz, G. U., Ortiz, R., Marder, S. R. & Boxer, S. G. (1997). J. Am. Chem. Soc. 119, 3365-3376.]; Bourhill et al., 1994[Bourhill, G., Bredas, J.-L., Cheng, L.-T., Marder, S. R., Meyers, F., Perry, J. W. & Tiemann, B. G. (1994). J. Am. Chem. Soc. 116, 2619-2620.]), studies of mol­ecules with barbituric or thio­barbituric acid as acceptor (Adamson et al., 1999[Adamson, J., Coe, B. J., Grassam, H. L., Jeffery, J. C., Coles, S. J. & Hursthouse, M. B. (1999). J. Chem. Soc. C17, 2483-2488.]; Padgett et al., 2007[Padgett, C. W., Arman, H. D. & Pennington, W. T. (2007). Cryst. Growth Des. 7, 367-372.]) show high values of first hyperpolarizability. Recently, more applications in the biological field have also been reported for such compounds (Collot et al.; 2018[Collot, M., Fam, T. K., Ashokkumar, P., Faklaris, O., Galli, T., Danglot, L. & Klymchenko, A. S. (2018). J. Am. Chem. Soc. 140, 5401-5411.], Golovnev et al., 2018[Golovnev, N. N., Molokeev, M. S., Sterkhova, I. V. & Lesnikov, M. K. (2018). J. Mol. Struct. 1171, 488-494.]; Molokeev et al., 2015[Molokeev, M. S., Golovnev, N. N., Vereshchagin, S. N. & Atuchin, V. V. (2015). Polyhedron, 98, 113-119.]) related to their ability of bright fluorescence. Both structures reported here have the same 1,3,3-trimethyl-2-methyl­eneindoline moiety as a donor group. Studies of mol­ecules with different lengths of the π-bridge between the donor and acceptor groups (Ortiz et al., 1994[Ortiz, R., Marder, S. R., Cheng, L.-T., Tiemann, B. G., Cavagnero, S. & Ziller, J. W. (1994). J. Chem. Soc. Chem. Commun. pp. 2263-2264.], Vázquez-Vuelvas et al., 2011[Vázquez-Vuelvas, O. F., Hernández-Madrigal, J. V., Gaviño, R., Tlenkopatchev, M. A., Morales-Morales, D., Germán-Acacio, J. M., Gomez-Sandoval, Z., Garcias-Morales, C., Ariza-Castolo, A. & Pineda-Contreras, A. (2011). J. Mol. Struct. 987, 106-118.]) have demonstrated their different properties. Some non-linear optical studies were made on compounds with very similar structures to those presented here (Ikeda et al., 1991[Ikeda, H., Sakai, T. & Kawasaki, K. (1991). Chem. Phys. Lett. 179, 551-554.]; Chamberlain et al., 1980[Chamberlain, G. A. & Malpas, R. E. (1980). Faraday Discuss. Chem. Soc. 70, 299-332.]; Kulinich et al., 2008[Kulinich, A. V., Derevyanko, N. A., Ishchenko, A. A., Bondarev, S. L. & Knyukshto, V. N. (2008). J. Photochem. Photobiol. Chem. 200, 106-113.]), which vary by substitutions attached to the donor or acceptor groups (Song et al., 2005[Song, H., Chen, K. & Tian, H. (2005). Dyes Pigments, 67, 1-7.]; Naik et al., 2017[Naik, P., Su, R., Babu, D. D., El-Shafei, A. & Adhikari, A. V. (2017). J. Iran. Chem. Soc. 14, 2457-2466.]; Hirshberg et al., 1955[Hirshberg, Y., Knott, E. B. & Fischer, E. (1955). J. Chem. Soc. pp. 3313-3321.]). Almost all those studies were carried out in solution. Here we report the single-crystal X-ray structural analysis of two merocyanines, 1,3-diethyl-5-{(2E,4E)-6-[(E)-1,3,3-tri­methyl­indolin-2-yl­idene]hexa-2,4-dien-1-yl­idene}pyrimidine-2,4,6(1H,3H,5H)-trione or TMI, and 1,3-diethyl-2-sulfanyl­idene-5-[2-(1,3,3-tri­methyl­indolin-2-yl­idene)ethyl­idene]di­hydro­pyrimidine-4,6(1H,5H)-dione or DTB.

[Scheme 1]

2. Structural commentary

Both title compounds have the same donor 2,3-di­hydro-1,3,3-tri­methyl-1H-indole moiety with different acceptors: 1,3-di­ethyl-2-oxobarbituric acid in TMI (Fig. 1[link]a) and 1,3-di­ethyl-2-thio­barbituric acid in DTB (Fig. 1[link]b). The double and single bonds in the TMI π-bridge vary in length from 1.372 (2) to 1.410 (2) Å, the difference between the single and double bonds getting smaller closer to the acceptor, indicating a higher degree of conjugation in this region. The dihedral angles between donor group and the bridge and between the bridge and the acceptor group are 9.10 (12) and 7.44 (12)°, respectively. All three fragments of the TMI structure are slightly distorted from a planar configuration, as shown by the r.m.s. deviations of 0.022 and 0.039 Å, respectively, for atoms in the donor and acceptor groups.

[Figure 1]
Figure 1
Views of the formula units of (a) TMI and (b) DTB with the atom-labelling schemes.

Comparing DTB to TMI, it is observed that DTB possesses a more planar and rigid structure, consistent with previously reported results for studies of push–pull chromophores with different π-bridge lengths (Tillotson et al., 2019[Tillotson, J. P., Bogdanov, G., Jucov, E. V., Khrustalev, V. N., Rigin, S., Hales, J. M., Perry, J. W. & Timofeeva, T. V. (2019). J. Mol. Struct. 1189, 146-154.]). The dihedral angles between the three fragments are smaller, 3.21 (14)° between the donor group and the bridge and 1.04 (14)° between the bridge and the acceptor group. The r.m.s. deviations of atoms in DTB are also smaller, being 0.014 and 0.020 Å for the donor and acceptor groups, respectively.

In both structures, the π-bridge has an almost planar structure with insignificant r.m.s. deviations of atoms from planarity of 0.007 and 0.009 Å for TMI and DTB, respectively. In DTB, the bond-length distribution in the central fragment does not correspond to that in the scheme. According to the observed bond lengths [C8—C12 1.403 (1), C12—C13 1.386 (1), C13—C14 1.404 (1) Å], the central fragment can be presented as C8—C12=C13—C14, which indicates that the contribution of the zwitterionic form in the mol­ecular structure of DTB. It should be mentioned that measurements of the first mol­ecular hyperpolarizability, β, have positive values for dyes with hexa­methine bridges, such as TMI, while dyes with a dimethine bridge have negative β values (Ortiz et al., 1994[Ortiz, R., Marder, S. R., Cheng, L.-T., Tiemann, B. G., Cavagnero, S. & Ziller, J. W. (1994). J. Chem. Soc. Chem. Commun. pp. 2263-2264.]). The authors connect this effect with the high polarization and zwitterionic form of mol­ecule DTB, which has a short conjugated bridge.

3. Supra­molecular features

In the crystals of both TMI and DTB mol­ecules are packed in a herringbone manner with a twist angle of 38.57 (1)° and fold angle of 57.08 (1)° in TMI (Fig. 2[link]a) and a twist angle of 54.90 (7)° and fold angle of 78.96 (3)° in DTB (Fig. 2[link]b). In both compounds, mol­ecules are hold together via three hydrogen bonds, of the C—H⋯O type in TMI and of the C—H⋯O and C—H⋯S types in DTB (Tables 1[link] and 2[link], Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °) for TMI[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O2i 0.95 2.61 3.5458 (17) 167
C24—H24B⋯O1ii 0.99 2.56 3.2939 (16) 131
C11—H11A⋯O2i 0.98 2.43 3.3891 (17) 165
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °) for DTB[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯O1 0.95 2.28 2.9000 (10) 122
C19—H19B⋯S1i 0.98 2.85 3.5573 (9) 130
C21—H21A⋯S1 0.98 2.98 3.4965 (12) 114
Symmetry code: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 2]
Figure 2
The mol­ecular packing in the crystals of compounds (a) TMI and (b) DTB.
[Figure 3]
Figure 3
Hydrogen-bonding scheme in (a) TMI and (b) DTB.

For push–pull mol­ecules be applied in the form of non-linear crystalline materials, they should exhibit a non-centrosymmetric type of packing. TMI and DTB both crystallize in the centrosymmetric space group P21/c. According to the bond order alternation pattern in these structures (see the supporting information), we suggest that they have the potential to be used as non-linear optical materials, but for this application they should be either be embedded in a polymer matrix or recrystallized under different conditions to attain an acentric packing mode.

4. Database survey

The Cambridge Structural Database (CSD version 5.40, last update November 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) was searched three times: for the donor group, which is the same for both studied structures, and separately for each acceptor group. A search for the full structures gave zero hits. The dependence of the first hyperpolarizability on polarization and the length of the π-bridge that comprises donor or acceptors of studied mol­ecules is described in several publications [KIYTOC and KOFMAU, Kulinich et al., 2007[Kulinich, A. V., Derevyanko, N. A. & Ishchenko, A. A. (2007). J. Photochem. Photobiol. Chem. 188, 207-217.]; GUBDAK, Liess et al., 2015[Liess, A., Huang, L., Arjona-Esteban, A., Lv, A., Gsänger, M., Stepanenko, V., Stolte, M. & Würthner, F. (2015). Adv. Funct. Mater. 25, 44-57.] (Fig. 4[link]); POLZEV, Ortiz et al., 1994[Ortiz, R., Marder, S. R., Cheng, L.-T., Tiemann, B. G., Cavagnero, S. & Ziller, J. W. (1994). J. Chem. Soc. Chem. Commun. pp. 2263-2264.]; WIMHAD and WIMHEH, Klikar et al., 2013[Klikar, M., Bureš, F., Pytela, O., Mikysek, T., Padělková, Z., Barsella, A., Dorkenoo, K. & Achelle, S. (2013). New J. Chem. 37, 4230-4240.]; WEVMUF, Bourhill et al., 1994[Bourhill, G., Bredas, J.-L., Cheng, L.-T., Marder, S. R., Meyers, F., Perry, J. W. & Tiemann, B. G. (1994). J. Am. Chem. Soc. 116, 2619-2620.]]. In addition, the acceptor group of the TMI structure has been studied separately and the results were published (DETBAR10; Bideau et al., 1976[Bideau, J. P., Huong, P. V. & Toure, S. (1976). Acta Cryst. B32, 481-488.]). The acceptor group of DTB was studied as an independent mol­ecule (DETSBR10; Bideau et al., 1976[Bideau, J. P., Huong, P. V. & Toure, S. (1976). Acta Cryst. B32, 481-488.]), as a part of several chromophore mol­ecules (GUDWEH, Adamson et al., 1999[Adamson, J., Coe, B. J., Grassam, H. L., Jeffery, J. C., Coles, S. J. & Hursthouse, M. B. (1999). J. Chem. Soc. C17, 2483-2488.]; GUDWEH01, Naik et al., 2017[Naik, P., Su, R., Babu, D. D., El-Shafei, A. & Adhikari, A. V. (2017). J. Iran. Chem. Soc. 14, 2457-2466.]; WEVMUF, Bourhill et al., 1994[Bourhill, G., Bredas, J.-L., Cheng, L.-T., Marder, S. R., Meyers, F., Perry, J. W. & Tiemann, B. G. (1994). J. Am. Chem. Soc. 116, 2619-2620.]) and also as an anion in complexes with different cations (HUKMAD, HUKMEH, HUKMIL and HUKMOR; Molokeev et al., 2015[Molokeev, M. S., Golovnev, N. N., Vereshchagin, S. N. & Atuchin, V. V. (2015). Polyhedron, 98, 113-119.]). We found several publications in which the mol­ecules are similar to our donor and acceptors, for instance PAQYEM (Song et al., 2005[Song, H., Chen, K. & Tian, H. (2005). Dyes Pigments, 67, 1-7.]) is similar to TMI, but with a methyl group instead of an oxygen atom in the ortho position of the acceptor ring, and a cyano group in the meta position instead of an ethyl group (Fig. 4[link]). Two structures of the separately crystallized acceptor group (DETSBR01, Bideau et al., 1977[Bideau, J.-P., Bravic, G. & Filhol, A. (1977). Acta Cryst. B33, 3847-3849.]; DETSBR11, Padgett et al., 2007[Padgett, C. W., Arman, H. D. & Pennington, W. T. (2007). Cryst. Growth Des. 7, 367-372.]) are very close to that of the acceptor of DTB, but with hy­droxy groups in the ortho positions instead of carbonyl oxygen atoms (Fig. 5[link]).

[Figure 4]
Figure 4
The mol­eculular structure of a compound with a similar structure to DTB (PAQYEM; Song et al., 2005[Song, H., Chen, K. & Tian, H. (2005). Dyes Pigments, 67, 1-7.]).
[Figure 5]
Figure 5
The mol­ecular structures of compounds with an acceptor group very close to those in the chromophores reported here: (a) DETSBR01 (Bideau et al., 1977[Bideau, J.-P., Bravic, G. & Filhol, A. (1977). Acta Cryst. B33, 3847-3849.]) and (b) DETSBR11 (Padgett et al., 2007[Padgett, C. W., Arman, H. D. & Pennington, W. T. (2007). Cryst. Growth Des. 7, 367-372.]).

5. Synthesis and crystallization

The synthesis of TMI was described by Ortiz et al. (1994[Ortiz, R., Marder, S. R., Cheng, L.-T., Tiemann, B. G., Cavagnero, S. & Ziller, J. W. (1994). J. Chem. Soc. Chem. Commun. pp. 2263-2264.]), and this material was kindly presented to our group for structural studies by Professor Marderr's group. A scheme for the synthesis of DTB is shown in Fig. 6[link].

[Figure 6]
Figure 6
Synthesis of 1,3-diethyl-2-thioxo-5-(2-(1,3,3-tri­methyl­indolin-2-yl­idene)ethyl­idene)di­hydro­pyrimidine-4,6(1H,5H)-dione (DTB).

Synthesis of 1,3-diethyl-2-sulfanyl­idene-5-[2-(1,3,3-tri­meth­yl­indolin-2-yl­idene)ethyl­idene]di­hydro­pyrimidine-4,6(1H,5H)-dione (DTB):

2-(1,3,3-Tri­methyl­indolin-2-yl­idene)acetaldehyde (0.25 g, 1.2 mmol) and diethyl­thio­barbituric acid (0.25 g, 1.24 mmol) were dissolved in about 35 mL of absolute ethanol with stirring and sonication. After stirring for 1 h at room temperature, the product was precipitated by adding distilled water. The mixture was then filtered and the residue redissolved in EtOH and precipitated again. The precipitant was washed with hexane and dried in vacuo to give 1,3-diethyl-2-sulfanyl­idene-5-[2-(1,3,3-tri­methyl­indolin-2-yl­idene)ethyl­idene]di­hydro­pyrimidine-4,6(1H,5H)-dione as transparent red crystals (0.41 g, 86% yield). 1H NMR 8.69 (d, J = 14.6 Hz, 1H), 7.70 (d, J = 14.6 Hz, 1H), 7.40 (m, 2H), 7.26 (t, J = 7.9 Hz, 1H), 7.12 (d, J = 8.6 Hz, 1H), 4.55 (q, J = 7.0 Hz, 2H), 4.54 (q, J = 7.0 Hz, 2H), 3.59 (s, 3H), 1.73 (s, 6H), 1.27 (t, J = 7.0 Hz, 3H), 1.26 (t, J = 7.0 Hz, 3H) ppm.

Single crystals of both DTB and TMI were grown by vapour diffusion using chloro­form as the solvent and cyclo­hexane as the anti­solvent. Crystallization took place over a three week period to give DTB crystals of suitable size and quality.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The hydrogen atoms on the aromatic ring of the donor group and the π-bridge in both structures were positioned geometrically, C—H = 0.95 Å. Other hydrogens were positioned with idealized geometries C—H = 0.98–0.99 Å. All H atoms were refined using a riding model with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C-meth­yl).

Table 3
Experimental details

  TMI DTB
Crystal data
Chemical formula C25H29N3O3 C21H25N3O2S
Mr 419.51 383.50
Crystal system, space group Monoclinic, P21/c Monoclinic, P21/c
Temperature (K) 100 100
a, b, c (Å) 11.7624 (9), 22.9546 (19), 8.1934 (7) 16.1504 (6), 8.1264 (3), 15.6487 (6)
β (°) 93.717 (2) 108.849 (1)
V3) 2207.6 (3) 1943.67 (13)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.08 0.19
Crystal size (mm) 0.3 × 0.25 × 0.11 0.3 × 0.26 × 0.24
 
Data collection
Diffractometer Bruker APEXII CCD Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.601, 0.746 0.678, 0.748
No. of measured, independent and observed [I > 2σ(I)] reflections 69450, 7037, 4810 92854, 12354, 8903
Rint 0.085 0.045
(sin θ/λ)max−1) 0.726 0.913
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.117, 1.02 0.046, 0.141, 1.04
No. of reflections 7037 12354
No. of parameters 285 249
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.33, −0.28 0.64, −0.46
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

For both structures, data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

1,3-Diethyl-5-{(2E,4E)-6-[(E)-1,3,3-trimethylindolin-2-ylidene]hexa-2,4-dien-1-ylidene}pyrimidine-2,4,6(1H,3H,5H)-trione (TMI) top
Crystal data top
C25H29N3O3F(000) = 896
Mr = 419.51Dx = 1.262 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.7624 (9) ÅCell parameters from 8868 reflections
b = 22.9546 (19) Åθ = 2.5–28.2°
c = 8.1934 (7) ŵ = 0.08 mm1
β = 93.717 (2)°T = 100 K
V = 2207.6 (3) Å3Plate, metallic light blue
Z = 40.3 × 0.25 × 0.11 mm
Data collection top
Bruker APEXII CCD
diffractometer
4810 reflections with I > 2σ(I)
φ and ω scansRint = 0.085
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
θmax = 31.1°, θmin = 1.7°
Tmin = 0.601, Tmax = 0.746h = 1617
69450 measured reflectionsk = 3333
7037 independent reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0433P)2 + 0.7306P]
where P = (Fo2 + 2Fc2)/3
7037 reflections(Δ/σ)max < 0.001
285 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.28 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.57141 (8)0.28544 (4)0.06369 (11)0.0250 (2)
C140.45141 (11)0.39420 (5)0.74941 (16)0.0210 (3)
H140.4860340.4313170.7656790.025*
O30.84399 (9)0.40063 (4)0.13659 (12)0.0300 (2)
O20.68018 (9)0.46420 (4)0.31743 (12)0.0314 (2)
N10.28095 (9)0.42110 (4)1.26866 (12)0.0195 (2)
N20.70066 (9)0.34541 (5)0.04349 (13)0.0203 (2)
N30.75975 (9)0.43289 (4)0.08893 (13)0.0201 (2)
C70.29334 (10)0.38885 (5)1.13030 (15)0.0172 (2)
C80.21355 (10)0.33601 (5)1.13327 (15)0.0174 (2)
C50.15411 (11)0.34692 (5)1.28882 (15)0.0187 (2)
C120.36413 (11)0.40500 (5)1.01155 (15)0.0196 (2)
H120.4040500.4407011.0282190.023*
C40.19733 (11)0.39734 (5)1.36456 (15)0.0195 (2)
C130.38377 (11)0.37410 (5)0.86730 (15)0.0201 (2)
H130.3480860.3372430.8509120.024*
C200.62694 (11)0.33057 (5)0.07785 (15)0.0195 (2)
C170.55933 (10)0.35433 (5)0.34446 (15)0.0201 (2)
H170.5234200.3173380.3335540.024*
C210.77321 (11)0.39312 (6)0.03588 (15)0.0212 (3)
C150.47303 (11)0.36355 (6)0.60582 (16)0.0209 (3)
H150.4390830.3262970.5890550.025*
C180.62303 (10)0.37085 (5)0.21547 (15)0.0188 (2)
C190.68610 (11)0.42537 (5)0.21503 (15)0.0206 (3)
C160.54072 (11)0.38470 (6)0.48855 (16)0.0214 (3)
H160.5763850.4215080.5060470.026*
C220.83708 (11)0.48360 (5)0.09856 (16)0.0225 (3)
H22A0.7977390.5170980.1460230.027*
H22B0.8567970.4945520.0130050.027*
C90.12617 (11)0.33600 (6)0.98519 (15)0.0218 (3)
H9A0.0694220.3054430.9991490.033*
H9B0.1652820.3285730.8852210.033*
H9C0.0881400.3739650.9768580.033*
C60.06730 (11)0.31656 (6)1.35644 (16)0.0229 (3)
H60.0370840.2822001.3056260.028*
C30.15744 (12)0.41847 (6)1.50894 (16)0.0243 (3)
H30.1887130.4524961.5603130.029*
C100.28018 (11)0.27818 (5)1.14518 (17)0.0230 (3)
H10A0.2265420.2455991.1485620.034*
H10B0.3308730.2781191.2449350.034*
H10C0.3254950.2740501.0496000.034*
C240.70962 (12)0.30531 (6)0.18308 (15)0.0235 (3)
H24A0.7305610.3276860.2799800.028*
H24B0.6346970.2868130.2098610.028*
C20.06930 (12)0.38748 (6)1.57531 (16)0.0267 (3)
H20.0391780.4009601.6732800.032*
C10.02468 (12)0.33723 (6)1.50078 (17)0.0272 (3)
H10.0351650.3168351.5484040.033*
C110.34104 (12)0.47513 (6)1.30867 (17)0.0255 (3)
H11A0.3314760.4852371.4231820.038*
H11B0.3099030.5064061.2376600.038*
H11C0.4222460.4701631.2921400.038*
C250.79828 (12)0.25841 (6)0.14451 (18)0.0289 (3)
H25A0.8050580.2337090.2409460.043*
H25B0.7750410.2345620.0532270.043*
H25C0.8719770.2766880.1144670.043*
C230.94519 (12)0.47040 (6)0.20246 (19)0.0297 (3)
H23A0.9948610.5047120.2060460.045*
H23B0.9847170.4375340.1549310.045*
H23C0.9259550.4604080.3136470.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0246 (5)0.0215 (5)0.0289 (5)0.0026 (4)0.0012 (4)0.0021 (4)
C140.0197 (6)0.0193 (6)0.0243 (6)0.0012 (5)0.0032 (5)0.0022 (5)
O30.0326 (6)0.0326 (5)0.0261 (5)0.0046 (4)0.0110 (4)0.0023 (4)
O20.0397 (6)0.0235 (5)0.0325 (5)0.0086 (4)0.0153 (5)0.0079 (4)
N10.0213 (5)0.0172 (5)0.0200 (5)0.0035 (4)0.0015 (4)0.0014 (4)
N20.0204 (5)0.0212 (5)0.0193 (5)0.0011 (4)0.0011 (4)0.0016 (4)
N30.0208 (5)0.0184 (5)0.0214 (5)0.0011 (4)0.0047 (4)0.0003 (4)
C70.0171 (6)0.0148 (5)0.0193 (5)0.0003 (4)0.0010 (4)0.0008 (4)
C80.0171 (6)0.0151 (5)0.0200 (5)0.0011 (4)0.0018 (4)0.0005 (4)
C50.0190 (6)0.0182 (5)0.0186 (5)0.0007 (5)0.0001 (4)0.0017 (4)
C120.0184 (6)0.0169 (5)0.0234 (6)0.0015 (5)0.0014 (5)0.0013 (5)
C40.0197 (6)0.0202 (6)0.0183 (5)0.0003 (5)0.0006 (5)0.0019 (4)
C130.0170 (6)0.0184 (6)0.0248 (6)0.0005 (5)0.0014 (5)0.0023 (5)
C200.0170 (6)0.0204 (6)0.0210 (6)0.0037 (5)0.0001 (5)0.0014 (5)
C170.0155 (6)0.0197 (6)0.0250 (6)0.0000 (5)0.0009 (5)0.0006 (5)
C210.0210 (6)0.0222 (6)0.0203 (6)0.0019 (5)0.0012 (5)0.0006 (5)
C150.0174 (6)0.0199 (6)0.0256 (6)0.0002 (5)0.0025 (5)0.0021 (5)
C180.0167 (6)0.0185 (6)0.0211 (6)0.0008 (4)0.0011 (4)0.0001 (5)
C190.0202 (6)0.0202 (6)0.0217 (6)0.0014 (5)0.0033 (5)0.0009 (5)
C160.0181 (6)0.0212 (6)0.0250 (6)0.0006 (5)0.0024 (5)0.0011 (5)
C220.0247 (7)0.0182 (6)0.0253 (6)0.0026 (5)0.0060 (5)0.0020 (5)
C90.0205 (6)0.0243 (6)0.0204 (6)0.0008 (5)0.0006 (5)0.0031 (5)
C60.0234 (7)0.0216 (6)0.0239 (6)0.0028 (5)0.0025 (5)0.0013 (5)
C30.0287 (7)0.0246 (6)0.0194 (6)0.0008 (5)0.0007 (5)0.0015 (5)
C100.0223 (6)0.0166 (6)0.0302 (7)0.0004 (5)0.0036 (5)0.0015 (5)
C240.0254 (7)0.0263 (6)0.0187 (6)0.0022 (5)0.0001 (5)0.0041 (5)
C20.0313 (7)0.0303 (7)0.0190 (6)0.0013 (6)0.0044 (5)0.0014 (5)
C10.0269 (7)0.0307 (7)0.0245 (6)0.0037 (6)0.0060 (5)0.0041 (5)
C110.0294 (7)0.0184 (6)0.0283 (7)0.0063 (5)0.0013 (6)0.0032 (5)
C250.0254 (7)0.0301 (7)0.0308 (7)0.0060 (6)0.0025 (6)0.0096 (6)
C230.0219 (7)0.0270 (7)0.0402 (8)0.0001 (5)0.0020 (6)0.0045 (6)
Geometric parameters (Å, º) top
O1—C201.2261 (15)C15—C161.3756 (18)
C14—H140.9500C18—C191.4550 (17)
C14—C131.3706 (18)C16—H160.9500
C14—C151.4080 (18)C22—H22A0.9900
O3—C211.2218 (16)C22—H22B0.9900
O2—C191.2291 (15)C22—C231.5144 (19)
N1—C71.3696 (15)C9—H9A0.9800
N1—C41.4080 (16)C9—H9B0.9800
N1—C111.4544 (16)C9—H9C0.9800
N2—C201.4029 (16)C6—H60.9500
N2—C211.3873 (16)C6—C11.3971 (19)
N2—C241.4772 (16)C3—H30.9500
N3—C211.3876 (16)C3—C21.3964 (19)
N3—C191.4014 (16)C10—H10A0.9800
N3—C221.4760 (16)C10—H10B0.9800
C7—C81.5347 (16)C10—H10C0.9800
C7—C121.3721 (17)C24—H24A0.9900
C8—C51.5137 (17)C24—H24B0.9900
C8—C91.5385 (17)C24—C251.5177 (19)
C8—C101.5414 (17)C2—H20.9500
C5—C41.3936 (17)C2—C11.392 (2)
C5—C61.3816 (18)C1—H10.9500
C12—H120.9500C11—H11A0.9800
C12—C131.4102 (18)C11—H11B0.9800
C4—C31.3881 (18)C11—H11C0.9800
C13—H130.9500C25—H25A0.9800
C20—C181.4614 (17)C25—H25B0.9800
C17—H170.9500C25—H25C0.9800
C17—C181.3874 (17)C23—H23A0.9800
C17—C161.4004 (18)C23—H23B0.9800
C15—H150.9500C23—H23C0.9800
C13—C14—H14117.8N3—C22—H22A109.4
C13—C14—C15124.41 (12)N3—C22—H22B109.4
C15—C14—H14117.8N3—C22—C23111.37 (11)
C7—N1—C4111.60 (10)H22A—C22—H22B108.0
C7—N1—C11124.84 (11)C23—C22—H22A109.4
C4—N1—C11123.46 (11)C23—C22—H22B109.4
C20—N2—C24118.41 (10)C8—C9—H9A109.5
C21—N2—C20124.51 (11)C8—C9—H9B109.5
C21—N2—C24116.88 (11)C8—C9—H9C109.5
C21—N3—C19124.60 (11)H9A—C9—H9B109.5
C21—N3—C22117.31 (10)H9A—C9—H9C109.5
C19—N3—C22117.77 (10)H9B—C9—H9C109.5
N1—C7—C8108.43 (10)C5—C6—H6120.6
N1—C7—C12122.88 (11)C5—C6—C1118.90 (12)
C12—C7—C8128.65 (11)C1—C6—H6120.6
C7—C8—C9111.44 (10)C4—C3—H3121.5
C7—C8—C10111.88 (10)C4—C3—C2117.03 (12)
C5—C8—C7101.47 (9)C2—C3—H3121.5
C5—C8—C9110.04 (10)C8—C10—H10A109.5
C5—C8—C10110.48 (10)C8—C10—H10B109.5
C9—C8—C10111.14 (10)C8—C10—H10C109.5
C4—C5—C8109.71 (11)H10A—C10—H10B109.5
C6—C5—C8130.38 (11)H10A—C10—H10C109.5
C6—C5—C4119.88 (12)H10B—C10—H10C109.5
C7—C12—H12116.6N2—C24—H24A109.4
C7—C12—C13126.75 (12)N2—C24—H24B109.4
C13—C12—H12116.6N2—C24—C25111.31 (10)
C5—C4—N1108.73 (11)H24A—C24—H24B108.0
C3—C4—N1128.85 (12)C25—C24—H24A109.4
C3—C4—C5122.41 (12)C25—C24—H24B109.4
C14—C13—C12123.73 (12)C3—C2—H2119.3
C14—C13—H13118.1C1—C2—C3121.31 (13)
C12—C13—H13118.1C1—C2—H2119.3
O1—C20—N2119.21 (11)C6—C1—H1119.8
O1—C20—C18124.36 (12)C2—C1—C6120.47 (13)
N2—C20—C18116.42 (11)C2—C1—H1119.8
C18—C17—H17115.6N1—C11—H11A109.5
C18—C17—C16128.88 (12)N1—C11—H11B109.5
C16—C17—H17115.6N1—C11—H11C109.5
O3—C21—N2121.68 (12)H11A—C11—H11B109.5
O3—C21—N3121.35 (12)H11A—C11—H11C109.5
N2—C21—N3116.95 (11)H11B—C11—H11C109.5
C14—C15—H15118.3C24—C25—H25A109.5
C16—C15—C14123.46 (12)C24—C25—H25B109.5
C16—C15—H15118.3C24—C25—H25C109.5
C17—C18—C20117.41 (11)H25A—C25—H25B109.5
C17—C18—C19122.52 (11)H25A—C25—H25C109.5
C19—C18—C20120.05 (11)H25B—C25—H25C109.5
O2—C19—N3118.62 (12)C22—C23—H23A109.5
O2—C19—C18124.79 (12)C22—C23—H23B109.5
N3—C19—C18116.58 (11)C22—C23—H23C109.5
C17—C16—H16118.6H23A—C23—H23B109.5
C15—C16—C17122.84 (12)H23A—C23—H23C109.5
C15—C16—H16118.6H23B—C23—H23C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O2i0.952.613.5458 (17)167
C24—H24B···O1ii0.992.563.2939 (16)131
C11—H11A···O2i0.982.433.3891 (17)165
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y+1/2, z1/2.
1,3-Diethyl-2-sulfanylidene-5-[2-(1,3,3-trimethylindolin-2-ylidene)ethylidene]dihydropyrimidine-4,6(1H,5H)-dione (DTB) top
Crystal data top
C21H25N3O2SF(000) = 816
Mr = 383.50Dx = 1.311 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 16.1504 (6) ÅCell parameters from 9983 reflections
b = 8.1264 (3) Åθ = 2.6–37.3°
c = 15.6487 (6) ŵ = 0.19 mm1
β = 108.849 (1)°T = 100 K
V = 1943.67 (13) Å3Block, clear light red
Z = 40.3 × 0.26 × 0.24 mm
Data collection top
Bruker APEXII CCD
diffractometer
8903 reflections with I > 2σ(I)
φ and ω scansRint = 0.045
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
θmax = 40.4°, θmin = 1.3°
Tmin = 0.678, Tmax = 0.748h = 2929
92854 measured reflectionsk = 1414
12354 independent reflectionsl = 2828
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0645P)2 + 0.5305P]
where P = (Fo2 + 2Fc2)/3
12354 reflections(Δ/σ)max = 0.002
249 parametersΔρmax = 0.64 e Å3
0 restraintsΔρmin = 0.46 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.96141 (2)0.35712 (4)0.80259 (2)0.03286 (7)
O10.66676 (4)0.20400 (9)0.60288 (4)0.02461 (12)
N10.35986 (4)0.35270 (9)0.51788 (4)0.01788 (11)
O20.69412 (5)0.64835 (10)0.80519 (6)0.0389 (2)
N20.80016 (4)0.28754 (10)0.69633 (4)0.02129 (12)
N30.81446 (5)0.51652 (10)0.79244 (5)0.02353 (13)
C70.38323 (5)0.56295 (9)0.62627 (5)0.01636 (11)
C50.27705 (5)0.42249 (10)0.50767 (5)0.01701 (11)
C80.42390 (5)0.42923 (10)0.58292 (5)0.01659 (11)
C40.28730 (5)0.54688 (9)0.57129 (5)0.01715 (11)
C120.51201 (5)0.38347 (10)0.60429 (5)0.01905 (12)
H120.5264620.2940680.5726300.023*
C140.66935 (5)0.43462 (10)0.69647 (5)0.01941 (12)
C130.57882 (5)0.46339 (10)0.66971 (5)0.01924 (12)
H130.5608840.5496330.7007760.023*
C160.70815 (5)0.30405 (11)0.66025 (5)0.01949 (13)
C100.41564 (5)0.73819 (10)0.61661 (5)0.01950 (12)
H10A0.4775650.7478670.6526920.029*
H10B0.3814100.8182800.6379820.029*
H10C0.4085390.7598430.5530310.029*
C30.21469 (5)0.63327 (11)0.57521 (6)0.02240 (14)
H30.2205510.7182220.6184750.027*
C60.19664 (5)0.38216 (11)0.44549 (5)0.02134 (13)
H60.1912960.2981930.4017960.026*
C110.39728 (5)0.52071 (11)0.72630 (5)0.02033 (13)
H11A0.3779830.4076140.7306970.030*
H11B0.3632510.5967150.7504440.030*
H11C0.4595040.5310350.7611640.030*
C10.12383 (5)0.47033 (12)0.44987 (6)0.02465 (15)
H10.0676880.4461040.4083530.030*
C150.72309 (5)0.54097 (11)0.76693 (6)0.02409 (15)
C90.37009 (6)0.20956 (12)0.46596 (6)0.02593 (16)
H9A0.3457010.1123290.4861890.039*
H9B0.4323650.1915790.4750900.039*
H9C0.3390860.2286110.4017020.039*
C20.13236 (5)0.59308 (12)0.51416 (7)0.02590 (16)
H20.0818950.6502250.5167060.031*
C170.85370 (5)0.38883 (12)0.76148 (5)0.02227 (14)
C180.83775 (5)0.14263 (14)0.66450 (6)0.02812 (18)
H18B0.8981240.1680770.6658940.034*
H18A0.8024740.1173840.6013260.034*
C190.83898 (6)0.00613 (13)0.72371 (7)0.02925 (18)
H19B0.8650220.0999260.7023480.044*
H19C0.7790120.0335140.7206980.044*
H19A0.8737150.0190950.7862770.044*
C200.86824 (6)0.62716 (12)0.86467 (8)0.0319 (2)
H20A0.8391940.7357250.8593870.038*
H20B0.9260700.6437830.8567980.038*
C210.88084 (7)0.55668 (14)0.95736 (7)0.0341 (2)
H21A0.9094200.4490300.9626620.051*
H21B0.8237950.5440840.9661660.051*
H21C0.9174960.6312041.0033870.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01270 (8)0.04879 (16)0.03404 (12)0.00224 (8)0.00332 (7)0.00092 (10)
O10.0176 (2)0.0376 (4)0.0168 (2)0.0010 (2)0.00299 (18)0.0047 (2)
N10.0150 (2)0.0200 (3)0.0174 (2)0.0009 (2)0.00355 (18)0.00432 (19)
O20.0243 (3)0.0270 (3)0.0515 (5)0.0064 (3)0.0069 (3)0.0139 (3)
N20.0135 (2)0.0331 (4)0.0167 (2)0.0002 (2)0.00410 (18)0.0020 (2)
N30.0161 (3)0.0216 (3)0.0269 (3)0.0032 (2)0.0013 (2)0.0042 (2)
C70.0150 (2)0.0183 (3)0.0143 (2)0.0008 (2)0.00274 (19)0.0018 (2)
C50.0142 (2)0.0190 (3)0.0167 (2)0.0017 (2)0.00338 (19)0.0013 (2)
C80.0144 (2)0.0196 (3)0.0145 (2)0.0008 (2)0.00288 (19)0.0009 (2)
C40.0147 (2)0.0187 (3)0.0169 (3)0.0005 (2)0.00356 (19)0.0012 (2)
C120.0141 (3)0.0240 (3)0.0176 (3)0.0006 (2)0.0031 (2)0.0000 (2)
C140.0143 (3)0.0221 (3)0.0186 (3)0.0005 (2)0.0009 (2)0.0033 (2)
C130.0152 (3)0.0216 (3)0.0185 (3)0.0005 (2)0.0020 (2)0.0021 (2)
C160.0141 (2)0.0290 (4)0.0146 (2)0.0001 (2)0.00368 (19)0.0033 (2)
C100.0197 (3)0.0189 (3)0.0181 (3)0.0024 (2)0.0035 (2)0.0010 (2)
C30.0179 (3)0.0238 (3)0.0248 (3)0.0023 (3)0.0059 (2)0.0021 (3)
C60.0165 (3)0.0234 (3)0.0209 (3)0.0043 (2)0.0016 (2)0.0020 (2)
C110.0228 (3)0.0225 (3)0.0153 (3)0.0004 (3)0.0056 (2)0.0004 (2)
C10.0149 (3)0.0276 (4)0.0277 (4)0.0029 (3)0.0016 (2)0.0017 (3)
C150.0176 (3)0.0191 (3)0.0286 (4)0.0006 (2)0.0023 (2)0.0022 (3)
C90.0231 (3)0.0254 (4)0.0280 (4)0.0003 (3)0.0065 (3)0.0112 (3)
C20.0158 (3)0.0275 (4)0.0327 (4)0.0022 (3)0.0054 (3)0.0008 (3)
C170.0144 (3)0.0302 (4)0.0207 (3)0.0028 (3)0.0037 (2)0.0056 (3)
C180.0166 (3)0.0485 (6)0.0202 (3)0.0036 (3)0.0072 (2)0.0065 (3)
C190.0206 (3)0.0327 (4)0.0337 (4)0.0031 (3)0.0078 (3)0.0107 (3)
C200.0221 (4)0.0202 (4)0.0415 (5)0.0045 (3)0.0061 (3)0.0001 (3)
C210.0306 (4)0.0283 (4)0.0324 (4)0.0041 (3)0.0048 (3)0.0082 (3)
Geometric parameters (Å, º) top
S1—C171.6683 (8)C10—H10B0.9800
O1—C161.2354 (10)C10—H10C0.9800
N1—C51.4135 (10)C3—H30.9500
N1—C81.3462 (9)C3—C21.4024 (12)
N1—C91.4585 (11)C6—H60.9500
O2—C151.2329 (12)C6—C11.3974 (12)
N2—C161.4152 (10)C11—H11A0.9800
N2—C171.3766 (11)C11—H11B0.9800
N2—C181.4829 (12)C11—H11C0.9800
N3—C151.4128 (11)C1—H10.9500
N3—C171.3825 (13)C1—C21.3915 (14)
N3—C201.4852 (12)C9—H9A0.9800
C7—C81.5362 (10)C9—H9B0.9800
C7—C41.5154 (10)C9—H9C0.9800
C7—C101.5414 (11)C2—H20.9500
C7—C111.5460 (10)C18—H18B0.9900
C5—C41.3907 (10)C18—H18A0.9900
C5—C61.3871 (10)C18—C191.5194 (16)
C8—C121.4027 (10)C19—H19B0.9800
C4—C31.3850 (11)C19—H19C0.9800
C12—H120.9500C19—H19A0.9800
C12—C131.3858 (11)C20—H20A0.9900
C14—C131.4043 (10)C20—H20B0.9900
C14—C161.4384 (12)C20—C211.5109 (17)
C14—C151.4483 (12)C21—H21A0.9800
C13—H130.9500C21—H21B0.9800
C10—H10A0.9800C21—H21C0.9800
C5—N1—C9122.03 (6)C7—C11—H11A109.5
C8—N1—C5111.58 (6)C7—C11—H11B109.5
C8—N1—C9126.30 (7)C7—C11—H11C109.5
C16—N2—C18115.62 (7)H11A—C11—H11B109.5
C17—N2—C16124.48 (7)H11A—C11—H11C109.5
C17—N2—C18119.75 (7)H11B—C11—H11C109.5
C15—N3—C20115.50 (8)C6—C1—H1119.5
C17—N3—C15124.17 (7)C2—C1—C6120.98 (7)
C17—N3—C20119.97 (7)C2—C1—H1119.5
C8—C7—C10113.77 (6)O2—C15—N3119.20 (8)
C8—C7—C11110.25 (6)O2—C15—C14124.33 (8)
C4—C7—C8101.13 (6)N3—C15—C14116.46 (8)
C4—C7—C10109.95 (6)N1—C9—H9A109.5
C4—C7—C11110.14 (6)N1—C9—H9B109.5
C10—C7—C11111.16 (6)N1—C9—H9C109.5
C4—C5—N1108.74 (6)H9A—C9—H9B109.5
C6—C5—N1128.44 (7)H9A—C9—H9C109.5
C6—C5—C4122.81 (7)H9B—C9—H9C109.5
N1—C8—C7109.09 (6)C3—C2—H2119.7
N1—C8—C12122.01 (7)C1—C2—C3120.67 (8)
C12—C8—C7128.89 (6)C1—C2—H2119.7
C5—C4—C7109.42 (6)N2—C17—S1121.36 (7)
C3—C4—C7131.01 (7)N2—C17—N3117.32 (7)
C3—C4—C5119.57 (7)N3—C17—S1121.31 (6)
C8—C12—H12118.7N2—C18—H18B109.5
C13—C12—C8122.66 (7)N2—C18—H18A109.5
C13—C12—H12118.7N2—C18—C19110.68 (7)
C13—C14—C16123.32 (7)H18B—C18—H18A108.1
C13—C14—C15115.97 (8)C19—C18—H18B109.5
C16—C14—C15120.66 (7)C19—C18—H18A109.5
C12—C13—C14129.01 (8)C18—C19—H19B109.5
C12—C13—H13115.5C18—C19—H19C109.5
C14—C13—H13115.5C18—C19—H19A109.5
O1—C16—N2118.64 (8)H19B—C19—H19C109.5
O1—C16—C14124.72 (7)H19B—C19—H19A109.5
N2—C16—C14116.59 (7)H19C—C19—H19A109.5
C7—C10—H10A109.5N3—C20—H20A109.3
C7—C10—H10B109.5N3—C20—H20B109.3
C7—C10—H10C109.5N3—C20—C21111.43 (8)
H10A—C10—H10B109.5H20A—C20—H20B108.0
H10A—C10—H10C109.5C21—C20—H20A109.3
H10B—C10—H10C109.5C21—C20—H20B109.3
C4—C3—H3120.6C20—C21—H21A109.5
C4—C3—C2118.80 (8)C20—C21—H21B109.5
C2—C3—H3120.6C20—C21—H21C109.5
C5—C6—H6121.4H21A—C21—H21B109.5
C5—C6—C1117.15 (8)H21A—C21—H21C109.5
C1—C6—H6121.4H21B—C21—H21C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···O10.952.282.9000 (10)122
C19—H19B···S1i0.982.853.5573 (9)130
C21—H21A···S10.982.983.4965 (12)114
Symmetry code: (i) x+2, y1/2, z+3/2.
 

Funding information

Funding for this research was provided by: National Science Foundation (grant No. DMR-1523611).

References

First citationAdamson, J., Coe, B. J., Grassam, H. L., Jeffery, J. C., Coles, S. J. & Hursthouse, M. B. (1999). J. Chem. Soc. C17, 2483–2488.  Google Scholar
First citationBideau, J.-P., Bravic, G. & Filhol, A. (1977). Acta Cryst. B33, 3847–3849.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBideau, J. P., Huong, P. V. & Toure, S. (1976). Acta Cryst. B32, 481–488.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBourhill, G., Bredas, J.-L., Cheng, L.-T., Marder, S. R., Meyers, F., Perry, J. W. & Tiemann, B. G. (1994). J. Am. Chem. Soc. 116, 2619–2620.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBublitz, G. U. & Boxer, S. G. (1998). J. Am. Chem. Soc. 120, 3988–3992.  Web of Science CrossRef CAS Google Scholar
First citationBublitz, G. U., Ortiz, R., Marder, S. R. & Boxer, S. G. (1997). J. Am. Chem. Soc. 119, 3365–3376.  CrossRef CAS Web of Science Google Scholar
First citationChamberlain, G. A. & Malpas, R. E. (1980). Faraday Discuss. Chem. Soc. 70, 299–332.  CrossRef Web of Science Google Scholar
First citationCollot, M., Fam, T. K., Ashokkumar, P., Faklaris, O., Galli, T., Danglot, L. & Klymchenko, A. S. (2018). J. Am. Chem. Soc. 140, 5401–5411.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationDel Zoppo, M., Castiglioni, C., Gerola, V., Zuliani, P. & Zerbi, G. (1998). J. Opt. Soc. Am. B, 15, 308–317.  Web of Science CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGolovnev, N. N., Molokeev, M. S., Sterkhova, I. V. & Lesnikov, M. K. (2018). J. Mol. Struct. 1171, 488–494.  Web of Science CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHirshberg, Y., Knott, E. B. & Fischer, E. (1955). J. Chem. Soc. pp. 3313–3321.  CrossRef Web of Science Google Scholar
First citationIkeda, H., Sakai, T. & Kawasaki, K. (1991). Chem. Phys. Lett. 179, 551–554.  CrossRef CAS Web of Science Google Scholar
First citationKlikar, M., Bureš, F., Pytela, O., Mikysek, T., Padělková, Z., Barsella, A., Dorkenoo, K. & Achelle, S. (2013). New J. Chem. 37, 4230–4240.  Web of Science CSD CrossRef CAS Google Scholar
First citationKulinich, A. V., Derevyanko, N. A. & Ishchenko, A. A. (2007). J. Photochem. Photobiol. Chem. 188, 207–217.  Web of Science CrossRef CAS Google Scholar
First citationKulinich, A. V., Derevyanko, N. A., Ishchenko, A. A., Bondarev, S. L. & Knyukshto, V. N. (2008). J. Photochem. Photobiol. Chem. 200, 106–113.  Web of Science CrossRef CAS Google Scholar
First citationLiess, A., Huang, L., Arjona-Esteban, A., Lv, A., Gsänger, M., Stepanenko, V., Stolte, M. & Würthner, F. (2015). Adv. Funct. Mater. 25, 44–57.  Web of Science CSD CrossRef CAS Google Scholar
First citationMolokeev, M. S., Golovnev, N. N., Vereshchagin, S. N. & Atuchin, V. V. (2015). Polyhedron, 98, 113–119.  Web of Science CSD CrossRef CAS Google Scholar
First citationNaik, P., Su, R., Babu, D. D., El-Shafei, A. & Adhikari, A. V. (2017). J. Iran. Chem. Soc. 14, 2457–2466.  Web of Science CSD CrossRef CAS Google Scholar
First citationOrtiz, R., Marder, S. R., Cheng, L.-T., Tiemann, B. G., Cavagnero, S. & Ziller, J. W. (1994). J. Chem. Soc. Chem. Commun. pp. 2263–2264.  CSD CrossRef Web of Science Google Scholar
First citationPadgett, C. W., Arman, H. D. & Pennington, W. T. (2007). Cryst. Growth Des. 7, 367–372.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSong, H., Chen, K. & Tian, H. (2005). Dyes Pigments, 67, 1–7.  Web of Science CSD CrossRef CAS Google Scholar
First citationTillotson, J. P., Bogdanov, G., Jucov, E. V., Khrustalev, V. N., Rigin, S., Hales, J. M., Perry, J. W. & Timofeeva, T. V. (2019). J. Mol. Struct. 1189, 146–154.  Web of Science CSD CrossRef CAS Google Scholar
First citationVázquez-Vuelvas, O. F., Hernández-Madrigal, J. V., Gaviño, R., Tlenkopatchev, M. A., Morales-Morales, D., Germán-Acacio, J. M., Gomez-Sandoval, Z., Garcias-Morales, C., Ariza-Castolo, A. & Pineda-Contreras, A. (2011). J. Mol. Struct. 987, 106–118.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds