research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

The crystal structure of the zwitterionic co-crystal of 2,4-di­chloro-6-{[(3-hy­dr­oxy­prop­yl)azaniumyl]­meth­yl}phenolate and 2,4-di­chloro­phenol

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Johannesburg, PO Box 524, Auckland Park, Johannesburg, 2006, South Africa
*Correspondence e-mail: carderne@uj.ac.za

Edited by L. Fabian, University of East Anglia, England (Received 10 June 2019; accepted 9 September 2019; online 10 September 2019)

The title compound, C10H13Cl2NO2·C6H4Cl2O, was formed from the incomplete Mannich condensation reaction of 3-amino­propan-1-ol, formaldehyde and 2,4-di­chloro­phenol in methanol. This resulted in the formation of a co-crystal of the zwitterionic Mannich base, 2,4-di­chloro-6-{[(3-hy­droxy­prop­yl)azaniumyl]­meth­yl}phenolate and the unreacted 2,4-di­chloro­phenol. The compound crystallizes in the monoclinic crystal system (in space group Cc) and the asymmetric unit contains a mol­ecule each of the 2,4-di­chloro­phenol and 2,4-di­chloro-6-{[(3-hy­droxy­prop­yl)azaniumyl]­meth­yl}phenolate. Examination of the crystal structure shows that the two components are clearly linked together by hydrogen bonds. The packing patterns are most inter­esting along the b and the c axes, where the co-crystal in the unit cell packs in a manner that shows alternating aromatic di­chloro­phenol fragments and polar hydrogen-bonded channels. The 2,4-di­chloro­phenol rings stack on top of one another, and these are held together by ππ inter­actions. The crystal studied was refined as an inversion twin.

1. Chemical context

The Mannich condensation is an important reaction in synthetic organic chemistry. The formation of the C—N bond in the resulting Mannich base is often an important step in the biosynthesis of several natural products, such as alkaloids and flavanoids (Sarhan et al., 2006[Sarhan, A. E. A. O., Abdel-Hafez, S. H., El-Sherief, H. & Aboel-Fadl, T. (2006). Synth. Commun. 36, 987-996.]). Amino-phenolic ligands have versatile applications in inorganic as well as analytical chemistry. The flexible C—N bond in these ligands offers a tractable three-dimensional structure when coordinated to different metal centres (Riisiö et al., 2012[Riisiö, A., Hänninen, M. M. & Sillanpää, R. (2012). Eur. J. Inorg. Chem. pp. 1048-1053.]). This provides numerous applications, particularly in enzyme mimicking and catalysis, as well as extraction of trace metals (Maurya et al., 2015[Maurya, M. R., Uprety, B., Avecilla, F., Adão, P. & Costa Pessoa, J. (2015). Dalton Trans. 44, 17736-17755.]; Riisiö et al., 2013[Riisiö, A., Väisänen, A. & Sillanpää, R. (2013). Inorg. Chem. 52, 8591-8600.]; Lee et al., 2010[Lee, W. Z., Tseng, H. S., Wang, T. L., Tsai, H. L. & Kuo, T. S. (2010). Organometallics, 29, 2874-2881.]). In the present study, we wanted to prepare a tripodal amino (bis­) phenolate Mannich base derived from 3-propanol-1-amine, formaldehyde and 2,4-di­chloro­phenol. The reaction was performed following conventional bench-top techniques by heating a solution of the reactants in methanol (Sopo et al., 2006[Sopo, H., Sviili, J., Valkonen, A. & Sillanpää, R. (2006). Polyhedron, 25, 1223-1232.]). However, probably because of the poor solubility, the dipodal product precipitated out from the incomplete reaction mixture. The dipodal product, 2,4-di­chloro-6-{[(3-hy­droxy­prop­yl)azaniumyl]­meth­yl}phenolate is stabilized by extensive intra- as well as inter­molecular hydrogen bonding and thus exists as a zwitterion. The zwitterion co-crystallized with the unreacted phenol, resulting in the serendipitous isolation of the title compound.

[Scheme 1]

2. Structural commentary

The title compound crystallizes in the monoclinic crystal system, in the space group Cc. The mol­ecular structure of the title compound is shown in Fig. 1[link], and the asymmetric unit comprises a mol­ecule of both 2,4-di­chloro­phenol and 2,4-di­chloro-6-{[(3-hy­droxy­prop­yl)azaniumyl]­meth­yl}phenolate, held together by hydrogen bonds.

[Figure 1]
Figure 1
Mol­ecular structure of the title compound showing the numbering scheme and related hydrogen-bonding inter­actions. Displacement ellipsoids are shown at the 50% probability level and hydrogen bonds are drawn with red dotted lines.

A complete geometrical analysis using the Mogul geometry check tool (Bruno et al., 2004[Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133-2144.]) within Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) did not show any unusual bond lengths or bond angles. The torsion angles of the complete azaniumyl­phenolate chain (specifically C7–N1–C8–C9–C10–O2) deviate significantly from planarity (Table 1[link]). This can be attributed to the hydrogen bonds in this environment (see below).

Table 1
Selected torsion angles (°)

C7—N1—C8—C9 69.9 (3) C8—C9—C10—O2 −65.1 (3)
N1—C8—C9—C10 64.5 (3)    

The organic Mannich base exists as a zwitterion with the negative charge of phenolate being stabilized by the positively charged ammonium moiety. This is corroborated by the fact that the phenolic oxygen–carbon bond is slightly shorter [O1—C1 = 1.322 (4) Å] than the corresponding bond in the free 2,4-di­chloro­phenol [O1B—C1B = 1.355 (4) Å], indicating partial double-bond character and the presence of a phenoxide moiety in the zwitterion fragment. The ammonium nitro­gen atom adopts a slightly distorted tetra­hedral geometry.

3. Supra­molecular features

The co-crystal structure displays an extensive hydrogen-bonding network (Table 2[link]). The zwitterion, 2,4-di­chloro-6-{[(3-hy­droxy­prop­yl)azaniumyl]­meth­yl}phenolate, is involved in intra– as well as inter­molecular hydrogen bonding. The ammonium hydrogen H1B takes part in a bifurcated intra­molecular hydrogen bond, N1—H1B⋯O1 and N1—H1B⋯O2, forcing the propyl chain of the zwitterion to adopt a distorted gauche conformation with an N1—C8—C9—C10 torsion angle of 64.5 (3)°. The other ammonium hydrogen, H1A, is involved in inter­molecular hydrogen bonding with the negatively charged O atom of an adjacent zwitterion [d(H1A⋯O1) = 1.76 Å], extending the hydrogen bonding into an infinite network. The two components of the co-crystal are also bonded together by inter­molecular hydrogen bonds between the phenolic proton of 2,4-di­chloro­phenol and the alcoholic oxygen of the zwitterion [d(H1BA⋯O2) = 1.82 Å]. These hydrogen bonds give rise to inter­esting graph-set patterns, which are depicted in Fig. 2[link]. The two intra­molecular self-motifs of S11(6) are generated as a result of the bifurcation involving H1B, while the zwitterion inter­acts with a second zwitterion generating a large ring motif with the graph-set R22(16).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.91 1.76 2.663 (3) 171
N1—H1B⋯O1 0.91 2.17 2.779 (3) 124
N1—H1B⋯O2 0.91 2.29 2.947 (3) 129
O2—H2⋯O1ii 0.84 1.80 2.634 (3) 171
O1B—H1BA⋯O2 0.84 1.82 2.653 (3) 172
Symmetry codes: (i) [x, -y+1, z+{\script{1\over 2}}]; (ii) [x, -y+1, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
Mol­ecular structure of the zwitterionic part of the co-crystal depicting the selected hydrogen-bonding graph sets. H atoms not involved in hydrogen bonding have been omitted for clarity and hydrogen bonds are drawn with red dashed lines.

The packing arrangement of the co-crystal involves alternating hydro­phobic layers of the aromatic di­chloro­phenol rings and the hydrogen-bonded polar channels. These layers stack one over the other along the c-axis direction and also propagate along the a-axis direction, thereby resulting in a ladder-like structure network (Figs. 3[link] and 4[link]). The presence of the glide plane in the ac plane of the crystal causes the packing to appear like a regular mirror image (Fig. 4[link]). As a result of the nature of the packing arrangement in the crystal structure, it was possible to measure the ring centroid to ring centroid distance between the di­chloro­phenol rings of the adjacent layers; this distance was found to be in the range 4.045 (17)–4.056 (19) Å (Fig. 5[link]). The layers are stacked in this manner as a result of extensive ππ inter­actions between the phenyl rings. A detailed list of the relevant ππ inter­actions is given in Table 3[link].

Table 3
π–π inter­actions (Å, °)

Cg1 and Cg2 are the centroids of the C1–C6 and C1B–C6B rings, respectively.

CgCg Distance Slippage
Cg1⋯Cg1i 4.0449 (17) 2.006
Cg1⋯Cg1ii 4.0448 (17) 2.583
Cg2⋯Cg2i 4.0559 (19) 2.714
Cg2⋯Cg2ii 4.0559 (19) 1.849
Symmetry codes: (i) x, −y + 1, z + [{1\over 2}]; (ii) x, −y + 1, z − [{1\over 2}].
[Figure 3]
Figure 3
Packing diagram of the title compound viewed down the b axis, clearly showing the hydrogen-bonded polar channels and the 2,4-di­chloro­phenol hydro­phobic layers.
[Figure 4]
Figure 4
Packing diagram of the title compound viewed down the c axis, depicting an apparent regular mirror image resulting from the glide plane in the ac plane.
[Figure 5]
Figure 5
Partial packing arrangement of the title compound showing the ππ inter­action between the 2,4-di­chloro­phenol hydro­phobic layers.

4. Database survey

A search of the Cambridge structural database (Version 5.40, February 2019 updates; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the zwitterionic Mannich base, 2,4-di­chloro-6-{[(3-hy­droxy­prop­yl)azaniumyl]­meth­yl}phenolate gave no hits. Search parameters that included 2,4-di­chloro­phenol and other relevant starting materials as well as the co-crystal resulted in only four hits, with one being the crystal structure of 2,4-di­chloro­phenol itself (DCPHOM; Bavoux & Perrin, 1979[Bavoux, C. & Perrin, M. (1979). Cryst. Struct. Commun. 8, 847-850.]); the second hit was a clathrate containing 2,4-di­chloro­phenol as a guest mol­ecule within the cavities of zinc tetra­phenyl­porphyrin mol­ecules (JIVNOR; Byrn et al., 1991[Byrn, M. P., Curtis, C. J., Goldberg, I., Hsiou, Y., Khan, S. I., Sawin, P. A., Tendick, S. K. & Strouse, C. E. (1991). J. Am. Chem. Soc. 113, 6549-6557.]), and the third and fourth hits were found to be two three–component co-crystal solvates [EVEYUB (Cai et al., 2016[Cai, X.-Q., Tian, B., Zhang, J.-N. & Jin, Z.-M. (2016). Acta Cryst. C72, 720-723.]) and ZISJUI (Cai & Jin, 2014[Cai, X.-Q. & Jin, Z. M. (2014). Acta Cryst. C70, 207-209.])] containing H-atom-bridged 2,4-di­chloro­phenolate/2,4-di­chloro­phenol units held together by O—H⋯N and O—H⋯O hydrogen bonds. Of all the hits found in the CSD, none of the structures is reported to have any ππ inter­actions between the phenyl rings, whereas the title compound has these types of inter­actions. However, a database search for the alcoholamine fragment, NH2(+)–(CH2)3–OH, gave seven hits. Two of these, GIPHIX (Büttner et al., 2007[Büttner, M. W., Burschka, C., Daiss, J. O., Ivanova, D., Rochel, N., Kammerer, S., Peluso-Iltis, C., Bindler, A., Gaudon, C., Germain, P., Moras, D., Gronemeyer, H. & Tacke, R. (2007). ChemBioChem, 8, 1688-1699.]) and EPANUF (Pestov et al., 2010[Pestov, A. V., Slepukhin, P. A., Molochnikov, L. S., Ezhikova, M. A., Kodess, M. I. & Yatluk, Yu. G. (2010). Russ. J. Inorg. Chem. 55, 201-208.]), also involved intra­molecular hydrogen bonding resulting in S11(6) graph sets, as also seen in the title compound.

5. Synthesis and crystallization

The starting materials, comprising of 3-amino­propan-1-ol, formaldehyde and 2,4-di­chloro­phenol were purchased from Sigma Aldrich and used as received without any purification. To a methano­lic solution of 3-amino-1-propanol (5 mmol, 0.38 g) was added a solution of formaldehyde (10 mmol, 0.81 g) in methanol under stirring. A solution of 2,4-di­chloro­phenol (10 mmol, 1.63 g) in methanol was added to the above mixture to afford a clear solution. The resulting solution was stirred at room temperature for two days to yield an oily solution. The oil was dissolved in diethyl ether and a few drops of methanol were added to the solution. The solution was then cooled in a refrigerator to obtain diffraction-quality single crystals.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. All carbon-bound H atoms were placed in calculated positions and refined using a riding-model approximation, with C—H = 0.95–1.00 Å and Uiso(H) = 1.2Ueq(C). H atoms bonded to N or O atoms were located from difference-Fourier electron-density maps and were also refined using a riding-model approximation with N—H bond distances of 0.89–0.91 Å and O—H = 0.84 Å with Uiso(H) = 1.5Ueq(N,O). The atom H1A was restrained by DFIX in SHELX to be at a distance of 0.88 (2) Å from N1 and by the SADI command to be equidistant from C7 and C8 (σ = 0.02 Å), so as to inhibit too much movement of this H atom during the refinement. The structure was also refined as an inversion twin, but low coverage of Friedel pairs in the data precludes the reliable determination of the absolute structure. All related structure and refinement checks were carried out with PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Table 4
Experimental details

Crystal data
Chemical formula C10H13Cl2NO2·C6H4Cl2O
Mr 413.10
Crystal system, space group Monoclinic, Cc
Temperature (K) 100
a, b, c (Å) 26.406 (2), 9.5558 (9), 7.1019 (6)
β (°) 101.076 (2)
V3) 1758.6 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.69
Crystal size (mm) 0.39 × 0.20 × 0.17
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.688, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 15694, 4227, 3842
Rint 0.053
(sin θ/λ)max−1) 0.673
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.092, 1.03
No. of reflections 4227
No. of parameters 220
No. of restraints 4
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.52, −0.26
Absolute structure Refined as an inversion twin
Absolute structure parameter 0.03 (8)
Computer programs: APEX2 (Bruker, 2014[Bruker (2014). APEX2. Bruker AXS, Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2016[Bruker (2016). SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.]), SHELXT2014/5 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015b); program(s) used to refine structure: SHELXL (Sheldrick, 2015a); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

2,4-Dichlorophenol– 2,4-dichloro-6-{[(3-hydroxypropyl)azaniumyl]methyl}phenolate (1/1) top
Crystal data top
C10H13Cl2NO2·C6H4Cl2OF(000) = 848
Mr = 413.10Dx = 1.560 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
a = 26.406 (2) ÅCell parameters from 6679 reflections
b = 9.5558 (9) Åθ = 2.3–28.6°
c = 7.1019 (6) ŵ = 0.69 mm1
β = 101.076 (2)°T = 100 K
V = 1758.6 (3) Å3Plank, colourless
Z = 40.39 × 0.20 × 0.17 mm
Data collection top
Bruker APEXII CCD
diffractometer
3842 reflections with I > 2σ(I)
φ and ω scansRint = 0.053
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
θmax = 28.6°, θmin = 1.6°
Tmin = 0.688, Tmax = 0.746h = 3435
15694 measured reflectionsk = 1212
4227 independent reflectionsl = 99
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.037 w = 1/[σ2(Fo2) + (0.051P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.092(Δ/σ)max = 0.001
S = 1.03Δρmax = 0.52 e Å3
4227 reflectionsΔρmin = 0.25 e Å3
220 parametersAbsolute structure: Refined as an inversion twin
4 restraintsAbsolute structure parameter: 0.03 (8)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.60636 (12)0.3974 (3)0.4792 (4)0.0142 (6)
C20.63604 (11)0.2750 (3)0.5205 (4)0.0157 (6)
C30.68630 (12)0.2726 (3)0.6225 (4)0.0165 (6)
H30.7049500.1872570.6454940.020*
C40.70848 (12)0.3991 (3)0.6902 (5)0.0168 (6)
C50.68172 (11)0.5238 (3)0.6521 (4)0.0165 (6)
H50.6976870.6095450.6981210.020*
C60.63169 (11)0.5240 (3)0.5469 (4)0.0147 (6)
O10.55807 (8)0.3971 (2)0.3846 (3)0.0155 (5)
C70.60594 (11)0.6628 (3)0.4870 (4)0.0158 (5)
H7A0.6259760.7386730.5618300.019*
H7B0.6064210.6792350.3497300.019*
N10.55136 (9)0.6690 (2)0.5164 (3)0.0147 (4)
H1A0.5505810.6420000.6386740.018*
H1B0.5321850.6065880.4357810.018*
C80.52697 (11)0.8107 (3)0.4826 (4)0.0175 (5)
H8A0.5501000.8798690.5593960.021*
H8B0.4942640.8099260.5312290.021*
C90.51540 (11)0.8601 (3)0.2744 (4)0.0175 (6)
H9A0.5030780.9580530.2711290.021*
H9B0.5479240.8593960.2244560.021*
C100.47556 (12)0.7729 (3)0.1416 (4)0.0202 (6)
H10A0.4433280.7694950.1932670.024*
H10B0.4675990.8179850.0138130.024*
O20.49333 (8)0.6335 (2)0.1213 (3)0.0184 (4)
H20.5139300.6333010.0446580.028*
Cl10.60850 (3)0.11500 (7)0.43483 (9)0.01842 (17)
Cl20.77111 (3)0.39949 (8)0.82500 (10)0.0250 (2)
O1B0.44186 (9)0.3939 (2)0.1038 (4)0.0241 (6)
H1BA0.4555850.4731010.1022560.036*
C1B0.39283 (14)0.3987 (3)0.0027 (5)0.0199 (7)
C2B0.36413 (13)0.2748 (4)0.0255 (5)0.0222 (7)
C3B0.31382 (13)0.2721 (4)0.1258 (5)0.0248 (7)
H3B0.2950370.1867950.1439400.030*
C4B0.29142 (13)0.3965 (3)0.1992 (5)0.0218 (7)
C5B0.31829 (12)0.5215 (4)0.1709 (4)0.0216 (7)
H5B0.3022850.6066040.2195040.026*
C6B0.36880 (12)0.5211 (3)0.0710 (4)0.0205 (6)
H6B0.3873750.6067240.0526050.025*
Cl2B0.22825 (3)0.39666 (9)0.32799 (12)0.0308 (2)
Cl1B0.39215 (3)0.11872 (9)0.07078 (15)0.0370 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0169 (16)0.0145 (16)0.0124 (14)0.0011 (11)0.0055 (11)0.0008 (9)
C20.0192 (15)0.0122 (15)0.0165 (13)0.0052 (12)0.0057 (11)0.0028 (10)
C30.0178 (15)0.0129 (16)0.0189 (13)0.0016 (12)0.0036 (11)0.0006 (10)
C40.0110 (15)0.0175 (17)0.0210 (15)0.0005 (11)0.0011 (12)0.0027 (11)
C50.0172 (15)0.0150 (16)0.0177 (14)0.0015 (12)0.0048 (11)0.0019 (10)
C60.0178 (14)0.0128 (15)0.0151 (13)0.0005 (12)0.0069 (10)0.0004 (10)
O10.0145 (12)0.0156 (12)0.0163 (10)0.0013 (8)0.0029 (8)0.0017 (7)
C70.0168 (13)0.0120 (14)0.0193 (13)0.0005 (10)0.0049 (10)0.0008 (9)
N10.0168 (11)0.0144 (11)0.0130 (11)0.0011 (9)0.0033 (8)0.0003 (8)
C80.0223 (14)0.0120 (13)0.0182 (13)0.0004 (10)0.0038 (10)0.0005 (10)
C90.0199 (14)0.0154 (14)0.0174 (14)0.0010 (10)0.0037 (11)0.0026 (10)
C100.0212 (14)0.0191 (15)0.0197 (14)0.0031 (11)0.0026 (10)0.0015 (11)
O20.0193 (10)0.0168 (10)0.0201 (10)0.0005 (8)0.0060 (8)0.0012 (7)
Cl10.0201 (4)0.0128 (4)0.0216 (3)0.0027 (3)0.0023 (3)0.0022 (3)
Cl20.0169 (4)0.0194 (4)0.0353 (5)0.0010 (3)0.0038 (3)0.0041 (3)
O1B0.0159 (13)0.0151 (13)0.0403 (15)0.0022 (8)0.0027 (10)0.0003 (9)
C1B0.0152 (16)0.0220 (19)0.0235 (17)0.0002 (12)0.0062 (12)0.0015 (11)
C2B0.0199 (16)0.0120 (17)0.0352 (17)0.0023 (13)0.0068 (13)0.0024 (12)
C3B0.0211 (18)0.0162 (19)0.0373 (18)0.0030 (13)0.0059 (14)0.0017 (13)
C4B0.0184 (18)0.0197 (18)0.0274 (17)0.0020 (12)0.0046 (14)0.0020 (12)
C5B0.0234 (17)0.0164 (17)0.0251 (16)0.0007 (13)0.0045 (12)0.0015 (12)
C6B0.0243 (17)0.0142 (16)0.0242 (16)0.0043 (13)0.0076 (12)0.0022 (11)
Cl2B0.0200 (5)0.0207 (5)0.0474 (6)0.0024 (3)0.0038 (4)0.0031 (4)
Cl1B0.0209 (5)0.0167 (5)0.0705 (7)0.0004 (3)0.0018 (5)0.0095 (4)
Geometric parameters (Å, º) top
C1—C21.407 (4)C9—H9A0.9900
C1—C61.421 (4)C9—H9B0.9900
C1—O11.322 (4)C9—C101.520 (4)
C2—C31.385 (4)C10—H10A0.9900
C2—Cl11.751 (3)C10—H10B0.9900
C3—H30.9500C10—O21.429 (3)
C3—C41.388 (4)O2—H20.8400
C4—C51.386 (4)O1B—H1BA0.8400
C4—Cl21.744 (3)O1B—C1B1.355 (4)
C5—H50.9500C1B—C2B1.400 (5)
C5—C61.387 (4)C1B—C6B1.384 (5)
C6—C71.514 (4)C2B—C3B1.382 (5)
C7—H7A0.9900C2B—Cl1B1.745 (3)
C7—H7B0.9900C3B—H3B0.9500
C7—N11.496 (3)C3B—C4B1.384 (5)
N1—H1A0.9100C4B—C5B1.385 (4)
N1—H1B0.9100C4B—Cl2B1.742 (4)
N1—C81.499 (3)C5B—H5B0.9500
C8—H8A0.9900C5B—C6B1.385 (4)
C8—H8B0.9900C6B—H6B0.9500
C8—C91.526 (4)
C2—C1—C6115.5 (3)C9—C8—H8A108.3
O1—C1—C2123.3 (3)C9—C8—H8B108.3
O1—C1—C6121.3 (3)C8—C9—H9A108.6
C1—C2—Cl1118.4 (2)C8—C9—H9B108.6
C3—C2—C1124.2 (3)H9A—C9—H9B107.6
C3—C2—Cl1117.3 (2)C10—C9—C8114.7 (2)
C2—C3—H3121.2C10—C9—H9A108.6
C2—C3—C4117.7 (3)C10—C9—H9B108.6
C4—C3—H3121.2C9—C10—H10A109.2
C3—C4—Cl2119.0 (2)C9—C10—H10B109.2
C5—C4—C3121.1 (3)H10A—C10—H10B107.9
C5—C4—Cl2120.0 (2)O2—C10—C9111.8 (2)
C4—C5—H5119.9O2—C10—H10A109.2
C4—C5—C6120.2 (3)O2—C10—H10B109.2
C6—C5—H5119.9C10—O2—H2109.5
C1—C6—C7119.6 (3)C1B—O1B—H1BA109.5
C5—C6—C1121.3 (3)O1B—C1B—C2B118.9 (3)
C5—C6—C7118.8 (3)O1B—C1B—C6B123.4 (3)
C6—C7—H7A109.0C6B—C1B—C2B117.7 (3)
C6—C7—H7B109.0C1B—C2B—Cl1B119.3 (3)
H7A—C7—H7B107.8C3B—C2B—C1B122.0 (3)
N1—C7—C6112.8 (2)C3B—C2B—Cl1B118.6 (3)
N1—C7—H7A109.0C2B—C3B—H3B120.8
N1—C7—H7B109.0C2B—C3B—C4B118.5 (3)
C7—N1—H1A108.7C4B—C3B—H3B120.8
C7—N1—H1B108.7C3B—C4B—C5B121.1 (3)
C7—N1—C8114.1 (2)C3B—C4B—Cl2B119.7 (3)
H1A—N1—H1B107.6C5B—C4B—Cl2B119.2 (3)
C8—N1—H1A108.7C4B—C5B—H5B120.4
C8—N1—H1B108.7C4B—C5B—C6B119.2 (3)
N1—C8—H8A108.3C6B—C5B—H5B120.4
N1—C8—H8B108.3C1B—C6B—C5B121.5 (3)
N1—C8—C9115.8 (2)C1B—C6B—H6B119.3
H8A—C8—H8B107.4C5B—C6B—H6B119.3
C1—C2—C3—C40.8 (4)N1—C8—C9—C1064.5 (3)
C1—C6—C7—N150.1 (3)C8—C9—C10—O265.1 (3)
C2—C1—C6—C52.1 (4)Cl1—C2—C3—C4179.7 (2)
C2—C1—C6—C7171.6 (2)Cl2—C4—C5—C6179.2 (2)
C2—C3—C4—C51.8 (5)O1B—C1B—C2B—C3B179.5 (3)
C2—C3—C4—Cl2178.3 (2)O1B—C1B—C2B—Cl1B0.3 (4)
C3—C4—C5—C60.8 (5)O1B—C1B—C6B—C5B179.0 (3)
C4—C5—C6—C11.2 (4)C1B—C2B—C3B—C4B0.3 (5)
C4—C5—C6—C7172.6 (3)C2B—C1B—C6B—C5B0.6 (5)
C5—C6—C7—N1136.0 (3)C2B—C3B—C4B—C5B0.9 (5)
C6—C1—C2—C31.2 (4)C2B—C3B—C4B—Cl2B179.5 (2)
C6—C1—C2—Cl1177.8 (2)C3B—C4B—C5B—C6B1.4 (5)
C6—C7—N1—C8172.5 (2)C4B—C5B—C6B—C1B0.6 (5)
O1—C1—C2—C3178.7 (3)C6B—C1B—C2B—C3B1.1 (5)
O1—C1—C2—Cl12.4 (4)C6B—C1B—C2B—Cl1B178.2 (2)
O1—C1—C6—C5177.7 (3)Cl2B—C4B—C5B—C6B179.0 (2)
O1—C1—C6—C78.6 (4)Cl1B—C2B—C3B—C4B178.9 (3)
C7—N1—C8—C969.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.911.762.663 (3)171
N1—H1B···O10.912.172.779 (3)124
N1—H1B···O20.912.292.947 (3)129
O2—H2···O1ii0.841.802.634 (3)171
O1B—H1BA···O20.841.822.653 (3)172
Symmetry codes: (i) x, y+1, z+1/2; (ii) x, y+1, z1/2.
ππ interactions (Å, °) top
Cg1 and Cg2 are the centroids of the C1–C6 and C1B–C6B rings, respectively.
Cg···CgDistanceSlippage
Cg1···Cg1i4.0449 (17)2.006
Cg1···Cg1ii4.0448 (17)2.583
Cg2···Cg2i4.0559 (19)2.714
Cg2···Cg2ii4.0559 (19)1.849
Symmetry codes: (i) x, -y + 1, z + 1/2; (ii) x, -y + 1, z - 1/2.
 

Acknowledgements

The authors thank the University of Johannesburg for providing access to the Single Crystal XRD facilities. They also gratefully acknowledge Dr Matthias Zeller, Purdue University, Indiana, USA, for assistance in solving the crystal structure.

Funding information

Funding for this research was provided by: National Research Fund Thuthuka (grant No. 99164 to CA). BU thanks the University of Johannesburg for funding from the UJ–GES post-doctoral fellowship. CA and BU thank the Research Centre for Synthesis and Catalysis for ancillary funding for the project.

References

First citationBavoux, C. & Perrin, M. (1979). Cryst. Struct. Commun. 8, 847–850.  CAS Google Scholar
First citationBruker (2014). APEX2. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2016). SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133–2144.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBüttner, M. W., Burschka, C., Daiss, J. O., Ivanova, D., Rochel, N., Kammerer, S., Peluso-Iltis, C., Bindler, A., Gaudon, C., Germain, P., Moras, D., Gronemeyer, H. & Tacke, R. (2007). ChemBioChem, 8, 1688–1699.  Web of Science PubMed Google Scholar
First citationByrn, M. P., Curtis, C. J., Goldberg, I., Hsiou, Y., Khan, S. I., Sawin, P. A., Tendick, S. K. & Strouse, C. E. (1991). J. Am. Chem. Soc. 113, 6549–6557.  CSD CrossRef CAS Web of Science Google Scholar
First citationCai, X.-Q. & Jin, Z. M. (2014). Acta Cryst. C70, 207–209.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCai, X.-Q., Tian, B., Zhang, J.-N. & Jin, Z.-M. (2016). Acta Cryst. C72, 720–723.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLee, W. Z., Tseng, H. S., Wang, T. L., Tsai, H. L. & Kuo, T. S. (2010). Organometallics, 29, 2874–2881.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMaurya, M. R., Uprety, B., Avecilla, F., Adão, P. & Costa Pessoa, J. (2015). Dalton Trans. 44, 17736–17755.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationPestov, A. V., Slepukhin, P. A., Molochnikov, L. S., Ezhikova, M. A., Kodess, M. I. & Yatluk, Yu. G. (2010). Russ. J. Inorg. Chem. 55, 201–208.  Web of Science CrossRef CAS Google Scholar
First citationRiisiö, A., Hänninen, M. M. & Sillanpää, R. (2012). Eur. J. Inorg. Chem. pp. 1048–1053.  Google Scholar
First citationRiisiö, A., Väisänen, A. & Sillanpää, R. (2013). Inorg. Chem. 52, 8591–8600.  Web of Science PubMed Google Scholar
First citationSarhan, A. E. A. O., Abdel–Hafez, S. H., El–Sherief, H. & Aboel–Fadl, T. (2006). Synth. Commun. 36, 987–996.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSopo, H., Sviili, J., Valkonen, A. & Sillanpää, R. (2006). Polyhedron, 25, 1223–1232.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds