research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 5-(3,5-di-tert-butyl-4-hy­dr­oxy­phen­yl)-3-phenyl-4,5-di­hydro-1H-pyrazole-1-carboxamide

CROSSMARK_Color_square_no_text.svg

aOrganic Chemistry Department, Baku State University, Z. Khalilov str. 23, Az, 1148 Baku, Azerbaijan
*Correspondence e-mail: rayten5071@mail.ru

Edited by E. V. Boldyreva, Russian Academy of Sciences, Russia (Received 8 July 2019; accepted 6 September 2019; online 12 September 2019)

In the title compound, C24H31N3O2, the mean plane of the central pyrazole ring [r.m.s. deviation = 0.095 Å] makes dihedral angles of 11.93 (9) and 84.53 (8)°, respectively, with the phenyl and benzene rings. There is a short intra­molecular N—H⋯N contact, which generates an S(5) ring motif. In the crystal, pairs of N—H⋯O hydrogen bonds link inversion-related mol­ecules into dimers, generating an R22(8) ring motif. The Hirshfeld surface analysis indicates that the most significant contribution involves H⋯H contacts of 68.6%

1. Chemical context

Compounds containing the pyrazole ring system, considered to be a pharmacologically important active scaffold, possess diverse biological activities such as anti­microbial, anti-inflammatory, analgesic, anti­convulsant, anti­cancer, anthelmintic, anti­oxidant and herbicidal (Ansari et al., 2017[Ansari, A., Ali, A., Asif, M. & Shamsuzzaman, S. (2017). New J. Chem. 41, 16-41.]; Karrouchi et al., 2018[Karrouchi, K., Radi, S., Ramli, Y., Taoufik, J., Mabkhot, Y. N., Al-aizari, F. A. & Ansar, M. (2018). Molecules, 23, 134-219.]; Mamedov et al., 2017[Mamedov, I. G., Mamedova, Y. V., Khrustalev, V. N., Bayramov, M. R. & Maharramov, A. M. (2017). Indian J. Chem. 56B, 192-196.]). Such compounds have been the subject of NMR investigations of hydrogen bonding and keto–enol tautomerism in solution (Mamedov et al., 2013[Mamedov, I. G., Bayramov, M. R., Mamedova, Y. V. & Maharramov, A. M. (2013). Magn. Reson. Chem. 51, 234-239.], 2015[Mamedov, I. G., Bayramov, M. R., Mamedova, Y. V. & Maharramov, A. M. (2015). Magn. Reson. Chem. 53, 147-153.]). The structural properties of a series of compounds derived from 2,6-di-tert-butyl­phenol have been characterized in the solid state (Asgarova et al., 2011a[Asgarova, A. R., Allahverdiyev, M. A., Khalilov, A. N., Gurbanov, A. V. & Brito, I. (2011a). Acta Cryst. E67, o2024.],b[Asgarova, A. R., Maharramov, A. M., Khalilov, A. N., Gurbanov, A. V. & Ng, S. W. (2011b). Acta Cryst. E67, o852.], 2019[Asgarova, A. R., Khalilov, A. N., Brito, I., Maharramov, A. M., Shikhaliyev, N. G., Cisterna, J., Cárdenas, A., Gurbanov, A. V., Zubkov, F. I. & Mahmudov, K. T. (2019). Acta Cryst. C75, 342-347.]; Khalilov et al., 2018a[Khalilov, A. N., Asgarova, A. R., Gurbanov, A. V., Maharramov, A. M., Nagiyev, F. N. & Brito, I. (2018a). Z. Kristallogr. New Cryst. Struct. 233, 1019-1020.],b[Khalilov, A. N., Asgarova, A. R., Gurbanov, A. V., Nagiyev, F. N. & Brito, I. (2018b). Z. Kristallogr. New Cryst. Struct. 233, 947-948.]). Non-covalent bond donor/acceptor properties of pyrazoles or related N-compounds are crucial in the organization of supra­molecular architectures in the solid state and hence their catalytic activity, solubility, etc. (Ma et al., 2017[Ma, Z., Gurbanov, A. V., Sutradhar, M., Kopylovich, M. N., Mahmudov, K. T., Maharramov, A. M., Guseinov, F. I., Zubkov, F. I. & Pombeiro, A. J. L. (2017). J. Mol. Catal. A Chem. 428, 17-23.]; Maharramov et al., 2010[Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Pashaev, F. G., Gasanov, A. G., Azimova, S. I., Askerov, R. K., Kurbanov, A. V. & Mahmudov, K. T. (2010). Dyes Pigments, 85, 1-6.]; Mahmoudi et al., 2016[Mahmoudi, G., Bauzá, A., Gurbanov, A. V., Zubkov, F. I., Maniukiewicz, W., Rodríguez-Diéguez, A., López-Torres, E. & Frontera, A. (2016). CrystEngComm, 18, 9056-9066.], 2017a[Mahmoudi, G., Gurbanov, A. V., Rodríguez-Hermida, S., Carballo, R., Amini, M., Bacchi, A., Mitoraj, M. P., Sagan, F., Kukułka, M. & Safin, D. A. (2017a). Inorg. Chem. 56, 9698-9709.],b[Mahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2017b). Eur. J. Inorg. Chem. pp. 4763-4772.], 2018a[Mahmoudi, G., Afkhami, F. A., Castiñeiras, A., García-Santos, I., Gurbanov, A., Zubkov, F. I., Mitoraj, M. P., Kukułka, M., Sagan, F., Szczepanik, D. W., Konyaeva, I. A. & Safin, D. A. (2018a). Inorg. Chem. 57, 4395-4408.],b[Mahmoudi, G., Seth, S. K., Bauzá, A., Zubkov, F. I., Gurbanov, A. V., White, J., Stilinović, V., Doert, Th. & Frontera, A. (2018b). CrystEngComm, 20, 2812-2821.],c[Mahmoudi, G., Zangrando, E., Mitoraj, M. P., Gurbanov, A. V., Zubkov, F. I., Moosavifar, M., Konyaeva, I. A., Kirillov, A. M. & Safin, D. A. (2018c). New J. Chem. 42, 4959-4971.]; Mahmudov et al., 2014[Mahmudov, K. T., Kopylovich, M. N., Maharramov, A. M., Kurbanova, M. M., Gurbanov, A. V. & Pombeiro, A. J. L. (2014). Coord. Chem. Rev. 265, 1-37.], 2019[Mahmudov, K. T., Gurbanov, A. V., Guseinov, F. I. & Guedes da Silva, M. F. C. (2019). Coord. Chem. Rev. 387, 32-46.]; Shikhaliyev et al., 2018[Shikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377-381.]). As part of a further study of this class of compounds, the crystal structure and Hirshfeld surface analysis of the title compound, 5-(3,5-di-tert-butyl-4-hy­droxy­phen­yl)-3-phenyl-4,5-di­hydro-1H-pyrazole-1-carboxamide, are reported on herein.

[Scheme 1]

2. Structural commentary

As shown in Fig. 1[link], the title mol­ecule contains three rings, pyrazole ring A (N19/N20/C16–C18; twisted conformation on bond C16-C17), phenyl ring B (C21–C26) and benzene ring C (C1–C6), with rings B and C being inclined to the mean plane of the central pyrazole ring A [r.m.s deviation = 0.095 Å] by 11.93 (9) and 84.53 (8)°, respectively. In the >NC(=O)NH2 group, atoms N20, C27, O29 and N28 are coplanar, with N19—N20—C27—N28 and N19—N20—C27—O29 torsion angles of 4.0 (2) and −176.1 (1)°. All bond lengths and angles are comparable with those found for closely related structures, for example, methyl 3-(3,5-di-tert-butyl-4-hy­droxy­phen­yl)pro­pionate (Li et al., 2014[Li, X., Wang, Z.-G., Chen, H.-H. & Liu, S.-G. (2014). Acta Cryst. C70, 1050-1053.]), 2,6-di-tert-butyl-4-methyl­phenol (Iimura et al., 1983[Iimura, Y., Sakurai, T., Ohno, Y., Asahi, K.-I. & Isono, K. (1983). Acta Cryst. C39, 778-780.]), 2,6-di-tert-butyl-4-(3-chloro-2-hy­droxy­prop­yl)phenol (Asgarova et al., 2011a[Asgarova, A. R., Allahverdiyev, M. A., Khalilov, A. N., Gurbanov, A. V. & Brito, I. (2011a). Acta Cryst. E67, o2024.]) and 4-[3-(benzyl­amino)-2-hy­droxy­prop­yl]-2,6-di-tert-butyl­phenol (Asgarova et al., 2011b[Asgarova, A. R., Maharramov, A. M., Khalilov, A. N., Gurbanov, A. V. & Ng, S. W. (2011b). Acta Cryst. E67, o852.]). In the mol­ecule, there is an N—H⋯N short contact, which generates an S(5) ring motif (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N28—H28B⋯N19 0.91 (2) 2.30 (2) 2.678 (3) 105 (2)
N28—H28A⋯O29i 0.88 (2) 2.03 (2) 2.912 (3) 174 (2)
Symmetry code: (i) -x+2, -y+1, -z+1.
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with the atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

3. Supra­molecular features and Hirshfeld surface analysis

In the crystal, pairs of N—H⋯O hydrogen bonds link inversion-related mol­ecules into dimers, generating an [R_{2}^{2}](8) ring motif (Table 1[link]; Fig. 2[link]). No C—H⋯π or π-π inter­actions are present in the crystal structure (PLATON; Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

[Figure 2]
Figure 2
A view of the dimeric mol­ecular bonding formed by N—H⋯O hydrogen bonds and N—H⋯N short contacts (dashed lines), with an S(5)[R_{2}^{2}](8)S(5) motif [symmetry code: (a) −x + 2, −y + 1, −z + 1].

The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) was generated by CrystalExplorer17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net]) and comprises dnorm surface plots and two-dimensional fingerprint plots (Spackman & McKinnon, 2002[Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378-392.]). A dnorm surface plot of the title compound mapped using a standard surface resolution with a fixed colour scale of −0.5426 (red) to 1.7721 a.u. (blue) is shown in Fig. 3[link]. The dark-red spots on the dnorm surface arise as a result of the N—H⋯O hydrogen bonds (Table 1[link]), while the other weaker inter­molecular inter­actions appear as light-red spots. The bright-red spots indicate their roles as the respective donors and/or acceptors; they also appear as blue and red regions corresponding to positive and negative potentials on the Hirshfeld surfaces mapped over electrostatic potential (Spackman et al., 2008[Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377-388.]; Jayatilaka et al., 2005[Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO - A System for Computational Chemistry. Available at: https://hirshfeldsurface.net/]), as shown in Fig. 4[link].

[Figure 3]
Figure 3
View of the three-dimensional Hirshfeld surface of the title compound mapped over dnorm, in the range −0.5426 to 1.7721 au.
[Figure 4]
Figure 4
View of the three-dimensional Hirshfeld surface of the title compound mapped over the electrostatic potential energy in the range −0.0500 to 0.0500 a.u. using the STO-3 G basis set at the Hartree–Fock level of theory. Hydrogen-bond donors and acceptors are shown as blue and red regions around the atoms corresponding to positive and negative potentials, respectively.

The shape-index of the Hirshfeld surface is a tool to visualize ππ stacking inter­actions by the presence of adjacent red and blue triangles; if there are no adjacent red and/or blue triangles then there are no ππ inter­actions. Fig. 5[link] clearly indicates that there are no ππ inter­actions present in the the crystal of the title compound, as also indicated by the analysis of the crystal structure using PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]). Fig. 6[link]a shows the two-dimensional fingerprint of the sum of the contacts contributing to the Hirshfeld surface represented in normal mode. These represent both the overall two-dimensional fingerprint plot and those delineated into H⋯H (68.6%), C⋯H/H⋯C (18.3%), H⋯O/O⋯H (7.1%) and H⋯N/N⋯H (4.1%) contacts (Fig. 6[link]be). The most significant contribution to the Hirshfeld surface is from H⋯H contacts (68.6%; Fig. 5[link]b).

[Figure 5]
Figure 5
Hirshfeld surface of the title compound mapped over the shape-index.
[Figure 6]
Figure 6
The Hirshfeld surface representations and the full two-dimensional fingerprint plots for the title compound, showing (a) all contacts, and delineated into (b) H⋯H, (c) C⋯H/H⋯C, (d) H⋯O/O⋯H and (e) H⋯N/N⋯H contacts. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

The large number of H⋯H, C⋯H/H⋯C, H⋯O/O⋯H and H⋯N/N⋯H contacts suggest that van der Waals inter­actions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015[Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563-574.]).

4. Synthesis and crystallization

To a solution of of 3-(3,5-di-tert-butyl-4-hy­droxy­phen­yl)-1-phenyl­prop-2-en-1-one (1.2 mmol) in 10 ml ethanol was added semicarbazide hydro­chloride (1.26 mmol). The mixture was refluxed for 3 h and then cooled to room temperature. The title compound, that precipitated as colourless single crystals, was collected by filtration and washed with an ethanol–water (1:1) mixture (yield 56%, m.p. 525 K). 1H NMR (300 MHz, DMSO-d6) : 1.38 (s, 18H, 6CH3); 3.05 (dd, 1H, CH2, 3JH-H = 4.8, 2JH-H =17.7,); 3.75 (dd, 1H, CH2, 3JH-H = 12, 2JH-H = 17.7), 5.35 (dd, 1H, CH2, 3JH-H = 4.8, 2JH-H = 11.7); 6.51 (s, 2H, NH2); 6.87 (s, 1H, OHar); 6.96 (s, 2H, 2Ar-H); 7.41–7.83 (m, 5H, 5Ar-H). 13C NMR (75 MHz, DMSO-d6): 30.79 (6CH3), 34.94 (2Ctert), 43.00 (CH2), 60.32 (CH), 121.79 (2CHar), 126.90 (2CHar), 129.39 (2CHar), 130.02 (CHar), 132.18 (Car), 134.96 (Car), 139.67 (Car), 151.13(N=Ctert), 153.23 (O—Car) 155.56 (NC=O).

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Hydrogen atoms of the amino group were located in a difference-Fourier map and refined freely. The hy­droxy H atom (H15) was included in the calculated position (AFIX 147; O-H = 0.84 Å) and refined with Uiso(H) = 1.5Ueq(O). All the C-bound H atoms were placed in calculated positions and refined using a riding model: C—H = 0.95–1.00 Å with Uiso(H) = 1.2Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula C24H31N3O2
Mr 393.52
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 150
a, b, c (Å) 6.095 (3), 10.215 (4), 17.995 (8)
α, β, γ (°) 84.781 (15), 85.688 (15), 76.012 (15)
V3) 1081.1 (8)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.20 × 0.16 × 0.13
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2003[Bruker (2003). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.976, 0.982
No. of measured, independent and observed [I > 2σ(I)] reflections 27614, 5128, 3573
Rint 0.093
(sin θ/λ)max−1) 0.659
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.163, 1.03
No. of reflections 5128
No. of parameters 278
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.34, −0.20
Computer programs: APEX2 and SAINT (Bruker, 2003[Bruker (2003). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

As reported previously (cf. Cambridge Structural Database; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) short H⋯H contacts (< 2.0 Å), involving the hy­droxy H atom and the methyl H atoms of the 3,5-di-tert-butyl-4-hy­droxy­phenyl moiety, were observed.

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

5-(3,5-Di-tert-butyl-4-hydroxyphenyl)-3-phenyl-4,5-dihydro-1H-pyrazole-1-carboxamide top
Crystal data top
C24H31N3O2Z = 2
Mr = 393.52F(000) = 424
Triclinic, P1Dx = 1.209 Mg m3
a = 6.095 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.215 (4) ÅCell parameters from 7006 reflections
c = 17.995 (8) Åθ = 2.3–27.5°
α = 84.781 (15)°µ = 0.08 mm1
β = 85.688 (15)°T = 150 K
γ = 76.012 (15)°Plate, colorless
V = 1081.1 (8) Å30.20 × 0.16 × 0.13 mm
Data collection top
Bruker APEXII CCD
diffractometer
3573 reflections with I > 2σ(I)
φ and ω scansRint = 0.093
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
θmax = 28.0°, θmin = 2.3°
Tmin = 0.976, Tmax = 0.982h = 88
27614 measured reflectionsk = 1313
5128 independent reflectionsl = 2323
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.055H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.163 w = 1/[σ2(Fo2) + (0.0884P)2 + 0.1168P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
5128 reflectionsΔρmax = 0.34 e Å3
278 parametersΔρmin = 0.20 e Å3
0 restraintsExtinction correction: (SHELXL-2018/3; Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: dualExtinction coefficient: 0.045 (10)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O150.9461 (2)0.44716 (13)0.91734 (7)0.0566 (4)
H151.0337320.3697480.9197530.085*
O290.8119 (2)0.43979 (12)0.57125 (7)0.0481 (3)
N190.3611 (2)0.72589 (13)0.58893 (7)0.0346 (3)
N200.5033 (2)0.59925 (13)0.60307 (7)0.0370 (3)
N280.7453 (3)0.64582 (18)0.50555 (9)0.0523 (4)
H28A0.882 (4)0.625 (2)0.4835 (13)0.067 (7)*
H28B0.659 (4)0.732 (2)0.5038 (12)0.063 (6)*
C10.8395 (2)0.35284 (15)0.81126 (8)0.0317 (3)
C20.8169 (3)0.46205 (15)0.85614 (8)0.0344 (3)
C30.6665 (2)0.58842 (15)0.84134 (8)0.0314 (3)
C40.5350 (2)0.60223 (15)0.77960 (8)0.0313 (3)
H40.4293970.6857040.7688490.038*
C50.5536 (2)0.49774 (14)0.73326 (8)0.0293 (3)
C60.7058 (2)0.37542 (15)0.74962 (8)0.0314 (3)
H60.7194600.3044010.7177030.038*
C71.0061 (3)0.21512 (15)0.82845 (9)0.0355 (4)
C80.9502 (4)0.1510 (2)0.90606 (11)0.0568 (5)
H8A0.7958040.1376930.9081300.085*
H8B0.9616920.2109120.9443830.085*
H8C1.0573420.0634090.9151250.085*
C90.9923 (4)0.11345 (18)0.77254 (12)0.0586 (6)
H9A0.8386940.0989430.7752930.088*
H9B1.1003880.0274160.7846290.088*
H9C1.0291740.1488990.7219010.088*
C101.2512 (3)0.2323 (2)0.82225 (13)0.0581 (5)
H10A1.3549900.1452750.8357040.087*
H10B1.2656580.2989830.8562700.087*
H10C1.2889240.2633910.7708130.087*
C110.6506 (3)0.70679 (16)0.89082 (9)0.0368 (4)
C120.8800 (3)0.7458 (2)0.88750 (12)0.0533 (5)
H12A0.9240880.7697470.8354840.080*
H12B0.9951810.6690960.9077260.080*
H12C0.8666780.8234740.9171720.080*
C130.4760 (3)0.83347 (17)0.86389 (11)0.0509 (5)
H13A0.5196500.8627990.8127050.076*
H13B0.4697980.9058320.8967670.076*
H13C0.3268340.8129380.8649610.076*
C140.5774 (4)0.6689 (2)0.97178 (10)0.0533 (5)
H14A0.5698240.7448231.0022830.080*
H14B0.6876290.5892550.9916220.080*
H14C0.4279970.6485960.9731550.080*
C160.4155 (2)0.51573 (15)0.66436 (8)0.0318 (3)
H160.4173770.4252070.6469820.038*
C170.1694 (3)0.59885 (16)0.67369 (9)0.0358 (4)
H17A0.0629800.5536190.6533350.043*
H17B0.1247460.6136200.7268730.043*
C180.1762 (3)0.73077 (15)0.62880 (8)0.0318 (3)
C210.0090 (3)0.85374 (15)0.62682 (8)0.0339 (3)
C220.2214 (3)0.84869 (19)0.65965 (10)0.0443 (4)
H220.2445310.7667130.6846410.053*
C230.3989 (3)0.9624 (2)0.65606 (11)0.0540 (5)
H230.5434860.9577300.6782610.065*
C240.3679 (4)1.0824 (2)0.62059 (11)0.0559 (5)
H240.4908681.1599980.6182210.067*
C250.1580 (4)1.08977 (18)0.58852 (10)0.0526 (5)
H250.1361011.1725700.5642620.063*
C260.0211 (3)0.97629 (17)0.59169 (9)0.0421 (4)
H260.1655000.9819900.5697540.050*
C270.6958 (3)0.55571 (17)0.55953 (8)0.0364 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O150.0598 (8)0.0483 (8)0.0558 (8)0.0115 (6)0.0335 (7)0.0142 (6)
O290.0416 (7)0.0390 (7)0.0552 (7)0.0044 (5)0.0052 (5)0.0021 (5)
N190.0345 (7)0.0325 (7)0.0321 (6)0.0012 (5)0.0051 (5)0.0004 (5)
N200.0347 (7)0.0341 (7)0.0346 (7)0.0038 (6)0.0014 (5)0.0040 (5)
N280.0468 (9)0.0471 (9)0.0509 (9)0.0039 (7)0.0122 (7)0.0060 (7)
C10.0278 (7)0.0277 (7)0.0364 (8)0.0002 (6)0.0051 (6)0.0013 (6)
C20.0324 (8)0.0331 (8)0.0357 (8)0.0012 (6)0.0106 (6)0.0023 (6)
C30.0300 (7)0.0275 (7)0.0356 (7)0.0042 (6)0.0035 (6)0.0029 (6)
C40.0288 (7)0.0253 (7)0.0371 (7)0.0013 (6)0.0056 (6)0.0009 (5)
C50.0271 (7)0.0280 (7)0.0316 (7)0.0045 (6)0.0037 (6)0.0006 (5)
C60.0307 (7)0.0279 (7)0.0342 (7)0.0031 (6)0.0043 (6)0.0036 (6)
C70.0319 (8)0.0293 (8)0.0403 (8)0.0038 (6)0.0082 (6)0.0012 (6)
C80.0649 (13)0.0419 (10)0.0526 (11)0.0039 (9)0.0012 (9)0.0082 (8)
C90.0647 (12)0.0359 (9)0.0659 (12)0.0164 (9)0.0251 (10)0.0144 (8)
C100.0343 (9)0.0522 (11)0.0808 (14)0.0033 (8)0.0065 (9)0.0010 (10)
C110.0372 (8)0.0305 (8)0.0420 (8)0.0035 (6)0.0070 (7)0.0073 (6)
C120.0489 (11)0.0490 (11)0.0676 (12)0.0172 (9)0.0082 (9)0.0148 (9)
C130.0564 (11)0.0323 (9)0.0596 (11)0.0044 (8)0.0117 (9)0.0130 (8)
C140.0617 (12)0.0520 (11)0.0436 (10)0.0063 (10)0.0000 (9)0.0113 (8)
C160.0302 (7)0.0288 (7)0.0350 (7)0.0033 (6)0.0073 (6)0.0002 (6)
C170.0290 (8)0.0358 (8)0.0409 (8)0.0043 (6)0.0092 (6)0.0025 (6)
C180.0311 (7)0.0335 (8)0.0296 (7)0.0028 (6)0.0078 (6)0.0028 (6)
C210.0353 (8)0.0339 (8)0.0298 (7)0.0003 (6)0.0085 (6)0.0045 (6)
C220.0351 (9)0.0435 (10)0.0512 (10)0.0024 (7)0.0059 (7)0.0036 (7)
C230.0362 (9)0.0607 (12)0.0585 (11)0.0057 (8)0.0069 (8)0.0123 (9)
C240.0552 (12)0.0488 (11)0.0515 (11)0.0191 (9)0.0180 (9)0.0130 (8)
C250.0709 (13)0.0349 (9)0.0442 (9)0.0049 (9)0.0136 (9)0.0006 (7)
C260.0491 (10)0.0379 (9)0.0354 (8)0.0022 (7)0.0059 (7)0.0016 (6)
C270.0326 (8)0.0388 (8)0.0345 (8)0.0009 (7)0.0029 (6)0.0048 (6)
Geometric parameters (Å, º) top
O15—C21.3776 (19)C10—H10B0.9800
O15—H150.8400C10—H10C0.9800
O29—C271.233 (2)C11—C131.529 (2)
N19—C181.282 (2)C11—C141.534 (3)
N19—N201.3859 (18)C11—C121.539 (3)
N20—C271.364 (2)C12—H12A0.9800
N20—C161.480 (2)C12—H12B0.9800
N28—C271.345 (2)C12—H12C0.9800
N28—H28A0.88 (3)C13—H13A0.9800
N28—H28B0.91 (2)C13—H13B0.9800
C1—C61.395 (2)C13—H13C0.9800
C1—C21.410 (2)C14—H14A0.9800
C1—C71.544 (2)C14—H14B0.9800
C2—C31.407 (2)C14—H14C0.9800
C3—C41.395 (2)C16—C171.540 (2)
C3—C111.546 (2)C16—H161.0000
C4—C51.392 (2)C17—C181.515 (2)
C4—H40.9500C17—H17A0.9900
C5—C61.386 (2)C17—H17B0.9900
C5—C161.523 (2)C18—C211.472 (2)
C6—H60.9500C21—C221.393 (2)
C7—C91.531 (2)C21—C261.397 (2)
C7—C81.538 (3)C22—C231.383 (2)
C7—C101.541 (3)C22—H220.9500
C8—H8A0.9800C23—C241.377 (3)
C8—H8B0.9800C23—H230.9500
C8—H8C0.9800C24—C251.380 (3)
C9—H9A0.9800C24—H240.9500
C9—H9B0.9800C25—C261.387 (2)
C9—H9C0.9800C25—H250.9500
C10—H10A0.9800C26—H260.9500
C2—O15—H15109.5C12—C11—C3109.96 (13)
C18—N19—N20108.15 (13)C11—C12—H12A109.5
C27—N20—N19121.43 (13)C11—C12—H12B109.5
C27—N20—C16124.77 (13)H12A—C12—H12B109.5
N19—N20—C16113.61 (12)C11—C12—H12C109.5
C27—N28—H28A116.5 (15)H12A—C12—H12C109.5
C27—N28—H28B118.7 (14)H12B—C12—H12C109.5
H28A—N28—H28B122 (2)C11—C13—H13A109.5
C6—C1—C2116.81 (13)C11—C13—H13B109.5
C6—C1—C7121.23 (13)H13A—C13—H13B109.5
C2—C1—C7121.95 (13)C11—C13—H13C109.5
O15—C2—C3117.36 (13)H13A—C13—H13C109.5
O15—C2—C1119.80 (13)H13B—C13—H13C109.5
C3—C2—C1122.84 (13)C11—C14—H14A109.5
C4—C3—C2116.96 (13)C11—C14—H14B109.5
C4—C3—C11121.73 (13)H14A—C14—H14B109.5
C2—C3—C11121.31 (13)C11—C14—H14C109.5
C5—C4—C3122.16 (13)H14A—C14—H14C109.5
C5—C4—H4118.9H14B—C14—H14C109.5
C3—C4—H4118.9N20—C16—C5111.58 (12)
C6—C5—C4118.82 (13)N20—C16—C17100.20 (11)
C6—C5—C16119.48 (13)C5—C16—C17115.44 (13)
C4—C5—C16121.69 (13)N20—C16—H16109.7
C5—C6—C1122.39 (14)C5—C16—H16109.7
C5—C6—H6118.8C17—C16—H16109.7
C1—C6—H6118.8C18—C17—C16102.79 (13)
C9—C7—C8106.08 (16)C18—C17—H17A111.2
C9—C7—C10107.04 (16)C16—C17—H17A111.2
C8—C7—C10110.82 (15)C18—C17—H17B111.2
C9—C7—C1111.32 (13)C16—C17—H17B111.2
C8—C7—C1111.35 (13)H17A—C17—H17B109.1
C10—C7—C1110.08 (14)N19—C18—C21121.19 (14)
C7—C8—H8A109.5N19—C18—C17113.38 (13)
C7—C8—H8B109.5C21—C18—C17125.40 (14)
H8A—C8—H8B109.5C22—C21—C26118.56 (15)
C7—C8—H8C109.5C22—C21—C18119.78 (15)
H8A—C8—H8C109.5C26—C21—C18121.66 (15)
H8B—C8—H8C109.5C23—C22—C21120.35 (18)
C7—C9—H9A109.5C23—C22—H22119.8
C7—C9—H9B109.5C21—C22—H22119.8
H9A—C9—H9B109.5C24—C23—C22120.60 (19)
C7—C9—H9C109.5C24—C23—H23119.7
H9A—C9—H9C109.5C22—C23—H23119.7
H9B—C9—H9C109.5C23—C24—C25119.85 (17)
C7—C10—H10A109.5C23—C24—H24120.1
C7—C10—H10B109.5C25—C24—H24120.1
H10A—C10—H10B109.5C24—C25—C26120.03 (18)
C7—C10—H10C109.5C24—C25—H25120.0
H10A—C10—H10C109.5C26—C25—H25120.0
H10B—C10—H10C109.5C25—C26—C21120.60 (18)
C13—C11—C14106.92 (15)C25—C26—H26119.7
C13—C11—C12106.76 (15)C21—C26—H26119.7
C14—C11—C12110.53 (15)O29—C27—N28124.31 (15)
C13—C11—C3111.83 (13)O29—C27—N20119.69 (15)
C14—C11—C3110.74 (14)N28—C27—N20116.00 (15)
C18—N19—N20—C27168.45 (14)C27—N20—C16—C574.87 (19)
C18—N19—N20—C166.82 (17)N19—N20—C16—C5110.05 (14)
C6—C1—C2—O15179.18 (15)C27—N20—C16—C17162.42 (14)
C7—C1—C2—O150.0 (2)N19—N20—C16—C1712.66 (16)
C6—C1—C2—C30.6 (2)C6—C5—C16—N20104.30 (16)
C7—C1—C2—C3179.85 (14)C4—C5—C16—N2074.21 (18)
O15—C2—C3—C4179.49 (14)C6—C5—C16—C17142.19 (14)
C1—C2—C3—C40.7 (2)C4—C5—C16—C1739.3 (2)
O15—C2—C3—C111.3 (2)N20—C16—C17—C1812.66 (14)
C1—C2—C3—C11178.56 (15)C5—C16—C17—C18107.30 (14)
C2—C3—C4—C51.4 (2)N20—N19—C18—C21179.27 (12)
C11—C3—C4—C5177.80 (14)N20—N19—C18—C172.84 (17)
C3—C4—C5—C60.8 (2)C16—C17—C18—N1910.54 (16)
C3—C4—C5—C16177.68 (14)C16—C17—C18—C21171.67 (13)
C4—C5—C6—C10.6 (2)N19—C18—C21—C22168.31 (14)
C16—C5—C6—C1179.16 (14)C17—C18—C21—C229.3 (2)
C2—C1—C6—C51.3 (2)N19—C18—C21—C2610.7 (2)
C7—C1—C6—C5179.48 (14)C17—C18—C21—C26171.63 (14)
C6—C1—C7—C92.4 (2)C26—C21—C22—C231.2 (2)
C2—C1—C7—C9178.43 (16)C18—C21—C22—C23177.89 (15)
C6—C1—C7—C8120.56 (17)C21—C22—C23—C240.5 (3)
C2—C1—C7—C860.3 (2)C22—C23—C24—C250.2 (3)
C6—C1—C7—C10116.12 (17)C23—C24—C25—C260.3 (3)
C2—C1—C7—C1063.0 (2)C24—C25—C26—C210.3 (3)
C4—C3—C11—C130.8 (2)C22—C21—C26—C251.1 (2)
C2—C3—C11—C13180.00 (15)C18—C21—C26—C25177.97 (14)
C4—C3—C11—C14119.93 (17)N19—N20—C27—O29176.12 (14)
C2—C3—C11—C1460.9 (2)C16—N20—C27—O291.4 (2)
C4—C3—C11—C12117.62 (17)N19—N20—C27—N284.0 (2)
C2—C3—C11—C1261.6 (2)C16—N20—C27—N28178.67 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N28—H28B···N190.91 (2)2.30 (2)2.678 (3)105 (2)
N28—H28A···O29i0.88 (2)2.03 (2)2.912 (3)174 (2)
Symmetry code: (i) x+2, y+1, z+1.
 

References

First citationAnsari, A., Ali, A., Asif, M. & Shamsuzzaman, S. (2017). New J. Chem. 41, 16–41.  Web of Science CrossRef CAS Google Scholar
First citationAsgarova, A. R., Allahverdiyev, M. A., Khalilov, A. N., Gurbanov, A. V. & Brito, I. (2011a). Acta Cryst. E67, o2024.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAsgarova, A. R., Khalilov, A. N., Brito, I., Maharramov, A. M., Shikhaliyev, N. G., Cisterna, J., Cárdenas, A., Gurbanov, A. V., Zubkov, F. I. & Mahmudov, K. T. (2019). Acta Cryst. C75, 342–347.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAsgarova, A. R., Maharramov, A. M., Khalilov, A. N., Gurbanov, A. V. & Ng, S. W. (2011b). Acta Cryst. E67, o852.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2003). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationIimura, Y., Sakurai, T., Ohno, Y., Asahi, K.-I. & Isono, K. (1983). Acta Cryst. C39, 778–780.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO – A System for Computational Chemistry. Available at: https://hirshfeldsurface.net/  Google Scholar
First citationKarrouchi, K., Radi, S., Ramli, Y., Taoufik, J., Mabkhot, Y. N., Al-aizari, F. A. & Ansar, M. (2018). Molecules, 23, 134–219.  Web of Science CrossRef Google Scholar
First citationKhalilov, A. N., Asgarova, A. R., Gurbanov, A. V., Maharramov, A. M., Nagiyev, F. N. & Brito, I. (2018a). Z. Kristallogr. New Cryst. Struct. 233, 1019–1020.  Web of Science CSD CrossRef CAS Google Scholar
First citationKhalilov, A. N., Asgarova, A. R., Gurbanov, A. V., Nagiyev, F. N. & Brito, I. (2018b). Z. Kristallogr. New Cryst. Struct. 233, 947–948.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, X., Wang, Z.-G., Chen, H.-H. & Liu, S.-G. (2014). Acta Cryst. C70, 1050–1053.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMa, Z., Gurbanov, A. V., Sutradhar, M., Kopylovich, M. N., Mahmudov, K. T., Maharramov, A. M., Guseinov, F. I., Zubkov, F. I. & Pombeiro, A. J. L. (2017). J. Mol. Catal. A Chem. 428, 17–23.  CAS Google Scholar
First citationMaharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Pashaev, F. G., Gasanov, A. G., Azimova, S. I., Askerov, R. K., Kurbanov, A. V. & Mahmudov, K. T. (2010). Dyes Pigments, 85, 1–6.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmoudi, G., Afkhami, F. A., Castiñeiras, A., García-Santos, I., Gurbanov, A., Zubkov, F. I., Mitoraj, M. P., Kukułka, M., Sagan, F., Szczepanik, D. W., Konyaeva, I. A. & Safin, D. A. (2018a). Inorg. Chem. 57, 4395–4408.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMahmoudi, G., Bauzá, A., Gurbanov, A. V., Zubkov, F. I., Maniukiewicz, W., Rodríguez-Diéguez, A., López-Torres, E. & Frontera, A. (2016). CrystEngComm, 18, 9056–9066.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmoudi, G., Gurbanov, A. V., Rodríguez-Hermida, S., Carballo, R., Amini, M., Bacchi, A., Mitoraj, M. P., Sagan, F., Kukułka, M. & Safin, D. A. (2017a). Inorg. Chem. 56, 9698–9709.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMahmoudi, G., Seth, S. K., Bauzá, A., Zubkov, F. I., Gurbanov, A. V., White, J., Stilinović, V., Doert, Th. & Frontera, A. (2018b). CrystEngComm, 20, 2812–2821.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmoudi, G., Zangrando, E., Mitoraj, M. P., Gurbanov, A. V., Zubkov, F. I., Moosavifar, M., Konyaeva, I. A., Kirillov, A. M. & Safin, D. A. (2018c). New J. Chem. 42, 4959–4971.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2017b). Eur. J. Inorg. Chem. pp. 4763–4772.  Web of Science CSD CrossRef Google Scholar
First citationMahmudov, K. T., Gurbanov, A. V., Guseinov, F. I. & Guedes da Silva, M. F. C. (2019). Coord. Chem. Rev. 387, 32–46.  Web of Science CrossRef CAS Google Scholar
First citationMahmudov, K. T., Kopylovich, M. N., Maharramov, A. M., Kurbanova, M. M., Gurbanov, A. V. & Pombeiro, A. J. L. (2014). Coord. Chem. Rev. 265, 1–37.  Web of Science CrossRef CAS Google Scholar
First citationMamedov, I. G., Bayramov, M. R., Mamedova, Y. V. & Maharramov, A. M. (2013). Magn. Reson. Chem. 51, 234–239.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMamedov, I. G., Bayramov, M. R., Mamedova, Y. V. & Maharramov, A. M. (2015). Magn. Reson. Chem. 53, 147–153.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMamedov, I. G., Mamedova, Y. V., Khrustalev, V. N., Bayramov, M. R. & Maharramov, A. M. (2017). Indian J. Chem. 56B, 192–196.  CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377–381.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388.  CAS Google Scholar
First citationSpackman, M. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds