research communications
and Hirshfeld surface analysis of 3-amino-5-phenylthiazolidin-2-iminium bromide
aOrganic Chemistry Department, Baku State University, Z. Xalilov str. 23, Az, 1148 Baku, Azerbaijan, bDepartment of Physics and Chemistry, "Composite Materials" Scientific Research Center, Azerbaijan State Economic University (UNEC), H. Aliyev str. 135, Az 1063, Baku, Azerbaijan, cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and dDepartment of Theoretical and Industrial Heat Engineering (TPT), National Technical University of Ukraine, "Igor Sikorsky Kyiv Polytechnic Institute", 03056, Kyiv, Ukraine
*Correspondence e-mail: mustford@ukr.net
In the cation of the title salt, C9H12N3S+·Br−, the thiazolidine ring adopts an with the C atom adjacent to the phenyl ring as the flap. In the crystal, N—H⋯Br hydrogen bonds link the components into a three-dimensional network. Weak π–π stacking interactions between the phenyl rings of adjacent cations also contribute to the molecular packing. A Hirshfeld surface analysis was conducted to quantify the contributions of the different intermolecular interactions and contacts.
Keywords: crystal structure; charge-assisted hydrogen bonding; thiazolidine ring; Hirshfeld surface analysis.
CCDC reference: 1955268
1. Chemical context
As well as their synthetic utility, thiazolidine derivatives possess a broad spectrum of biological activities such as antimalarial, antibacterial, antimicrobial, anti-inflammatory, anticancer, etc. The biological activities of compounds containing a thiazolidine core, such as 1,3-thiazolidines, 2,4-dione-, 4-oxo-thiazolidine, etc. were summarized in a recent review (Makwana & Malani, 2017). On the other hand, as these N-containing ligands have been widely used in the synthesis of coordination compounds (Gurbanov et al., 2018a,b). The non-covalent donor or acceptor properties of N-containing ligands can also contribute to their among other properties (Mahmudov et al., 2019; Zubkov et al., 2018). As part of our ongoing work in this area, we now describe the synthesis and structure of the title molecular salt, C9H12N3S+·Br−, (I).
2. Structural commentary
In the cation of (I) (Fig. 1), the thiazolidine ring (S1/N1/C1–C3) adopts an with puckering parameters of Q(2) = 0.317 (2) Å and φ(2) = 225.2 (4)°: the flap atom is C1. In the arbitrarily chosen C1 has an R configuration, but symmetry generates a in the crystal. The dihedral angle between the mean plane of the thiazolidine ring (all atoms) and the phenyl ring (C4–C9) is 89.27 (13)°.
3. Supramolecular features and Hirshfeld surface analysis
In the crystal, each cation forms N—H⋯Br hydrogen bonds (Table 1) as well as aromatic π–π stacking interactions between the phenyl rings of adjacent cations [Cg2⋯Cg2iv = 3.7758 (16) Å; symmetry code: (iv) 1 − x, 1 − y, 2 − z; where Cg2 is the centroid of the phenyl ring of the cation]: chains of cations form along the [101] direction (Fig. 2). Taking into account the hydrogen bonding and π-π stacking, the overall connectivity is three-dimensional.
Hirshfeld surface analysis (Spackman & Jayatilaka, 2009; Spackman & McKinnon, 2002) was carried out with CrystalExplorer3.1 (Wolff et al., 2012) to further investigate the presence of hydrogen bonds and intermolecular interactions in the (see supporting information). Fig. 3(a) shows the two-dimensional fingerprint of the sum of the contacts contributing to the Hirshfeld surface represented in normal mode while those delineated into H⋯H (41.5%), Br⋯N/N⋯Br (24.1%), C⋯H/H⋯C (13.8%) and S⋯H/H⋯S (11.7%) contacts, respectively, are shown in Fig. 3b–e. All contacts are listed in Table 2.
|
4. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.40, February 2019; Groom et al., 2016) for 2-thiazolidiniminium compounds gave eight hits, viz. BOBWIB (Khalilov et al., 2019), UDELUN (Akkurt et al., 2018), WILBIC (Marthi et al., 1994), WILBOI (Marthi et al., 1994), WILBOI01 (Marthi et al., 1994), YITCEJ (Martem'yanova et al., 1993a), YITCAF (Martem'yanova et al., 1993b) and YOPLUK (Marthi et al., 1995).
In the crystal of BOBWIB (Khalilov et al., 2019), the thiazolidine ring adopts an In the crystal, centrosymmetrically related cations and anions are linked into dimeric units via N—H⋯Br hydrogen bonds, which are further connected by weak C—H⋯Br hydrogen bonds into chains parallel to [110]. In the crystal of UDELUN (Akkurt et al., 2018), C—H⋯Br and N—H⋯Br hydrogen bonds link the components into a three-dimensional network with the cations and anions stacked along the b-axis direction. Weak C—H⋯π interactions, which only involve the minor disorder component of the ring, also contribute to the molecular packing. In addition, there are also inversion-related Cl⋯Cl halogen bonds and C—Cl⋯π(ring) contacts. In the other structures, the 3-N atom carries a C substituent: the first three crystal structures were determined for racemic (WILBIC; Marthi et al., 1994) and two optically active samples (WILBOI and WILBOI01; Marthi et al., 1994) of 3-(2′-chloro-2′-phenylethyl)-2-thiazolidiniminium p-toluenesulfonate. In all three structures, the most disordered fragment of these molecules is the asymmetric C atom and the Cl atom attached to it. The disorder of the cation in the racemate corresponds to the presence of both enantiomers at each site in the ratio 0.821 (3): 0.179 (3). The system of hydrogen bonds connecting two cations and two anions into 12-membered rings is identical in the racemic and in the optically active crystals. YITCEJ (Martem'yanova et al., 1993a) is a product of the interaction of 2-amino-5-methylthiazoline with methyl iodide, with alkylation at the endocylic nitrogen atom, while YITCAF (Martem'yanova et al., 1993b) is a product of the reaction of 3-nitro-5-methoxy-, 3-nitro-5-chloro-, and 3-bromo-5-nitrosalicylaldehyde with the heterocyclic base to form the salt-like complexes.
5. Synthesis and crystallization
To a solution of 2.2 mmol (0.6 g) (1,2-dibromoethyl)benzene in 20 ml of ethanol were added 2.3 mmol (0.3 g) of thiosemicarbazide hydrochloride; 3-4 drops of piperidine were added and the mixture was refluxed for 7 h. The reaction mixture was cooled to room temperature and the solid product was precipitated from solution, collected by filtration and recrystallized from ethanol solution to give colourless crystals of (I) with a yield of 88%, m.p. = 468 K. Analysis calculated for C9H12BrN3S: C 39.43; H 4.41; N 15.33. Found: C 39.40; H 4.39; N 15.30%. 1H NMR (300 MHz, DMSO-d6) : 4.16 (q, 1H, CH2,3JH–H = 5.4); 4.45 (t, 1H, CH2, 3JH–H = 8.4); 5.25 (t, 1H, CH-Ar, 3JH–H = 5.4); 7.32–7.50 (m, 5H, 5Ar-H); 9.12 (s, 2H, NH2); 9,78 (s, 1H, NH=). 13C NMR (75 MHz, DMSO-d6): 44.42, 62.06, 127.59, 128.76, 129.17, 138.85, 168.53. MS (ESI), m/z: 194.28 [C9H12N3S]+ and 79.88 Br−.
6. Refinement
Crystal data, data collection and structure . All H atoms on C atoms were placed at calculated positions (C—H = 0.95–1.00 Å) and refined using a riding model. The N-bound hydrogen atoms were located from difference-Fourier maps and relocated to idealized locations (N—H = 0.90 Å) and refined as riding atoms. The constraint Uiso(H) = 1.2Ueq(carrier) was applied in all cases. One outlier (01) was omitted in the final cycles of refinement.
details are summarized in Table 3
|
Supporting information
CCDC reference: 1955268
https://doi.org/10.1107/S2056989019013069/hb7855sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019013069/hb7855Isup2.hkl
Hirshfeld surface analysis figures. DOI: https://doi.org/10.1107/S2056989019013069/hb7855sup3.docx
Supporting information file. DOI: https://doi.org/10.1107/S2056989019013069/hb7855Isup4.cml
Data collection: APEX2 (Bruker, 2003); cell
SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2003).C9H12N3S+·Br− | F(000) = 552 |
Mr = 274.19 | Dx = 1.626 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 10.5986 (5) Å | Cell parameters from 3357 reflections |
b = 8.7168 (3) Å | θ = 2.9–26.3° |
c = 13.0308 (5) Å | µ = 3.82 mm−1 |
β = 111.513 (2)° | T = 150 K |
V = 1119.99 (8) Å3 | Block, colorless |
Z = 4 | 0.18 × 0.14 × 0.11 mm |
Bruker APEXII CCD diffractometer | 1998 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.029 |
Absorption correction: multi-scan (SADABS; Bruker, 2003) | θmax = 26.4°, θmin = 2.9° |
Tmin = 0.534, Tmax = 0.661 | h = −13→13 |
8461 measured reflections | k = −10→10 |
2303 independent reflections | l = −16→16 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.027 | Hydrogen site location: mixed |
wR(F2) = 0.070 | H-atom parameters constrained |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0381P)2 + 0.5896P] where P = (Fo2 + 2Fc2)/3 |
2303 reflections | (Δ/σ)max = 0.001 |
127 parameters | Δρmax = 0.61 e Å−3 |
0 restraints | Δρmin = −0.33 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.14662 (3) | 0.38142 (3) | 0.26547 (2) | 0.02369 (10) | |
S1 | 0.31116 (7) | 0.46985 (7) | 0.58677 (5) | 0.02034 (15) | |
N1 | 0.4802 (2) | 0.6893 (2) | 0.61070 (15) | 0.0159 (4) | |
N2 | 0.5487 (2) | 0.8083 (2) | 0.57955 (15) | 0.0183 (4) | |
H2A | 0.635551 | 0.776693 | 0.607350 | 0.022* | |
H2B | 0.535901 | 0.891753 | 0.615230 | 0.022* | |
N3 | 0.3577 (2) | 0.6293 (2) | 0.42850 (16) | 0.0179 (4) | |
H3A | 0.292719 | 0.572157 | 0.379225 | 0.021* | |
H3B | 0.390509 | 0.709317 | 0.402415 | 0.021* | |
C1 | 0.4372 (3) | 0.5007 (3) | 0.72776 (19) | 0.0214 (5) | |
H1A | 0.513995 | 0.427032 | 0.741377 | 0.026* | |
C2 | 0.4890 (3) | 0.6645 (3) | 0.72463 (19) | 0.0189 (5) | |
H2C | 0.432008 | 0.739798 | 0.744749 | 0.023* | |
H2D | 0.583832 | 0.675080 | 0.776759 | 0.023* | |
C3 | 0.3879 (2) | 0.6085 (3) | 0.53385 (19) | 0.0154 (5) | |
C4 | 0.3746 (2) | 0.4760 (3) | 0.81375 (18) | 0.0168 (5) | |
C5 | 0.4280 (3) | 0.3584 (3) | 0.8912 (2) | 0.0212 (5) | |
H5A | 0.497585 | 0.293462 | 0.886358 | 0.025* | |
C6 | 0.3773 (3) | 0.3379 (3) | 0.97571 (19) | 0.0208 (5) | |
H6A | 0.412191 | 0.258553 | 1.028582 | 0.025* | |
C7 | 0.2769 (3) | 0.4330 (3) | 0.9816 (2) | 0.0225 (5) | |
H7A | 0.244208 | 0.420521 | 1.039905 | 0.027* | |
C8 | 0.2230 (3) | 0.5463 (3) | 0.9041 (2) | 0.0265 (6) | |
H8A | 0.152610 | 0.610477 | 0.908407 | 0.032* | |
C9 | 0.2715 (3) | 0.5662 (3) | 0.8203 (2) | 0.0249 (6) | |
H9A | 0.233208 | 0.643424 | 0.766388 | 0.030* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.02460 (15) | 0.02084 (15) | 0.02181 (15) | −0.00181 (11) | 0.00401 (11) | −0.00181 (10) |
S1 | 0.0263 (3) | 0.0175 (3) | 0.0173 (3) | −0.0062 (3) | 0.0081 (2) | −0.0012 (2) |
N1 | 0.0197 (10) | 0.0165 (10) | 0.0132 (9) | −0.0036 (8) | 0.0078 (8) | −0.0004 (8) |
N2 | 0.0208 (11) | 0.0162 (10) | 0.0198 (10) | −0.0030 (9) | 0.0099 (9) | −0.0004 (8) |
N3 | 0.0239 (11) | 0.0151 (10) | 0.0144 (10) | −0.0011 (9) | 0.0066 (8) | −0.0014 (8) |
C1 | 0.0215 (13) | 0.0233 (13) | 0.0184 (12) | 0.0033 (11) | 0.0061 (10) | 0.0023 (10) |
C2 | 0.0225 (13) | 0.0215 (12) | 0.0126 (11) | −0.0041 (10) | 0.0064 (10) | −0.0018 (10) |
C3 | 0.0176 (12) | 0.0121 (11) | 0.0178 (12) | 0.0027 (9) | 0.0082 (10) | −0.0009 (9) |
C4 | 0.0171 (12) | 0.0193 (12) | 0.0131 (11) | −0.0054 (10) | 0.0046 (9) | −0.0010 (9) |
C5 | 0.0175 (12) | 0.0183 (12) | 0.0255 (13) | −0.0020 (10) | 0.0051 (10) | −0.0066 (10) |
C6 | 0.0244 (13) | 0.0193 (12) | 0.0147 (12) | −0.0050 (10) | 0.0027 (10) | 0.0016 (10) |
C7 | 0.0215 (13) | 0.0253 (13) | 0.0214 (13) | −0.0100 (11) | 0.0085 (11) | −0.0029 (11) |
C8 | 0.0208 (13) | 0.0258 (14) | 0.0335 (15) | −0.0012 (11) | 0.0108 (12) | −0.0007 (12) |
C9 | 0.0219 (13) | 0.0246 (13) | 0.0266 (14) | 0.0041 (11) | 0.0070 (11) | 0.0036 (11) |
S1—C3 | 1.735 (2) | C2—H2C | 0.9900 |
S1—C1 | 1.853 (2) | C2—H2D | 0.9900 |
N1—C3 | 1.318 (3) | C4—C9 | 1.374 (4) |
N1—N2 | 1.408 (3) | C4—C5 | 1.404 (3) |
N1—C2 | 1.469 (3) | C5—C6 | 1.403 (4) |
N2—H2A | 0.9000 | C5—H5A | 0.9500 |
N2—H2B | 0.9000 | C6—C7 | 1.373 (4) |
N3—C3 | 1.303 (3) | C6—H6A | 0.9500 |
N3—H3A | 0.9000 | C7—C8 | 1.378 (4) |
N3—H3B | 0.9000 | C7—H7A | 0.9500 |
C1—C4 | 1.513 (3) | C8—C9 | 1.378 (4) |
C1—C2 | 1.535 (4) | C8—H8A | 0.9500 |
C1—H1A | 1.0000 | C9—H9A | 0.9500 |
C3—S1—C1 | 91.16 (11) | N3—C3—N1 | 123.6 (2) |
C3—N1—N2 | 119.48 (18) | N3—C3—S1 | 123.08 (18) |
C3—N1—C2 | 116.3 (2) | N1—C3—S1 | 113.33 (17) |
N2—N1—C2 | 123.48 (18) | C9—C4—C5 | 119.6 (2) |
N1—N2—H2A | 102.6 | C9—C4—C1 | 122.7 (2) |
N1—N2—H2B | 104.8 | C5—C4—C1 | 117.7 (2) |
H2A—N2—H2B | 111.4 | C6—C5—C4 | 119.2 (2) |
C3—N3—H3A | 120.2 | C6—C5—H5A | 120.4 |
C3—N3—H3B | 121.7 | C4—C5—H5A | 120.4 |
H3A—N3—H3B | 117.4 | C7—C6—C5 | 119.6 (2) |
C4—C1—C2 | 114.2 (2) | C7—C6—H6A | 120.2 |
C4—C1—S1 | 111.16 (17) | C5—C6—H6A | 120.2 |
C2—C1—S1 | 104.09 (16) | C6—C7—C8 | 120.9 (2) |
C4—C1—H1A | 109.1 | C6—C7—H7A | 119.5 |
C2—C1—H1A | 109.1 | C8—C7—H7A | 119.5 |
S1—C1—H1A | 109.1 | C9—C8—C7 | 119.7 (3) |
N1—C2—C1 | 105.85 (19) | C9—C8—H8A | 120.1 |
N1—C2—H2C | 110.6 | C7—C8—H8A | 120.1 |
C1—C2—H2C | 110.6 | C4—C9—C8 | 120.9 (2) |
N1—C2—H2D | 110.6 | C4—C9—H9A | 119.5 |
C1—C2—H2D | 110.6 | C8—C9—H9A | 119.5 |
H2C—C2—H2D | 108.7 | ||
C3—S1—C1—C4 | 147.17 (19) | C2—C1—C4—C9 | 53.9 (3) |
C3—S1—C1—C2 | 23.78 (17) | S1—C1—C4—C9 | −63.5 (3) |
C3—N1—C2—C1 | 26.7 (3) | C2—C1—C4—C5 | −124.2 (2) |
N2—N1—C2—C1 | −163.3 (2) | S1—C1—C4—C5 | 118.4 (2) |
C4—C1—C2—N1 | −152.1 (2) | C9—C4—C5—C6 | −1.7 (4) |
S1—C1—C2—N1 | −30.7 (2) | C1—C4—C5—C6 | 176.5 (2) |
N2—N1—C3—N3 | 1.9 (3) | C4—C5—C6—C7 | −0.2 (4) |
C2—N1—C3—N3 | 172.3 (2) | C5—C6—C7—C8 | 1.5 (4) |
N2—N1—C3—S1 | −178.62 (16) | C6—C7—C8—C9 | −0.9 (4) |
C2—N1—C3—S1 | −8.2 (3) | C5—C4—C9—C8 | 2.2 (4) |
C1—S1—C3—N3 | 169.2 (2) | C1—C4—C9—C8 | −175.8 (2) |
C1—S1—C3—N1 | −10.29 (19) | C7—C8—C9—C4 | −1.0 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2A···Br1i | 0.90 | 2.68 | 3.530 (2) | 158 |
N2—H2B···Br1ii | 0.90 | 2.73 | 3.524 (2) | 148 |
N3—H3A···Br1 | 0.90 | 2.38 | 3.271 (2) | 169 |
N3—H3B···Br1iii | 0.90 | 2.56 | 3.337 (2) | 145 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x+1/2, −y+3/2, z+1/2; (iii) −x+1/2, y+1/2, −z+1/2. |
Contact | Percentage contribution |
H···H | 41.5 |
Br···N/N···Br | 24.1 |
C···H/H···C | 13.8 |
S···H/H···S | 11.7 |
N···H/H···N | 3.6 |
C···C | 3.3 |
N···C/C···N | 1.5 |
N···N | 0.3 |
S···C/C···S | 0.3 |
Acknowledgements
ANK is grateful to Baku State University for the "50 + 50" individual grant in support of this work.
Funding information
ANK is grateful to Baku State University for the "50 + 50" individual grant insupport of this work.
References
Akkurt, M., Duruskari, G. S., Toze, F. A. A., Khalilov, A. N. & Huseynova, A. T. (2018). Acta Cryst. E74, 1168–1172. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bruker (2003). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gurbanov, A. V., Huseynov, F. E., Mahmoudi, G., Maharramov, A. M., Guedes da Silva, F. C., Mahmudov, K. T. & Pombeiro, A. J. L. (2018a). Inorg. Chim. Acta, 469, 197–201. Web of Science CSD CrossRef CAS Google Scholar
Gurbanov, A. V., Maharramov, A. M., Zubkov, F. I., Saifutdinov, A. M. & Guseinov, F. I. (2018b). Aust. J. Chem. 71, 190–194. Web of Science CrossRef CAS Google Scholar
Khalilov, A. N., Atioğlu, Z., Akkurt, M., Duruskari, G. S., Toze, F. A. A. & Huseynova, A. T. (2019). Acta Cryst. E75, 662–666. Web of Science CSD CrossRef IUCr Journals Google Scholar
Mahmudov, K. T., Gurbanov, A. V., Guseinov, F. I. & Guedes da Silva, M. F. C. (2019). Coord. Chem. Rev. 387, 32–46. Web of Science CrossRef CAS Google Scholar
Makwana, H. R. & Malani, A. H. (2017). IOSR J. Appl. Chem. 10, 76–84. CAS Google Scholar
Martem'yanova, N. A., Chunaev, Y. M., Przhiyalgovskaya, N. M., Kurkovskaya, L. N., Filipenko, O. S. & Aldoshin, S. M. (1993a). Khim. Geterotsikl. Soedin. pp. 415–419. Google Scholar
Martem'yanova, N. A., Chunaev, Y. M., Przhiyalgovskaya, N. M., Kurkovskaya, L. N., Filipenko, O. S. & Aldoshin, S. M. (1993b). Khim. Geterotsikl. Soedin. pp. 420–425. Google Scholar
Marthi, K., Larsen, M., Ács, M., Bálint, J. & Fogassy, E. (1995). Acta Chem. Scand. 49, 20–27. CSD CrossRef CAS Web of Science Google Scholar
Marthi, K., Larsen, S., Ács, M., Bálint, J. & Fogassy, E. (1994). Acta Cryst. B50, 762–771. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392. Web of Science CrossRef CAS Google Scholar
Spackman, M. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. University of Western Australia. Google Scholar
Zubkov, F. I., Mertsalov, D. F., Zaytsev, V. P., Varlamov, A. V., Gurbanov, A. V., Dorovatovskii, P. V., Timofeeva, T. V., Khrustalev, V. N. & Mahmudov, K. T. (2018). J. Mol. Liq. 249, 949–952. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.