research communications
x-solvate (x > 1/2)
of (15,20-bis(2,3,4,5,6-pentafluorophenyl)-5,10-{(4-methylpyridine-3,5-diyl)bis[(sulfanediylmethylene)[1,1′-biphenyl]-4′,2-diyl]}porphyrinato)nickel(II) dichloromethaneaOtto-Diels-Institut für Organische Chemie, Christian-Albrechts-Universität Kiel, Otto-Hahn-Platz 4, D-24098 Kiel, Germany, and bInstitut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Max-Eyth Str. 2, D-24118 Kiel, Germany
*Correspondence e-mail: rherges@oc.uni-kiel.de
The title compound, [Ni(C64H33F10N5S2)]·xCH2Cl2, consists of discrete NiII porphyrin complexes, in which the five-coordinate NiII cations are in a distorted square-pyramidal coordination geometry. The four porphyrin nitrogen atoms are located in the basal plane of the pyramid, whereas the pyridine N atom is in the apical position. The porphyrin plane is strongly distorted and the NiII cation is located above this plane by 0.241 (3) Å and shifted in the direction of the coordinating pyridine nitrogen atom. The pyridine ring is not perpendicular to the N4 plane of the porphyrin moiety, as observed for related compounds. In the crystal, the complexes are linked via weak C—H⋯F hydrogen bonds into zigzag chains propagating in the [001] direction. Within this arrangement cavities are formed, in which highly disordered dichloromethane solvate molecules are located. No reasonable structural model could be found to describe this disorder and therefore the contribution of the solvent to the electron density was removed using the SQUEEZE option in PLATON [Spek (2015). Acta Cryst. C71, 9–18].
Keywords: crystal structure; nickel porphyrin; square-pyramidal NiII coordination; C—H⋯F hydrogen bonding; solvate.
CCDC reference: 1951945
1. Chemical context
NiII are emerging in a number of applications including photoswitchable MRI contrast agents (Venkataramani et al., 2011; Dommaschk et al., 2014, 2015a,b), redox catalysts (Eom et al., 1997; Han et al., 2015) or catalysts in the hydrogen evolution reaction (HER) (Han et al., 2016; Solis et al., 2016; Maher et al., 2019). The axial coordination of NiII has been studied extensively regarding the underlying equlibria (Caughey et al., 1962; McLees & Caughey, 1968; Walker et al. 1975), conformational changes (Jia et al., 1998) and photo-induced complex formation and dissociation (Kim et al., 1983; Kim & Holten, 1983). Moreover, the axial coordination determines the spin state of these complexes (Renner et al., 1991; Jentzen et al., 1995). Upon coordination of one axial ligand, NiII undergo spin transition from a diamagnetic (S = 0) square-planar, low-spin (LS) state with a (CN) of four (CN4) to a paramagnetic (S = 1), square-pyramidal (CN5), high-spin (HS) state. The CN5 HS complex is further stabilized by the coordination of a sixth ligand, resulting in minor changes of the spectroscopic properties of the CN6 complexes compared to their CN5 counterparts. The coordination and de-coordination of axial ligands are observed in a fast dynamic equilibrium, dominated by the CN4 and the CN6 species (Kadish et al., 2000 and Kruglik et al., 2003). The spectra and properties of a well defined five-coordinate (CN5) NiII porphyrin in solution and the solid state was described recently (Gutzeit et al., 2019a). In closely related, tightly strapped NiII the coordination of the axial pyridine ligand is dependent on the geometry of the ligand-containing strap (Köbke et al., 2019). Furthermore, the coordination behaviour is dependent on the para substituent of the pyridine moiety due to its electronic influence (Dommaschk et al., 2014). Hence, a para methyl substituent was introduced in the complex described previously (Gutzeit et al., 2019a) to improve the intramolecular coordination. The modified synthesis yielded the title compound as a byproduct (Gutzeit et al., 2019a; Köbke et al., 2019) similar to the synthesis of the unsubstituted derivative (Gutzeit et al., 2019b). Metallation was achieved under standard conditions. Splitting of the CH2-proton signals in the 1H NMR spectrum are observed for the unmetallated porphyrin and the title compound due to an impeded ring inversion of the strap (Gutzeit et al., 2019b). The increased paramagnetic shifts of the β-pyrrole H atoms (δmin = 8.8 ppm, δmax = 49.0 ppm, CDCl3, 298 K; Gutzeit et al., 2019a) of the title compound (45.9 ppm) compared to the compound without a methyl group in para position of the pyridine ring (42.2 ppm) indicates an increase of intramolecular coordination by 9% (Fig. 1; Gutzeit et al., 2019a), confirming the influence of the para methyl substituent.
2. Structural commentary
In the 64H33F10N5NiS2) (CH2Cl2)x, the five-coordinate NiII cations are bound by the four nitrogen atoms of the porphyrin molecule and the nitrogen atom of the pyridine ring (Figs. 2–4). The porphyrin plane is distorted due to steric constraints of the strap, similar to the unsubstituted derivative (Gutzeit et al., 2019b). The maximum deviation of the individual atoms from the mean plane calculated through the porphyrin atoms amounting to 0.137 (3) Å for the parent compound (Gutzeit et al., 2019b) is increased to 0.159 (4) Å in the title compound. The Ni—N bond lengths to the porphyrin nitrogen atoms [2.031 (3)–2.041 (3) Å] are significantly shorter than that to the pyridine nitrogen atom (Table 1). In the title compound, the NiII cation is shifted 0.241 (3) Å out of the porphyrin N4 plane towards the pyridine nitrogen atom, which is slightly shorter than that in the derivative without the methyl group [0.250 (3) Å, Fig. 5]. This is also the case for the Ni—N distance to the pyridine N atom of 2.106 (3) Å, compared to 2.112 (2) Å in the derivative. The angle between the planes of the pyridine ring and the N4 porphyrin plane amounts to 67.1 (2)°, which is very different from that in the derivative without the methyl group [80.48 (6)°; Fig. 5]. The tilt of the pyridine ring does not impede the intramolecular coordination, which is reflected by the short Ni—Npy (py = pyridine) distance and the NMR shift. The tilt of the axial ligand is reinforced by packing effects leveraged by the para methyl group. This is also in agreement with a different conformation of the overall porphyrin molecule compared to the unsubstituted derivative, because the pentafluoro phenyl rings are more perpendicular to the porphyrin N4 plane with dihedral angles of 82.53 (8) and 77.37 (7)°, which is also the case for the phenyl rings [67.0 (1) and 83.4 (2)°; Figs. 3 and 4]. Finally, the dihedral angles between the biphenyl rings are 72.3 (2) and 64.3 (2) ° compared to 63.2 (1) and 53.5 (1)° in the derivative. Overall, the increased steric demand of the para methyl substituent increases the distortion compared to the unsubstituted derivative.
of the title compound, (C
|
3. Supramolecular features
In the extended structure of the title compound, the complexes are linked by C—H⋯F hydrogen bonds into zigzag chains that extend in the [001] direction with adjacent complexes related by a 21-screw-axis (Fig. 6). The C—H⋯F angle is 164°, indicating a relative strong interaction (Table 2). By this arrangement, cavities are formed, in which the disordered dichloromethane solvate molecules are located. There are additional intramolecular C—H⋯N contacts, with angles far from linearity that correspond to only very weak interactions (Table 2).
4. Database survey
According to a search of the Cambridge Structural Database, only four crystal structures of five-coordinate NiII have been reported (Kumar & Sankar, 2014; Dommaschk et al., 2015c; Gutzeit et al., 2019a,b; refcodes DOJPAV01, QUZVAK, COCBAA and HOPSIR, respectively). The square-pyramidal complex geometry is predominant in zinc (Paul et al., 2003; Deutman et al., 2014) and iron (Awasabisah et al., 2015; Yu et al., 2015) Zinc form five-coordinate complexes additionally with oxygen-containing ligands (Leben et al., 2018), a behaviour uncommon in NiII (Ozette et al., 1997). The conformation of the porphyrin (Flanagan et al., 2015; Senge, 2011) has been recognized as an important factor for the axial coordination, spin state (Thies et al., 2010; Dommaschk et al., 2014) and (Ramesh et al., 2016) of these complexes.
5. Synthesis and crystallization
The free base porphyrin of the title compound was obtained as a byproduct of a variant of the published procedure (Gutzeit et al., 2019a; Köbke et al., 2019). The free base were separated by (silica gel, dichloromethane; silica gel, dichloromethane/n-pentane, 1:1 and silica gel, toluene) and precipitated from dichloromethane by diffusion of methanol (59 mg, 3%).
1H NMR (500 MHz, CDCl3, 298 K, TMS): δ = 8.97 (s, 2 H, Hβ,Por), 8.65–8.58 (m, 4 H, Hβ,Por), 8.51 (d, 3J = 4.8 Hz, 2 H, Hβ,Por), 8.26 (dd, 3J = 7.5 Hz, 4J = 1.1 Hz, 2 H, H-3BP), 7.91 (td, 3J = 7.7 Hz, 4J = 1.4 Hz, 2 H, H-5BP), 7.83 (dd, 3J = 7.9 Hz, 4J = 1.1 Hz, 2 H, H-6BP), 7.75 (td, 3J = 7.5 Hz, 4J = 1.4 Hz, 2 H, H-4BP), 6.66 (d, 3J = 8.2 Hz, 4 H, H-2′BP), 5.67 (d, 3J = 8.2 Hz, 4 H, H-3′BP), 3.00–2.90 (m, 4 H, CH2,a+b), 2.21 (s, 3 H, CH3), −2.82 (s, 2 H, NH) ppm. Unobserved signals: H-2Py. 13C NMR (126 MHz, CDCl3, 298 K): δ = 153.5 (C4Py), 144.5 (C1BP), 140.2 (C1′BP), 139.9 (C2BP), 135.9 (C4′BP), 134.7 (C3BP), 129.9 (C3Py), 129.4 (C6BP), 129.3 (C2′BP), 129.2 (C5BP), 127.4 (C3′BP), 125.8 (C4BP), 121.4 (C5Por,C10Por), 38.3 (CH2), 17.6 (CH3) ppm. Unobserved signals: C15Por, C20Por, Cα,Por, Cβ,Por, C6F5. 19F NMR (471 MHz, CDCl3, 298 K): δ = −136.96 (dd, 3J = 24.3 Hz, 4J = 8.3 Hz, F-ortho), −137.26 (dd, 3J = 24.7 Hz, 4J = 8.1 Hz, F-ortho), −153.08 (t, 3J = 20.0 Hz, F-para), −162.43 to −162.65 (m, F-meta) ppm. FT–IR (ATR): ν = 2342.6 (w), 2326.3 (w), 1742.5 (w), 1516.5 (s), 1493.9 (s), 1474.0 (s), 1422.1 (w), 1348.9 (w), 1217.9 (w), 1078.8 (w), 1041.7 (w), 985.4 (s), 917.9 (s), 839.4 (w), 800.8 (s), 763.4 (s), 737.1 (s), 716.5 (s), 700.0 (m), 659.5 (m), 526.8 (w), 506.0 (w), 467.0 (w), 407.2 (m) cm−1. MS (EI): m/z (%) = 1188.10 (43) [M − H2 + Cu]+, 334.96 (14) [M - C44H18F10N4]+, 168.99 (100) [M − C57H28F10N4]+ u. HRMS (EI): Calculated for C64H33CuF10N5S2: 1188.1314 u. Found: 1188.128 33 u. Diff.: 2.6 ppm. The free base porphyrin is metallated in the process of EA: Calculated for C64H35F10N5S2·0.5(CH2Cl2): C 66.18, H 3.10, N 5.98, S 5.48. Found C 66.77, H 3.39, N 5.44, S 5.33.
The nickel cation was introduced under standard conditions (31 mg porphyrin, 68 mg Ni(acac)2, 30 ml toluene, reflux, 21 h) followed by filtration through a pluck of silica (dichloromethane) and precipitation from dichloromethane by diffusion of methanol. The crystals were washed with methanol and n-pentane (11 mg, 34%).
1H NMR (500 MHz, CDCl3, 298 K, TMS, TFA): δ = 9.00–8.32 (m, 8 H, Hβ,Por), 7.97 (dd, 3J = 7.7 Hz, 4J = 1.3 Hz, 2 H, H-3BP), 7.87 (td, 3J = 7.7 Hz, 4J = 1.1 Hz, 2 H, H-5BP), 7.79 (dd, 3J = 7.8 Hz, 4J = 1.1 Hz, 2 H, H-6BP), 7.69 (td, 3J = 7.8 Hz, 4J = 1.3 Hz, 2 H, H-4BP), 6.76 (d, 3J = 8.1 Hz, 4 H, H-2′BP), 6.56 (s, 2 H, H-2Py), 6.08 (d, 3J = 8.1 Hz, 4 H, H-3′BP), 3.54-3.42 (m, 4 H, CH2,a+b), 2.38 (s, 3 H, CH3) ppm. 13C NMR (126 MHz, CDCl3, 298 K, TFA): δ = 165.0 (C4Py), 143.0 (C1BP), 141.5 (C1′BP), 138.9 (C2Py), 137.3 (C3Py), 135.0 (C3BP), 133.3 (C4′BP), 129.9 (C6BP), 129.7 (C5BP), 129.6 (C2′BP), 127.8 (C3′BP), 126.6 (C4BP), 37.8 (CH2), 19.3 (CH3) ppm. Unobserved signals: Cmeso,Por, Cα,Por, Cβ,Por, C6F5. 19F NMR (471 MHz, CDCl3, 298 K, TFA): δ = −137.27 (br, F-ortho), −138.66 (br, F-ortho), −152.09 (t, 3J = 20.5 Hz, F-para), −161.65 (td, 3J = 22.0 Hz, 4J = 8.2 Hz, F-meta), −162.06 (td, 3J = 22.0 Hz, 4J = 8.3 Hz, F-meta) ppm. FT–IR (ATR): ν = 1517.8 (m), 1487.0 (m), 1338.8 (w), 1065.1 (w), 986.5 (s), 948.7 (m), 928.9 (s), 835.3 (w), 799.5 (m), 766.4 (m), 752.8 (m), 707.9 (w), 664.1 (w), 599.9 (w), 535.7 (w), 431.5 (w), 418.6 (w) cm−1. MS (EI): m/z (%) = 1183.10 (32) [M]+, 169.00 (86) [M − C57H26F10N4Ni]+, 131.00 (100) [M − C57H33F10N4NiS]+ u. HRMS (EI): Calculated for C64H33F10N5NiS2: 1183.1371 u. Found: 1183.1362 u. Diff.: 0.8 ppm.
Red blocks of the title compound were obtained by dissolving the complex in dichloromethane and gas-phase diffusion of methanol.
6. Refinement
Crystal data, data collection and structure . The C—H hydrogen atoms were located in difference maps but were positioned with idealized geometry (C—H = 0.95–0.98 Å) and refined isotropically with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C-methyl) using a riding model.
details are summarized in Table 3After structure PLATON (Spek, 2009, 2015), which leads to a reasonable structure model and very good reliability factors. By this procedure, the amount of dichloromethane cannot accurately be determined and there is indication that this position is not fully occupied, which is highly likely because this solvate is very unstable and already starts to decompose during the sample preparation.
using a model with one Ni porphyrin complex and a half dichloromethane solvate molecule disordered around a center of inversion, there was significant residual electron density that definitely corresponds to additional dichloromethane disordered over several orientations. A number of different split models were tried using restraints for the geometry and for the components of the anisotropic displacement parameters, but no reasonable structural model was found and very large anisotropic displacement parameters were obtained. Therefore, the contribution of this solvent to the electron density was removed with SQUEEZE inSupporting information
CCDC reference: 1951945
https://doi.org/10.1107/S2056989019012453/hb7846sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019012453/hb7846Isup2.hkl
Data collection: X-AREA (Stoe, 2008); cell
X-AREA (Stoe, 2008); data reduction: X-AREA (Stoe, 2008); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: XP (Sheldrick, 2008) and Diamond (Brandenburg, 2014); software used to prepare material for publication: publCIF (Westrip, 2010).[Ni(C64H33F10N5S2)][+solvent] | Dx = 1.384 Mg m−3 |
Mr = 1184.78 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, P212121 | Cell parameters from 44396 reflections |
a = 12.6269 (2) Å | θ = 1.4–27.0° |
b = 18.0525 (3) Å | µ = 0.49 mm−1 |
c = 24.9524 (6) Å | T = 170 K |
V = 5687.83 (19) Å3 | Block, red |
Z = 4 | 0.15 × 0.10 × 0.05 mm |
F(000) = 2408 |
Stoe IPDS-2 diffractometer | 10468 reflections with I > 2σ(I) |
ω scans | Rint = 0.055 |
Absorption correction: numerical (X-Red and X-Shape; Stoe, 2008) | θmax = 27.0°, θmin = 1.4° |
Tmin = 0.810, Tmax = 0.965 | h = −16→14 |
44401 measured reflections | k = −23→20 |
12417 independent reflections | l = −31→31 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.043 | w = 1/[σ2(Fo2) + (0.0479P)2 + 0.9016P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.099 | (Δ/σ)max < 0.001 |
S = 1.04 | Δρmax = 0.34 e Å−3 |
12417 reflections | Δρmin = −0.39 e Å−3 |
740 parameters | Absolute structure: Flack x determined using 4043 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
0 restraints | Absolute structure parameter: 0.004 (7) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Ni1 | 0.36866 (4) | 0.61346 (3) | 0.57341 (2) | 0.03235 (11) | |
N1 | 0.3385 (2) | 0.71635 (17) | 0.60371 (11) | 0.0329 (7) | |
N2 | 0.2384 (3) | 0.57504 (17) | 0.61227 (12) | 0.0340 (7) | |
N3 | 0.3742 (3) | 0.51813 (17) | 0.52990 (11) | 0.0374 (7) | |
N4 | 0.4729 (3) | 0.66068 (18) | 0.52138 (11) | 0.0337 (7) | |
C1 | 0.3978 (3) | 0.7789 (2) | 0.59612 (14) | 0.0361 (8) | |
C2 | 0.3622 (4) | 0.8368 (2) | 0.63062 (15) | 0.0411 (8) | |
H2 | 0.3916 | 0.8851 | 0.6336 | 0.049* | |
C3 | 0.2787 (3) | 0.8098 (2) | 0.65832 (15) | 0.0385 (8) | |
H3 | 0.2376 | 0.8358 | 0.6841 | 0.046* | |
C4 | 0.2636 (3) | 0.7342 (2) | 0.64145 (14) | 0.0335 (8) | |
C5 | 0.1883 (3) | 0.6867 (2) | 0.66275 (14) | 0.0348 (8) | |
C6 | 0.1780 (3) | 0.6117 (2) | 0.64944 (13) | 0.0342 (7) | |
C7 | 0.1072 (3) | 0.5608 (2) | 0.67541 (15) | 0.0387 (9) | |
H7 | 0.0574 | 0.5724 | 0.7027 | 0.046* | |
C8 | 0.1249 (4) | 0.4939 (2) | 0.65372 (15) | 0.0429 (9) | |
H8 | 0.0898 | 0.4491 | 0.6629 | 0.052* | |
C9 | 0.2067 (3) | 0.5023 (2) | 0.61405 (15) | 0.0378 (8) | |
C10 | 0.2491 (3) | 0.4457 (2) | 0.58317 (14) | 0.0382 (8) | |
C11 | 0.3253 (3) | 0.4528 (2) | 0.54297 (15) | 0.0388 (8) | |
C12 | 0.3605 (4) | 0.3948 (2) | 0.50759 (17) | 0.0496 (10) | |
H12 | 0.3392 | 0.3444 | 0.5084 | 0.060* | |
C13 | 0.4297 (4) | 0.4262 (3) | 0.47302 (17) | 0.0497 (10) | |
H13 | 0.4650 | 0.4019 | 0.4443 | 0.060* | |
C14 | 0.4400 (3) | 0.5026 (2) | 0.48752 (15) | 0.0385 (8) | |
C15 | 0.5083 (3) | 0.5531 (2) | 0.46350 (14) | 0.0382 (8) | |
C16 | 0.5222 (3) | 0.6268 (2) | 0.47900 (13) | 0.0342 (8) | |
C17 | 0.5939 (3) | 0.6784 (2) | 0.45336 (16) | 0.0423 (9) | |
H17 | 0.6376 | 0.6687 | 0.4232 | 0.051* | |
C18 | 0.5869 (3) | 0.7423 (2) | 0.48022 (15) | 0.0417 (9) | |
H18 | 0.6247 | 0.7865 | 0.4726 | 0.050* | |
C19 | 0.5114 (3) | 0.7316 (2) | 0.52279 (14) | 0.0359 (8) | |
C20 | 0.4805 (3) | 0.7864 (2) | 0.55899 (14) | 0.0368 (8) | |
C21 | 0.1169 (3) | 0.7200 (2) | 0.70420 (15) | 0.0385 (8) | |
C22 | 0.1413 (4) | 0.7145 (3) | 0.75868 (16) | 0.0480 (10) | |
C23 | 0.0784 (5) | 0.7530 (3) | 0.7952 (2) | 0.0701 (16) | |
H23 | 0.0942 | 0.7501 | 0.8324 | 0.084* | |
C24 | −0.0060 (5) | 0.7952 (3) | 0.7784 (2) | 0.0754 (17) | |
H24 | −0.0465 | 0.8221 | 0.8039 | 0.090* | |
C25 | −0.0319 (5) | 0.7984 (3) | 0.7248 (2) | 0.0630 (14) | |
H25 | −0.0918 | 0.8261 | 0.7134 | 0.076* | |
C26 | 0.0293 (4) | 0.7613 (3) | 0.68774 (18) | 0.0481 (10) | |
H26 | 0.0118 | 0.7639 | 0.6508 | 0.058* | |
C27 | 0.2296 (4) | 0.6651 (3) | 0.77658 (16) | 0.0495 (11) | |
C28 | 0.3349 (4) | 0.6799 (3) | 0.76606 (18) | 0.0562 (12) | |
H28 | 0.3544 | 0.7260 | 0.7506 | 0.067* | |
C29 | 0.4124 (4) | 0.6277 (3) | 0.77794 (18) | 0.0589 (13) | |
H29 | 0.4847 | 0.6393 | 0.7716 | 0.071* | |
C30 | 0.3863 (4) | 0.5589 (3) | 0.79893 (17) | 0.0572 (12) | |
C31 | 0.2806 (4) | 0.5464 (3) | 0.8117 (2) | 0.0631 (14) | |
H31 | 0.2611 | 0.5011 | 0.8284 | 0.076* | |
C32 | 0.2040 (4) | 0.5979 (3) | 0.80093 (18) | 0.0584 (13) | |
H32 | 0.1324 | 0.5878 | 0.8101 | 0.070* | |
C33 | 0.4666 (4) | 0.4992 (4) | 0.80592 (18) | 0.0669 (15) | |
H33A | 0.4555 | 0.4748 | 0.8410 | 0.080* | |
H33B | 0.5382 | 0.5215 | 0.8061 | 0.080* | |
S1 | 0.45960 (12) | 0.42922 (8) | 0.75272 (5) | 0.0652 (4) | |
C34 | 0.5137 (4) | 0.4798 (3) | 0.69782 (17) | 0.0488 (10) | |
C35 | 0.4473 (4) | 0.5274 (2) | 0.67001 (16) | 0.0442 (10) | |
H35 | 0.3763 | 0.5329 | 0.6820 | 0.053* | |
N5 | 0.4788 (3) | 0.5663 (2) | 0.62680 (12) | 0.0397 (7) | |
C36 | 0.5793 (3) | 0.5587 (3) | 0.61168 (17) | 0.0449 (9) | |
H36 | 0.6028 | 0.5858 | 0.5813 | 0.054* | |
C37 | 0.6515 (4) | 0.5137 (3) | 0.63743 (17) | 0.0516 (11) | |
C38 | 0.6190 (4) | 0.4710 (3) | 0.68145 (17) | 0.0494 (10) | |
C39 | 0.6924 (5) | 0.4168 (3) | 0.7083 (2) | 0.0659 (14) | |
H39A | 0.6722 | 0.4113 | 0.7460 | 0.099* | |
H39B | 0.7653 | 0.4351 | 0.7060 | 0.099* | |
H39C | 0.6873 | 0.3687 | 0.6903 | 0.099* | |
S2 | 0.78309 (11) | 0.51140 (10) | 0.61283 (6) | 0.0702 (4) | |
C40 | 0.8384 (4) | 0.5904 (4) | 0.6494 (2) | 0.080 (2) | |
H40A | 0.8259 | 0.5830 | 0.6882 | 0.095* | |
H40B | 0.9159 | 0.5917 | 0.6436 | 0.095* | |
C41 | 0.7924 (4) | 0.6637 (4) | 0.63313 (19) | 0.0633 (14) | |
C42 | 0.7113 (4) | 0.6972 (4) | 0.66102 (18) | 0.0649 (15) | |
H42 | 0.6871 | 0.6754 | 0.6935 | 0.078* | |
C43 | 0.6643 (4) | 0.7615 (3) | 0.64298 (18) | 0.0607 (13) | |
H43 | 0.6077 | 0.7828 | 0.6627 | 0.073* | |
C44 | 0.6989 (4) | 0.7953 (3) | 0.59624 (17) | 0.0518 (11) | |
C45 | 0.7836 (4) | 0.7635 (3) | 0.5695 (2) | 0.0630 (13) | |
H45 | 0.8105 | 0.7867 | 0.5382 | 0.076* | |
C46 | 0.8301 (4) | 0.6984 (4) | 0.5873 (2) | 0.0658 (14) | |
H46 | 0.8878 | 0.6775 | 0.5681 | 0.079* | |
C47 | 0.6447 (4) | 0.8620 (3) | 0.57452 (17) | 0.0516 (10) | |
C48 | 0.5386 (4) | 0.8582 (2) | 0.55788 (16) | 0.0442 (10) | |
C49 | 0.4884 (5) | 0.9215 (3) | 0.53857 (18) | 0.0548 (12) | |
H49 | 0.4171 | 0.9190 | 0.5264 | 0.066* | |
C50 | 0.5429 (6) | 0.9883 (3) | 0.5372 (2) | 0.0734 (17) | |
H50 | 0.5077 | 1.0321 | 0.5259 | 0.088* | |
C51 | 0.6486 (6) | 0.9911 (3) | 0.5521 (2) | 0.0768 (19) | |
H51 | 0.6863 | 1.0366 | 0.5497 | 0.092* | |
C52 | 0.6982 (5) | 0.9296 (3) | 0.5701 (2) | 0.0661 (15) | |
H52 | 0.7707 | 0.9323 | 0.5800 | 0.079* | |
C53 | 0.2096 (4) | 0.3686 (2) | 0.59367 (16) | 0.0428 (9) | |
C54 | 0.1119 (4) | 0.3441 (2) | 0.57611 (18) | 0.0492 (10) | |
C55 | 0.0757 (4) | 0.2733 (3) | 0.58575 (19) | 0.0549 (12) | |
C56 | 0.1364 (5) | 0.2256 (2) | 0.6139 (2) | 0.0609 (12) | |
C57 | 0.2319 (5) | 0.2470 (3) | 0.6320 (2) | 0.0666 (14) | |
C58 | 0.2688 (4) | 0.3177 (3) | 0.6224 (2) | 0.0569 (12) | |
F1 | 0.0481 (3) | 0.38982 (19) | 0.54925 (13) | 0.0742 (9) | |
F2 | −0.0200 (3) | 0.25128 (18) | 0.56817 (14) | 0.0788 (9) | |
F3 | 0.0995 (3) | 0.15736 (17) | 0.62517 (16) | 0.0862 (11) | |
F4 | 0.2921 (4) | 0.2008 (2) | 0.6617 (2) | 0.1099 (15) | |
F5 | 0.3640 (3) | 0.33798 (18) | 0.64045 (15) | 0.0827 (10) | |
C59 | 0.5742 (3) | 0.5266 (2) | 0.41772 (15) | 0.0400 (9) | |
C60 | 0.6774 (3) | 0.5037 (3) | 0.42437 (17) | 0.0475 (9) | |
C61 | 0.7405 (4) | 0.4800 (3) | 0.38280 (17) | 0.0472 (10) | |
C62 | 0.6994 (4) | 0.4791 (2) | 0.33204 (16) | 0.0459 (10) | |
C63 | 0.5979 (4) | 0.5029 (3) | 0.32304 (15) | 0.0456 (10) | |
C64 | 0.5368 (3) | 0.5260 (3) | 0.36550 (16) | 0.0437 (9) | |
F6 | 0.7198 (2) | 0.5046 (2) | 0.47407 (10) | 0.0686 (8) | |
F7 | 0.8392 (2) | 0.4563 (2) | 0.39158 (12) | 0.0704 (9) | |
F8 | 0.7586 (2) | 0.45350 (17) | 0.29130 (10) | 0.0613 (7) | |
F9 | 0.5582 (3) | 0.50154 (19) | 0.27319 (10) | 0.0686 (8) | |
F10 | 0.4375 (2) | 0.54870 (18) | 0.35559 (10) | 0.0598 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.0320 (2) | 0.0340 (2) | 0.03107 (19) | −0.0007 (2) | 0.00063 (19) | 0.00143 (18) |
N1 | 0.0336 (17) | 0.0328 (16) | 0.0324 (15) | −0.0034 (13) | 0.0006 (12) | 0.0022 (12) |
N2 | 0.0353 (17) | 0.0312 (16) | 0.0354 (14) | 0.0007 (14) | −0.0009 (13) | 0.0008 (12) |
N3 | 0.0395 (17) | 0.0364 (16) | 0.0364 (14) | −0.0033 (16) | 0.0048 (14) | 0.0013 (12) |
N4 | 0.0329 (16) | 0.0352 (17) | 0.0330 (14) | −0.0004 (14) | 0.0005 (12) | 0.0007 (12) |
C1 | 0.037 (2) | 0.0354 (19) | 0.0363 (16) | −0.0058 (16) | 0.0008 (14) | 0.0015 (15) |
C2 | 0.042 (2) | 0.037 (2) | 0.0441 (19) | −0.0073 (19) | −0.0005 (18) | −0.0016 (15) |
C3 | 0.039 (2) | 0.038 (2) | 0.0377 (18) | −0.0006 (18) | 0.0012 (16) | −0.0038 (15) |
C4 | 0.0333 (19) | 0.0346 (19) | 0.0324 (16) | 0.0029 (16) | −0.0022 (14) | 0.0011 (14) |
C5 | 0.033 (2) | 0.038 (2) | 0.0335 (17) | −0.0002 (16) | −0.0038 (14) | 0.0002 (15) |
C6 | 0.0290 (16) | 0.0396 (19) | 0.0339 (16) | 0.0009 (18) | 0.0006 (13) | 0.0016 (16) |
C7 | 0.037 (2) | 0.042 (2) | 0.0370 (17) | −0.0016 (17) | 0.0042 (15) | 0.0023 (16) |
C8 | 0.044 (2) | 0.037 (2) | 0.0482 (19) | −0.006 (2) | 0.0050 (18) | 0.0063 (16) |
C9 | 0.038 (2) | 0.035 (2) | 0.0404 (18) | −0.0072 (17) | −0.0003 (16) | 0.0038 (16) |
C10 | 0.041 (2) | 0.0336 (19) | 0.0398 (19) | −0.0007 (17) | 0.0039 (16) | 0.0031 (15) |
C11 | 0.043 (2) | 0.0299 (19) | 0.0438 (19) | −0.0038 (17) | 0.0031 (16) | −0.0017 (16) |
C12 | 0.059 (3) | 0.036 (2) | 0.054 (2) | −0.005 (2) | 0.011 (2) | −0.0063 (18) |
C13 | 0.057 (3) | 0.045 (2) | 0.047 (2) | −0.001 (2) | 0.011 (2) | −0.0063 (19) |
C14 | 0.040 (2) | 0.037 (2) | 0.0382 (18) | 0.0011 (18) | 0.0052 (15) | −0.0037 (16) |
C15 | 0.037 (2) | 0.044 (2) | 0.0340 (17) | 0.0013 (18) | 0.0035 (15) | −0.0002 (16) |
C16 | 0.0361 (19) | 0.039 (2) | 0.0275 (15) | −0.0013 (16) | 0.0032 (13) | 0.0017 (14) |
C17 | 0.042 (2) | 0.048 (2) | 0.0376 (19) | −0.0022 (19) | 0.0075 (16) | 0.0015 (17) |
C18 | 0.040 (2) | 0.044 (2) | 0.0409 (19) | −0.0069 (18) | 0.0082 (16) | 0.0017 (17) |
C19 | 0.036 (2) | 0.037 (2) | 0.0341 (17) | −0.0068 (17) | 0.0034 (15) | 0.0038 (15) |
C20 | 0.036 (2) | 0.036 (2) | 0.0382 (18) | −0.0024 (16) | 0.0012 (15) | 0.0018 (15) |
C21 | 0.036 (2) | 0.036 (2) | 0.0427 (18) | −0.0001 (17) | 0.0065 (16) | −0.0001 (15) |
C22 | 0.051 (3) | 0.052 (2) | 0.0406 (19) | 0.000 (2) | 0.0085 (19) | −0.0008 (17) |
C23 | 0.094 (4) | 0.073 (4) | 0.043 (2) | 0.013 (3) | 0.024 (3) | −0.003 (2) |
C24 | 0.093 (4) | 0.070 (4) | 0.064 (3) | 0.030 (3) | 0.031 (3) | −0.001 (3) |
C25 | 0.063 (3) | 0.054 (3) | 0.073 (3) | 0.020 (3) | 0.032 (3) | 0.011 (2) |
C26 | 0.043 (2) | 0.049 (3) | 0.052 (2) | 0.008 (2) | 0.0078 (19) | 0.0059 (19) |
C27 | 0.051 (3) | 0.062 (3) | 0.0351 (19) | 0.000 (2) | 0.0004 (18) | 0.0011 (18) |
C28 | 0.051 (3) | 0.069 (3) | 0.049 (2) | −0.007 (2) | 0.000 (2) | 0.004 (2) |
C29 | 0.047 (3) | 0.085 (4) | 0.045 (2) | −0.006 (3) | −0.0011 (19) | 0.006 (2) |
C30 | 0.048 (3) | 0.084 (4) | 0.039 (2) | 0.004 (3) | −0.0033 (19) | 0.011 (2) |
C31 | 0.052 (3) | 0.083 (4) | 0.054 (3) | 0.002 (3) | 0.001 (2) | 0.027 (3) |
C32 | 0.045 (2) | 0.080 (4) | 0.050 (2) | −0.003 (3) | 0.0022 (19) | 0.020 (2) |
C33 | 0.053 (3) | 0.106 (4) | 0.042 (2) | 0.014 (3) | −0.003 (2) | 0.021 (3) |
S1 | 0.0664 (8) | 0.0700 (9) | 0.0591 (7) | 0.0039 (7) | −0.0009 (6) | 0.0279 (6) |
C34 | 0.051 (3) | 0.052 (3) | 0.043 (2) | 0.004 (2) | −0.0077 (18) | 0.0050 (18) |
C35 | 0.043 (2) | 0.049 (2) | 0.0407 (19) | 0.002 (2) | −0.0030 (17) | 0.0088 (17) |
N5 | 0.0358 (18) | 0.048 (2) | 0.0354 (15) | 0.0004 (15) | −0.0022 (13) | 0.0080 (14) |
C36 | 0.037 (2) | 0.054 (3) | 0.044 (2) | 0.006 (2) | −0.0011 (17) | 0.0080 (19) |
C37 | 0.045 (3) | 0.062 (3) | 0.048 (2) | 0.011 (2) | −0.0038 (18) | 0.004 (2) |
C38 | 0.047 (3) | 0.052 (3) | 0.049 (2) | 0.009 (2) | −0.0077 (19) | 0.0036 (18) |
C39 | 0.065 (3) | 0.064 (3) | 0.068 (3) | 0.018 (3) | −0.009 (3) | 0.015 (3) |
S2 | 0.0454 (7) | 0.0985 (11) | 0.0666 (7) | 0.0231 (7) | 0.0050 (6) | 0.0145 (7) |
C40 | 0.042 (3) | 0.130 (6) | 0.067 (3) | 0.006 (3) | −0.009 (2) | 0.023 (3) |
C41 | 0.039 (2) | 0.100 (4) | 0.051 (2) | −0.006 (3) | −0.009 (2) | 0.006 (3) |
C42 | 0.049 (3) | 0.104 (4) | 0.042 (2) | −0.012 (3) | −0.004 (2) | 0.008 (3) |
C43 | 0.051 (3) | 0.090 (4) | 0.041 (2) | −0.012 (3) | 0.0000 (19) | 0.001 (2) |
C44 | 0.041 (2) | 0.072 (3) | 0.043 (2) | −0.015 (2) | −0.0008 (18) | −0.005 (2) |
C45 | 0.046 (3) | 0.088 (4) | 0.055 (2) | −0.011 (3) | 0.009 (2) | 0.004 (3) |
C46 | 0.038 (2) | 0.099 (4) | 0.061 (3) | −0.010 (3) | 0.005 (2) | 0.005 (3) |
C47 | 0.052 (3) | 0.059 (3) | 0.0435 (19) | −0.020 (2) | 0.013 (2) | −0.005 (2) |
C48 | 0.047 (2) | 0.042 (2) | 0.043 (2) | −0.0123 (19) | 0.0121 (17) | −0.0017 (16) |
C49 | 0.069 (3) | 0.043 (2) | 0.052 (2) | −0.007 (2) | 0.012 (2) | 0.003 (2) |
C50 | 0.110 (5) | 0.043 (3) | 0.067 (3) | −0.013 (3) | 0.025 (3) | 0.001 (2) |
C51 | 0.106 (5) | 0.053 (3) | 0.071 (3) | −0.041 (4) | 0.031 (3) | −0.009 (3) |
C52 | 0.071 (3) | 0.074 (4) | 0.053 (2) | −0.038 (3) | 0.013 (3) | −0.016 (3) |
C53 | 0.047 (2) | 0.037 (2) | 0.0452 (19) | −0.0023 (18) | 0.0059 (18) | 0.0032 (16) |
C54 | 0.060 (3) | 0.042 (2) | 0.046 (2) | −0.010 (2) | −0.002 (2) | 0.0081 (19) |
C55 | 0.064 (3) | 0.044 (2) | 0.057 (3) | −0.018 (2) | 0.001 (2) | −0.002 (2) |
C56 | 0.074 (3) | 0.030 (2) | 0.079 (3) | −0.012 (2) | 0.008 (3) | 0.005 (2) |
C57 | 0.067 (3) | 0.038 (2) | 0.095 (4) | 0.007 (2) | −0.007 (3) | 0.021 (2) |
C58 | 0.048 (3) | 0.046 (3) | 0.077 (3) | 0.000 (2) | 0.000 (2) | 0.005 (2) |
F1 | 0.075 (2) | 0.0631 (18) | 0.0844 (19) | −0.0207 (18) | −0.0285 (16) | 0.0286 (16) |
F2 | 0.082 (2) | 0.0674 (19) | 0.087 (2) | −0.0361 (17) | −0.0184 (19) | 0.0069 (17) |
F3 | 0.104 (3) | 0.0368 (15) | 0.118 (3) | −0.0149 (17) | 0.003 (2) | 0.0147 (16) |
F4 | 0.097 (3) | 0.057 (2) | 0.176 (4) | 0.007 (2) | −0.026 (3) | 0.049 (2) |
F5 | 0.0599 (19) | 0.0634 (19) | 0.125 (3) | −0.0026 (18) | −0.026 (2) | 0.0207 (18) |
C59 | 0.039 (2) | 0.043 (2) | 0.038 (2) | −0.0021 (17) | 0.0040 (15) | −0.0020 (16) |
C60 | 0.043 (2) | 0.061 (3) | 0.0383 (18) | 0.001 (2) | −0.0013 (18) | −0.005 (2) |
C61 | 0.038 (2) | 0.052 (3) | 0.051 (2) | 0.004 (2) | 0.0082 (18) | −0.0058 (19) |
C62 | 0.051 (3) | 0.046 (2) | 0.041 (2) | −0.003 (2) | 0.0152 (18) | −0.0072 (17) |
C63 | 0.053 (3) | 0.050 (2) | 0.0338 (18) | −0.006 (2) | 0.0047 (16) | −0.0030 (17) |
C64 | 0.041 (2) | 0.050 (2) | 0.0411 (19) | −0.001 (2) | 0.0033 (17) | −0.0011 (17) |
F6 | 0.0516 (16) | 0.110 (3) | 0.0438 (13) | 0.0159 (18) | −0.0031 (12) | −0.0095 (15) |
F7 | 0.0442 (16) | 0.096 (2) | 0.0709 (17) | 0.0195 (16) | 0.0073 (13) | −0.0099 (16) |
F8 | 0.0660 (18) | 0.0676 (18) | 0.0502 (14) | 0.0031 (15) | 0.0220 (13) | −0.0118 (12) |
F9 | 0.0723 (19) | 0.096 (2) | 0.0375 (12) | −0.0010 (19) | −0.0001 (12) | −0.0108 (14) |
F10 | 0.0475 (15) | 0.084 (2) | 0.0476 (13) | 0.0108 (15) | −0.0008 (11) | −0.0029 (13) |
Ni1—N2 | 2.031 (3) | C32—H32 | 0.9500 |
Ni1—N4 | 2.036 (3) | C33—S1 | 1.834 (6) |
Ni1—N3 | 2.036 (3) | C33—H33A | 0.9900 |
Ni1—N1 | 2.041 (3) | C33—H33B | 0.9900 |
Ni1—N5 | 2.106 (3) | S1—C34 | 1.782 (5) |
N1—C1 | 1.368 (5) | C34—C35 | 1.387 (6) |
N1—C4 | 1.373 (5) | C34—C38 | 1.401 (7) |
N2—C6 | 1.371 (5) | C35—N5 | 1.347 (5) |
N2—C9 | 1.373 (5) | C35—H35 | 0.9500 |
N3—C11 | 1.372 (5) | N5—C36 | 1.331 (5) |
N3—C14 | 1.374 (5) | C36—C37 | 1.379 (6) |
N4—C19 | 1.370 (5) | C36—H36 | 0.9500 |
N4—C16 | 1.371 (5) | C37—C38 | 1.403 (6) |
C1—C20 | 1.402 (5) | C37—S2 | 1.772 (5) |
C1—C2 | 1.427 (6) | C38—C39 | 1.505 (6) |
C2—C3 | 1.352 (6) | C39—H39A | 0.9800 |
C2—H2 | 0.9500 | C39—H39B | 0.9800 |
C3—C4 | 1.442 (5) | C39—H39C | 0.9800 |
C3—H3 | 0.9500 | S2—C40 | 1.832 (7) |
C4—C5 | 1.386 (5) | C40—C41 | 1.501 (9) |
C5—C6 | 1.400 (6) | C40—H40A | 0.9900 |
C5—C21 | 1.498 (5) | C40—H40B | 0.9900 |
C6—C7 | 1.435 (5) | C41—C42 | 1.379 (8) |
C7—C8 | 1.344 (6) | C41—C46 | 1.388 (7) |
C7—H7 | 0.9500 | C42—C43 | 1.379 (8) |
C8—C9 | 1.438 (6) | C42—H42 | 0.9500 |
C8—H8 | 0.9500 | C43—C44 | 1.387 (7) |
C9—C10 | 1.388 (6) | C43—H43 | 0.9500 |
C10—C11 | 1.396 (5) | C44—C45 | 1.386 (7) |
C10—C53 | 1.501 (6) | C44—C47 | 1.488 (7) |
C11—C12 | 1.439 (6) | C45—C46 | 1.386 (8) |
C12—C13 | 1.352 (6) | C45—H45 | 0.9500 |
C12—H12 | 0.9500 | C46—H46 | 0.9500 |
C13—C14 | 1.432 (6) | C47—C52 | 1.399 (6) |
C13—H13 | 0.9500 | C47—C48 | 1.404 (7) |
C14—C15 | 1.390 (6) | C48—C49 | 1.394 (7) |
C15—C16 | 1.397 (6) | C49—C50 | 1.388 (7) |
C15—C59 | 1.493 (5) | C49—H49 | 0.9500 |
C16—C17 | 1.448 (5) | C50—C51 | 1.387 (10) |
C17—C18 | 1.336 (6) | C50—H50 | 0.9500 |
C17—H17 | 0.9500 | C51—C52 | 1.352 (9) |
C18—C19 | 1.440 (5) | C51—H51 | 0.9500 |
C18—H18 | 0.9500 | C52—H52 | 0.9500 |
C19—C20 | 1.396 (5) | C53—C54 | 1.382 (6) |
C20—C48 | 1.489 (6) | C53—C58 | 1.385 (7) |
C21—C26 | 1.396 (6) | C54—F1 | 1.334 (5) |
C21—C22 | 1.397 (6) | C54—C55 | 1.379 (6) |
C22—C23 | 1.394 (7) | C55—F2 | 1.345 (6) |
C22—C27 | 1.496 (7) | C55—C56 | 1.348 (8) |
C23—C24 | 1.374 (9) | C56—C57 | 1.344 (8) |
C23—H23 | 0.9500 | C56—F3 | 1.348 (5) |
C24—C25 | 1.380 (8) | C57—F4 | 1.349 (6) |
C24—H24 | 0.9500 | C57—C58 | 1.379 (7) |
C25—C26 | 1.378 (6) | C58—F5 | 1.335 (6) |
C25—H25 | 0.9500 | C59—C60 | 1.376 (6) |
C26—H26 | 0.9500 | C59—C64 | 1.386 (6) |
C27—C28 | 1.381 (7) | C60—F6 | 1.351 (5) |
C27—C32 | 1.395 (7) | C60—C61 | 1.376 (6) |
C28—C29 | 1.392 (8) | C61—F7 | 1.336 (5) |
C28—H28 | 0.9500 | C61—C62 | 1.369 (6) |
C29—C30 | 1.388 (8) | C62—F8 | 1.344 (5) |
C29—H29 | 0.9500 | C62—C63 | 1.370 (7) |
C30—C31 | 1.391 (7) | C63—F9 | 1.341 (5) |
C30—C33 | 1.490 (7) | C63—C64 | 1.375 (6) |
C31—C32 | 1.368 (7) | C64—F10 | 1.343 (5) |
C31—H31 | 0.9500 | ||
N2—Ni1—N4 | 166.13 (12) | C30—C31—H31 | 119.2 |
N2—Ni1—N3 | 89.64 (13) | C31—C32—C27 | 120.8 (5) |
N4—Ni1—N3 | 89.52 (12) | C31—C32—H32 | 119.6 |
N2—Ni1—N1 | 89.02 (12) | C27—C32—H32 | 119.6 |
N4—Ni1—N1 | 88.62 (12) | C30—C33—S1 | 112.3 (3) |
N3—Ni1—N1 | 166.68 (13) | C30—C33—H33A | 109.1 |
N2—Ni1—N5 | 95.43 (13) | S1—C33—H33A | 109.1 |
N4—Ni1—N5 | 98.38 (13) | C30—C33—H33B | 109.1 |
N3—Ni1—N5 | 88.44 (14) | S1—C33—H33B | 109.1 |
N1—Ni1—N5 | 104.88 (13) | H33A—C33—H33B | 107.9 |
C1—N1—C4 | 106.2 (3) | C34—S1—C33 | 100.7 (2) |
C1—N1—Ni1 | 126.7 (2) | C35—C34—C38 | 119.9 (4) |
C4—N1—Ni1 | 126.6 (2) | C35—C34—S1 | 118.1 (4) |
C6—N2—C9 | 106.1 (3) | C38—C34—S1 | 122.0 (3) |
C6—N2—Ni1 | 127.5 (3) | N5—C35—C34 | 123.0 (4) |
C9—N2—Ni1 | 125.3 (3) | N5—C35—H35 | 118.5 |
C11—N3—C14 | 106.2 (3) | C34—C35—H35 | 118.5 |
C11—N3—Ni1 | 125.8 (2) | C36—N5—C35 | 117.1 (4) |
C14—N3—Ni1 | 127.2 (3) | C36—N5—Ni1 | 119.5 (3) |
C19—N4—C16 | 106.0 (3) | C35—N5—Ni1 | 121.4 (3) |
C19—N4—Ni1 | 127.2 (2) | N5—C36—C37 | 124.0 (4) |
C16—N4—Ni1 | 126.8 (3) | N5—C36—H36 | 118.0 |
N1—C1—C20 | 125.4 (4) | C37—C36—H36 | 118.0 |
N1—C1—C2 | 110.4 (3) | C36—C37—C38 | 119.7 (4) |
C20—C1—C2 | 124.2 (4) | C36—C37—S2 | 118.1 (3) |
C3—C2—C1 | 106.8 (4) | C38—C37—S2 | 122.2 (4) |
C3—C2—H2 | 126.6 | C34—C38—C37 | 116.3 (4) |
C1—C2—H2 | 126.6 | C34—C38—C39 | 121.9 (4) |
C2—C3—C4 | 107.2 (4) | C37—C38—C39 | 121.7 (4) |
C2—C3—H3 | 126.4 | C38—C39—H39A | 109.5 |
C4—C3—H3 | 126.4 | C38—C39—H39B | 109.5 |
N1—C4—C5 | 126.2 (3) | H39A—C39—H39B | 109.5 |
N1—C4—C3 | 109.4 (3) | C38—C39—H39C | 109.5 |
C5—C4—C3 | 124.4 (3) | H39A—C39—H39C | 109.5 |
C4—C5—C6 | 124.8 (3) | H39B—C39—H39C | 109.5 |
C4—C5—C21 | 115.4 (3) | C37—S2—C40 | 99.6 (3) |
C6—C5—C21 | 119.7 (3) | C41—C40—S2 | 113.8 (4) |
N2—C6—C5 | 125.1 (3) | C41—C40—H40A | 108.8 |
N2—C6—C7 | 110.1 (4) | S2—C40—H40A | 108.8 |
C5—C6—C7 | 124.7 (3) | C41—C40—H40B | 108.8 |
C8—C7—C6 | 106.9 (3) | S2—C40—H40B | 108.8 |
C8—C7—H7 | 126.6 | H40A—C40—H40B | 107.7 |
C6—C7—H7 | 126.6 | C42—C41—C46 | 118.2 (6) |
C7—C8—C9 | 107.5 (4) | C42—C41—C40 | 122.5 (5) |
C7—C8—H8 | 126.2 | C46—C41—C40 | 119.3 (5) |
C9—C8—H8 | 126.2 | C41—C42—C43 | 121.6 (5) |
N2—C9—C10 | 125.0 (4) | C41—C42—H42 | 119.2 |
N2—C9—C8 | 109.5 (3) | C43—C42—H42 | 119.2 |
C10—C9—C8 | 125.5 (4) | C42—C43—C44 | 120.6 (5) |
C9—C10—C11 | 126.7 (4) | C42—C43—H43 | 119.7 |
C9—C10—C53 | 117.3 (3) | C44—C43—H43 | 119.7 |
C11—C10—C53 | 116.1 (3) | C45—C44—C43 | 117.8 (5) |
N3—C11—C10 | 124.1 (3) | C45—C44—C47 | 121.0 (4) |
N3—C11—C12 | 109.9 (3) | C43—C44—C47 | 121.2 (5) |
C10—C11—C12 | 126.0 (4) | C44—C45—C46 | 121.6 (5) |
C13—C12—C11 | 106.7 (4) | C44—C45—H45 | 119.2 |
C13—C12—H12 | 126.7 | C46—C45—H45 | 119.2 |
C11—C12—H12 | 126.7 | C45—C46—C41 | 120.2 (5) |
C12—C13—C14 | 107.5 (4) | C45—C46—H46 | 119.9 |
C12—C13—H13 | 126.2 | C41—C46—H46 | 119.9 |
C14—C13—H13 | 126.2 | C52—C47—C48 | 118.7 (5) |
N3—C14—C15 | 124.9 (4) | C52—C47—C44 | 120.8 (5) |
N3—C14—C13 | 109.6 (4) | C48—C47—C44 | 120.4 (4) |
C15—C14—C13 | 125.4 (4) | C49—C48—C47 | 119.7 (4) |
C14—C15—C16 | 125.7 (3) | C49—C48—C20 | 119.7 (4) |
C14—C15—C59 | 117.7 (4) | C47—C48—C20 | 120.5 (4) |
C16—C15—C59 | 116.6 (3) | C50—C49—C48 | 119.7 (6) |
N4—C16—C15 | 125.5 (3) | C50—C49—H49 | 120.2 |
N4—C16—C17 | 109.7 (3) | C48—C49—H49 | 120.2 |
C15—C16—C17 | 124.7 (3) | C51—C50—C49 | 120.2 (6) |
C18—C17—C16 | 107.0 (3) | C51—C50—H50 | 119.9 |
C18—C17—H17 | 126.5 | C49—C50—H50 | 119.9 |
C16—C17—H17 | 126.5 | C52—C51—C50 | 120.3 (5) |
C17—C18—C19 | 107.4 (4) | C52—C51—H51 | 119.9 |
C17—C18—H18 | 126.3 | C50—C51—H51 | 119.9 |
C19—C18—H18 | 126.3 | C51—C52—C47 | 121.3 (5) |
N4—C19—C20 | 125.5 (3) | C51—C52—H52 | 119.4 |
N4—C19—C18 | 109.9 (3) | C47—C52—H52 | 119.4 |
C20—C19—C18 | 124.6 (4) | C54—C53—C58 | 115.7 (4) |
C19—C20—C1 | 124.5 (4) | C54—C53—C10 | 122.5 (4) |
C19—C20—C48 | 117.8 (3) | C58—C53—C10 | 121.8 (4) |
C1—C20—C48 | 117.6 (4) | F1—C54—C55 | 117.5 (4) |
C26—C21—C22 | 119.9 (4) | F1—C54—C53 | 120.0 (4) |
C26—C21—C5 | 119.2 (3) | C55—C54—C53 | 122.5 (4) |
C22—C21—C5 | 120.7 (4) | F2—C55—C56 | 119.5 (4) |
C23—C22—C21 | 118.4 (5) | F2—C55—C54 | 120.9 (5) |
C23—C22—C27 | 121.8 (4) | C56—C55—C54 | 119.6 (5) |
C21—C22—C27 | 119.8 (4) | C57—C56—F3 | 120.1 (5) |
C24—C23—C22 | 121.2 (5) | C57—C56—C55 | 120.1 (4) |
C24—C23—H23 | 119.4 | F3—C56—C55 | 119.7 (5) |
C22—C23—H23 | 119.4 | C56—C57—F4 | 120.9 (5) |
C23—C24—C25 | 120.2 (5) | C56—C57—C58 | 120.6 (5) |
C23—C24—H24 | 119.9 | F4—C57—C58 | 118.5 (5) |
C25—C24—H24 | 119.9 | F5—C58—C57 | 119.9 (5) |
C26—C25—C24 | 119.8 (5) | F5—C58—C53 | 118.6 (4) |
C26—C25—H25 | 120.1 | C57—C58—C53 | 121.5 (5) |
C24—C25—H25 | 120.1 | C60—C59—C64 | 115.7 (4) |
C25—C26—C21 | 120.5 (4) | C60—C59—C15 | 122.1 (4) |
C25—C26—H26 | 119.8 | C64—C59—C15 | 122.1 (4) |
C21—C26—H26 | 119.8 | F6—C60—C59 | 118.8 (4) |
C28—C27—C32 | 118.3 (5) | F6—C60—C61 | 117.8 (4) |
C28—C27—C22 | 123.1 (4) | C59—C60—C61 | 123.4 (4) |
C32—C27—C22 | 118.4 (4) | F7—C61—C62 | 120.1 (4) |
C27—C28—C29 | 120.4 (5) | F7—C61—C60 | 121.1 (4) |
C27—C28—H28 | 119.8 | C62—C61—C60 | 118.8 (4) |
C29—C28—H28 | 119.8 | F8—C62—C61 | 119.6 (4) |
C30—C29—C28 | 121.3 (5) | F8—C62—C63 | 120.3 (4) |
C30—C29—H29 | 119.4 | C61—C62—C63 | 120.1 (4) |
C28—C29—H29 | 119.4 | F9—C63—C62 | 119.7 (4) |
C29—C30—C31 | 117.4 (5) | F9—C63—C64 | 120.7 (4) |
C29—C30—C33 | 122.0 (5) | C62—C63—C64 | 119.6 (4) |
C31—C30—C33 | 120.6 (5) | F10—C64—C63 | 118.3 (4) |
C32—C31—C30 | 121.6 (5) | F10—C64—C59 | 119.3 (4) |
C32—C31—H31 | 119.2 | C63—C64—C59 | 122.3 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
C33—H33B···F8i | 0.99 | 2.63 | 3.592 (6) | 164 |
C35—H35···N2 | 0.95 | 2.58 | 3.125 (5) | 117 |
C36—H36···N4 | 0.95 | 2.60 | 3.206 (5) | 122 |
Symmetry code: (i) −x+3/2, −y+1, z+1/2. |
Acknowledgements
We thank Professor Dr. Wolfgang Bensch for access to his experimental facility.
Funding information
The authors gratefully acknowledge financial support by the Deutsche Forschungsgesellschaft within the Sonderforschungsbereich 677.
References
Awasabisah, D., Powell, D. R. & Richter-Addo, G. B. (2015). Acta Cryst. E71, m42–m43. CSD CrossRef IUCr Journals Google Scholar
Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Caughey, W. S., Deal, R. M., McLees, B. D. & Alben, J. O. (1962). J. Am. Chem. Soc. 84, 1735–1736. CrossRef CAS Web of Science Google Scholar
Deutman, A. B. C., Smits, J. M. M., de Gelder, R., Elemans, J. A. A. W., Nolte, R. J. M. & Rowan, A. E. (2014). Chem. Eur. J. 20, 11574–11583. Web of Science CSD CrossRef CAS PubMed Google Scholar
Dommaschk, M., Näther, C. & Herges, R. (2015a). J. Org. Chem. 80, 8496–8500. Web of Science CrossRef CAS PubMed Google Scholar
Dommaschk, M., Peters, M., Gutzeit, F., Schütt, C., Näther, C., Sönnichsen, F. D., Tiwari, S., Riedel, C., Boretius, S. & Herges, R. (2015b). J. Am. Chem. Soc. 137, 7552–7555. Web of Science CrossRef CAS PubMed Google Scholar
Dommaschk, M., Schütt, C., Venkataramani, S., Jana, U., Näther, C., Sönnichsen, F. D. & Herges, R. (2014). Dalton Trans. 43, 17395–17405. CSD CrossRef CAS PubMed Google Scholar
Dommaschk, M., Thoms, V., Schütt, C., Näther, C., Puttreddy, R., Rissanen, K. & Herges, R. (2015c). Inorg. Chem. 54, 9390–9392. Web of Science CSD CrossRef CAS PubMed Google Scholar
Eom, H. S., Jeoung, S. C., Kim, D., Ha, J.-H. & Kim, Y.-R. (1997). J. Phys. Chem. A, 101, 3661–3669. CrossRef CAS Web of Science Google Scholar
Flanagan, K. J., Mothi, E. M., Kötzner, L. & Senge, M. O. (2015). Acta Cryst. E71, 1397–1400. CSD CrossRef IUCr Journals Google Scholar
Gutzeit, F., Dommaschk, M., Levin, N., Buchholz, A., Schaub, E., Plass, W., Näther, C. & Herges, R. (2019a). Inorg. Chem. XX, XX–XX. [Any update?] Google Scholar
Gutzeit, F., Näther, C. & Herges, R. (2019b). Acta Cryst. E75, 1180–1184. CSD CrossRef IUCr Journals Google Scholar
Han, Y., Fang, H., Jing, H., Sun, H., Lei, H., Lai, W. & Cao, R. (2016). Angew. Chem. Int. Ed. 55, 5457–5462. Web of Science CSD CrossRef CAS Google Scholar
Han, Y., Wu, Y., Lai, W. & Cao, R. (2015). Inorg. Chem. 54, 5604–5613. CSD CrossRef CAS PubMed Google Scholar
Jentzen, W., Simpson, M. C., Hobbs, J. D., Song, X., Ema, T., Nelson, N. Y., Medforth, C. J., Smith, K. M., Veyrat, M., Mazzanti, M., Ramasseul, R., Marchon, J., Takeuchi, T., Goddard, W. A. III & Shelnutt, J. A. (1995). J. Am. Chem. Soc. 117, 11085–11097. CrossRef CAS PubMed Web of Science Google Scholar
Jia, S.-L., Jentzen, W., Shang, M., Song, X.-Z., Ma, J.-G., Scheidt, W. R. & Shelnutt, J. A. (1998). Inorg. Chem. 37, 4402–4412. Web of Science CSD CrossRef PubMed CAS Google Scholar
Kadish, K. M., Smith, K. M. & Guilard, R. (2000). Editors. The Porphyrin Handbook – Inorganic, Organometallic & Coordination Chemistry, vol. 3. San Diego, London: Academic Press. Google Scholar
Kim, D. & Holten, D. (1983). Chem. Phys. Lett. 98, 584–589. CrossRef CAS Web of Science Google Scholar
Kim, D., Kirmaier, C. & Holten, D. (1983). Chem. Phys. 75, 305–322. CrossRef CAS Web of Science Google Scholar
Köbke, A., Gutzeit, F., Röhricht, F., Schlimm, A., Grunwald, J., Tuczek, F., Studniarek, M., Choueikani, F., Otero, E., Ohresser, P., Rohlf, S., Johannsen, S., Diekmann, F., Rossnagel, K., Jasper-Toennies, T., Näther, C., Herges, R., Berndt, R. & Gruber, M. (2019). Nat. Nanotechnol. Submitted. Google Scholar
Kruglik, S. G., Ermolenkov, V. V., Orlovich, V. A. & Turpin, P.-Y. (2003). Chem. Phys. 286, 97–108. Web of Science CrossRef CAS Google Scholar
Kumar, R. & Sankar, M. (2014). Inorg. Chem. 53, 12706–12719. Web of Science CSD CrossRef CAS PubMed Google Scholar
Leben, L., Schaub, E., Näther, C. & Herges, R. (2018). Acta Cryst. E74, 1609–1612. CSD CrossRef IUCr Journals Google Scholar
Maher, A. G., Liu, M. & Nocera, D. G. (2019). Inorg. Chem. 58, 7958–7968. CrossRef CAS PubMed Google Scholar
McLees, B. D. & Caughey, W. S. (1968). Biochemistry, 7, 642–652. CrossRef CAS PubMed Web of Science Google Scholar
Ozette, K., Leduc, P., Palacio, M., Bartoli, J.-F., Barkigia, K. M., Fajer, J., Battioni, P. & Mansuy, D. (1997). J. Am. Chem. Soc. 119, 6442–6443. CSD CrossRef CAS Web of Science Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Paul, D., Melin, F., Hirtz, C., Wytko, J., Ochsenbein, P., Bonin, M., Schenk, K., Maltese, P. & Weiss, J. (2003). Inorg. Chem. 42, 3779–3787. Web of Science CSD CrossRef PubMed CAS Google Scholar
Ramesh, J., Sujatha, S. & Arunkumar, C. (2016). RSC Adv. 6, 63271–63285. CSD CrossRef CAS Google Scholar
Renner, M. W., Furenlid, L. R., Barkigia, K. M., Forman, A., Shim, H. K., Simpson, D. J., Smith, K. M. & Fajer, J. (1991). J. Am. Chem. Soc. 113, 6891–6898. CSD CrossRef CAS Web of Science Google Scholar
Senge, M. O. (2011). Acta Cryst. C67, m39–m42. CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Solis, B. H., Maher, A. G., Dogutan, D. K., Nocera, D. G. & Hammes-Schiffer, S. (2016). Proc. Natl Acad. Sci. USA, 113, 485–492. CrossRef CAS PubMed Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2015). Acta Cryst. C71, 9–18. Web of Science CrossRef IUCr Journals Google Scholar
Stoe (2008). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany. Google Scholar
Thies, S., Bornholdt, C., Köhler, F., Sönnichsen, F. D., Näther, C., Tuczek, F. & Herges, R. (2010). Chem. Eur. J. 16, 10074–10083. Web of Science CSD CrossRef CAS PubMed Google Scholar
Venkataramani, S., Jana, U., Dommaschk, M., Sönnichsen, F. D., Tuczek, F. & Herges, R. (2011). Science, 331, 445–448. Web of Science CrossRef CAS PubMed Google Scholar
Walker, F. A., Hui, E. & Walker, J. M. (1975). J. Am. Chem. Soc. 97, 2390–2397. CrossRef CAS Web of Science Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yu, Q., Liu, D. S., Li, X. J. & Li, J. F. (2015). Acta Cryst. C71, 856–859. CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.