research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-{(1E)-[(E)-2-(2,6-Di­chloro­benzyl­­idene)hydrazin-1-yl­­idene]meth­yl}phenol: crystal structure, Hirshfeld surface analysis and computational study

aChemical Research Laboratory, Department of Chemistry, Saurashtra University, Rajkot - 360005, Gujarat, India, bDepartment of Physics, Bhavan's Sheth R. A. College of Science, Ahmedabad, Gujarat - 380001, India, and cResearch Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
*Correspondence e-mail: edwardt@sunway.edu.my

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 3 September 2019; accepted 4 September 2019; online 10 September 2019)

The title Schiff base compound, C14H10Cl2N2O, features an E configuration about each of the C=N imine bonds. Overall, the mol­ecule is approximately planar with the dihedral angle between the central C2N2 residue (r.m.s. deviation = 0.0371 Å) and the peripheral hy­droxy­benzene and chloro­benzene rings being 4.9 (3) and 7.5 (3)°, respectively. Nevertheless, a small twist is evident about the central N—N bond [the C—N—N—C torsion angle = −172.7 (2)°]. An intra­molecular hy­droxy-O—H⋯N(imine) hydrogen bond closes an S(6) loop. In the crystal, ππ stacking inter­actions between hy­droxy- and chloro­benzene rings [inter-centroid separation = 3.6939 (13) Å] lead to a helical supra­molecular chain propagating along the b-axis direction; the chains pack without directional inter­actions between them. The calculated Hirshfeld surfaces point to the importance of H⋯H and Cl⋯H/H⋯Cl contacts to the overall surface, each contributing approximately 29% of all contacts. However, of these only Cl⋯H contacts occur at separations less than the sum of the van der Waals radii. The aforementioned ππ stacking inter­actions contribute 12.0% to the overall surface contacts. The calculation of the inter­action energies in the crystal indicates significant contributions from the dispersion term.

1. Chemical context

Being deprotonable and readily substituted with various residues, Schiff base mol­ecules are prominent as multidentate ligands for the generation of a wide variety of metal complexes. In our laboratory, a key motivation for studies in this area arises from our interest in the Schiff bases themselves and of their metal complexes, which are well-known to possess a wide spectrum of biological activity against disease-causing microorganisms (Tian et al., 2009[Tian, B., He, M., Tang, S., Hewlett, I., Tan, Z., Li, J., Jin, Y. & Yang, M. (2009). Bioorg. Med. Chem. Lett. 19, 2162-2167.]; 2011[Tian, B., He, M., Tan, Z., Tang, S., Hewlett, I., Chen, S., Jin, Y. & Yang, M. (2011). Chem. Biol. Drug Des. 77, 189-198.]). Over and beyond biological considerations, Schiff bases are also suitable for the development of non-linear optical materials because of their solvato-chromaticity (Labidi, 2013[Labidi, N. S. (2013). Int. J. Metals, Article ID 964328 (5 pages).]).

[Scheme 1]

As reported recently, the title compound, (I)[link], a potentially multidentate ligand has anti-bacterial and anti-fungal action against a range of microorganisms (Manawar et al., 2019[Manawar, R. B., Gondaliya, M. B., Mamtora, M. J. & Shah, M. K. (2019). World Sci. News 126, 222-247.]). As a part of complementary structural studies on these mol­ecules, the crystal and mol­ecular structures of (I)[link] are described herein together with a detailed analysis of the calculated Hirshfeld surfaces.

2. Structural commentary

The title Schiff base mol­ecule (I)[link], Fig. 1[link], features two imine bonds, C7=N1 [1.281 (2) Å] and C8=N2 [1.258 (3) Å] with the configuration about each being E. The central N1, N2, C7, C8 chromophore is close to being the planar, exhibiting an r.m.s. deviation of 0.0371 Å, with deviations of 0.0390 (11) and 0.0372 (10) Å above and below the means plane for the N1 and C7 atoms, respectively. There is a small but significant twist about the central N1—N2 bond [1.405 (2) Å] as seen in the value of the C7—N1—N2—C8 torsion angle of −172.7 (2)°. The dihedral angles between the central plane and those through the hy­droxy­benzene [4.9 (3)°] and chloro­benzene [7.5 (3)°] rings, respectively, and that between the outer rings [4.83 (13)°] indicate that to a first approximation, the entire mol­ecule is planar. An intra­molecular hy­droxy-O—H⋯N(imine) hydrogen bond is noted, Table 1[link], which closes an S(6) loop.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯N1 0.87 (3) 1.87 (3) 2.632 (2) 147 (3)
[Figure 1]
Figure 1
The mol­ecular structure of (I)[link] showing the atom-labelling scheme and displacement ellipsoids at the 35% probability level.

3. Supra­molecular features

The most prominent supra­molecular association in the crystal of (I)[link] are ππ stacking inter­actions. These occur between the hy­droxy- and chloro­benzene rings with an inter-centroid separation = 3.6939 (13) Å and angle of inclination = 4.32 (11)° [symmetry operation [{3\over 2}] − x, [{1\over 2}] + y, [{1\over 2}] − z]. As these inter­actions occur at both ends of the mol­ecule and are propagated by screw-symmetry (21), the topology of the resultant chain is helical, Fig. 2[link](a). According to the criteria incorporated in PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), there are no directional inter­actions connecting chains; a view of the unit-cell contents is shown in Fig. 2[link](b). The presence of other, weaker points of contact between atoms and between residues are noted – these are discussed in more detail in Hirshfeld surface analysis.

[Figure 2]
Figure 2
Mol­ecular packing in the crystal of (I)[link]: (a) supra­molecular chain sustained by π(hy­droxy­benzene)–π(chloro­benzene) inter­actions shown as purple dashed lines and (b) a view of the unit-cell contents in a projection down the b axis.

4. Hirshfeld surface analysis

The Hirshfeld surface calculations for (I)[link] were performed employing Crystal Explorer 17 (Turner et al., 2017[Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17. The University of Western Australia.]) and recently published protocols (Tan et al., 2019[Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308-318.]). On the Hirshfeld surface mapped over dnorm in Fig. 3[link], the short inter­atomic contact between the hy­droxy­phenyl-C2 and chloro­phenyl-C12 atoms (Table 2[link]) is characterized as small red spots near them. The Cl1 and Cl2 atoms form short intra-layer Cl⋯H contacts with the H4 and H6 atoms of the hy­droxy­phenyl ring (Table 2[link]) and are represented in Fig. 4[link], showing a reference mol­ecule within the Hirshfeld surface mapped over the electrostatic potential. The Hirshfeld surface mapped with curvedness is shown in Fig. 5[link], which highlights the influence of the short inter­atomic C⋯C contacts in the packing (Table 2[link]) consistent with the edge-to-edge ππ stacking between symmetry related mol­ecules.

Table 2
Summary of short inter­atomic contacts (Å) in (I)a

Contact Distance Symmetry operation
Cl1⋯H6 2.86 [{1\over 2}] + x, [{1\over 2}] − y, −[{1\over 2}] + z
Cl2⋯H4 2.85 [{1\over 2}] + x, [{1\over 2}] − y, [{1\over 2}] + z
O1⋯H7 2.68 [{1\over 2}] + x, [{1\over 2}] − y, [{1\over 2}] + z
C2⋯C12 3.399 (3) 1 − x, − y, 1 − z
Note: (a) The inter­atomic distances were calculated using Crystal Explorer 17 (Turner et al., 2017[Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17. The University of Western Australia.]) whereby the X—H bond lengths are adjusted to their neutron values.
[Figure 3]
Figure 3
A view of the Hirshfeld surface for (I)[link] mapped over dnorm in the range −0.001 to + 1.301 (arbitrary units), highlighting diminutive red spots near the C2 and C12 atoms owing to their participation in C⋯C contacts.
[Figure 4]
Figure 4
A view of the Hirshfeld surface mapped over the electrostatic potential (the red and blue regions represent negative and positive electrostatic potentials, respectively) in the range −0.065 to + 0.039 atomic units, with short inter­atomic Cl⋯H and O⋯H contacts highlighted with red and black dashed dashed lines, respectively.
[Figure 5]
Figure 5
A view of Hirshfeld surface mapped with curvedness showing edge-to-edge ππ overlap through black dashed lines.

The full two-dimensional fingerprint plot for (I)[link], Fig. 6[link](a), and those decomposed into H⋯H, O⋯H/H⋯O, Cl⋯H/H⋯Cl, C⋯C and C⋯H/H⋯C contacts are illustrated in Fig. 6[link](b)-(f), respectively. The percentage contributions from the different inter­atomic contacts to the Hirshfeld surface of (I)[link] are qu­anti­tatively summarized in Table 3[link]. It is evident from the fingerprint plot delineated into H⋯H contacts in Fig. 6[link](b) that their inter­atomic distances are equal to or greater than the sum of their respective van der Waals radii. The fingerprint plot delineated into O⋯H/H⋯O contacts in Fig. 6[link](c) indicates the presence of short inter­atomic O⋯H contacts involving hy­droxy-O1 and phenyl-H7 atoms through the pair of forceps-like tips at de + di < 2.7 Å. The presence of a pair of conical tips at de + di ∼2.9 Å in the fingerprint plot delineated into Cl⋯H/H⋯Cl contacts in Fig. 6[link](d) are due to the Cl⋯H contacts listed in Table 2[link]. In the fingerprint plot decomposed into C⋯C contacts in Fig. 6[link](e), the ππ stacking between symmetry-related hy­droxy- and chloro­benzene rings are characterized as the pair of small forceps-like tips at de + di ∼3.4 Å together with the green points distributed around de = di ∼1.8 Å. The fingerprint plot delineated into C⋯H/H⋯ C contacts in Fig. 6[link](f) confirms the absence of significant C—H⋯ π and C⋯H/H⋯C contacts as the points in the respective delineated plot are distributed farther than sum of their respective van der Waals radii. The small contribution from other inter­atomic contacts to the Hirshfeld surfaces of (I)[link] summarized in Table 3[link] have a negligible effect on the mol­ecular packing.

Table 3
Percentage contributions of inter­atomic contacts to the Hirshfeld surface for (I)

Contact Percentage contribution
H⋯H 29.4
Cl⋯H/H⋯Cl 29.1
O⋯H/H⋯O 7.4
C⋯H/H⋯C 12.0
C⋯C 12.0
N⋯H/H⋯N 4.5
C⋯N/N⋯C 3.9
C⋯Cl/Cl⋯C 0.6
Cl⋯Cl 0.4
Cl⋯N/N⋯Cl 0.4
Cl⋯O/O⋯Cl 0.1
C⋯O/O⋯C 0.1
[Figure 6]
Figure 6
(a) A comparison of the full two-dimensional fingerprint plot for (I)[link] and those delineated into (b) H⋯H, (c) O⋯H/H⋯O, (d) Cl⋯H/H⋯Cl, (e) C⋯C and (f) C⋯H/H⋯C contacts.

5. Computational chemistry

In the present analysis, the pairwise inter­action energies between the mol­ecules in the crystal were calculated by summing up four different energy components (Turner et al., 2017[Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17. The University of Western Australia.]). These comprise electrostatic (Eele), polarization (Epol), dispersion (Edis) and exchange–repulsion (Erep), and were obtained using the wave function calculated at the B3LYP/6-31G(d,p) level of theory. From the inter­molecular inter­action energies collated in Table 4[link], it is apparent that the dispersion energy component has a major influence in the formation of the supra­molecular architecture of (I)[link] as conventional hydrogen bonding is absent. The energy associated with the ππ stacking inter­action between symmetry-related hy­droxy- and chloro­benzene rings is greater than the energy calculated for the Cl⋯H/H⋯Cl and O⋯H/H⋯O contacts. The magnitudes of inter­molecular energies were also represented graphically in Fig. 7[link] by energy frameworks whereby the cylinders join the centroids of mol­ecular pairs using a red, green and blue colour scheme for the Eele, Edisp and Etot components, respectively; the radius of the cylinder is proportional to the magnitude of inter­action energy.

Table 4
Summary of inter­action energies (kJ mol−1) calculated for (I)

Contact R (Å) Eele Epol Edis Erep Etot
C2⋯C12i 4.00 −13.1 −1.4 −77.2 42.7 −55.8
Cg(C1–C6)⋯Cg(C9–C14)ii 8.58 −5.9 −0.9 −40.1 20.6 −29.2
Cl1⋯H6iii +            
Cl2⋯H4iv + 8.53 −10.4 −1.8 −20.9 19.1 −18.7
O1⋯H7iv            
Symmetry codes: (i) 1 − x, −y, 1 − z; (ii) [{3\over 2}] − x, [{1\over 2}] + y, [{1\over 2}] − z; (iii) −[{1\over 2}] + x, [{1\over 2}] − y, −[{1\over 2}] + z; (iv) [{1\over 2}] + x, [{1\over 2}] − y, [{1\over 2}] + z.
[Figure 7]
Figure 7
The energy frameworks calculated for (I)[link] showing the (a) electrostatic potential force, (b) dispersion force and (c) total energy. The energy frameworks were adjusted to the same scale factor of 50 with a cut-off value of 5 kJ mol−1 within 4 × 4 × 4 unit cells

6. Database survey

Given the great inter­est in Schiff bases and their complexation to transition metals and other heavy elements, it is not surprising that there is a wealth of structural data for these compounds in the Cambridge Structural Database (CSD; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). Indeed, there are over 150 `hits' for the basic framework 2-OH-C6—C=N—N=C—C6 featured in (I)[link]. This number is significantly reduced when H atoms are added to the imine-carbon atoms and examples where a second hy­droxy substituent present in the 2-position of the phenyl ring is excluded. Thus, there are eight mol­ecules in the CSD containing the fragment 2-OH-C6-C(H)=N—N=C(H)-C6, excluding two calix(4)arene derivatives. While the formation of the hy­droxy-O—H⋯N(imine) bond is common to all mol­ecules, there is a certain degree of conformational flexibility in the mol­ecules as seen in the relevant geometric data collated in Table 5[link]. From the data in Table 5[link], the mol­ecule reported herein, i.e. (I)[link], exhibits the greatest twist about the central N—N bond, whereas virtually no twist is seen in the central C—N—N—C torsion angle for (V), i.e. −179.8 (2)°. The dihedral angles between the central C2N2 residue and the hy­droxy-substituted benzene ring span a range 2.27 (9)°, again in (V), to 10.58 (4)°, for (IV). A significantly greater range is noted in the dihedral angles between C2N2 and the second benzene ring, i.e. 2.32 (12)° in (VII) to 29.03 (16)° in (II). Accordingly, the greatest deviation from co-planarity among the nine mol­ecules included in Table 5[link] is found in (II) where the dihedral angle between the outer rings is 31.35 (8)°.

Table 5
Geometric data (°) for related 2-OH—C6—C(H)=N—N=C(H)—C6 mol­ecules, i.e. R1—C(H)=N—N=C(H)—R2

Compound R1 R2 C—N—N—C C2N2/R-C6 C2N2/R′-C6 R-C6/R′-C6 REFCODE
(I) 2-OH—C6H4 2,6-Cl2—C6H3 −172.7 (2) 4.9 (3) 7.5 (3) 4.83 (13) a
(II) 2-OH—C6H4 anthracen-9-yl 179.1 (2) 2.84 (13) 29.03 (16) 31.35 (8) KOBXADb
(III) 2-OH—C6H4 2-EtOC(=O)CH2—C6H4 173.32 (14) 7.25 (9) 20.02 (9) 27.26 (5) LOSJIOc
(IV) 2,3-(OH)2-4,6-(t-Bu)2—C6H 4-Me2NC6H4 −178.09 (12) 10.58 (4) 4.61 (4) 15.03 (3) EDIQOAd
(V) 2-naphthol 4-Me2N—C6H4 −179.8 (2) 2.27 (9) 6.49 (13) 7.84 (6) EZUYEFe
(VI) 2-naphthol 4-OH—C6H4 179.30 (16) 3.93 (12) 8.44 (12) 11.91 (6) RUTGEUf
(VII) 2-naphthol 4-Me2N—C6H4 177.98 (15) 4.90 (10) 2.32 (12) 3.82 (6) RUTFETg
(VIII* 2-naphthol 4-OH-3-MeO-C6H4 178.73 (14) 5.78 (10) 15.06 (7) 13.14 (5) POMNIQh
      177.74 (15) 6.65 (9) 12.05 (11) 18.46 (6)  
(IX)* 2-naphthol pyren-1-yl −173 (1) 2.6 (8) 4.4 (7) 6.9 (4) APACEBi
      173 (1) 5.3 (7) 4.7 (7) 7.9 (4)  
* Two independent mol­ecules in the asymmetric unit. References: (a) This work; (b) Patil & Das (2017[Patil, S. K. & Das, D. (2017). Chem. Select 2, 6178-6186.]); (c) Akkurt et al. (2015[Akkurt, M., Mague, J. T., Mohamed, S. K., Ahmed, E. A. & Albayati, M. R. (2015). Acta Cryst. E71, o70-o71.]); (d) Arsenyev et al. (2016[Arsenyev, M. V., Khamaletdinova, N. M., Baranov, E. V., Chesnokov, S. A. & Cherkasov, V. K. (2016). Russ. Chem. Bull. 65, 1805-1813.]); (e) Ghosh, Adhikari et al. (2016[Ghosh, A., Adhikari, S., Ta, S., Banik, A., Dangar, T. K., Mukhopadhyay, S. K., Matalobos, J. S., Brandão, P., Félix, V. & Das, D. (2016). Dalton Trans. 45, 19491-19499.]); (f) Ghosh, Ta et al. (2016[Ghosh, A., Ta, S., Ghosh, M., Karmakar, S., Banik, M., Dangar, T. K., Mukhopadhyay, S. K. & Das, D. (2016). Dalton Trans. 45, 599-606.]); (g) Ghosh, Ta et al. (2016[Ghosh, A., Ta, S., Ghosh, M., Karmakar, S., Banik, M., Dangar, T. K., Mukhopadhyay, S. K. & Das, D. (2016). Dalton Trans. 45, 599-606.]); (h) Kumari et al. (2014[Kumari, B., Ghosh, A. & Das, D. (2014). Private communication (refcode: POMNIQ). CCDC, Cambridge, England.]); (i) Ghosh, Ganguly et al. (2016[Ghosh, S., Ganguly, A., Uddin, M. R., Mandal, S., Alam, M. A. & Guchhait, N. (2016). Dalton Trans. 45, 11042-11051.])

7. Synthesis and crystallization

Compound (I)[link] was prepared as reported in the literature from the condensation reaction of 2,6-di­chloro­benzaldehyde and hydrazine hydrate (Manawar et al., 2019[Manawar, R. B., Gondaliya, M. B., Mamtora, M. J. & Shah, M. K. (2019). World Sci. News 126, 222-247.]). Crystals in the form of light-yellow blocks for the X-ray study were grown by the slow evaporation of its chloro­form solution.

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 6[link]. Carbon-bound H-atoms were placed in calculated positions (C—H = 0.93 Å) and were included in the refinement in the riding-model approximation, with Uiso(H) set to 1.2Ueq(C). The position of the O-bound H atom was refined with Uiso(H) set to 1.5Ueq(O).

Table 6
Experimental details

Crystal data
Chemical formula C14H10Cl2N2O
Mr 293.14
Crystal system, space group Monoclinic, P21/n
Temperature (K) 296
a, b, c (Å) 8.5614 (8), 15.6055 (12), 10.0527 (9)
β (°) 95.031 (3)
V3) 1337.9 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.48
Crystal size (mm) 0.35 × 0.30 × 0.30
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.846, 0.867
No. of measured, independent and observed [I > 2σ(I)] reflections 10171, 3185, 2244
Rint 0.023
(sin θ/λ)max−1) 0.666
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.138, 1.05
No. of reflections 3185
No. of parameters 175
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.37, −0.28
Computer programs: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2/SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

2-{(1E)-[(E)-2-(2,6-Dichlorobenzylidene)hydrazin-1-\ ylidene]methyl}phenol top
Crystal data top
C14H10Cl2N2OF(000) = 600
Mr = 293.14Dx = 1.455 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.5614 (8) ÅCell parameters from 4447 reflections
b = 15.6055 (12) Åθ = 4.8–56.3°
c = 10.0527 (9) ŵ = 0.48 mm1
β = 95.031 (3)°T = 296 K
V = 1337.9 (2) Å3Block, light-yellow
Z = 40.35 × 0.30 × 0.30 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2244 reflections with I > 2σ(I)
Radiation source: X-ray tubeRint = 0.023
ω and φ scanθmax = 28.3°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1111
Tmin = 0.846, Tmax = 0.867k = 1520
10171 measured reflectionsl = 1112
3185 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: mixed
wR(F2) = 0.138H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.069P)2 + 0.4482P]
where P = (Fo2 + 2Fc2)/3
3185 reflections(Δ/σ)max < 0.001
175 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.28 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.37913 (8)0.06610 (4)0.23254 (7)0.0669 (2)
Cl20.90894 (8)0.10632 (4)0.57108 (7)0.0646 (2)
O10.8423 (2)0.25607 (11)0.52671 (19)0.0636 (5)
H3O0.808 (4)0.206 (2)0.501 (3)0.095*
N10.66249 (19)0.14415 (10)0.39038 (17)0.0395 (4)
N20.6061 (2)0.06313 (10)0.34827 (19)0.0462 (5)
C10.7508 (2)0.31651 (12)0.4623 (2)0.0406 (5)
C20.6261 (2)0.29483 (12)0.36883 (19)0.0343 (4)
C30.5366 (3)0.36160 (13)0.3082 (2)0.0449 (5)
H30.45340.34860.24570.054*
C40.5688 (3)0.44563 (15)0.3390 (2)0.0555 (6)
H40.50730.48900.29840.067*
C50.6932 (3)0.46555 (14)0.4305 (3)0.0590 (7)
H50.71600.52260.45050.071*
C60.7839 (3)0.40175 (14)0.4924 (3)0.0535 (6)
H60.86710.41580.55430.064*
C70.5859 (2)0.20707 (12)0.3350 (2)0.0378 (4)
H70.50260.19600.27160.045*
C80.6741 (2)0.00413 (12)0.4161 (2)0.0397 (5)
H80.74960.02060.48340.048*
C90.6461 (2)0.08822 (11)0.39956 (18)0.0333 (4)
C100.5215 (2)0.12658 (13)0.3210 (2)0.0389 (5)
C110.5039 (3)0.21481 (14)0.3119 (2)0.0453 (5)
H110.41960.23810.25940.054*
C120.6111 (3)0.26778 (13)0.3805 (2)0.0487 (5)
H120.59980.32690.37340.058*
C130.7354 (3)0.23366 (13)0.4599 (2)0.0459 (5)
H130.80800.26940.50640.055*
C140.7504 (2)0.14562 (12)0.4692 (2)0.0387 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0580 (4)0.0514 (4)0.0850 (5)0.0036 (3)0.0299 (3)0.0108 (3)
Cl20.0631 (4)0.0443 (3)0.0800 (5)0.0068 (3)0.0304 (3)0.0017 (3)
O10.0630 (11)0.0375 (8)0.0835 (13)0.0107 (8)0.0322 (9)0.0042 (8)
N10.0445 (9)0.0262 (8)0.0470 (10)0.0012 (7)0.0009 (8)0.0012 (7)
N20.0586 (11)0.0274 (8)0.0503 (11)0.0011 (8)0.0076 (9)0.0015 (7)
C10.0429 (11)0.0321 (10)0.0461 (12)0.0060 (8)0.0000 (9)0.0012 (8)
C20.0393 (10)0.0284 (9)0.0356 (10)0.0048 (8)0.0047 (8)0.0015 (8)
C30.0543 (12)0.0381 (11)0.0414 (11)0.0098 (9)0.0003 (10)0.0031 (9)
C40.0782 (17)0.0357 (11)0.0520 (14)0.0177 (11)0.0023 (12)0.0066 (10)
C50.0847 (18)0.0287 (10)0.0629 (15)0.0041 (11)0.0026 (13)0.0043 (10)
C60.0620 (15)0.0364 (11)0.0598 (14)0.0004 (10)0.0085 (12)0.0088 (10)
C70.0413 (10)0.0338 (10)0.0373 (10)0.0012 (8)0.0020 (8)0.0001 (8)
C80.0389 (10)0.0315 (9)0.0478 (12)0.0012 (8)0.0020 (9)0.0005 (9)
C90.0376 (10)0.0292 (9)0.0333 (10)0.0001 (7)0.0051 (8)0.0013 (7)
C100.0419 (11)0.0359 (10)0.0381 (10)0.0009 (8)0.0005 (8)0.0033 (8)
C110.0551 (13)0.0380 (11)0.0424 (12)0.0082 (9)0.0017 (10)0.0042 (9)
C120.0688 (15)0.0285 (10)0.0496 (13)0.0054 (10)0.0106 (11)0.0019 (9)
C130.0608 (14)0.0309 (10)0.0459 (12)0.0078 (9)0.0041 (10)0.0041 (9)
C140.0444 (11)0.0331 (10)0.0382 (11)0.0016 (8)0.0021 (9)0.0006 (8)
Geometric parameters (Å, º) top
Cl1—C101.725 (2)C5—C61.377 (3)
Cl2—C141.739 (2)C5—H50.9300
O1—C11.354 (2)C6—H60.9300
O1—H3O0.87 (3)C7—H70.9300
N1—C71.281 (2)C8—C91.468 (3)
N1—N21.405 (2)C8—H80.9300
N2—C81.258 (3)C9—C141.407 (3)
C1—C61.388 (3)C9—C101.405 (3)
C1—C21.401 (3)C10—C111.387 (3)
C2—C31.401 (3)C11—C121.375 (3)
C2—C71.445 (3)C11—H110.9300
C3—C41.370 (3)C12—C131.379 (3)
C3—H30.9300C12—H120.9300
C4—C51.380 (4)C13—C141.382 (3)
C4—H40.9300C13—H130.9300
C1—O1—H3O109 (2)C2—C7—H7119.3
C7—N1—N2114.17 (16)N2—C8—C9126.41 (18)
C8—N2—N1111.38 (17)N2—C8—H8116.8
O1—C1—C6117.72 (19)C9—C8—H8116.8
O1—C1—C2121.84 (17)C14—C9—C10115.23 (17)
C6—C1—C2120.44 (19)C14—C9—C8118.56 (17)
C3—C2—C1117.91 (18)C10—C9—C8126.20 (17)
C3—C2—C7119.52 (18)C11—C10—C9122.19 (18)
C1—C2—C7122.57 (17)C11—C10—Cl1116.18 (16)
C4—C3—C2121.5 (2)C9—C10—Cl1121.61 (15)
C4—C3—H3119.3C12—C11—C10120.0 (2)
C2—C3—H3119.3C12—C11—H11120.0
C3—C4—C5119.6 (2)C10—C11—H11120.0
C3—C4—H4120.2C13—C12—C11120.35 (18)
C5—C4—H4120.2C13—C12—H12119.8
C6—C5—C4120.7 (2)C11—C12—H12119.8
C6—C5—H5119.7C12—C13—C14119.0 (2)
C4—C5—H5119.7C12—C13—H13120.5
C5—C6—C1119.9 (2)C14—C13—H13120.5
C5—C6—H6120.1C13—C14—C9123.19 (19)
C1—C6—H6120.1C13—C14—Cl2117.00 (16)
N1—C7—C2121.47 (18)C9—C14—Cl2119.80 (14)
N1—C7—H7119.3
C7—N1—N2—C8172.7 (2)N2—C8—C9—C14169.6 (2)
O1—C1—C2—C3179.3 (2)N2—C8—C9—C1011.4 (4)
C6—C1—C2—C30.3 (3)C14—C9—C10—C110.6 (3)
O1—C1—C2—C70.3 (3)C8—C9—C10—C11179.6 (2)
C6—C1—C2—C7179.4 (2)C14—C9—C10—Cl1178.08 (15)
C1—C2—C3—C40.2 (3)C8—C9—C10—Cl10.9 (3)
C7—C2—C3—C4178.9 (2)C9—C10—C11—C120.4 (3)
C2—C3—C4—C50.8 (4)Cl1—C10—C11—C12179.23 (18)
C3—C4—C5—C60.9 (4)C10—C11—C12—C130.8 (3)
C4—C5—C6—C10.3 (4)C11—C12—C13—C140.0 (3)
O1—C1—C6—C5179.4 (2)C12—C13—C14—C91.1 (3)
C2—C1—C6—C50.3 (4)C12—C13—C14—Cl2179.81 (17)
N2—N1—C7—C2178.69 (18)C10—C9—C14—C131.4 (3)
C3—C2—C7—N1178.4 (2)C8—C9—C14—C13179.5 (2)
C1—C2—C7—N10.6 (3)C10—C9—C14—Cl2179.53 (15)
N1—N2—C8—C9179.54 (19)C8—C9—C14—Cl20.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···N10.87 (3)1.87 (3)2.632 (2)147 (3)
Summary of short interatomic contacts (Å) in (I)a top
ContactDistanceSymmetry operation
Cl1···H62.86-1/2 + x, 1/2 - y, -1/2 + z
Cl2···H42.851/2 + x, 1/2 - y, 1/2 + z
O1···H72.681/2 + x, 1/2 - y, 1/2 + z
C2···C123.399 (3)1 - x, - y, 1 - z
Note: (a) The interatomic distances were calculated using Crystal Explorer 17 (Turner et al., 2017) whereby the X—H bond lengths are adjusted to their neutron values.
Percentage contributions of interatomic contacts to the Hirshfeld surface for (I) top
ContactPercentage contribution
H···H29.4
Cl···H/H···Cl29.1
O···H/H···O7.4
C···H/H···C12.0
C···C12.0
N···H/H···N4.5
C···N/N···C3.9
C···Cl/Cl···C0.6
Cl···Cl0.4
Cl···N/N···Cl0.4
Cl···O/O···Cl0.1
C···O/O···C0.1
Summary of interaction energies (kJ mol-1) calculated for (I) top
ContactR (Å)EeleEpolEdisErepEtot
C2···C12i4.00-13.1-1.4-77.242.7-55.8
Cg(C1–C6)···Cg(C9–C14)ii8.58-5.9-0.9-40.120.6-29.2
Cl1···H6iii +
Cl2···H4iv +8.53-10.4-1.8-20.919.1-18.7
O1···H7iv
Symmetry codes: (i) 1 - x, -y, 1 - z; (ii) 3/2 - x, 1/2 + y, 1/2 - z; (iii) -1/2 + x, 1/2 - y, -1/2 + z; (iv) 1/2 + x, 1/2 - y, 1/2 + z.
Geometric data (°) for related 2-OH-C6—C(H)N—NC(H)—C6 molecules, i.e. R1—C(H)N—NC(H)—R2 top
CompoundR1R2C—N—N—CC2N2/R-C6C2N2/R'-C6R-C6/R'-C6REFCODE
(I)2-OH-C6H42,6-Cl2-C6H3-172.7 (2)4.9 (3)7.5 (3)4.83 (13)a
(II)2-OH-C6H4anthracen-9-yl179.1 (2)2.84 (13)29.03 (16)31.35 (8)KOBXADb
(III)2-OH-C6H42-EtOC(O)CH2-C6H4173.32 (14)7.25 (9)20.02 (9)27.26 (5)LOSJIOc
(IV)2,3-(OH)2-4,6-(t-Bu)2-C6H4-Me2NC6H4-178.09 (12)10.58 (4)4.61 (4)15.03 (3)EDIQOAd
(V)2-naphthol4-Me2N-C6H4-179.8 (2)2.27 (9)6.49 (13)7.84 (6)EZUYEFe
(VI)2-naphthol4-OH-C6H4179.30 (16)3.93 (12)8.44 (12)11.91 (6)RUTGEUf
(VII)2-naphthol4-Me2N-C6H4177.98 (15)4.90 (10)2.32 (12)3.82 (6)RUTFETg
(VIII*2-naphthol4-OH-3-MeO-C6H4178.73 (14)5.78 (10)15.06 (7)13.14 (5)POMNIQh
177.74 (15)6.65 (9)12.05 (11)18.46 (6)
(IX)*2-naphtholpyren-1-yl-173 (1)2.6 (8)4.4 (7)6.9 (4)APACEBi
173 (1)5.3 (7)4.7 (7)7.9 (4)
* Two independent molecules in the asymmetric unit. References: (a) This work; (b) Patil & Das (2017); (c) Akkurt et al. (2015); (d) Arsenyev et al. (2016); (e) Ghosh, Adhikari et al. (2016); (f) Ghosh, Ta et al. (2016); (g) Ghosh, Ta et al. (2016); (h) Kumari et al. (2014); (i) Ghosh, Ganguly et al. (2016)
 

Footnotes

Additional correspondence author, email: drmks2000hotmail.com.

Acknowledgements

The authors thank the Department of Chemistry, Saurashtra University, Rajkot, Gujarat, India, for access to the chemical synthesis laboratory and to the Sophisticated Test and Instrumentation Centre (SITC), Kochi, Kerala, India, for providing the X-ray intensity data.

Funding information

Crystallographic research at Sunway University is supported by Sunway University Sdn Bhd (grant No. STR-RCTR-RCCM-001-2019).

References

First citationAkkurt, M., Mague, J. T., Mohamed, S. K., Ahmed, E. A. & Albayati, M. R. (2015). Acta Cryst. E71, o70–o71.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationArsenyev, M. V., Khamaletdinova, N. M., Baranov, E. V., Chesnokov, S. A. & Cherkasov, V. K. (2016). Russ. Chem. Bull. 65, 1805–1813.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGhosh, A., Adhikari, S., Ta, S., Banik, A., Dangar, T. K., Mukhopadhyay, S. K., Matalobos, J. S., Brandão, P., Félix, V. & Das, D. (2016). Dalton Trans. 45, 19491–19499.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGhosh, A., Ta, S., Ghosh, M., Karmakar, S., Banik, M., Dangar, T. K., Mukhopadhyay, S. K. & Das, D. (2016). Dalton Trans. 45, 599–606.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGhosh, S., Ganguly, A., Uddin, M. R., Mandal, S., Alam, M. A. & Guchhait, N. (2016). Dalton Trans. 45, 11042–11051.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKumari, B., Ghosh, A. & Das, D. (2014). Private communication (refcode: POMNIQ). CCDC, Cambridge, England.  Google Scholar
First citationLabidi, N. S. (2013). Int. J. Metals, Article ID 964328 (5 pages).  Google Scholar
First citationManawar, R. B., Gondaliya, M. B., Mamtora, M. J. & Shah, M. K. (2019). World Sci. News 126, 222–247.  Google Scholar
First citationPatil, S. K. & Das, D. (2017). Chem. Select 2, 6178–6186.  CAS Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTian, B., He, M., Tan, Z., Tang, S., Hewlett, I., Chen, S., Jin, Y. & Yang, M. (2011). Chem. Biol. Drug Des. 77, 189–198.  Web of Science CrossRef CAS PubMed Google Scholar
First citationTian, B., He, M., Tang, S., Hewlett, I., Tan, Z., Li, J., Jin, Y. & Yang, M. (2009). Bioorg. Med. Chem. Lett. 19, 2162–2167.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTurner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17. The University of Western Australia.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds