research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (15,20-bis­­(2,3,4,5,6-penta­fluoro­phen­yl)-5,10-{(4-methyl­pyridine-3,5-di­yl)bis­­[(sulfanediyl­methyl­ene)[1,1′-biphen­yl]-4′,2-di­yl]}porphyrinato)nickel(II) di­chloro­methane x-solvate (x > 1/2)

aOtto-Diels-Institut für Organische Chemie, Christian-Albrechts-Universität Kiel, Otto-Hahn-Platz 4, D-24098 Kiel, Germany, and bInstitut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Max-Eyth Str. 2, D-24118 Kiel, Germany
*Correspondence e-mail: rherges@oc.uni-kiel.de

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 31 July 2019; accepted 6 September 2019; online 27 September 2019)

The title compound, [Ni(C64H33F10N5S2)]·xCH2Cl2, consists of discrete NiII porphyrin complexes, in which the five-coordinate NiII cations are in a distorted square-pyramidal coordination geometry. The four porphyrin nitro­gen atoms are located in the basal plane of the pyramid, whereas the pyridine N atom is in the apical position. The porphyrin plane is strongly distorted and the NiII cation is located above this plane by 0.241 (3) Å and shifted in the direction of the coordinating pyridine nitro­gen atom. The pyridine ring is not perpendicular to the N4 plane of the porphyrin moiety, as observed for related compounds. In the crystal, the complexes are linked via weak C—H⋯F hydrogen bonds into zigzag chains propagating in the [001] direction. Within this arrangement cavities are formed, in which highly disordered di­chloro­methane solvate mol­ecules are located. No reasonable structural model could be found to describe this disorder and therefore the contribution of the solvent to the electron density was removed using the SQUEEZE option in PLATON [Spek (2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]). Acta Cryst. C71, 9–18].

1. Chemical context

NiII porphyrins are emerging in a number of applications including photoswitchable MRI contrast agents (Venkataramani et al., 2011[Venkataramani, S., Jana, U., Dommaschk, M., Sönnichsen, F. D., Tuczek, F. & Herges, R. (2011). Science, 331, 445-448.]; Dommaschk et al., 2014[Dommaschk, M., Schütt, C., Venkataramani, S., Jana, U., Näther, C., Sönnichsen, F. D. & Herges, R. (2014). Dalton Trans. 43, 17395-17405.], 2015a[Dommaschk, M., Näther, C. & Herges, R. (2015a). J. Org. Chem. 80, 8496-8500.],b[Dommaschk, M., Peters, M., Gutzeit, F., Schütt, C., Näther, C., Sönnichsen, F. D., Tiwari, S., Riedel, C., Boretius, S. & Herges, R. (2015b). J. Am. Chem. Soc. 137, 7552-7555.]), redox catalysts (Eom et al., 1997[Eom, H. S., Jeoung, S. C., Kim, D., Ha, J.-H. & Kim, Y.-R. (1997). J. Phys. Chem. A, 101, 3661-3669.]; Han et al., 2015[Han, Y., Wu, Y., Lai, W. & Cao, R. (2015). Inorg. Chem. 54, 5604-5613.]) or catalysts in the hydrogen evolution reaction (HER) (Han et al., 2016[Han, Y., Fang, H., Jing, H., Sun, H., Lei, H., Lai, W. & Cao, R. (2016). Angew. Chem. Int. Ed. 55, 5457-5462.]; Solis et al., 2016[Solis, B. H., Maher, A. G., Dogutan, D. K., Nocera, D. G. & Hammes-Schiffer, S. (2016). Proc. Natl Acad. Sci. USA, 113, 485-492.]; Maher et al., 2019[Maher, A. G., Liu, M. & Nocera, D. G. (2019). Inorg. Chem. 58, 7958-7968.]). The axial coordination of NiII porphyrins has been studied extensively regarding the underlying equlibria (Caughey et al., 1962[Caughey, W. S., Deal, R. M., McLees, B. D. & Alben, J. O. (1962). J. Am. Chem. Soc. 84, 1735-1736.]; McLees & Caughey, 1968[McLees, B. D. & Caughey, W. S. (1968). Biochemistry, 7, 642-652.]; Walker et al. 1975[Walker, F. A., Hui, E. & Walker, J. M. (1975). J. Am. Chem. Soc. 97, 2390-2397.]), conformational changes (Jia et al., 1998[Jia, S.-L., Jentzen, W., Shang, M., Song, X.-Z., Ma, J.-G., Scheidt, W. R. & Shelnutt, J. A. (1998). Inorg. Chem. 37, 4402-4412.]) and photo-induced complex formation and dissociation (Kim et al., 1983[Kim, D., Kirmaier, C. & Holten, D. (1983). Chem. Phys. 75, 305-322.]; Kim & Holten, 1983[Kim, D. & Holten, D. (1983). Chem. Phys. Lett. 98, 584-589.]). Moreover, the axial coordination determines the spin state of these complexes (Renner et al., 1991[Renner, M. W., Furenlid, L. R., Barkigia, K. M., Forman, A., Shim, H. K., Simpson, D. J., Smith, K. M. & Fajer, J. (1991). J. Am. Chem. Soc. 113, 6891-6898.]; Jentzen et al., 1995[Jentzen, W., Simpson, M. C., Hobbs, J. D., Song, X., Ema, T., Nelson, N. Y., Medforth, C. J., Smith, K. M., Veyrat, M., Mazzanti, M., Ramasseul, R., Marchon, J., Takeuchi, T., Goddard, W. A. III & Shelnutt, J. A. (1995). J. Am. Chem. Soc. 117, 11085-11097.]). Upon coordination of one axial ligand, NiII porphyrins undergo spin transition from a diamagnetic (S = 0) square-planar, low-spin (LS) state with a coordination number (CN) of four (CN4) to a paramagnetic (S = 1), square-pyramidal (CN5), high-spin (HS) state. The CN5 HS complex is further stabilized by the coordination of a sixth ligand, resulting in minor changes of the spectroscopic properties of the CN6 complexes compared to their CN5 counterparts. The coordination and de-coord­in­ation of axial ligands are observed in a fast dynamic equilibrium, dominated by the CN4 and the CN6 species (Kadish et al., 2000[Kadish, K. M., Smith, K. M. & Guilard, R. (2000). Editors. The Porphyrin Handbook - Inorganic, Organometallic & Coordination Chemistry, vol. 3. San Diego, London: Academic Press.] and Kruglik et al., 2003[Kruglik, S. G., Ermolenkov, V. V., Orlovich, V. A. & Turpin, P.-Y. (2003). Chem. Phys. 286, 97-108.]). The spectra and properties of a well defined five-coordinate (CN5) NiII porphyrin in solution and the solid state was described recently (Gutzeit et al., 2019a[Gutzeit, F., Dommaschk, M., Levin, N., Buchholz, A., Schaub, E., Plass, W., Näther, C. & Herges, R. (2019a). Inorg. Chem. XX, XX-XX. [Any update?]]). In closely related, tightly strapped NiII porphyrins, the coordination of the axial pyridine ligand is dependent on the geometry of the ligand-containing strap (Köbke et al., 2019[Köbke, A., Gutzeit, F., Röhricht, F., Schlimm, A., Grunwald, J., Tuczek, F., Studniarek, M., Choueikani, F., Otero, E., Ohresser, P., Rohlf, S., Johannsen, S., Diekmann, F., Rossnagel, K., Jasper-Toennies, T., Näther, C., Herges, R., Berndt, R. & Gruber, M. (2019). Nat. Nanotechnol. Submitted.]). Furthermore, the coordination behaviour is dependent on the para substituent of the pyridine moiety due to its electronic influence (Dommaschk et al., 2014[Dommaschk, M., Schütt, C., Venkataramani, S., Jana, U., Näther, C., Sönnichsen, F. D. & Herges, R. (2014). Dalton Trans. 43, 17395-17405.]). Hence, a para methyl substituent was introduced in the complex described previously (Gutzeit et al., 2019a[Gutzeit, F., Dommaschk, M., Levin, N., Buchholz, A., Schaub, E., Plass, W., Näther, C. & Herges, R. (2019a). Inorg. Chem. XX, XX-XX. [Any update?]]) to improve the intra­molecular coordination. The modified synthesis yielded the title compound as a byproduct (Gutzeit et al., 2019a[Gutzeit, F., Dommaschk, M., Levin, N., Buchholz, A., Schaub, E., Plass, W., Näther, C. & Herges, R. (2019a). Inorg. Chem. XX, XX-XX. [Any update?]]; Köbke et al., 2019[Köbke, A., Gutzeit, F., Röhricht, F., Schlimm, A., Grunwald, J., Tuczek, F., Studniarek, M., Choueikani, F., Otero, E., Ohresser, P., Rohlf, S., Johannsen, S., Diekmann, F., Rossnagel, K., Jasper-Toennies, T., Näther, C., Herges, R., Berndt, R. & Gruber, M. (2019). Nat. Nanotechnol. Submitted.]) similar to the synthesis of the unsubstituted derivative (Gutzeit et al., 2019b[Gutzeit, F., Näther, C. & Herges, R. (2019b). Acta Cryst. E75, 1180-1184.]). Metallation was achieved under standard conditions. Splitting of the CH2-proton signals in the 1H NMR spectrum are observed for the unmetallated porphyrin and the title compound due to an impeded ring inversion of the strap (Gutzeit et al., 2019b[Gutzeit, F., Näther, C. & Herges, R. (2019b). Acta Cryst. E75, 1180-1184.]). The increased paramagnetic shifts of the β-pyrrole H atoms (δmin = 8.8 ppm, δmax = 49.0 ppm, CDCl3, 298 K; Gutzeit et al., 2019a[Gutzeit, F., Dommaschk, M., Levin, N., Buchholz, A., Schaub, E., Plass, W., Näther, C. & Herges, R. (2019a). Inorg. Chem. XX, XX-XX. [Any update?]]) of the title compound (45.9 ppm) compared to the compound without a methyl group in para position of the pyridine ring (42.2 ppm) indicates an increase of intra­molecular coordination by 9% (Fig. 1[link]; Gutzeit et al., 2019a[Gutzeit, F., Dommaschk, M., Levin, N., Buchholz, A., Schaub, E., Plass, W., Näther, C. & Herges, R. (2019a). Inorg. Chem. XX, XX-XX. [Any update?]]), confirming the influence of the para methyl substituent.

[Scheme 1]
[Figure 1]
Figure 1
Comparison of the paramagnetic shifts of the β-pyrrole H atoms of the parent compound and the title compound, indicating increased intra­molecular coordination.

2. Structural commentary

In the crystal structure of the title compound, (C64H33F10N5NiS2) (CH2Cl2)x, the five-coordinate NiII cations are bound by the four nitro­gen atoms of the porphyrin mol­ecule and the nitro­gen atom of the pyridine ring (Figs. 2[link]–4[link][link]). The porphyrin plane is distorted due to steric constraints of the strap, similar to the unsubstituted derivative (Gutzeit et al., 2019b[Gutzeit, F., Näther, C. & Herges, R. (2019b). Acta Cryst. E75, 1180-1184.]). The maximum deviation of the individual atoms from the mean plane calculated through the porphyrin atoms amounting to 0.137 (3) Å for the parent compound (Gutzeit et al., 2019b[Gutzeit, F., Näther, C. & Herges, R. (2019b). Acta Cryst. E75, 1180-1184.]) is increased to 0.159 (4) Å in the title compound. The Ni—N bond lengths to the porphyrin nitro­gen atoms [2.031 (3)–2.041 (3) Å] are significantly shorter than that to the pyridine nitro­gen atom (Table 1[link]). In the title compound, the NiII cation is shifted 0.241 (3) Å out of the porphyrin N4 plane towards the pyridine nitro­gen atom, which is slightly shorter than that in the derivative without the methyl group [0.250 (3) Å, Fig. 5[link]]. This is also the case for the Ni—N distance to the pyridine N atom of 2.106 (3) Å, compared to 2.112 (2) Å in the derivative. The angle between the planes of the pyridine ring and the N4 porphyrin plane amounts to 67.1 (2)°, which is very different from that in the derivative without the methyl group [80.48 (6)°; Fig. 5[link]]. The tilt of the pyridine ring does not impede the intra­molecular coordination, which is reflected by the short Ni—Npy (py = pyridine) distance and the NMR shift. The tilt of the axial ligand is reinforced by packing effects leveraged by the para methyl group. This is also in agreement with a different conformation of the overall porphyrin mol­ecule compared to the unsubstituted derivative, because the penta­fluoro phenyl rings are more perpendicular to the porphyrin N4 plane with dihedral angles of 82.53 (8) and 77.37 (7)°, which is also the case for the phenyl rings [67.0 (1) and 83.4 (2)°; Figs. 3[link] and 4[link]]. Finally, the dihedral angles between the biphenyl rings are 72.3 (2) and 64.3 (2) ° compared to 63.2 (1) and 53.5 (1)° in the derivative. Overall, the increased steric demand of the para methyl substituent increases the distortion compared to the unsubstituted derivative.

Table 1
Selected bond lengths (Å)

Ni1—N2 2.031 (3) Ni1—N1 2.041 (3)
Ni1—N4 2.036 (3) Ni1—N5 2.106 (3)
Ni1—N3 2.036 (3)    
[Figure 2]
Figure 2
The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.
[Figure 3]
Figure 3
Mol­ecular structure of the title compound viewed onto the porphyrin plane.
[Figure 4]
Figure 4
Mol­ecular structure of the title compound showing the square-pyramidal NiII coordination.
[Figure 5]
Figure 5
Mol­ecular structure of the title compound showing the orientation of the pyridine ring relative to the N4 plane.

3. Supra­molecular features

In the extended structure of the title compound, the complexes are linked by C—H⋯F hydrogen bonds into zigzag chains that extend in the [001] direction with adjacent complexes related by a 21-screw-axis (Fig. 6[link]). The C—H⋯F angle is 164°, indicating a relative strong inter­action (Table 2[link]). By this arrangement, cavities are formed, in which the disordered di­chloro­methane solvate mol­ecules are located. There are additional intra­molecular C—H⋯N contacts, with angles far from linearity that correspond to only very weak inter­actions (Table 2[link]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C33—H33B⋯F8i 0.99 2.63 3.592 (6) 164
C35—H35⋯N2 0.95 2.58 3.125 (5) 117
C36—H36⋯N4 0.95 2.60 3.206 (5) 122
Symmetry code: (i) [-x+{\script{3\over 2}}, -y+1, z+{\script{1\over 2}}].
[Figure 6]
Figure 6
Crystal structure of the title compound viewed down [010] with inter­molecular C—H⋯F hydrogen bonds shown as dashed lines.

4. Database survey

According to a search of the Cambridge Structural Database, only four crystal structures of five-coordinate NiII porphyrins have been reported (Kumar & Sankar, 2014[Kumar, R. & Sankar, M. (2014). Inorg. Chem. 53, 12706-12719.]; Dommaschk et al., 2015c[Dommaschk, M., Thoms, V., Schütt, C., Näther, C., Puttreddy, R., Rissanen, K. & Herges, R. (2015c). Inorg. Chem. 54, 9390-9392.]; Gutzeit et al., 2019a[Gutzeit, F., Dommaschk, M., Levin, N., Buchholz, A., Schaub, E., Plass, W., Näther, C. & Herges, R. (2019a). Inorg. Chem. XX, XX-XX. [Any update?]],b[Gutzeit, F., Näther, C. & Herges, R. (2019b). Acta Cryst. E75, 1180-1184.]; refcodes DOJPAV01, QUZVAK, COCBAA and HOPSIR, respectively). The square-pyramidal complex geometry is predominant in zinc (Paul et al., 2003[Paul, D., Melin, F., Hirtz, C., Wytko, J., Ochsenbein, P., Bonin, M., Schenk, K., Maltese, P. & Weiss, J. (2003). Inorg. Chem. 42, 3779-3787.]; Deutman et al., 2014[Deutman, A. B. C., Smits, J. M. M., de Gelder, R., Elemans, J. A. A. W., Nolte, R. J. M. & Rowan, A. E. (2014). Chem. Eur. J. 20, 11574-11583.]) and iron (Awasabisah et al., 2015[Awasabisah, D., Powell, D. R. & Richter-Addo, G. B. (2015). Acta Cryst. E71, m42-m43.]; Yu et al., 2015[Yu, Q., Liu, D. S., Li, X. J. & Li, J. F. (2015). Acta Cryst. C71, 856-859.]) porphyrins. Zinc porphyrins form five-coordinate complexes additionally with oxygen-containing ligands (Leben et al., 2018[Leben, L., Schaub, E., Näther, C. & Herges, R. (2018). Acta Cryst. E74, 1609-1612.]), a behaviour uncommon in NiII porphyrins (Ozette et al., 1997[Ozette, K., Leduc, P., Palacio, M., Bartoli, J.-F., Barkigia, K. M., Fajer, J., Battioni, P. & Mansuy, D. (1997). J. Am. Chem. Soc. 119, 6442-6443.]). The conformation of the porphyrin (Flanagan et al., 2015[Flanagan, K. J., Mothi, E. M., Kötzner, L. & Senge, M. O. (2015). Acta Cryst. E71, 1397-1400.]; Senge, 2011[Senge, M. O. (2011). Acta Cryst. C67, m39-m42.]) has been recognized as an important factor for the axial coordination, spin state (Thies et al., 2010[Thies, S., Bornholdt, C., Köhler, F., Sönnichsen, F. D., Näther, C., Tuczek, F. & Herges, R. (2010). Chem. Eur. J. 16, 10074-10083.]; Dommaschk et al., 2014[Dommaschk, M., Schütt, C., Venkataramani, S., Jana, U., Näther, C., Sönnichsen, F. D. & Herges, R. (2014). Dalton Trans. 43, 17395-17405.]) and catalytic activity (Ramesh et al., 2016[Ramesh, J., Sujatha, S. & Arunkumar, C. (2016). RSC Adv. 6, 63271-63285.]) of these complexes.

5. Synthesis and crystallization

The free base porphyrin of the title compound was obtained as a byproduct of a variant of the published procedure (Gutzeit et al., 2019a[Gutzeit, F., Dommaschk, M., Levin, N., Buchholz, A., Schaub, E., Plass, W., Näther, C. & Herges, R. (2019a). Inorg. Chem. XX, XX-XX. [Any update?]]; Köbke et al., 2019[Köbke, A., Gutzeit, F., Röhricht, F., Schlimm, A., Grunwald, J., Tuczek, F., Studniarek, M., Choueikani, F., Otero, E., Ohresser, P., Rohlf, S., Johannsen, S., Diekmann, F., Rossnagel, K., Jasper-Toennies, T., Näther, C., Herges, R., Berndt, R. & Gruber, M. (2019). Nat. Nanotechnol. Submitted.]). The free base porphyrins were separated by column chromatography (silica gel, di­chloro­methane; silica gel, di­chloro­methane/n-pentane, 1:1 and silica gel, toluene) and precipitated from di­chloro­methane by diffusion of methanol (59 mg, 3%).

1H NMR (500 MHz, CDCl3, 298 K, TMS): δ = 8.97 (s, 2 H, Hβ,Por), 8.65–8.58 (m, 4 H, Hβ,Por), 8.51 (d, 3J = 4.8 Hz, 2 H, Hβ,Por), 8.26 (dd, 3J = 7.5 Hz, 4J = 1.1 Hz, 2 H, H-3BP), 7.91 (td, 3J = 7.7 Hz, 4J = 1.4 Hz, 2 H, H-5BP), 7.83 (dd, 3J = 7.9 Hz, 4J = 1.1 Hz, 2 H, H-6BP), 7.75 (td, 3J = 7.5 Hz, 4J = 1.4 Hz, 2 H, H-4BP), 6.66 (d, 3J = 8.2 Hz, 4 H, H-2′BP), 5.67 (d, 3J = 8.2 Hz, 4 H, H-3′BP), 3.00–2.90 (m, 4 H, CH2,a+b), 2.21 (s, 3 H, CH3), −2.82 (s, 2 H, NH) ppm. Unobserved signals: H-2Py. 13C NMR (126 MHz, CDCl3, 298 K): δ = 153.5 (C4Py), 144.5 (C1BP), 140.2 (C1′BP), 139.9 (C2BP), 135.9 (C4′BP), 134.7 (C3BP), 129.9 (C3Py), 129.4 (C6BP), 129.3 (C2′BP), 129.2 (C5BP), 127.4 (C3′BP), 125.8 (C4BP), 121.4 (C5Por,C10Por), 38.3 (CH2), 17.6 (CH3) ppm. Unobserved signals: C15Por, C20Por, Cα,Por, Cβ,Por, C6F5. 19F NMR (471 MHz, CDCl3, 298 K): δ = −136.96 (dd, 3J = 24.3 Hz, 4J = 8.3 Hz, F-ortho), −137.26 (dd, 3J = 24.7 Hz, 4J = 8.1 Hz, F-ortho), −153.08 (t, 3J = 20.0 Hz, F-para), −162.43 to −162.65 (m, F-meta) ppm. FT–IR (ATR): ν = 2342.6 (w), 2326.3 (w), 1742.5 (w), 1516.5 (s), 1493.9 (s), 1474.0 (s), 1422.1 (w), 1348.9 (w), 1217.9 (w), 1078.8 (w), 1041.7 (w), 985.4 (s), 917.9 (s), 839.4 (w), 800.8 (s), 763.4 (s), 737.1 (s), 716.5 (s), 700.0 (m), 659.5 (m), 526.8 (w), 506.0 (w), 467.0 (w), 407.2 (m) cm−1. MS (EI): m/z (%) = 1188.10 (43) [M − H2 + Cu]+, 334.96 (14) [M - C44H18F10N4]+, 168.99 (100) [M − C57H28F10N4]+ u. HRMS (EI): Calculated for C64H33CuF10N5S2: 1188.1314 u. Found: 1188.128 33 u. Diff.: 2.6 ppm. The free base porphyrin is metallated in the process of sublimation. EA: Calculated for C64H35F10N5S2·0.5(CH2Cl2): C 66.18, H 3.10, N 5.98, S 5.48. Found C 66.77, H 3.39, N 5.44, S 5.33.

The nickel cation was introduced under standard conditions (31 mg porphyrin, 68 mg Ni(acac)2, 30 ml toluene, reflux, 21 h) followed by filtration through a pluck of silica (di­chloro­methane) and precipitation from di­chloro­methane by diffusion of methanol. The crystals were washed with methanol and n-pentane (11 mg, 34%).

1H NMR (500 MHz, CDCl3, 298 K, TMS, TFA): δ = 9.00–8.32 (m, 8 H, Hβ,Por), 7.97 (dd, 3J = 7.7 Hz, 4J = 1.3 Hz, 2 H, H-3BP), 7.87 (td, 3J = 7.7 Hz, 4J = 1.1 Hz, 2 H, H-5BP), 7.79 (dd, 3J = 7.8 Hz, 4J = 1.1 Hz, 2 H, H-6BP), 7.69 (td, 3J = 7.8 Hz, 4J = 1.3 Hz, 2 H, H-4BP), 6.76 (d, 3J = 8.1 Hz, 4 H, H-2′BP), 6.56 (s, 2 H, H-2Py), 6.08 (d, 3J = 8.1 Hz, 4 H, H-3′BP), 3.54-3.42 (m, 4 H, CH2,a+b), 2.38 (s, 3 H, CH3) ppm. 13C NMR (126 MHz, CDCl3, 298 K, TFA): δ = 165.0 (C4Py), 143.0 (C1BP), 141.5 (C1′BP), 138.9 (C2Py), 137.3 (C3Py), 135.0 (C3BP), 133.3 (C4′BP), 129.9 (C6BP), 129.7 (C5BP), 129.6 (C2′BP), 127.8 (C3′BP), 126.6 (C4BP), 37.8 (CH2), 19.3 (CH3) ppm. Unobserved signals: Cmeso,Por, Cα,Por, Cβ,Por, C6F5. 19F NMR (471 MHz, CDCl3, 298 K, TFA): δ = −137.27 (br, F-ortho), −138.66 (br, F-ortho), −152.09 (t, 3J = 20.5 Hz, F-para), −161.65 (td, 3J = 22.0 Hz, 4J = 8.2 Hz, F-meta), −162.06 (td, 3J = 22.0 Hz, 4J = 8.3 Hz, F-meta) ppm. FT–IR (ATR): ν = 1517.8 (m), 1487.0 (m), 1338.8 (w), 1065.1 (w), 986.5 (s), 948.7 (m), 928.9 (s), 835.3 (w), 799.5 (m), 766.4 (m), 752.8 (m), 707.9 (w), 664.1 (w), 599.9 (w), 535.7 (w), 431.5 (w), 418.6 (w) cm−1. MS (EI): m/z (%) = 1183.10 (32) [M]+, 169.00 (86) [M − C57H26F10N4Ni]+, 131.00 (100) [M − C57H33F10N4NiS]+ u. HRMS (EI): Calculated for C64H33F10N5NiS2: 1183.1371 u. Found: 1183.1362 u. Diff.: 0.8 ppm.

Red blocks of the title compound were obtained by dissolving the complex in di­chloro­methane and gas-phase diffusion of methanol.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The C—H hydrogen atoms were located in difference maps but were positioned with idealized geometry (C—H = 0.95–0.98 Å) and refined isotropically with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C-meth­yl) using a riding model.

Table 3
Experimental details

Crystal data
Chemical formula [Ni(C64H33F10N5S2)][+solvent]
Mr 1184.78
Crystal system, space group Orthorhombic, P212121
Temperature (K) 170
a, b, c (Å) 12.6269 (2), 18.0525 (3), 24.9524 (6)
V3) 5687.83 (19)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.49
Crystal size (mm) 0.15 × 0.10 × 0.05
 
Data collection
Diffractometer Stoe IPDS2
Absorption correction Numerical (X-RED and X-SHAPE; Stoe, 2008[Stoe (2008). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.810, 0.965
No. of measured, independent and observed [I > 2σ(I)] reflections 44401, 12417, 10468
Rint 0.055
(sin θ/λ)max−1) 0.639
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.099, 1.04
No. of reflections 12417
No. of parameters 740
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.34, −0.39
Absolute structure Flack x determined using 4043 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.004 (7)
Computer programs: X-AREA (Stoe, 2008[Stoe (2008). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), XP (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), DIAMOND (Brandenburg, 2014[Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

After structure refinement using a model with one Ni porphyrin complex and a half di­chloro­methane solvate mol­ecule disordered around a center of inversion, there was significant residual electron density that definitely corres­ponds to additional di­chloro­methane disordered over several orientations. A number of different split models were tried using restraints for the geometry and for the components of the anisotropic displacement parameters, but no reasonable structural model was found and very large anisotropic displacement parameters were obtained. Therefore, the contribution of this solvent to the electron density was removed with SQUEEZE in PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.], 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]), which leads to a reasonable structure model and very good reliability factors. By this procedure, the amount of di­chloro­methane cannot accurately be determined and there is indication that this position is not fully occupied, which is highly likely because this solvate is very unstable and already starts to decompose during the sample preparation.

Supporting information


Computing details top

Data collection: X-AREA (Stoe, 2008); cell refinement: X-AREA (Stoe, 2008); data reduction: X-AREA (Stoe, 2008); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: XP (Sheldrick, 2008) and Diamond (Brandenburg, 2014); software used to prepare material for publication: publCIF (Westrip, 2010).

(15,20-Bis(2,3,4,5,6-pentafluorophenyl)-5,10-{(4-methylpyridine-3,5-diyl)\ bis[(sulfanediylmethylene)[1,1'-biphenyl]-4',2-diyl]}porphyrinato)nickel(II) dichloromethane solvate top
Crystal data top
[Ni(C64H33F10N5S2)][+solvent]Dx = 1.384 Mg m3
Mr = 1184.78Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 44396 reflections
a = 12.6269 (2) Åθ = 1.4–27.0°
b = 18.0525 (3) ŵ = 0.49 mm1
c = 24.9524 (6) ÅT = 170 K
V = 5687.83 (19) Å3Block, red
Z = 40.15 × 0.10 × 0.05 mm
F(000) = 2408
Data collection top
Stoe IPDS-2
diffractometer
10468 reflections with I > 2σ(I)
ω scansRint = 0.055
Absorption correction: numerical
(X-Red and X-Shape; Stoe, 2008)
θmax = 27.0°, θmin = 1.4°
Tmin = 0.810, Tmax = 0.965h = 1614
44401 measured reflectionsk = 2320
12417 independent reflectionsl = 3131
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.043 w = 1/[σ2(Fo2) + (0.0479P)2 + 0.9016P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.099(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.34 e Å3
12417 reflectionsΔρmin = 0.39 e Å3
740 parametersAbsolute structure: Flack x determined using 4043 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 restraintsAbsolute structure parameter: 0.004 (7)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.36866 (4)0.61346 (3)0.57341 (2)0.03235 (11)
N10.3385 (2)0.71635 (17)0.60371 (11)0.0329 (7)
N20.2384 (3)0.57504 (17)0.61227 (12)0.0340 (7)
N30.3742 (3)0.51813 (17)0.52990 (11)0.0374 (7)
N40.4729 (3)0.66068 (18)0.52138 (11)0.0337 (7)
C10.3978 (3)0.7789 (2)0.59612 (14)0.0361 (8)
C20.3622 (4)0.8368 (2)0.63062 (15)0.0411 (8)
H20.39160.88510.63360.049*
C30.2787 (3)0.8098 (2)0.65832 (15)0.0385 (8)
H30.23760.83580.68410.046*
C40.2636 (3)0.7342 (2)0.64145 (14)0.0335 (8)
C50.1883 (3)0.6867 (2)0.66275 (14)0.0348 (8)
C60.1780 (3)0.6117 (2)0.64944 (13)0.0342 (7)
C70.1072 (3)0.5608 (2)0.67541 (15)0.0387 (9)
H70.05740.57240.70270.046*
C80.1249 (4)0.4939 (2)0.65372 (15)0.0429 (9)
H80.08980.44910.66290.052*
C90.2067 (3)0.5023 (2)0.61405 (15)0.0378 (8)
C100.2491 (3)0.4457 (2)0.58317 (14)0.0382 (8)
C110.3253 (3)0.4528 (2)0.54297 (15)0.0388 (8)
C120.3605 (4)0.3948 (2)0.50759 (17)0.0496 (10)
H120.33920.34440.50840.060*
C130.4297 (4)0.4262 (3)0.47302 (17)0.0497 (10)
H130.46500.40190.44430.060*
C140.4400 (3)0.5026 (2)0.48752 (15)0.0385 (8)
C150.5083 (3)0.5531 (2)0.46350 (14)0.0382 (8)
C160.5222 (3)0.6268 (2)0.47900 (13)0.0342 (8)
C170.5939 (3)0.6784 (2)0.45336 (16)0.0423 (9)
H170.63760.66870.42320.051*
C180.5869 (3)0.7423 (2)0.48022 (15)0.0417 (9)
H180.62470.78650.47260.050*
C190.5114 (3)0.7316 (2)0.52279 (14)0.0359 (8)
C200.4805 (3)0.7864 (2)0.55899 (14)0.0368 (8)
C210.1169 (3)0.7200 (2)0.70420 (15)0.0385 (8)
C220.1413 (4)0.7145 (3)0.75868 (16)0.0480 (10)
C230.0784 (5)0.7530 (3)0.7952 (2)0.0701 (16)
H230.09420.75010.83240.084*
C240.0060 (5)0.7952 (3)0.7784 (2)0.0754 (17)
H240.04650.82210.80390.090*
C250.0319 (5)0.7984 (3)0.7248 (2)0.0630 (14)
H250.09180.82610.71340.076*
C260.0293 (4)0.7613 (3)0.68774 (18)0.0481 (10)
H260.01180.76390.65080.058*
C270.2296 (4)0.6651 (3)0.77658 (16)0.0495 (11)
C280.3349 (4)0.6799 (3)0.76606 (18)0.0562 (12)
H280.35440.72600.75060.067*
C290.4124 (4)0.6277 (3)0.77794 (18)0.0589 (13)
H290.48470.63930.77160.071*
C300.3863 (4)0.5589 (3)0.79893 (17)0.0572 (12)
C310.2806 (4)0.5464 (3)0.8117 (2)0.0631 (14)
H310.26110.50110.82840.076*
C320.2040 (4)0.5979 (3)0.80093 (18)0.0584 (13)
H320.13240.58780.81010.070*
C330.4666 (4)0.4992 (4)0.80592 (18)0.0669 (15)
H33A0.45550.47480.84100.080*
H33B0.53820.52150.80610.080*
S10.45960 (12)0.42922 (8)0.75272 (5)0.0652 (4)
C340.5137 (4)0.4798 (3)0.69782 (17)0.0488 (10)
C350.4473 (4)0.5274 (2)0.67001 (16)0.0442 (10)
H350.37630.53290.68200.053*
N50.4788 (3)0.5663 (2)0.62680 (12)0.0397 (7)
C360.5793 (3)0.5587 (3)0.61168 (17)0.0449 (9)
H360.60280.58580.58130.054*
C370.6515 (4)0.5137 (3)0.63743 (17)0.0516 (11)
C380.6190 (4)0.4710 (3)0.68145 (17)0.0494 (10)
C390.6924 (5)0.4168 (3)0.7083 (2)0.0659 (14)
H39A0.67220.41130.74600.099*
H39B0.76530.43510.70600.099*
H39C0.68730.36870.69030.099*
S20.78309 (11)0.51140 (10)0.61283 (6)0.0702 (4)
C400.8384 (4)0.5904 (4)0.6494 (2)0.080 (2)
H40A0.82590.58300.68820.095*
H40B0.91590.59170.64360.095*
C410.7924 (4)0.6637 (4)0.63313 (19)0.0633 (14)
C420.7113 (4)0.6972 (4)0.66102 (18)0.0649 (15)
H420.68710.67540.69350.078*
C430.6643 (4)0.7615 (3)0.64298 (18)0.0607 (13)
H430.60770.78280.66270.073*
C440.6989 (4)0.7953 (3)0.59624 (17)0.0518 (11)
C450.7836 (4)0.7635 (3)0.5695 (2)0.0630 (13)
H450.81050.78670.53820.076*
C460.8301 (4)0.6984 (4)0.5873 (2)0.0658 (14)
H460.88780.67750.56810.079*
C470.6447 (4)0.8620 (3)0.57452 (17)0.0516 (10)
C480.5386 (4)0.8582 (2)0.55788 (16)0.0442 (10)
C490.4884 (5)0.9215 (3)0.53857 (18)0.0548 (12)
H490.41710.91900.52640.066*
C500.5429 (6)0.9883 (3)0.5372 (2)0.0734 (17)
H500.50771.03210.52590.088*
C510.6486 (6)0.9911 (3)0.5521 (2)0.0768 (19)
H510.68631.03660.54970.092*
C520.6982 (5)0.9296 (3)0.5701 (2)0.0661 (15)
H520.77070.93230.58000.079*
C530.2096 (4)0.3686 (2)0.59367 (16)0.0428 (9)
C540.1119 (4)0.3441 (2)0.57611 (18)0.0492 (10)
C550.0757 (4)0.2733 (3)0.58575 (19)0.0549 (12)
C560.1364 (5)0.2256 (2)0.6139 (2)0.0609 (12)
C570.2319 (5)0.2470 (3)0.6320 (2)0.0666 (14)
C580.2688 (4)0.3177 (3)0.6224 (2)0.0569 (12)
F10.0481 (3)0.38982 (19)0.54925 (13)0.0742 (9)
F20.0200 (3)0.25128 (18)0.56817 (14)0.0788 (9)
F30.0995 (3)0.15736 (17)0.62517 (16)0.0862 (11)
F40.2921 (4)0.2008 (2)0.6617 (2)0.1099 (15)
F50.3640 (3)0.33798 (18)0.64045 (15)0.0827 (10)
C590.5742 (3)0.5266 (2)0.41772 (15)0.0400 (9)
C600.6774 (3)0.5037 (3)0.42437 (17)0.0475 (9)
C610.7405 (4)0.4800 (3)0.38280 (17)0.0472 (10)
C620.6994 (4)0.4791 (2)0.33204 (16)0.0459 (10)
C630.5979 (4)0.5029 (3)0.32304 (15)0.0456 (10)
C640.5368 (3)0.5260 (3)0.36550 (16)0.0437 (9)
F60.7198 (2)0.5046 (2)0.47407 (10)0.0686 (8)
F70.8392 (2)0.4563 (2)0.39158 (12)0.0704 (9)
F80.7586 (2)0.45350 (17)0.29130 (10)0.0613 (7)
F90.5582 (3)0.50154 (19)0.27319 (10)0.0686 (8)
F100.4375 (2)0.54870 (18)0.35559 (10)0.0598 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0320 (2)0.0340 (2)0.03107 (19)0.0007 (2)0.00063 (19)0.00143 (18)
N10.0336 (17)0.0328 (16)0.0324 (15)0.0034 (13)0.0006 (12)0.0022 (12)
N20.0353 (17)0.0312 (16)0.0354 (14)0.0007 (14)0.0009 (13)0.0008 (12)
N30.0395 (17)0.0364 (16)0.0364 (14)0.0033 (16)0.0048 (14)0.0013 (12)
N40.0329 (16)0.0352 (17)0.0330 (14)0.0004 (14)0.0005 (12)0.0007 (12)
C10.037 (2)0.0354 (19)0.0363 (16)0.0058 (16)0.0008 (14)0.0015 (15)
C20.042 (2)0.037 (2)0.0441 (19)0.0073 (19)0.0005 (18)0.0016 (15)
C30.039 (2)0.038 (2)0.0377 (18)0.0006 (18)0.0012 (16)0.0038 (15)
C40.0333 (19)0.0346 (19)0.0324 (16)0.0029 (16)0.0022 (14)0.0011 (14)
C50.033 (2)0.038 (2)0.0335 (17)0.0002 (16)0.0038 (14)0.0002 (15)
C60.0290 (16)0.0396 (19)0.0339 (16)0.0009 (18)0.0006 (13)0.0016 (16)
C70.037 (2)0.042 (2)0.0370 (17)0.0016 (17)0.0042 (15)0.0023 (16)
C80.044 (2)0.037 (2)0.0482 (19)0.006 (2)0.0050 (18)0.0063 (16)
C90.038 (2)0.035 (2)0.0404 (18)0.0072 (17)0.0003 (16)0.0038 (16)
C100.041 (2)0.0336 (19)0.0398 (19)0.0007 (17)0.0039 (16)0.0031 (15)
C110.043 (2)0.0299 (19)0.0438 (19)0.0038 (17)0.0031 (16)0.0017 (16)
C120.059 (3)0.036 (2)0.054 (2)0.005 (2)0.011 (2)0.0063 (18)
C130.057 (3)0.045 (2)0.047 (2)0.001 (2)0.011 (2)0.0063 (19)
C140.040 (2)0.037 (2)0.0382 (18)0.0011 (18)0.0052 (15)0.0037 (16)
C150.037 (2)0.044 (2)0.0340 (17)0.0013 (18)0.0035 (15)0.0002 (16)
C160.0361 (19)0.039 (2)0.0275 (15)0.0013 (16)0.0032 (13)0.0017 (14)
C170.042 (2)0.048 (2)0.0376 (19)0.0022 (19)0.0075 (16)0.0015 (17)
C180.040 (2)0.044 (2)0.0409 (19)0.0069 (18)0.0082 (16)0.0017 (17)
C190.036 (2)0.037 (2)0.0341 (17)0.0068 (17)0.0034 (15)0.0038 (15)
C200.036 (2)0.036 (2)0.0382 (18)0.0024 (16)0.0012 (15)0.0018 (15)
C210.036 (2)0.036 (2)0.0427 (18)0.0001 (17)0.0065 (16)0.0001 (15)
C220.051 (3)0.052 (2)0.0406 (19)0.000 (2)0.0085 (19)0.0008 (17)
C230.094 (4)0.073 (4)0.043 (2)0.013 (3)0.024 (3)0.003 (2)
C240.093 (4)0.070 (4)0.064 (3)0.030 (3)0.031 (3)0.001 (3)
C250.063 (3)0.054 (3)0.073 (3)0.020 (3)0.032 (3)0.011 (2)
C260.043 (2)0.049 (3)0.052 (2)0.008 (2)0.0078 (19)0.0059 (19)
C270.051 (3)0.062 (3)0.0351 (19)0.000 (2)0.0004 (18)0.0011 (18)
C280.051 (3)0.069 (3)0.049 (2)0.007 (2)0.000 (2)0.004 (2)
C290.047 (3)0.085 (4)0.045 (2)0.006 (3)0.0011 (19)0.006 (2)
C300.048 (3)0.084 (4)0.039 (2)0.004 (3)0.0033 (19)0.011 (2)
C310.052 (3)0.083 (4)0.054 (3)0.002 (3)0.001 (2)0.027 (3)
C320.045 (2)0.080 (4)0.050 (2)0.003 (3)0.0022 (19)0.020 (2)
C330.053 (3)0.106 (4)0.042 (2)0.014 (3)0.003 (2)0.021 (3)
S10.0664 (8)0.0700 (9)0.0591 (7)0.0039 (7)0.0009 (6)0.0279 (6)
C340.051 (3)0.052 (3)0.043 (2)0.004 (2)0.0077 (18)0.0050 (18)
C350.043 (2)0.049 (2)0.0407 (19)0.002 (2)0.0030 (17)0.0088 (17)
N50.0358 (18)0.048 (2)0.0354 (15)0.0004 (15)0.0022 (13)0.0080 (14)
C360.037 (2)0.054 (3)0.044 (2)0.006 (2)0.0011 (17)0.0080 (19)
C370.045 (3)0.062 (3)0.048 (2)0.011 (2)0.0038 (18)0.004 (2)
C380.047 (3)0.052 (3)0.049 (2)0.009 (2)0.0077 (19)0.0036 (18)
C390.065 (3)0.064 (3)0.068 (3)0.018 (3)0.009 (3)0.015 (3)
S20.0454 (7)0.0985 (11)0.0666 (7)0.0231 (7)0.0050 (6)0.0145 (7)
C400.042 (3)0.130 (6)0.067 (3)0.006 (3)0.009 (2)0.023 (3)
C410.039 (2)0.100 (4)0.051 (2)0.006 (3)0.009 (2)0.006 (3)
C420.049 (3)0.104 (4)0.042 (2)0.012 (3)0.004 (2)0.008 (3)
C430.051 (3)0.090 (4)0.041 (2)0.012 (3)0.0000 (19)0.001 (2)
C440.041 (2)0.072 (3)0.043 (2)0.015 (2)0.0008 (18)0.005 (2)
C450.046 (3)0.088 (4)0.055 (2)0.011 (3)0.009 (2)0.004 (3)
C460.038 (2)0.099 (4)0.061 (3)0.010 (3)0.005 (2)0.005 (3)
C470.052 (3)0.059 (3)0.0435 (19)0.020 (2)0.013 (2)0.005 (2)
C480.047 (2)0.042 (2)0.043 (2)0.0123 (19)0.0121 (17)0.0017 (16)
C490.069 (3)0.043 (2)0.052 (2)0.007 (2)0.012 (2)0.003 (2)
C500.110 (5)0.043 (3)0.067 (3)0.013 (3)0.025 (3)0.001 (2)
C510.106 (5)0.053 (3)0.071 (3)0.041 (4)0.031 (3)0.009 (3)
C520.071 (3)0.074 (4)0.053 (2)0.038 (3)0.013 (3)0.016 (3)
C530.047 (2)0.037 (2)0.0452 (19)0.0023 (18)0.0059 (18)0.0032 (16)
C540.060 (3)0.042 (2)0.046 (2)0.010 (2)0.002 (2)0.0081 (19)
C550.064 (3)0.044 (2)0.057 (3)0.018 (2)0.001 (2)0.002 (2)
C560.074 (3)0.030 (2)0.079 (3)0.012 (2)0.008 (3)0.005 (2)
C570.067 (3)0.038 (2)0.095 (4)0.007 (2)0.007 (3)0.021 (2)
C580.048 (3)0.046 (3)0.077 (3)0.000 (2)0.000 (2)0.005 (2)
F10.075 (2)0.0631 (18)0.0844 (19)0.0207 (18)0.0285 (16)0.0286 (16)
F20.082 (2)0.0674 (19)0.087 (2)0.0361 (17)0.0184 (19)0.0069 (17)
F30.104 (3)0.0368 (15)0.118 (3)0.0149 (17)0.003 (2)0.0147 (16)
F40.097 (3)0.057 (2)0.176 (4)0.007 (2)0.026 (3)0.049 (2)
F50.0599 (19)0.0634 (19)0.125 (3)0.0026 (18)0.026 (2)0.0207 (18)
C590.039 (2)0.043 (2)0.038 (2)0.0021 (17)0.0040 (15)0.0020 (16)
C600.043 (2)0.061 (3)0.0383 (18)0.001 (2)0.0013 (18)0.005 (2)
C610.038 (2)0.052 (3)0.051 (2)0.004 (2)0.0082 (18)0.0058 (19)
C620.051 (3)0.046 (2)0.041 (2)0.003 (2)0.0152 (18)0.0072 (17)
C630.053 (3)0.050 (2)0.0338 (18)0.006 (2)0.0047 (16)0.0030 (17)
C640.041 (2)0.050 (2)0.0411 (19)0.001 (2)0.0033 (17)0.0011 (17)
F60.0516 (16)0.110 (3)0.0438 (13)0.0159 (18)0.0031 (12)0.0095 (15)
F70.0442 (16)0.096 (2)0.0709 (17)0.0195 (16)0.0073 (13)0.0099 (16)
F80.0660 (18)0.0676 (18)0.0502 (14)0.0031 (15)0.0220 (13)0.0118 (12)
F90.0723 (19)0.096 (2)0.0375 (12)0.0010 (19)0.0001 (12)0.0108 (14)
F100.0475 (15)0.084 (2)0.0476 (13)0.0108 (15)0.0008 (11)0.0029 (13)
Geometric parameters (Å, º) top
Ni1—N22.031 (3)C32—H320.9500
Ni1—N42.036 (3)C33—S11.834 (6)
Ni1—N32.036 (3)C33—H33A0.9900
Ni1—N12.041 (3)C33—H33B0.9900
Ni1—N52.106 (3)S1—C341.782 (5)
N1—C11.368 (5)C34—C351.387 (6)
N1—C41.373 (5)C34—C381.401 (7)
N2—C61.371 (5)C35—N51.347 (5)
N2—C91.373 (5)C35—H350.9500
N3—C111.372 (5)N5—C361.331 (5)
N3—C141.374 (5)C36—C371.379 (6)
N4—C191.370 (5)C36—H360.9500
N4—C161.371 (5)C37—C381.403 (6)
C1—C201.402 (5)C37—S21.772 (5)
C1—C21.427 (6)C38—C391.505 (6)
C2—C31.352 (6)C39—H39A0.9800
C2—H20.9500C39—H39B0.9800
C3—C41.442 (5)C39—H39C0.9800
C3—H30.9500S2—C401.832 (7)
C4—C51.386 (5)C40—C411.501 (9)
C5—C61.400 (6)C40—H40A0.9900
C5—C211.498 (5)C40—H40B0.9900
C6—C71.435 (5)C41—C421.379 (8)
C7—C81.344 (6)C41—C461.388 (7)
C7—H70.9500C42—C431.379 (8)
C8—C91.438 (6)C42—H420.9500
C8—H80.9500C43—C441.387 (7)
C9—C101.388 (6)C43—H430.9500
C10—C111.396 (5)C44—C451.386 (7)
C10—C531.501 (6)C44—C471.488 (7)
C11—C121.439 (6)C45—C461.386 (8)
C12—C131.352 (6)C45—H450.9500
C12—H120.9500C46—H460.9500
C13—C141.432 (6)C47—C521.399 (6)
C13—H130.9500C47—C481.404 (7)
C14—C151.390 (6)C48—C491.394 (7)
C15—C161.397 (6)C49—C501.388 (7)
C15—C591.493 (5)C49—H490.9500
C16—C171.448 (5)C50—C511.387 (10)
C17—C181.336 (6)C50—H500.9500
C17—H170.9500C51—C521.352 (9)
C18—C191.440 (5)C51—H510.9500
C18—H180.9500C52—H520.9500
C19—C201.396 (5)C53—C541.382 (6)
C20—C481.489 (6)C53—C581.385 (7)
C21—C261.396 (6)C54—F11.334 (5)
C21—C221.397 (6)C54—C551.379 (6)
C22—C231.394 (7)C55—F21.345 (6)
C22—C271.496 (7)C55—C561.348 (8)
C23—C241.374 (9)C56—C571.344 (8)
C23—H230.9500C56—F31.348 (5)
C24—C251.380 (8)C57—F41.349 (6)
C24—H240.9500C57—C581.379 (7)
C25—C261.378 (6)C58—F51.335 (6)
C25—H250.9500C59—C601.376 (6)
C26—H260.9500C59—C641.386 (6)
C27—C281.381 (7)C60—F61.351 (5)
C27—C321.395 (7)C60—C611.376 (6)
C28—C291.392 (8)C61—F71.336 (5)
C28—H280.9500C61—C621.369 (6)
C29—C301.388 (8)C62—F81.344 (5)
C29—H290.9500C62—C631.370 (7)
C30—C311.391 (7)C63—F91.341 (5)
C30—C331.490 (7)C63—C641.375 (6)
C31—C321.368 (7)C64—F101.343 (5)
C31—H310.9500
N2—Ni1—N4166.13 (12)C30—C31—H31119.2
N2—Ni1—N389.64 (13)C31—C32—C27120.8 (5)
N4—Ni1—N389.52 (12)C31—C32—H32119.6
N2—Ni1—N189.02 (12)C27—C32—H32119.6
N4—Ni1—N188.62 (12)C30—C33—S1112.3 (3)
N3—Ni1—N1166.68 (13)C30—C33—H33A109.1
N2—Ni1—N595.43 (13)S1—C33—H33A109.1
N4—Ni1—N598.38 (13)C30—C33—H33B109.1
N3—Ni1—N588.44 (14)S1—C33—H33B109.1
N1—Ni1—N5104.88 (13)H33A—C33—H33B107.9
C1—N1—C4106.2 (3)C34—S1—C33100.7 (2)
C1—N1—Ni1126.7 (2)C35—C34—C38119.9 (4)
C4—N1—Ni1126.6 (2)C35—C34—S1118.1 (4)
C6—N2—C9106.1 (3)C38—C34—S1122.0 (3)
C6—N2—Ni1127.5 (3)N5—C35—C34123.0 (4)
C9—N2—Ni1125.3 (3)N5—C35—H35118.5
C11—N3—C14106.2 (3)C34—C35—H35118.5
C11—N3—Ni1125.8 (2)C36—N5—C35117.1 (4)
C14—N3—Ni1127.2 (3)C36—N5—Ni1119.5 (3)
C19—N4—C16106.0 (3)C35—N5—Ni1121.4 (3)
C19—N4—Ni1127.2 (2)N5—C36—C37124.0 (4)
C16—N4—Ni1126.8 (3)N5—C36—H36118.0
N1—C1—C20125.4 (4)C37—C36—H36118.0
N1—C1—C2110.4 (3)C36—C37—C38119.7 (4)
C20—C1—C2124.2 (4)C36—C37—S2118.1 (3)
C3—C2—C1106.8 (4)C38—C37—S2122.2 (4)
C3—C2—H2126.6C34—C38—C37116.3 (4)
C1—C2—H2126.6C34—C38—C39121.9 (4)
C2—C3—C4107.2 (4)C37—C38—C39121.7 (4)
C2—C3—H3126.4C38—C39—H39A109.5
C4—C3—H3126.4C38—C39—H39B109.5
N1—C4—C5126.2 (3)H39A—C39—H39B109.5
N1—C4—C3109.4 (3)C38—C39—H39C109.5
C5—C4—C3124.4 (3)H39A—C39—H39C109.5
C4—C5—C6124.8 (3)H39B—C39—H39C109.5
C4—C5—C21115.4 (3)C37—S2—C4099.6 (3)
C6—C5—C21119.7 (3)C41—C40—S2113.8 (4)
N2—C6—C5125.1 (3)C41—C40—H40A108.8
N2—C6—C7110.1 (4)S2—C40—H40A108.8
C5—C6—C7124.7 (3)C41—C40—H40B108.8
C8—C7—C6106.9 (3)S2—C40—H40B108.8
C8—C7—H7126.6H40A—C40—H40B107.7
C6—C7—H7126.6C42—C41—C46118.2 (6)
C7—C8—C9107.5 (4)C42—C41—C40122.5 (5)
C7—C8—H8126.2C46—C41—C40119.3 (5)
C9—C8—H8126.2C41—C42—C43121.6 (5)
N2—C9—C10125.0 (4)C41—C42—H42119.2
N2—C9—C8109.5 (3)C43—C42—H42119.2
C10—C9—C8125.5 (4)C42—C43—C44120.6 (5)
C9—C10—C11126.7 (4)C42—C43—H43119.7
C9—C10—C53117.3 (3)C44—C43—H43119.7
C11—C10—C53116.1 (3)C45—C44—C43117.8 (5)
N3—C11—C10124.1 (3)C45—C44—C47121.0 (4)
N3—C11—C12109.9 (3)C43—C44—C47121.2 (5)
C10—C11—C12126.0 (4)C44—C45—C46121.6 (5)
C13—C12—C11106.7 (4)C44—C45—H45119.2
C13—C12—H12126.7C46—C45—H45119.2
C11—C12—H12126.7C45—C46—C41120.2 (5)
C12—C13—C14107.5 (4)C45—C46—H46119.9
C12—C13—H13126.2C41—C46—H46119.9
C14—C13—H13126.2C52—C47—C48118.7 (5)
N3—C14—C15124.9 (4)C52—C47—C44120.8 (5)
N3—C14—C13109.6 (4)C48—C47—C44120.4 (4)
C15—C14—C13125.4 (4)C49—C48—C47119.7 (4)
C14—C15—C16125.7 (3)C49—C48—C20119.7 (4)
C14—C15—C59117.7 (4)C47—C48—C20120.5 (4)
C16—C15—C59116.6 (3)C50—C49—C48119.7 (6)
N4—C16—C15125.5 (3)C50—C49—H49120.2
N4—C16—C17109.7 (3)C48—C49—H49120.2
C15—C16—C17124.7 (3)C51—C50—C49120.2 (6)
C18—C17—C16107.0 (3)C51—C50—H50119.9
C18—C17—H17126.5C49—C50—H50119.9
C16—C17—H17126.5C52—C51—C50120.3 (5)
C17—C18—C19107.4 (4)C52—C51—H51119.9
C17—C18—H18126.3C50—C51—H51119.9
C19—C18—H18126.3C51—C52—C47121.3 (5)
N4—C19—C20125.5 (3)C51—C52—H52119.4
N4—C19—C18109.9 (3)C47—C52—H52119.4
C20—C19—C18124.6 (4)C54—C53—C58115.7 (4)
C19—C20—C1124.5 (4)C54—C53—C10122.5 (4)
C19—C20—C48117.8 (3)C58—C53—C10121.8 (4)
C1—C20—C48117.6 (4)F1—C54—C55117.5 (4)
C26—C21—C22119.9 (4)F1—C54—C53120.0 (4)
C26—C21—C5119.2 (3)C55—C54—C53122.5 (4)
C22—C21—C5120.7 (4)F2—C55—C56119.5 (4)
C23—C22—C21118.4 (5)F2—C55—C54120.9 (5)
C23—C22—C27121.8 (4)C56—C55—C54119.6 (5)
C21—C22—C27119.8 (4)C57—C56—F3120.1 (5)
C24—C23—C22121.2 (5)C57—C56—C55120.1 (4)
C24—C23—H23119.4F3—C56—C55119.7 (5)
C22—C23—H23119.4C56—C57—F4120.9 (5)
C23—C24—C25120.2 (5)C56—C57—C58120.6 (5)
C23—C24—H24119.9F4—C57—C58118.5 (5)
C25—C24—H24119.9F5—C58—C57119.9 (5)
C26—C25—C24119.8 (5)F5—C58—C53118.6 (4)
C26—C25—H25120.1C57—C58—C53121.5 (5)
C24—C25—H25120.1C60—C59—C64115.7 (4)
C25—C26—C21120.5 (4)C60—C59—C15122.1 (4)
C25—C26—H26119.8C64—C59—C15122.1 (4)
C21—C26—H26119.8F6—C60—C59118.8 (4)
C28—C27—C32118.3 (5)F6—C60—C61117.8 (4)
C28—C27—C22123.1 (4)C59—C60—C61123.4 (4)
C32—C27—C22118.4 (4)F7—C61—C62120.1 (4)
C27—C28—C29120.4 (5)F7—C61—C60121.1 (4)
C27—C28—H28119.8C62—C61—C60118.8 (4)
C29—C28—H28119.8F8—C62—C61119.6 (4)
C30—C29—C28121.3 (5)F8—C62—C63120.3 (4)
C30—C29—H29119.4C61—C62—C63120.1 (4)
C28—C29—H29119.4F9—C63—C62119.7 (4)
C29—C30—C31117.4 (5)F9—C63—C64120.7 (4)
C29—C30—C33122.0 (5)C62—C63—C64119.6 (4)
C31—C30—C33120.6 (5)F10—C64—C63118.3 (4)
C32—C31—C30121.6 (5)F10—C64—C59119.3 (4)
C32—C31—H31119.2C63—C64—C59122.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C33—H33B···F8i0.992.633.592 (6)164
C35—H35···N20.952.583.125 (5)117
C36—H36···N40.952.603.206 (5)122
Symmetry code: (i) x+3/2, y+1, z+1/2.
 

Acknowledgements

We thank Professor Dr. Wolfgang Bensch for access to his experimental facility.

Funding information

The authors gratefully acknowledge financial support by the Deutsche Forschungsgesellschaft within the Sonderforschungsbereich 677.

References

First citationAwasabisah, D., Powell, D. R. & Richter-Addo, G. B. (2015). Acta Cryst. E71, m42–m43.  CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCaughey, W. S., Deal, R. M., McLees, B. D. & Alben, J. O. (1962). J. Am. Chem. Soc. 84, 1735–1736.  CrossRef CAS Web of Science Google Scholar
First citationDeutman, A. B. C., Smits, J. M. M., de Gelder, R., Elemans, J. A. A. W., Nolte, R. J. M. & Rowan, A. E. (2014). Chem. Eur. J. 20, 11574–11583.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationDommaschk, M., Näther, C. & Herges, R. (2015a). J. Org. Chem. 80, 8496–8500.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDommaschk, M., Peters, M., Gutzeit, F., Schütt, C., Näther, C., Sönnichsen, F. D., Tiwari, S., Riedel, C., Boretius, S. & Herges, R. (2015b). J. Am. Chem. Soc. 137, 7552–7555.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDommaschk, M., Schütt, C., Venkataramani, S., Jana, U., Näther, C., Sönnichsen, F. D. & Herges, R. (2014). Dalton Trans. 43, 17395–17405.  CSD CrossRef CAS PubMed Google Scholar
First citationDommaschk, M., Thoms, V., Schütt, C., Näther, C., Puttreddy, R., Rissanen, K. & Herges, R. (2015c). Inorg. Chem. 54, 9390–9392.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationEom, H. S., Jeoung, S. C., Kim, D., Ha, J.-H. & Kim, Y.-R. (1997). J. Phys. Chem. A, 101, 3661–3669.  CrossRef CAS Web of Science Google Scholar
First citationFlanagan, K. J., Mothi, E. M., Kötzner, L. & Senge, M. O. (2015). Acta Cryst. E71, 1397–1400.  CSD CrossRef IUCr Journals Google Scholar
First citationGutzeit, F., Dommaschk, M., Levin, N., Buchholz, A., Schaub, E., Plass, W., Näther, C. & Herges, R. (2019a). Inorg. Chem. XX, XX–XX. [Any update?]  Google Scholar
First citationGutzeit, F., Näther, C. & Herges, R. (2019b). Acta Cryst. E75, 1180–1184.  CSD CrossRef IUCr Journals Google Scholar
First citationHan, Y., Fang, H., Jing, H., Sun, H., Lei, H., Lai, W. & Cao, R. (2016). Angew. Chem. Int. Ed. 55, 5457–5462.  Web of Science CSD CrossRef CAS Google Scholar
First citationHan, Y., Wu, Y., Lai, W. & Cao, R. (2015). Inorg. Chem. 54, 5604–5613.  CSD CrossRef CAS PubMed Google Scholar
First citationJentzen, W., Simpson, M. C., Hobbs, J. D., Song, X., Ema, T., Nelson, N. Y., Medforth, C. J., Smith, K. M., Veyrat, M., Mazzanti, M., Ramasseul, R., Marchon, J., Takeuchi, T., Goddard, W. A. III & Shelnutt, J. A. (1995). J. Am. Chem. Soc. 117, 11085–11097.  CrossRef CAS PubMed Web of Science Google Scholar
First citationJia, S.-L., Jentzen, W., Shang, M., Song, X.-Z., Ma, J.-G., Scheidt, W. R. & Shelnutt, J. A. (1998). Inorg. Chem. 37, 4402–4412.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKadish, K. M., Smith, K. M. & Guilard, R. (2000). Editors. The Porphyrin Handbook – Inorganic, Organometallic & Coordination Chemistry, vol. 3. San Diego, London: Academic Press.  Google Scholar
First citationKim, D. & Holten, D. (1983). Chem. Phys. Lett. 98, 584–589.  CrossRef CAS Web of Science Google Scholar
First citationKim, D., Kirmaier, C. & Holten, D. (1983). Chem. Phys. 75, 305–322.  CrossRef CAS Web of Science Google Scholar
First citationKöbke, A., Gutzeit, F., Röhricht, F., Schlimm, A., Grunwald, J., Tuczek, F., Studniarek, M., Choueikani, F., Otero, E., Ohresser, P., Rohlf, S., Johannsen, S., Diekmann, F., Rossnagel, K., Jasper-Toennies, T., Näther, C., Herges, R., Berndt, R. & Gruber, M. (2019). Nat. Nanotechnol. Submitted.  Google Scholar
First citationKruglik, S. G., Ermolenkov, V. V., Orlovich, V. A. & Turpin, P.-Y. (2003). Chem. Phys. 286, 97–108.  Web of Science CrossRef CAS Google Scholar
First citationKumar, R. & Sankar, M. (2014). Inorg. Chem. 53, 12706–12719.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationLeben, L., Schaub, E., Näther, C. & Herges, R. (2018). Acta Cryst. E74, 1609–1612.  CSD CrossRef IUCr Journals Google Scholar
First citationMaher, A. G., Liu, M. & Nocera, D. G. (2019). Inorg. Chem. 58, 7958–7968.  CrossRef CAS PubMed Google Scholar
First citationMcLees, B. D. & Caughey, W. S. (1968). Biochemistry, 7, 642–652.  CrossRef CAS PubMed Web of Science Google Scholar
First citationOzette, K., Leduc, P., Palacio, M., Bartoli, J.-F., Barkigia, K. M., Fajer, J., Battioni, P. & Mansuy, D. (1997). J. Am. Chem. Soc. 119, 6442–6443.  CSD CrossRef CAS Web of Science Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPaul, D., Melin, F., Hirtz, C., Wytko, J., Ochsenbein, P., Bonin, M., Schenk, K., Maltese, P. & Weiss, J. (2003). Inorg. Chem. 42, 3779–3787.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRamesh, J., Sujatha, S. & Arunkumar, C. (2016). RSC Adv. 6, 63271–63285.  CSD CrossRef CAS Google Scholar
First citationRenner, M. W., Furenlid, L. R., Barkigia, K. M., Forman, A., Shim, H. K., Simpson, D. J., Smith, K. M. & Fajer, J. (1991). J. Am. Chem. Soc. 113, 6891–6898.  CSD CrossRef CAS Web of Science Google Scholar
First citationSenge, M. O. (2011). Acta Cryst. C67, m39–m42.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSolis, B. H., Maher, A. G., Dogutan, D. K., Nocera, D. G. & Hammes-Schiffer, S. (2016). Proc. Natl Acad. Sci. USA, 113, 485–492.  CrossRef CAS PubMed Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe (2008). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationThies, S., Bornholdt, C., Köhler, F., Sönnichsen, F. D., Näther, C., Tuczek, F. & Herges, R. (2010). Chem. Eur. J. 16, 10074–10083.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationVenkataramani, S., Jana, U., Dommaschk, M., Sönnichsen, F. D., Tuczek, F. & Herges, R. (2011). Science, 331, 445–448.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWalker, F. A., Hui, E. & Walker, J. M. (1975). J. Am. Chem. Soc. 97, 2390–2397.  CrossRef CAS Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYu, Q., Liu, D. S., Li, X. J. & Li, J. F. (2015). Acta Cryst. C71, 856–859.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds