research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 3-amino-5-phenyl­thia­zolidin-2-iminium bromide

CROSSMARK_Color_square_no_text.svg

aOrganic Chemistry Department, Baku State University, Z. Xalilov str. 23, Az, 1148 Baku, Azerbaijan, bDepartment of Physics and Chemistry, "Composite Materials" Scientific Research Center, Azerbaijan State Economic University (UNEC), H. Aliyev str. 135, Az 1063, Baku, Azerbaijan, cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and dDepartment of Theoretical and Industrial Heat Engineering (TPT), National Technical University of Ukraine, "Igor Sikorsky Kyiv Polytechnic Institute", 03056, Kyiv, Ukraine
*Correspondence e-mail: mustford@ukr.net

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 10 September 2019; accepted 22 September 2019; online 27 September 2019)

In the cation of the title salt, C9H12N3S+·Br, the thia­zolidine ring adopts an envelope conformation with the C atom adjacent to the phenyl ring as the flap. In the crystal, N—H⋯Br hydrogen bonds link the components into a three-dimensional network. Weak ππ stacking inter­actions between the phenyl rings of adjacent cations also contribute to the mol­ecular packing. A Hirshfeld surface analysis was conducted to qu­antify the contributions of the different inter­molecular inter­actions and contacts.

1. Chemical context

As well as their synthetic utility, thia­zolidine derivatives possess a broad spectrum of biological activities such as anti­malarial, anti­bacterial, anti­microbial, anti-inflammatory, anti­cancer, etc. The biological activities of compounds containing a thia­zolidine core, such as 1,3-thia­zolidines, 2,4-dione-, 4-oxo-thia­zolidine, etc. were summarized in a recent review (Makwana & Malani, 2017[Makwana, H. R. & Malani, A. H. (2017). IOSR J. Appl. Chem. 10, 76-84.]). On the other hand, as hydrazones these N-containing ligands have been widely used in the synthesis of coordination compounds (Gurbanov et al., 2018a[Gurbanov, A. V., Huseynov, F. E., Mahmoudi, G., Maharramov, A. M., Guedes da Silva, F. C., Mahmudov, K. T. & Pombeiro, A. J. L. (2018a). Inorg. Chim. Acta, 469, 197-201.],b[Gurbanov, A. V., Maharramov, A. M., Zubkov, F. I., Saifutdinov, A. M. & Guseinov, F. I. (2018b). Aust. J. Chem. 71, 190-194.]). The non-covalent donor or acceptor properties of N-containing ligands can also contribute to their catalytic activity, among other properties (Mahmudov et al., 2019[Mahmudov, K. T., Gurbanov, A. V., Guseinov, F. I. & Guedes da Silva, M. F. C. (2019). Coord. Chem. Rev. 387, 32-46.]; Zubkov et al., 2018[Zubkov, F. I., Mertsalov, D. F., Zaytsev, V. P., Varlamov, A. V., Gurbanov, A. V., Dorovatovskii, P. V., Timofeeva, T. V., Khrustalev, V. N. & Mahmudov, K. T. (2018). J. Mol. Liq. 249, 949-952.]). As part of our ongoing work in this area, we now describe the synthesis and structure of the title mol­ecular salt, C9H12N3S+·Br, (I)[link].

[Scheme 1]

2. Structural commentary

In the cation of (I)[link] (Fig. 1[link]), the thia­zolidine ring (S1/N1/C1–C3) adopts an envelope conformation with puckering parameters of Q(2) = 0.317 (2) Å and φ(2) = 225.2 (4)°: the flap atom is C1. In the arbitrarily chosen asymmetric unit, C1 has an R configuration, but symmetry generates a racemic mixture in the crystal. The dihedral angle between the mean plane of the thia­zolidine ring (all atoms) and the phenyl ring (C4–C9) is 89.27 (13)°.

[Figure 1]
Figure 1
The mol­ecular structure of the title salt. Displacement ellipsoids are drawn at the 50% probability level and the H⋯Br hydrogen bond is indicated by a dashed line.

3. Supra­molecular features and Hirshfeld surface analysis

In the crystal, each cation forms N—H⋯Br hydrogen bonds (Table 1[link]) as well as aromatic ππ stacking inter­actions between the phenyl rings of adjacent cations [Cg2⋯Cg2iv = 3.7758 (16) Å; symmetry code: (iv) 1 − x, 1 − y, 2 − z; where Cg2 is the centroid of the phenyl ring of the cation]: chains of cations form along the [101] direction (Fig. 2[link]). Taking into account the hydrogen bonding and π-π stacking, the overall connectivity is three-dimensional.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯Br1i 0.90 2.68 3.530 (2) 158
N2—H2B⋯Br1ii 0.90 2.73 3.524 (2) 148
N3—H3A⋯Br1 0.90 2.38 3.271 (2) 169
N3—H3B⋯Br1iii 0.90 2.56 3.337 (2) 145
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Part of the crystal structure of the title compound, showing the formation of N—H⋯Br hydrogen bonds in the ac plane.

Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378-392.]; Spackman & McKinnon, 2002[Spackman, M. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) was carried out with CrystalExplorer3.1 (Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. University of Western Australia.]) to further investigate the presence of hydrogen bonds and inter­molecular inter­actions in the crystal structure (see supporting information). Fig. 3[link](a) shows the two-dimensional fingerprint of the sum of the contacts contributing to the Hirshfeld surface represented in normal mode while those delineated into H⋯H (41.5%), Br⋯N/N⋯Br (24.1%), C⋯H/H⋯C (13.8%) and S⋯H/H⋯S (11.7%) contacts, respectively, are shown in Fig. 3[link]be. All contacts are listed in Table 2[link].

Table 2
Percentage contributions of inter­atomic contacts to the Hirshfeld surface for the title salt

Contact Percentage contribution
H⋯H 41.5
Br⋯N/N⋯Br 24.1
C⋯H/H⋯C 13.8
S⋯H/H⋯S 11.7
N⋯H/H⋯N 3.6
C⋯C 3.3
N⋯C/C⋯N 1.5
N⋯N 0.3
S⋯C/C⋯S 0.3
[Figure 3]
Figure 3
The two-dimensional fingerprint plots of the title salt, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) Br⋯N/N⋯Br, (d) C⋯H/H⋯C and (e) S⋯H/H⋯S inter­actions [de and di represent the distances from a point on the Hirshfeld surface to the nearest atoms outside (external) and inside (inter­nal) the surface, respectively].

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.40, February 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for 2-thia­zolidiniminium compounds gave eight hits, viz. BOBWIB (Khalilov et al., 2019[Khalilov, A. N., Atioğlu, Z., Akkurt, M., Duruskari, G. S., Toze, F. A. A. & Huseynova, A. T. (2019). Acta Cryst. E75, 662-666.]), UDELUN (Akkurt et al., 2018[Akkurt, M., Duruskari, G. S., Toze, F. A. A., Khalilov, A. N. & Huseynova, A. T. (2018). Acta Cryst. E74, 1168-1172.]), WILBIC (Marthi et al., 1994[Marthi, K., Larsen, S., Ács, M., Bálint, J. & Fogassy, E. (1994). Acta Cryst. B50, 762-771.]), WILBOI (Marthi et al., 1994[Marthi, K., Larsen, S., Ács, M., Bálint, J. & Fogassy, E. (1994). Acta Cryst. B50, 762-771.]), WILBOI01 (Marthi et al., 1994[Marthi, K., Larsen, S., Ács, M., Bálint, J. & Fogassy, E. (1994). Acta Cryst. B50, 762-771.]), YITCEJ (Martem'yanova et al., 1993a[Martem'yanova, N. A., Chunaev, Y. M., Przhiyalgovskaya, N. M., Kurkovskaya, L. N., Filipenko, O. S. & Aldoshin, S. M. (1993a). Khim. Geterotsikl. Soedin. pp. 415-419.]), YITCAF (Martem'yanova et al., 1993b[Martem'yanova, N. A., Chunaev, Y. M., Przhiyalgovskaya, N. M., Kurkovskaya, L. N., Filipenko, O. S. & Aldoshin, S. M. (1993b). Khim. Geterotsikl. Soedin. pp. 420-425.]) and YOPLUK (Marthi et al., 1995[Marthi, K., Larsen, M., Ács, M., Bálint, J. & Fogassy, E. (1995). Acta Chem. Scand. 49, 20-27.]).

In the crystal of BOBWIB (Khalilov et al., 2019[Khalilov, A. N., Atioğlu, Z., Akkurt, M., Duruskari, G. S., Toze, F. A. A. & Huseynova, A. T. (2019). Acta Cryst. E75, 662-666.]), the thia­zolidine ring adopts an envelope conformation. In the crystal, centrosymmetrically related cations and anions are linked into dimeric units via N—H⋯Br hydrogen bonds, which are further connected by weak C—H⋯Br hydrogen bonds into chains parallel to [110]. In the crystal of UDELUN (Akkurt et al., 2018[Akkurt, M., Duruskari, G. S., Toze, F. A. A., Khalilov, A. N. & Huseynova, A. T. (2018). Acta Cryst. E74, 1168-1172.]), C—H⋯Br and N—H⋯Br hydrogen bonds link the components into a three-dimensional network with the cations and anions stacked along the b-axis direction. Weak C—H⋯π inter­actions, which only involve the minor disorder component of the ring, also contribute to the mol­ecular packing. In addition, there are also inversion-related Cl⋯Cl halogen bonds and C—Cl⋯π(ring) contacts. In the other structures, the 3-N atom carries a C substituent: the first three crystal structures were determined for racemic (WILBIC; Marthi et al., 1994[Marthi, K., Larsen, S., Ács, M., Bálint, J. & Fogassy, E. (1994). Acta Cryst. B50, 762-771.]) and two optically active samples (WILBOI and WILBOI01; Marthi et al., 1994[Marthi, K., Larsen, S., Ács, M., Bálint, J. & Fogassy, E. (1994). Acta Cryst. B50, 762-771.]) of 3-(2′-chloro-2′-phenyl­eth­yl)-2-thia­zolidiniminium p-toluene­sulfonate. In all three structures, the most disordered fragment of these mol­ecules is the asymmetric C atom and the Cl atom attached to it. The disorder of the cation in the racemate corresponds to the presence of both enanti­omers at each site in the ratio 0.821 (3): 0.179 (3). The system of hydrogen bonds connecting two cations and two anions into 12-membered rings is identical in the racemic and in the optically active crystals. YITCEJ (Martem'yanova et al., 1993a[Martem'yanova, N. A., Chunaev, Y. M., Przhiyalgovskaya, N. M., Kurkovskaya, L. N., Filipenko, O. S. & Aldoshin, S. M. (1993a). Khim. Geterotsikl. Soedin. pp. 415-419.]) is a product of the inter­action of 2-amino-5-methyl­thia­zoline with methyl iodide, with alkyl­ation at the endocylic nitro­gen atom, while YITCAF (Martem'yanova et al., 1993b[Martem'yanova, N. A., Chunaev, Y. M., Przhiyalgovskaya, N. M., Kurkovskaya, L. N., Filipenko, O. S. & Aldoshin, S. M. (1993b). Khim. Geterotsikl. Soedin. pp. 420-425.]) is a product of the reaction of 3-nitro-5-meth­oxy-, 3-nitro-5-chloro-, and 3-bromo-5-nitro­salicyl­aldehyde with the heterocyclic base to form the salt-like complexes.

5. Synthesis and crystallization

To a solution of 2.2 mmol (0.6 g) (1,2-di­bromo­eth­yl)benzene in 20 ml of ethanol were added 2.3 mmol (0.3 g) of thio­semicarbazide hydro­chloride; 3-4 drops of piperidine were added and the mixture was refluxed for 7 h. The reaction mixture was cooled to room temperature and the solid product was precipitated from solution, collected by filtration and recrystallized from ethanol solution to give colourless crystals of (I)[link] with a yield of 88%, m.p. = 468 K. Analysis calculated for C9H12BrN3S: C 39.43; H 4.41; N 15.33. Found: C 39.40; H 4.39; N 15.30%. 1H NMR (300 MHz, DMSO-d6) : 4.16 (q, 1H, CH2,3JH–H = 5.4); 4.45 (t, 1H, CH2, 3JH–H = 8.4); 5.25 (t, 1H, CH-Ar, 3JH–H = 5.4); 7.32–7.50 (m, 5H, 5Ar-H); 9.12 (s, 2H, NH2); 9,78 (s, 1H, NH=). 13C NMR (75 MHz, DMSO-d6): 44.42, 62.06, 127.59, 128.76, 129.17, 138.85, 168.53. MS (ESI), m/z: 194.28 [C9H12N3S]+ and 79.88 Br.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All H atoms on C atoms were placed at calculated positions (C—H = 0.95–1.00 Å) and refined using a riding model. The N-bound hydrogen atoms were located from difference-Fourier maps and relocated to idealized locations (N—H = 0.90 Å) and refined as riding atoms. The constraint Uiso(H) = 1.2Ueq(carrier) was applied in all cases. One outlier ([\overline{1}]01) was omitted in the final cycles of refinement.

Table 3
Experimental details

Crystal data
Chemical formula C9H12N3S+·Br
Mr 274.19
Crystal system, space group Monoclinic, P21/n
Temperature (K) 150
a, b, c (Å) 10.5986 (5), 8.7168 (3), 13.0308 (5)
β (°) 111.513 (2)
V3) 1119.99 (8)
Z 4
Radiation type Mo Kα
μ (mm−1) 3.82
Crystal size (mm) 0.18 × 0.14 × 0.11
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2003[Bruker (2003). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.534, 0.661
No. of measured, independent and observed [I > 2σ(I)] reflections 8461, 2303, 1998
Rint 0.029
(sin θ/λ)max−1) 0.626
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.070, 1.02
No. of reflections 2303
No. of parameters 127
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.61, −0.33
Computer programs: APEX2 and SAINT (Bruker, 2003[Bruker (2003). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2003).

3-Amino-5-phenylthiazolidin-2-iminium bromide top
Crystal data top
C9H12N3S+·BrF(000) = 552
Mr = 274.19Dx = 1.626 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 10.5986 (5) ÅCell parameters from 3357 reflections
b = 8.7168 (3) Åθ = 2.9–26.3°
c = 13.0308 (5) ŵ = 3.82 mm1
β = 111.513 (2)°T = 150 K
V = 1119.99 (8) Å3Block, colorless
Z = 40.18 × 0.14 × 0.11 mm
Data collection top
Bruker APEXII CCD
diffractometer
1998 reflections with I > 2σ(I)
φ and ω scansRint = 0.029
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
θmax = 26.4°, θmin = 2.9°
Tmin = 0.534, Tmax = 0.661h = 1313
8461 measured reflectionsk = 1010
2303 independent reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: mixed
wR(F2) = 0.070H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0381P)2 + 0.5896P]
where P = (Fo2 + 2Fc2)/3
2303 reflections(Δ/σ)max = 0.001
127 parametersΔρmax = 0.61 e Å3
0 restraintsΔρmin = 0.33 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.14662 (3)0.38142 (3)0.26547 (2)0.02369 (10)
S10.31116 (7)0.46985 (7)0.58677 (5)0.02034 (15)
N10.4802 (2)0.6893 (2)0.61070 (15)0.0159 (4)
N20.5487 (2)0.8083 (2)0.57955 (15)0.0183 (4)
H2A0.6355510.7766930.6073500.022*
H2B0.5359010.8917530.6152300.022*
N30.3577 (2)0.6293 (2)0.42850 (16)0.0179 (4)
H3A0.2927190.5721570.3792250.021*
H3B0.3905090.7093170.4024150.021*
C10.4372 (3)0.5007 (3)0.72776 (19)0.0214 (5)
H1A0.5139950.4270320.7413770.026*
C20.4890 (3)0.6645 (3)0.72463 (19)0.0189 (5)
H2C0.4320080.7397980.7447490.023*
H2D0.5838320.6750800.7767590.023*
C30.3879 (2)0.6085 (3)0.53385 (19)0.0154 (5)
C40.3746 (2)0.4760 (3)0.81375 (18)0.0168 (5)
C50.4280 (3)0.3584 (3)0.8912 (2)0.0212 (5)
H5A0.4975850.2934620.8863580.025*
C60.3773 (3)0.3379 (3)0.97571 (19)0.0208 (5)
H6A0.4121910.2585531.0285820.025*
C70.2769 (3)0.4330 (3)0.9816 (2)0.0225 (5)
H7A0.2442080.4205211.0399050.027*
C80.2230 (3)0.5463 (3)0.9041 (2)0.0265 (6)
H8A0.1526100.6104770.9084070.032*
C90.2715 (3)0.5662 (3)0.8203 (2)0.0249 (6)
H9A0.2332080.6434240.7663880.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02460 (15)0.02084 (15)0.02181 (15)0.00181 (11)0.00401 (11)0.00181 (10)
S10.0263 (3)0.0175 (3)0.0173 (3)0.0062 (3)0.0081 (2)0.0012 (2)
N10.0197 (10)0.0165 (10)0.0132 (9)0.0036 (8)0.0078 (8)0.0004 (8)
N20.0208 (11)0.0162 (10)0.0198 (10)0.0030 (9)0.0099 (9)0.0004 (8)
N30.0239 (11)0.0151 (10)0.0144 (10)0.0011 (9)0.0066 (8)0.0014 (8)
C10.0215 (13)0.0233 (13)0.0184 (12)0.0033 (11)0.0061 (10)0.0023 (10)
C20.0225 (13)0.0215 (12)0.0126 (11)0.0041 (10)0.0064 (10)0.0018 (10)
C30.0176 (12)0.0121 (11)0.0178 (12)0.0027 (9)0.0082 (10)0.0009 (9)
C40.0171 (12)0.0193 (12)0.0131 (11)0.0054 (10)0.0046 (9)0.0010 (9)
C50.0175 (12)0.0183 (12)0.0255 (13)0.0020 (10)0.0051 (10)0.0066 (10)
C60.0244 (13)0.0193 (12)0.0147 (12)0.0050 (10)0.0027 (10)0.0016 (10)
C70.0215 (13)0.0253 (13)0.0214 (13)0.0100 (11)0.0085 (11)0.0029 (11)
C80.0208 (13)0.0258 (14)0.0335 (15)0.0012 (11)0.0108 (12)0.0007 (12)
C90.0219 (13)0.0246 (13)0.0266 (14)0.0041 (11)0.0070 (11)0.0036 (11)
Geometric parameters (Å, º) top
S1—C31.735 (2)C2—H2C0.9900
S1—C11.853 (2)C2—H2D0.9900
N1—C31.318 (3)C4—C91.374 (4)
N1—N21.408 (3)C4—C51.404 (3)
N1—C21.469 (3)C5—C61.403 (4)
N2—H2A0.9000C5—H5A0.9500
N2—H2B0.9000C6—C71.373 (4)
N3—C31.303 (3)C6—H6A0.9500
N3—H3A0.9000C7—C81.378 (4)
N3—H3B0.9000C7—H7A0.9500
C1—C41.513 (3)C8—C91.378 (4)
C1—C21.535 (4)C8—H8A0.9500
C1—H1A1.0000C9—H9A0.9500
C3—S1—C191.16 (11)N3—C3—N1123.6 (2)
C3—N1—N2119.48 (18)N3—C3—S1123.08 (18)
C3—N1—C2116.3 (2)N1—C3—S1113.33 (17)
N2—N1—C2123.48 (18)C9—C4—C5119.6 (2)
N1—N2—H2A102.6C9—C4—C1122.7 (2)
N1—N2—H2B104.8C5—C4—C1117.7 (2)
H2A—N2—H2B111.4C6—C5—C4119.2 (2)
C3—N3—H3A120.2C6—C5—H5A120.4
C3—N3—H3B121.7C4—C5—H5A120.4
H3A—N3—H3B117.4C7—C6—C5119.6 (2)
C4—C1—C2114.2 (2)C7—C6—H6A120.2
C4—C1—S1111.16 (17)C5—C6—H6A120.2
C2—C1—S1104.09 (16)C6—C7—C8120.9 (2)
C4—C1—H1A109.1C6—C7—H7A119.5
C2—C1—H1A109.1C8—C7—H7A119.5
S1—C1—H1A109.1C9—C8—C7119.7 (3)
N1—C2—C1105.85 (19)C9—C8—H8A120.1
N1—C2—H2C110.6C7—C8—H8A120.1
C1—C2—H2C110.6C4—C9—C8120.9 (2)
N1—C2—H2D110.6C4—C9—H9A119.5
C1—C2—H2D110.6C8—C9—H9A119.5
H2C—C2—H2D108.7
C3—S1—C1—C4147.17 (19)C2—C1—C4—C953.9 (3)
C3—S1—C1—C223.78 (17)S1—C1—C4—C963.5 (3)
C3—N1—C2—C126.7 (3)C2—C1—C4—C5124.2 (2)
N2—N1—C2—C1163.3 (2)S1—C1—C4—C5118.4 (2)
C4—C1—C2—N1152.1 (2)C9—C4—C5—C61.7 (4)
S1—C1—C2—N130.7 (2)C1—C4—C5—C6176.5 (2)
N2—N1—C3—N31.9 (3)C4—C5—C6—C70.2 (4)
C2—N1—C3—N3172.3 (2)C5—C6—C7—C81.5 (4)
N2—N1—C3—S1178.62 (16)C6—C7—C8—C90.9 (4)
C2—N1—C3—S18.2 (3)C5—C4—C9—C82.2 (4)
C1—S1—C3—N3169.2 (2)C1—C4—C9—C8175.8 (2)
C1—S1—C3—N110.29 (19)C7—C8—C9—C41.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···Br1i0.902.683.530 (2)158
N2—H2B···Br1ii0.902.733.524 (2)148
N3—H3A···Br10.902.383.271 (2)169
N3—H3B···Br1iii0.902.563.337 (2)145
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y+3/2, z+1/2; (iii) x+1/2, y+1/2, z+1/2.
Percentage contributions of interatomic contacts to the Hirshfeld surface for the title salt top
ContactPercentage contribution
H···H41.5
Br···N/N···Br24.1
C···H/H···C13.8
S···H/H···S11.7
N···H/H···N3.6
C···C3.3
N···C/C···N1.5
N···N0.3
S···C/C···S0.3
 

Acknowledgements

ANK is grateful to Baku State University for the "50 + 50" individual grant in support of this work.

Funding information

ANK is grateful to Baku State University for the "50 + 50" individual grant insupport of this work.

References

First citationAkkurt, M., Duruskari, G. S., Toze, F. A. A., Khalilov, A. N. & Huseynova, A. T. (2018). Acta Cryst. E74, 1168–1172.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2003). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGurbanov, A. V., Huseynov, F. E., Mahmoudi, G., Maharramov, A. M., Guedes da Silva, F. C., Mahmudov, K. T. & Pombeiro, A. J. L. (2018a). Inorg. Chim. Acta, 469, 197–201.  Web of Science CSD CrossRef CAS Google Scholar
First citationGurbanov, A. V., Maharramov, A. M., Zubkov, F. I., Saifutdinov, A. M. & Guseinov, F. I. (2018b). Aust. J. Chem. 71, 190–194.  Web of Science CrossRef CAS Google Scholar
First citationKhalilov, A. N., Atioğlu, Z., Akkurt, M., Duruskari, G. S., Toze, F. A. A. & Huseynova, A. T. (2019). Acta Cryst. E75, 662–666.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMahmudov, K. T., Gurbanov, A. V., Guseinov, F. I. & Guedes da Silva, M. F. C. (2019). Coord. Chem. Rev. 387, 32–46.  Web of Science CrossRef CAS Google Scholar
First citationMakwana, H. R. & Malani, A. H. (2017). IOSR J. Appl. Chem. 10, 76–84.  CAS Google Scholar
First citationMartem'yanova, N. A., Chunaev, Y. M., Przhiyalgovskaya, N. M., Kurkovskaya, L. N., Filipenko, O. S. & Aldoshin, S. M. (1993a). Khim. Geterotsikl. Soedin. pp. 415–419.  Google Scholar
First citationMartem'yanova, N. A., Chunaev, Y. M., Przhiyalgovskaya, N. M., Kurkovskaya, L. N., Filipenko, O. S. & Aldoshin, S. M. (1993b). Khim. Geterotsikl. Soedin. pp. 420–425.  Google Scholar
First citationMarthi, K., Larsen, M., Ács, M., Bálint, J. & Fogassy, E. (1995). Acta Chem. Scand. 49, 20–27.  CSD CrossRef CAS Web of Science Google Scholar
First citationMarthi, K., Larsen, S., Ács, M., Bálint, J. & Fogassy, E. (1994). Acta Cryst. B50, 762–771.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. University of Western Australia.  Google Scholar
First citationZubkov, F. I., Mertsalov, D. F., Zaytsev, V. P., Varlamov, A. V., Gurbanov, A. V., Dorovatovskii, P. V., Timofeeva, T. V., Khrustalev, V. N. & Mahmudov, K. T. (2018). J. Mol. Liq. 249, 949–952.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds