research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of catena-poly[[[bis­­(3-oxo-1,3-di­phenyl­prop-1-enolato-κ2O,O′)zinc(II)]-μ2-tris­­[4-(pyridin-3-yl)phen­yl]amine-κ2N:N′] tetra­hydro­furan monosolvate]

aOsaka Research Institute of Industrial Science and Technology, 1-6-50 Morinomiya, Joto-ku, Osaka 536-8553, Japan, and bOsaka Kyoiku University, Kashiwara, 536-8553, Japan
*Correspondence e-mail: kasiwagi@omtri.or.jp

Edited by H. Ishida, Okayama University, Japan (Received 22 August 2019; accepted 5 September 2019; online 10 September 2019)

The reaction of bis­(3-oxo-1,3-di­phenyl­prop-1-enolato-κ2O,O′)zinc(II), [Zn(dbm)2], with tris­[4-(pyridin-3-yl)phen­yl]amine (T3PyA) in tetra­hydro­furan (THF) afforded the title crystalline coordination polymer, {[Zn(C15H11O2)2(C33H24N4)]·C4H8O}n. The asymmetric unit contains two independent halves of Zn(dbm)2, one T3PyA and one THF. Each ZnII atom is located on an inversion centre and adopts an elongated octa­hedral coordination geometry, ligated by four O atoms of two dbm ligands in equatorial positions and by two N atoms of pyridine moieties from two different bridging T3PyA ligands in axial positions. The crystal packing shows a one-dimensional polymer chain in which the two pyridyl groups of the T3PyA ligand bridge two independent Zn atoms of Zn(dbm)2. In the crystal, the coordination polymer chains are linked via C—H⋯π inter­actions into a sheet structure parallel to (010). The sheets are cross-linked via further C—H⋯π inter­actions into a three-dimensional network. The solvate THF mol­ecule shows disorder over two sets of atomic sites having occupancies of 0.631 (7) and 0.369 (7).

1. Chemical context

The structure of coordination polymers generated from the self-assembly of metal ions and bridging organic ligands depends on the mol­ecular structures of the ligands and the coordination geometries of the metal ions. The pyridyl-group-terminated spacer ligands with coordinating ability and optical or electronic functionalities have been widely used to construct a variety of coordination polymers with designable structures and attractive potential applications in material science (Robin & Fromm, 2006[Robin, A. Y. & Fromm, K. M. (2006). Coord. Chem. Rev. 250, 2127-2157.]; Allendorf et al., 2009[Allendorf, M. D., Bauer, C. A., Bhakta, R. K. & Houk, R. J. T. (2009). Chem. Soc. Rev. 38, 1330-1352.]; Stavila et al., 2014[Stavila, V., Talin, A. A. & Allendorf, M. D. (2014). Chem. Soc. Rev. 43, 5994-6010.]). Tri­phenyl­amine-based structures are some of the most important moieties and electron-donating groups in organic electronic materials, e.g. organic or organic–inorganic hybrid light-emitting diodes and solar cells, because of their electroactivity, photoactivity and chemical stability (Shirota & Kageyama, 2007[Shirota, Y. & Kageyama, H. (2007). Chem. Rev. 107, 953-1010.]; Mahmood, 2016[Mahmood, A. (2016). Solar Energy, 123, 127-144.]; Agarwala & Kabra, 2017[Agarwala, P. & Kabra, D. (2017). J. Mater. Chem. A, 5, 1348-1373.]). One of the pyridyl-group-terminated tri­phenyl­amine derivatives, tris­[4-(pyridin-3-yl)phen­yl]amine (T3PyA), was firstly synthesized by Hu et al. (2013[Hu, B., Chen, X., Wang, Y., Lu, P. & Wang, Y. (2013). Chem. Asian J. 8, 1144-1151.]) as a pH-sensitive fluoro­phore. Recently, its PdII complex was also reported (Wang et al., 2016[Wang, T., Liu, L., Xu, K., Xie, H., Shen, H. & Zhao, W.-X. (2016). RSC Adv. 6, 100690-100695.]). We report herein on the crystal structure of the title coordination polymer composed of an exo-tridentate tripyridyl-type ligand, a β-diketonato ligand and a closed-shell ZnII atom as the building blocks.

[Scheme 1]

2. Structural commentary

The asymmetric unit of the title coordination polymer is composed of two unique halves of the bis­(3-oxo-1,3-di­phen­yl­prop-1-enolato-κ2O,O′)zinc(II) [Zn(dbm)2] moiety, one T3PyA ligand bridging the Zn atoms in a μ2-κ2 mode and one tetra­hydro­furan (THF) solvate mol­ecule (Fig. 1[link]). Each Zn atom is located on an inversion centre and adopts an elongated octa­hedral coordination geometry, ligated by four O atoms of bidentate β-diketonato dbm ligands in equatorial positions and by two N atoms of pyridine moieties from two different bridging T3PyA ligands in axial positions. The equatorial Zn—O bond lengths [2.0440 (17)–2.0629 (18) Å] are shorter than the axial Zn—N bond lengths [Zn1—N9 = 2.199 (2) Å and Zn2—N10 = 2.238 (2) Å]. In the two independent Zn(dbm)2 moieties, the bond lengths and angles are similar, but a difference in the dihedral angles between the mean planes of the benzene rings in dbm is observed [56.19 (16)° between the C12–C17 and C21–C26 rings in the moiety containing Zn1, and 30.68 (14)° between the C27–C32 and C36–C41 rings in the moiety containing Zn2]. The bridging T3PyA ligand has three pyridyl N atoms (N9, N10 and N11). Atoms N9 and N10 each coordinate to two different Zn atoms, while atom N11 does not inter­act with the surrounding atoms. The central N atom (N8) of T3PyA shows no pyramidalization, with a displacement of 0.052 (2) Å from the plane of the bonded C atoms (C42, C48 and C54) in the benzene rings. The dihedral angles between the mean planes of the benzene and pyridine rings in T3PyA are 47.56 (13), 33.60 (13) and 26.35 (15)°, respectively, between the C42–C47 and N9/C60–C64 rings, the C48–C53 and N10/C65–C69 rings, and the C54–C59 and N11/C70–C74 rings.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by spheres of arbitrary radius. The inter­molecular C—H⋯O hydrogen bond is shown as a dashed line. The minor component of the disordered THF mol­ecule has been omitted for clarity. [Symmetry codes: (i) −x + 1, −y + 1, −z + 2; (ii) −x, −y + 1, −z + 1.]

3. Supra­molecular features

In the crystal, the two independent Zn(dbm)2 moieties and the bridging T3PyA ligand form a zigzag one-dimensional coordination polymer along [101] (Fig. 2[link]). There is a C—H⋯O hydrogen bond between the coordination polymer and the major disorder component of the solvate THF mol­ecule (C13—H13⋯O7A, Table 1[link]), while a C—H⋯π inter­action is observed between the minor disorder component of the solvate THF mol­ecule and the coordination polymer (C75B—H75CCg4ii; Cg4 is the centroid of the N11/C70–C74 ring; symmetry code as in Table 1[link]). The coordination polymer chains related by translation along the c axis are linked via a C—H⋯π inter­action (C40—H40⋯Cg1i; Cg1 is the centroid of the N10/C65–C69 ring; symmetry code as in Table 1[link]) into a network sheet parallel to (010) (Fig. 3[link]). In addition, the coordination polymer chains related by a c-glide plane are linked via C—H⋯π inter­actions (C43—H43⋯Cg2ii and C68—H68⋯Cg3iii; Cg2 and Cg3 are the centroids of the C54–C59 and C36–C41 rings, respectively; symmetry codes as in Table 1[link]) (Fig. 4[link]). The sheets parallel to (010) are cross-linked via these C—H⋯π inter­actions into a three-dimensional network.

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2, Cg3 and Cg4 are the centroids of the N10/C65–C69, C54–C59, C36–C41 and N11/C70–C74 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯O7A 0.95 2.47 3.197 (7) 134
C40—H40⋯Cg1i 0.95 2.74 3.594 (3) 150
C43—H43⋯Cg2ii 0.95 2.78 3.572 (3) 142
C68—H68⋯Cg3iii 0.95 2.65 3.513 (3) 152
C75B—H75CCg4ii 0.99 2.78 3.649 (17) 146
Symmetry codes: (i) x, y, z-1; (ii) [x, -y+{\script{1\over 2}}, z-{\script{3\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
A packing diagram of the title compound, showing a zigzag one-dimensional coordination polymer and solvate THF mol­ecules with the major disordered component. The C—H⋯O hydrogen bonds are shown as dashed lines. H atoms not involved in the inter­actions have been omitted for clarity.
[Figure 3]
Figure 3
A packing diagram of the title compound viewed along the b axis, showing the network sheet structure. The C—H⋯π inter­actions between the coordination polymer chains related by translation along the c axis are shown as dashed lines. H atoms not involved in the inter­actions and all components of the disordered THF mol­ecule have been omitted for clarity.
[Figure 4]
Figure 4
A packing diagram of the title compound, showing the network structure between the coordination polymer chains related by a c-glide plane. The C—H⋯π inter­actions are shown as dashed lines. H atoms not involved in the inter­actions and all components of the disordered THF mol­ecule have been omitted for clarity.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.40, update February 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) of the compound containing T3PyA yielded only one hit (AXUBIG; Wang et al., 2016[Wang, T., Liu, L., Xu, K., Xie, H., Shen, H. & Zhao, W.-X. (2016). RSC Adv. 6, 100690-100695.]), a trinuclear palladium(II) complex with the exo-tridentate ligand bridging three palladium(II) atoms, namely, μ3-tris­[4-(pyridin-3-yl)phen­yl]amine-N,N′,N′′-tris{[1,3-bis­(2,6-diiso­propyl­phen­yl)-2,3-di­hydro-1H-imidazol-2-yl­idene]di­chloro­palladium(II)} ethyl acetate solvate trihydrate. A search for compounds containing tris­[4-(pyridin-4-yl)phen­yl]amine (T4PyA), pseudo D3-symmetric structural isomers of T3PyA, gave 51 hits (48 compounds), including 46 hits for metal complexes (nine, twelve, eleven, seven, three, three and one hits for Zn, Co, Cd, Cu, Ni, Ag and Mn complexes, respectively). Focusing on the coordination number of T4PyA, it featured in 20 hits for the exo-tridentate ligand, 24 hits for the exo-bidentate ligand, one hit for the monodentate ligand and another hit containing both the exo-bidentate and the monodentate ligand. A search for the Zn(dbm)2 moiety gave 34 hits (32 compounds). Limiting the search for a pyridine-coordinated Zn(dbm)2 moiety gave 15 hits. Seven of these compounds are bipyridyl-ligand-bridged polymeric structures, for example, catena-bis­(3-oxo-1,3-di­phenyl­prop-1-enolato)-(μ2-4,4′-bipyrid­yl)zinc(II) (AQIQIA; Soldatov et al., 2003[Soldatov, D. V., Tinnemans, P., Enright, G. D., Ratcliffe, C. I., Diamente, P. R. & Ripmeester, J. A. (2003). Chem. Mater. 15, 3826-3840.]). In this complex, the ZnII atom is ligated by the two N atoms of the 4,4′-bipyridyl ligand and the four O atoms of two β-diketonate anions, hence the ZnII atom is trans-N2O4 six-coordinate, similar to that in the title compound.

5. Synthesis and crystallization

T3PyA was prepared by a modification of the reported Suzuki–Miyaura reaction of pyridine boronic esters (Billingsley & Buchwald, 2007[Billingsley, K. & Buchwald, S. L. (2007). J. Am. Chem. Soc. 129, 3358-3366.]). 3-(4,4,5,5-Tetra­methyl-1,3,2-dioxa­borolan-2-yl)pyridine (820 mg, 4.0 mmol), tris­(4-iodo­phen­yl)amine (623 mg, 1.0 mmol), tetra­kis­(tri­phenyl­phosphine)palladium(0) (23 mg, 0.02 mmol), K3PO4 (freshly ground, 1.27 g, 6.0 mmol) and 1-butanol (7.5 ml) were placed in a 30 mL round-bottom flask. After the solution was purged with nitro­gen for 15 min, it was heated at 398 K under nitro­gen for 48 h. The solvent was removed under vacuum and the residue was redissolved in ethyl acetate. The organic layer was washed three times with water. The organic layer was then dried over Na2SO4 and the solvent evaporated to yield a pale-white crude product. The crude product was purified by column chromatography on silica gel [EtOAc/MeOH = 10/1 (v/v) as eluent] to yield the pure product as a white solid (375 mg, 0.79 mmol, 79%). Zn(dbm)2 was prepared according to literature methods (Soldatov et al., 2001[Soldatov, D. V., Henegouwen, A. T., Enright, G. D., Ratcliffe, C. I. & Ripmeester, J. A. (2001). Inorg. Chem. 40, 1626-1636.]). Single crystals of {[Zn(dbm)2(T3PyA)]·THF}n were grown by slow evaporation from a THF solution, prepared by filtering a dispersion containing 32 mg of T3PyA and 40 mg of Zn(dbm)2 in 12 ml of THF. Colourless crystals suitable for X-ray diffraction were obtained after 2–3 weeks.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Hydrogen atoms were placed in geometrically calculated positions (C—H = 0.93–0.99 Å) and refined as part of a riding model with Uiso(H) = 1.2Ueq (C). The solvate THF mol­ecule is disordered over two sets of sites with refined occupancies of 0.631 (7) and 0.369 (7). EADP constraints and SAME restraints were used to model this disordered mol­ecule. A small number of reflections affected by the beam stop and one outlier ([\overline{3}]11) were omitted from the refinement.

Table 2
Experimental details

Crystal data
Chemical formula [Zn(C15H11O2)2(C33H24N4)]·C4H8O
Mr 1060.53
Crystal system, space group Monoclinic, P21/c
Temperature (K) 193
a, b, c (Å) 27.2823 (14), 19.7693 (12), 9.9674 (5)
β (°) 94.614 (7)
V3) 5358.5 (5)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.52
Crystal size (mm) 0.20 × 0.20 × 0.10
 
Data collection
Diffractometer Rigaku R-AXIS RAPID
Absorption correction Multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.669, 0.950
No. of measured, independent and observed [F2 > 2.0σ(F2)] reflections 51154, 12244, 8421
Rint 0.083
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.128, 1.04
No. of reflections 12244
No. of parameters 713
No. of restraints 10
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.51, −0.55
Computer programs: RAPID-AUTO (Rigaku, 2006[Rigaku (2006). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]), SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and CrystalStructure (Rigaku, 2016[Rigaku (2016). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]).

Supporting information


Computing details top

Data collection: RAPID-AUTO (Rigaku, 2006); cell refinement: RAPID-AUTO (Rigaku, 2006); data reduction: RAPID-AUTO (Rigaku, 2006); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: CrystalStructure (Rigaku, 2016).

catena-Poly[[[bis(3-oxo-1,3-diphenylprop-1-enolato-κ2O,O')zinc(II)]-µ2-tris[4-(pyridin-3-yl)phenyl]amine-κ2N:N'] tetrahydrofuran monosolvate] top
Crystal data top
[Zn(C15H11O2)2(C33H24N4)]·C4H8OF(000) = 2216.00
Mr = 1060.53Dx = 1.315 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71075 Å
a = 27.2823 (14) ÅCell parameters from 32853 reflections
b = 19.7693 (12) Åθ = 3.0–27.5°
c = 9.9674 (5) ŵ = 0.52 mm1
β = 94.614 (7)°T = 193 K
V = 5358.5 (5) Å3Block, colorless
Z = 40.20 × 0.20 × 0.10 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
8421 reflections with F2 > 2.0σ(F2)
Detector resolution: 10.000 pixels mm-1Rint = 0.083
ω scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 3533
Tmin = 0.669, Tmax = 0.950k = 2525
51154 measured reflectionsl = 1212
12244 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0403P)2 + 4.506P]
where P = (Fo2 + 2Fc2)/3
12244 reflections(Δ/σ)max < 0.001
713 parametersΔρmax = 0.51 e Å3
10 restraintsΔρmin = 0.55 e Å3
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 sigma(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.50000.50001.00000.02737 (11)
Zn20.00000.50000.50000.02745 (11)
O30.46823 (7)0.41755 (9)0.90263 (18)0.0343 (4)
O40.45865 (7)0.56001 (9)0.86625 (17)0.0307 (4)
O50.06591 (7)0.50291 (10)0.41611 (18)0.0329 (4)
O60.03477 (7)0.53567 (9)0.32255 (18)0.0304 (4)
N80.21836 (8)0.75706 (11)1.0755 (2)0.0303 (5)
N90.43981 (8)0.50191 (11)1.1341 (2)0.0302 (5)
N100.00979 (8)0.60638 (11)0.5743 (2)0.0308 (5)
N110.24217 (12)1.13638 (14)1.3238 (3)0.0608 (9)
C120.40705 (12)0.33603 (15)0.6141 (3)0.0412 (7)
H120.38610.37170.58070.049*
C130.40264 (14)0.27253 (17)0.5561 (3)0.0517 (9)
H130.37900.26490.48240.062*
C140.43237 (13)0.22048 (16)0.6048 (4)0.0535 (9)
H140.42990.17720.56340.064*
C150.46578 (13)0.23118 (16)0.7136 (4)0.0526 (9)
H150.48580.19490.74870.063*
C160.47034 (11)0.29448 (15)0.7719 (3)0.0413 (7)
H160.49320.30140.84770.050*
C170.44182 (10)0.34795 (13)0.7208 (3)0.0310 (6)
C180.45079 (10)0.41676 (14)0.7820 (3)0.0304 (6)
C190.44048 (10)0.47457 (14)0.7012 (3)0.0314 (6)
H190.42960.46750.60930.038*
C200.44503 (9)0.54118 (13)0.7465 (3)0.0274 (6)
C210.43292 (9)0.59851 (13)0.6508 (3)0.0264 (6)
C220.41197 (10)0.65671 (14)0.6995 (3)0.0328 (6)
H220.40400.65840.79050.039*
C230.40258 (12)0.71197 (15)0.6173 (3)0.0441 (8)
H230.38710.75090.65050.053*
C240.41568 (14)0.71056 (18)0.4867 (4)0.0576 (10)
H240.41010.74910.43060.069*
C250.43677 (14)0.65346 (18)0.4373 (3)0.0541 (9)
H250.44570.65280.34710.065*
C260.44509 (11)0.59711 (16)0.5176 (3)0.0384 (7)
H260.45910.55750.48230.046*
C270.13575 (10)0.51169 (13)0.1293 (3)0.0322 (6)
H270.10990.50970.05970.039*
C280.18406 (11)0.50517 (15)0.0978 (3)0.0389 (7)
H280.19110.49780.00720.047*
C290.22161 (11)0.50935 (16)0.1968 (4)0.0449 (8)
H290.25470.50510.17490.054*
C300.21144 (11)0.51977 (18)0.3292 (4)0.0480 (8)
H300.23760.52360.39780.058*
C310.16317 (10)0.52457 (15)0.3615 (3)0.0374 (7)
H310.15630.53030.45270.045*
C320.12475 (10)0.52116 (13)0.2621 (3)0.0284 (6)
C330.07303 (10)0.52595 (13)0.3015 (3)0.0279 (6)
C340.03721 (10)0.55579 (14)0.2102 (3)0.0304 (6)
H340.04860.57610.13200.037*
C350.01330 (9)0.55847 (13)0.2236 (3)0.0263 (6)
C360.04605 (10)0.59145 (13)0.1145 (3)0.0283 (6)
C370.09199 (10)0.61582 (15)0.1451 (3)0.0346 (6)
H370.10200.61030.23360.042*
C380.12305 (11)0.64781 (15)0.0484 (3)0.0412 (7)
H380.15400.66430.07110.049*
C390.10916 (11)0.65585 (16)0.0810 (3)0.0439 (8)
H390.13020.67840.14700.053*
C400.06450 (12)0.63083 (16)0.1134 (3)0.0420 (7)
H400.05510.63530.20270.050*
C410.03314 (10)0.59917 (14)0.0170 (3)0.0339 (6)
H410.00240.58250.04080.041*
C420.25467 (9)0.70554 (13)1.1048 (3)0.0277 (6)
C430.27359 (10)0.66926 (14)1.0018 (3)0.0308 (6)
H430.26150.67700.91110.037*
C440.31018 (10)0.62179 (14)1.0312 (3)0.0301 (6)
H440.32360.59810.95970.036*
C450.32775 (9)0.60808 (13)1.1632 (3)0.0268 (6)
C460.30764 (10)0.64398 (14)1.2660 (3)0.0310 (6)
H460.31880.63531.35710.037*
C470.27148 (10)0.69210 (14)1.2365 (3)0.0301 (6)
H470.25810.71611.30760.036*
C480.17551 (9)0.74194 (13)0.9924 (3)0.0258 (5)
C490.15424 (10)0.78918 (13)0.9014 (3)0.0299 (6)
H490.16800.83320.89760.036*
C500.11354 (10)0.77273 (13)0.8170 (3)0.0307 (6)
H500.09970.80580.75590.037*
C510.09207 (9)0.70849 (13)0.8189 (3)0.0266 (6)
C520.11303 (9)0.66233 (13)0.9123 (3)0.0288 (6)
H520.09900.61850.91700.035*
C530.15362 (10)0.67833 (13)0.9983 (3)0.0286 (6)
H530.16670.64591.06170.034*
C540.22980 (9)0.82375 (13)1.1193 (3)0.0267 (6)
C550.27766 (9)0.84818 (13)1.1208 (3)0.0287 (6)
H550.30270.82031.08930.034*
C560.28929 (10)0.91228 (14)1.1673 (3)0.0300 (6)
H560.32220.92801.16620.036*
C570.25386 (10)0.95476 (13)1.2162 (3)0.0281 (6)
C580.20597 (10)0.92973 (13)1.2127 (3)0.0302 (6)
H580.18090.95761.24390.036*
C590.19376 (10)0.86593 (14)1.1655 (3)0.0295 (6)
H590.16070.85061.16430.035*
C600.36486 (9)0.55430 (13)1.1920 (3)0.0265 (6)
C610.40591 (10)0.55061 (13)1.1191 (3)0.0290 (6)
H610.41020.58491.05440.035*
C620.43328 (11)0.45340 (14)1.2257 (3)0.0338 (6)
H620.45690.41811.23730.041*
C630.39405 (11)0.45289 (15)1.3029 (3)0.0381 (7)
H630.39050.41771.36630.046*
C640.35945 (10)0.50436 (15)1.2875 (3)0.0346 (6)
H640.33240.50541.34180.041*
C650.05086 (10)0.69018 (13)0.7199 (3)0.0294 (6)
C660.04572 (9)0.62529 (13)0.6664 (3)0.0289 (6)
H660.06920.59220.69720.035*
C670.02290 (11)0.65327 (15)0.5312 (3)0.0383 (7)
H670.04880.64080.46650.046*
C680.02076 (12)0.71905 (16)0.5767 (3)0.0450 (8)
H680.04440.75120.54240.054*
C690.01594 (11)0.73772 (15)0.6722 (3)0.0392 (7)
H690.01750.78280.70560.047*
C700.26721 (11)1.02246 (14)1.2723 (3)0.0339 (6)
C710.23316 (13)1.07453 (16)1.2725 (3)0.0464 (8)
H710.20091.06571.23320.056*
C720.28771 (15)1.14791 (19)1.3772 (4)0.0627 (11)
H720.29501.19121.41520.075*
C730.32479 (14)1.10082 (18)1.3806 (4)0.0545 (9)
H730.35691.11171.41840.065*
C740.31441 (12)1.03756 (16)1.3278 (3)0.0418 (7)
H740.33951.00421.32940.050*
O7A0.30876 (19)0.3309 (4)0.3809 (5)0.0718 (15)0.631 (7)
C75A0.2656 (4)0.3526 (8)0.4433 (8)0.071 (2)0.631 (7)
H75A0.26440.40260.44910.085*0.631 (7)
H75B0.26510.33350.53500.085*0.631 (7)
C76A0.2224 (4)0.3257 (8)0.3513 (9)0.071 (2)0.631 (7)
H76A0.21030.28240.38590.085*0.631 (7)
H76B0.19490.35870.34430.085*0.631 (7)
C77A0.2426 (3)0.3159 (7)0.2184 (9)0.064 (2)0.631 (7)
H77A0.22730.34790.15110.076*0.631 (7)
H77B0.23660.26920.18540.076*0.631 (7)
C78A0.2966 (4)0.3293 (12)0.2427 (12)0.072 (3)0.631 (7)
H78A0.31540.29320.20100.087*0.631 (7)
H78B0.30490.37310.20200.087*0.631 (7)
O7B0.3004 (4)0.3737 (6)0.3829 (10)0.0718 (15)0.369 (7)
C75B0.2723 (7)0.3464 (15)0.4837 (14)0.071 (2)0.369 (7)
H75C0.26670.38070.55330.085*0.369 (7)
H75D0.28900.30670.52740.085*0.369 (7)
C76B0.2240 (7)0.3260 (16)0.4069 (17)0.071 (2)0.369 (7)
H76C0.21280.28160.43890.085*0.369 (7)
H76D0.19820.36010.41960.085*0.369 (7)
C77B0.2343 (7)0.3219 (14)0.2619 (18)0.064 (2)0.369 (7)
H77C0.21400.35490.20710.076*0.369 (7)
H77D0.22760.27590.22570.076*0.369 (7)
C78B0.2879 (8)0.339 (2)0.263 (2)0.072 (3)0.369 (7)
H78C0.30770.29700.25920.087*0.369 (7)
H78D0.29400.36740.18450.087*0.369 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0355 (2)0.0210 (2)0.0252 (2)0.00777 (19)0.00072 (18)0.00111 (18)
Zn20.0287 (2)0.0261 (2)0.0277 (2)0.00193 (19)0.00256 (18)0.00102 (19)
O30.0497 (12)0.0221 (10)0.0298 (10)0.0016 (9)0.0045 (9)0.0008 (8)
O40.0418 (11)0.0241 (10)0.0253 (9)0.0101 (8)0.0045 (8)0.0023 (8)
O50.0307 (9)0.0352 (11)0.0329 (10)0.0002 (9)0.0039 (8)0.0035 (9)
O60.0299 (10)0.0306 (11)0.0306 (10)0.0008 (8)0.0020 (8)0.0031 (8)
N80.0307 (12)0.0192 (11)0.0399 (13)0.0023 (9)0.0033 (10)0.0039 (10)
N90.0360 (12)0.0222 (11)0.0322 (11)0.0076 (10)0.0006 (10)0.0010 (10)
N100.0322 (12)0.0273 (12)0.0323 (12)0.0003 (10)0.0010 (10)0.0013 (10)
N110.067 (2)0.0284 (15)0.090 (2)0.0033 (14)0.0235 (18)0.0145 (15)
C120.0544 (19)0.0268 (16)0.0416 (17)0.0041 (14)0.0021 (15)0.0012 (13)
C130.073 (2)0.0350 (18)0.0444 (18)0.0114 (17)0.0111 (18)0.0035 (15)
C140.071 (2)0.0231 (16)0.066 (2)0.0053 (16)0.004 (2)0.0109 (16)
C150.053 (2)0.0221 (16)0.081 (3)0.0039 (14)0.0039 (19)0.0039 (16)
C160.0415 (17)0.0243 (15)0.0567 (19)0.0017 (13)0.0043 (15)0.0005 (14)
C170.0374 (15)0.0202 (13)0.0356 (15)0.0025 (11)0.0043 (13)0.0009 (11)
C180.0338 (14)0.0231 (14)0.0342 (15)0.0035 (11)0.0025 (12)0.0015 (11)
C190.0411 (16)0.0254 (14)0.0266 (13)0.0020 (12)0.0038 (12)0.0004 (11)
C200.0274 (13)0.0245 (14)0.0305 (14)0.0025 (11)0.0034 (12)0.0017 (11)
C210.0262 (13)0.0228 (13)0.0295 (13)0.0024 (11)0.0016 (11)0.0023 (11)
C220.0366 (15)0.0253 (15)0.0355 (15)0.0009 (12)0.0028 (13)0.0019 (12)
C230.0529 (19)0.0234 (16)0.053 (2)0.0018 (14)0.0120 (16)0.0046 (14)
C240.081 (3)0.0334 (19)0.055 (2)0.0125 (18)0.0185 (19)0.0205 (16)
C250.081 (3)0.049 (2)0.0326 (16)0.0166 (19)0.0001 (17)0.0128 (15)
C260.0490 (18)0.0347 (17)0.0319 (15)0.0063 (14)0.0062 (14)0.0018 (13)
C270.0342 (14)0.0247 (15)0.0379 (15)0.0009 (11)0.0036 (13)0.0044 (11)
C280.0400 (16)0.0296 (16)0.0489 (17)0.0017 (13)0.0153 (14)0.0032 (14)
C290.0298 (15)0.0380 (19)0.068 (2)0.0031 (13)0.0109 (15)0.0005 (16)
C300.0321 (16)0.055 (2)0.056 (2)0.0032 (14)0.0022 (15)0.0050 (16)
C310.0328 (15)0.0380 (16)0.0413 (16)0.0035 (13)0.0032 (13)0.0050 (13)
C320.0307 (14)0.0156 (12)0.0391 (15)0.0025 (10)0.0049 (12)0.0001 (11)
C330.0295 (13)0.0178 (12)0.0368 (15)0.0039 (11)0.0051 (12)0.0026 (11)
C340.0327 (14)0.0256 (14)0.0334 (14)0.0008 (11)0.0054 (12)0.0033 (12)
C350.0320 (14)0.0167 (13)0.0300 (13)0.0020 (11)0.0006 (12)0.0043 (10)
C360.0295 (14)0.0232 (14)0.0318 (14)0.0053 (11)0.0012 (12)0.0001 (11)
C370.0314 (14)0.0339 (16)0.0383 (16)0.0019 (12)0.0017 (13)0.0002 (13)
C380.0332 (15)0.0336 (17)0.0556 (19)0.0014 (13)0.0032 (14)0.0022 (15)
C390.0430 (18)0.0367 (18)0.0492 (19)0.0061 (14)0.0122 (15)0.0082 (15)
C400.0480 (18)0.0399 (18)0.0367 (16)0.0104 (15)0.0043 (14)0.0057 (14)
C410.0343 (15)0.0317 (16)0.0355 (15)0.0058 (12)0.0014 (13)0.0025 (12)
C420.0265 (13)0.0207 (13)0.0361 (14)0.0010 (11)0.0034 (12)0.0017 (11)
C430.0388 (15)0.0255 (14)0.0277 (13)0.0045 (12)0.0005 (12)0.0008 (11)
C440.0340 (14)0.0279 (14)0.0287 (14)0.0034 (12)0.0051 (12)0.0032 (11)
C450.0279 (13)0.0227 (13)0.0304 (14)0.0008 (11)0.0056 (11)0.0013 (11)
C460.0369 (15)0.0292 (15)0.0271 (14)0.0040 (12)0.0038 (12)0.0019 (11)
C470.0337 (14)0.0272 (15)0.0299 (14)0.0033 (12)0.0064 (12)0.0047 (11)
C480.0262 (13)0.0212 (13)0.0302 (13)0.0013 (10)0.0030 (11)0.0031 (11)
C490.0310 (14)0.0212 (14)0.0374 (15)0.0029 (11)0.0015 (12)0.0013 (11)
C500.0348 (15)0.0221 (14)0.0353 (15)0.0035 (11)0.0033 (12)0.0022 (11)
C510.0292 (13)0.0200 (13)0.0310 (14)0.0008 (11)0.0040 (12)0.0025 (11)
C520.0314 (14)0.0201 (13)0.0353 (14)0.0024 (11)0.0049 (12)0.0002 (11)
C530.0325 (14)0.0215 (13)0.0316 (14)0.0030 (11)0.0020 (12)0.0006 (11)
C540.0301 (13)0.0211 (13)0.0286 (13)0.0002 (11)0.0007 (11)0.0005 (11)
C550.0285 (13)0.0243 (14)0.0337 (14)0.0040 (11)0.0046 (12)0.0004 (11)
C560.0280 (13)0.0277 (14)0.0341 (14)0.0045 (11)0.0022 (12)0.0050 (12)
C570.0334 (14)0.0225 (13)0.0284 (13)0.0005 (11)0.0026 (12)0.0011 (11)
C580.0323 (14)0.0246 (14)0.0339 (14)0.0021 (11)0.0050 (12)0.0044 (11)
C590.0268 (13)0.0284 (15)0.0337 (14)0.0006 (11)0.0053 (12)0.0018 (12)
C600.0313 (14)0.0205 (13)0.0275 (13)0.0018 (11)0.0016 (11)0.0017 (11)
C610.0376 (15)0.0209 (13)0.0284 (13)0.0053 (11)0.0022 (12)0.0022 (11)
C620.0401 (16)0.0202 (14)0.0405 (16)0.0057 (12)0.0001 (14)0.0024 (12)
C630.0456 (17)0.0266 (15)0.0420 (16)0.0023 (13)0.0023 (14)0.0117 (13)
C640.0341 (14)0.0344 (16)0.0357 (14)0.0010 (13)0.0059 (12)0.0054 (13)
C650.0300 (14)0.0244 (14)0.0337 (14)0.0002 (11)0.0034 (12)0.0008 (11)
C660.0272 (13)0.0219 (13)0.0373 (15)0.0023 (11)0.0001 (12)0.0001 (11)
C670.0368 (16)0.0352 (17)0.0406 (16)0.0012 (13)0.0108 (13)0.0003 (13)
C680.0470 (18)0.0313 (17)0.0537 (19)0.0099 (14)0.0152 (16)0.0001 (14)
C690.0416 (16)0.0251 (15)0.0491 (18)0.0034 (13)0.0075 (14)0.0033 (13)
C700.0418 (16)0.0258 (14)0.0351 (15)0.0057 (12)0.0084 (13)0.0010 (12)
C710.0488 (18)0.0295 (17)0.062 (2)0.0036 (14)0.0134 (17)0.0065 (15)
C720.076 (3)0.037 (2)0.079 (3)0.0200 (19)0.024 (2)0.0221 (19)
C730.058 (2)0.044 (2)0.062 (2)0.0194 (17)0.0076 (18)0.0151 (17)
C740.0472 (18)0.0316 (17)0.0469 (18)0.0088 (14)0.0066 (15)0.0037 (14)
O7A0.065 (2)0.092 (5)0.057 (2)0.002 (3)0.0053 (19)0.006 (3)
C75A0.098 (5)0.070 (4)0.045 (5)0.005 (4)0.003 (5)0.015 (5)
C76A0.072 (3)0.078 (4)0.066 (8)0.009 (3)0.023 (5)0.012 (8)
C77A0.064 (5)0.057 (4)0.069 (7)0.002 (3)0.005 (4)0.013 (5)
C78A0.070 (5)0.080 (8)0.067 (5)0.015 (6)0.007 (3)0.005 (4)
O7B0.065 (2)0.092 (5)0.057 (2)0.002 (3)0.0053 (19)0.006 (3)
C75B0.098 (5)0.070 (4)0.045 (5)0.005 (4)0.003 (5)0.015 (5)
C76B0.072 (3)0.078 (4)0.066 (8)0.009 (3)0.023 (5)0.012 (8)
C77B0.064 (5)0.057 (4)0.069 (7)0.002 (3)0.005 (4)0.013 (5)
C78B0.070 (5)0.080 (8)0.067 (5)0.015 (6)0.007 (3)0.005 (4)
Geometric parameters (Å, º) top
Zn1—O3i2.0528 (19)C43—C441.384 (4)
Zn1—O32.0529 (19)C43—H430.9500
Zn1—O42.0531 (18)C44—C451.390 (4)
Zn1—O4i2.0531 (18)C44—H440.9500
Zn1—N9i2.199 (2)C45—C461.395 (3)
Zn1—N92.199 (2)C45—C601.480 (4)
Zn2—O52.0440 (17)C46—C471.385 (4)
Zn2—O5ii2.0440 (17)C46—H460.9500
Zn2—O6ii2.0628 (18)C47—H470.9500
Zn2—O62.0629 (18)C48—C531.395 (4)
Zn2—N102.238 (2)C48—C491.396 (4)
Zn2—N10ii2.238 (2)C49—C501.377 (4)
O3—C181.257 (3)C49—H490.9500
O4—C201.276 (3)C50—C511.399 (4)
O5—C331.260 (3)C50—H500.9500
O6—C351.270 (3)C51—C521.393 (4)
N8—C481.409 (3)C51—C651.480 (4)
N8—C541.416 (3)C52—C531.381 (4)
N8—C421.434 (3)C52—H520.9500
N9—C611.335 (3)C53—H530.9500
N9—C621.346 (3)C54—C551.391 (4)
N10—C671.333 (4)C54—C591.395 (4)
N10—C661.341 (3)C55—C561.378 (4)
N11—C721.331 (5)C55—H550.9500
N11—C711.340 (4)C56—C571.397 (4)
C12—C131.383 (4)C56—H560.9500
C12—C171.387 (4)C57—C581.395 (4)
C12—H120.9500C57—C701.485 (4)
C13—C141.374 (5)C58—C591.378 (4)
C13—H130.9500C58—H580.9500
C14—C151.376 (5)C59—H590.9500
C14—H140.9500C60—C611.385 (4)
C15—C161.381 (4)C60—C641.388 (4)
C15—H150.9500C61—H610.9500
C16—C171.385 (4)C62—C631.367 (4)
C16—H160.9500C62—H620.9500
C17—C181.503 (4)C63—C641.388 (4)
C18—C191.413 (4)C63—H630.9500
C19—C201.395 (4)C64—H640.9500
C19—H190.9500C65—C661.392 (4)
C20—C211.501 (4)C65—C691.394 (4)
C21—C221.390 (4)C66—H660.9500
C21—C261.395 (4)C67—C681.377 (4)
C22—C231.377 (4)C67—H670.9500
C22—H220.9500C68—C691.376 (4)
C23—C241.377 (5)C68—H680.9500
C23—H230.9500C69—H690.9500
C24—C251.376 (5)C70—C711.387 (4)
C24—H240.9500C70—C741.393 (4)
C25—C261.380 (4)C71—H710.9500
C25—H250.9500C72—C731.373 (5)
C26—H260.9500C72—H720.9500
C27—C281.385 (4)C73—C741.377 (4)
C27—C321.394 (4)C73—H730.9500
C27—H270.9500C74—H740.9500
C28—C291.366 (4)O7A—C78A1.391 (12)
C28—H280.9500O7A—C75A1.441 (11)
C29—C301.386 (5)C75A—C76A1.529 (9)
C29—H290.9500C75A—H75A0.9900
C30—C311.384 (4)C75A—H75B0.9900
C30—H300.9500C76A—C77A1.489 (8)
C31—C321.385 (4)C76A—H76A0.9900
C31—H310.9500C76A—H76B0.9900
C32—C331.498 (4)C77A—C78A1.496 (9)
C33—C341.410 (4)C77A—H77A0.9900
C34—C351.396 (4)C77A—H77B0.9900
C34—H340.9500C78A—H78A0.9900
C35—C361.500 (4)C78A—H78B0.9900
C36—C411.392 (4)O7B—C78B1.399 (15)
C36—C371.399 (4)O7B—C75B1.418 (14)
C37—C381.384 (4)C75B—C76B1.525 (14)
C37—H370.9500C75B—H75C0.9900
C38—C391.383 (4)C75B—H75D0.9900
C38—H380.9500C76B—C77B1.496 (13)
C39—C401.377 (4)C76B—H76C0.9900
C39—H390.9500C76B—H76D0.9900
C40—C411.384 (4)C77B—C78B1.500 (14)
C40—H400.9500C77B—H77C0.9900
C41—H410.9500C77B—H77D0.9900
C42—C471.381 (4)C78B—H78C0.9900
C42—C431.386 (4)C78B—H78D0.9900
O3i—Zn1—O3180.0C45—C44—H44119.3
O3i—Zn1—O492.14 (8)C44—C45—C46118.0 (2)
O3—Zn1—O487.87 (8)C44—C45—C60120.1 (2)
O3i—Zn1—O4i87.86 (8)C46—C45—C60121.8 (2)
O3—Zn1—O4i92.14 (8)C47—C46—C45120.6 (2)
O4—Zn1—O4i180.0C47—C46—H46119.7
O3i—Zn1—N9i89.62 (8)C45—C46—H46119.7
O3—Zn1—N9i90.38 (8)C42—C47—C46120.7 (2)
O4—Zn1—N9i90.77 (8)C42—C47—H47119.7
O4i—Zn1—N9i89.23 (8)C46—C47—H47119.7
O3i—Zn1—N990.38 (8)C53—C48—C49118.2 (2)
O3—Zn1—N989.62 (8)C53—C48—N8120.3 (2)
O4—Zn1—N989.23 (8)C49—C48—N8121.5 (2)
O4i—Zn1—N990.77 (8)C50—C49—C48120.8 (2)
N9i—Zn1—N9180.00 (7)C50—C49—H49119.6
O5—Zn2—O5ii180.0C48—C49—H49119.6
O5—Zn2—O6ii90.08 (7)C49—C50—C51121.6 (3)
O5ii—Zn2—O6ii89.92 (7)C49—C50—H50119.2
O5—Zn2—O689.92 (7)C51—C50—H50119.2
O5ii—Zn2—O690.08 (7)C52—C51—C50117.0 (2)
O6ii—Zn2—O6180.0C52—C51—C65122.3 (2)
O5—Zn2—N1091.34 (8)C50—C51—C65120.6 (2)
O5ii—Zn2—N1088.66 (8)C53—C52—C51122.0 (2)
O6ii—Zn2—N1090.18 (8)C53—C52—H52119.0
O6—Zn2—N1089.82 (8)C51—C52—H52119.0
O5—Zn2—N10ii88.66 (8)C52—C53—C48120.3 (2)
O5ii—Zn2—N10ii91.34 (8)C52—C53—H53119.8
O6ii—Zn2—N10ii89.82 (8)C48—C53—H53119.8
O6—Zn2—N10ii90.18 (8)C55—C54—C59118.3 (2)
N10—Zn2—N10ii180.0C55—C54—N8120.7 (2)
C18—O3—Zn1125.10 (17)C59—C54—N8121.0 (2)
C20—O4—Zn1122.82 (16)C56—C55—C54120.9 (2)
C33—O5—Zn2125.89 (18)C56—C55—H55119.6
C35—O6—Zn2125.35 (17)C54—C55—H55119.6
C48—N8—C54122.0 (2)C55—C56—C57121.5 (2)
C48—N8—C42119.7 (2)C55—C56—H56119.2
C54—N8—C42117.8 (2)C57—C56—H56119.2
C61—N9—C62117.5 (2)C58—C57—C56116.8 (2)
C61—N9—Zn1119.27 (18)C58—C57—C70122.0 (2)
C62—N9—Zn1123.11 (18)C56—C57—C70121.2 (2)
C67—N10—C66117.4 (2)C59—C58—C57122.2 (2)
C67—N10—Zn2119.21 (19)C59—C58—H58118.9
C66—N10—Zn2123.32 (18)C57—C58—H58118.9
C72—N11—C71116.5 (3)C58—C59—C54120.2 (2)
C13—C12—C17120.4 (3)C58—C59—H59119.9
C13—C12—H12119.8C54—C59—H59119.9
C17—C12—H12119.8C61—C60—C64117.2 (2)
C14—C13—C12120.2 (3)C61—C60—C45120.3 (2)
C14—C13—H13119.9C64—C60—C45122.4 (2)
C12—C13—H13119.9N9—C61—C60124.2 (2)
C13—C14—C15119.9 (3)N9—C61—H61117.9
C13—C14—H14120.1C60—C61—H61117.9
C15—C14—H14120.1N9—C62—C63122.7 (3)
C14—C15—C16120.2 (3)N9—C62—H62118.7
C14—C15—H15119.9C63—C62—H62118.7
C16—C15—H15119.9C62—C63—C64119.2 (3)
C15—C16—C17120.5 (3)C62—C63—H63120.4
C15—C16—H16119.7C64—C63—H63120.4
C17—C16—H16119.7C60—C64—C63119.2 (2)
C16—C17—C12118.8 (3)C60—C64—H64120.4
C16—C17—C18118.2 (3)C63—C64—H64120.4
C12—C17—C18123.0 (3)C66—C65—C69116.5 (3)
O3—C18—C19125.3 (3)C66—C65—C51121.9 (2)
O3—C18—C17115.9 (2)C69—C65—C51121.6 (2)
C19—C18—C17118.8 (2)N10—C66—C65124.4 (2)
C20—C19—C18124.8 (2)N10—C66—H66117.8
C20—C19—H19117.6C65—C66—H66117.8
C18—C19—H19117.6N10—C67—C68122.8 (3)
O4—C20—C19126.1 (2)N10—C67—H67118.6
O4—C20—C21114.0 (2)C68—C67—H67118.6
C19—C20—C21119.9 (2)C69—C68—C67119.4 (3)
C22—C21—C26119.0 (3)C69—C68—H68120.3
C22—C21—C20118.6 (2)C67—C68—H68120.3
C26—C21—C20122.2 (2)C68—C69—C65119.6 (3)
C23—C22—C21120.7 (3)C68—C69—H69120.2
C23—C22—H22119.6C65—C69—H69120.2
C21—C22—H22119.6C71—C70—C74116.0 (3)
C22—C23—C24119.7 (3)C71—C70—C57121.7 (3)
C22—C23—H23120.1C74—C70—C57122.3 (3)
C24—C23—H23120.1N11—C71—C70125.1 (3)
C25—C24—C23120.2 (3)N11—C71—H71117.4
C25—C24—H24119.9C70—C71—H71117.4
C23—C24—H24119.9N11—C72—C73123.7 (3)
C24—C25—C26120.6 (3)N11—C72—H72118.1
C24—C25—H25119.7C73—C72—H72118.1
C26—C25—H25119.7C72—C73—C74118.5 (3)
C25—C26—C21119.7 (3)C72—C73—H73120.7
C25—C26—H26120.1C74—C73—H73120.7
C21—C26—H26120.1C73—C74—C70120.1 (3)
C28—C27—C32120.6 (3)C73—C74—H74119.9
C28—C27—H27119.7C70—C74—H74119.9
C32—C27—H27119.7C78A—O7A—C75A107.2 (7)
C29—C28—C27120.2 (3)O7A—C75A—C76A104.8 (8)
C29—C28—H28119.9O7A—C75A—H75A110.8
C27—C28—H28119.9C76A—C75A—H75A110.8
C28—C29—C30120.0 (3)O7A—C75A—H75B110.8
C28—C29—H29120.0C76A—C75A—H75B110.8
C30—C29—H29120.0H75A—C75A—H75B108.9
C31—C30—C29119.9 (3)C77A—C76A—C75A104.7 (6)
C31—C30—H30120.0C77A—C76A—H76A110.8
C29—C30—H30120.0C75A—C76A—H76A110.8
C30—C31—C32120.7 (3)C77A—C76A—H76B110.8
C30—C31—H31119.7C75A—C76A—H76B110.8
C32—C31—H31119.7H76A—C76A—H76B108.9
C31—C32—C27118.5 (2)C76A—C77A—C78A105.3 (7)
C31—C32—C33119.0 (2)C76A—C77A—H77A110.7
C27—C32—C33122.5 (3)C78A—C77A—H77A110.7
O5—C33—C34125.9 (2)C76A—C77A—H77B110.7
O5—C33—C32115.6 (2)C78A—C77A—H77B110.7
C34—C33—C32118.4 (2)H77A—C77A—H77B108.8
C35—C34—C33126.4 (2)O7A—C78A—C77A108.5 (8)
C35—C34—H34116.8O7A—C78A—H78A110.0
C33—C34—H34116.8C77A—C78A—H78A110.0
O6—C35—C34125.5 (2)O7A—C78A—H78B110.0
O6—C35—C36115.6 (2)C77A—C78A—H78B110.0
C34—C35—C36118.9 (2)H78A—C78A—H78B108.4
C41—C36—C37117.8 (3)C78B—O7B—C75B108.0 (16)
C41—C36—C35123.3 (2)O7B—C75B—C76B103.9 (11)
C37—C36—C35118.9 (2)O7B—C75B—H75C111.0
C38—C37—C36121.0 (3)C76B—C75B—H75C111.0
C38—C37—H37119.5O7B—C75B—H75D111.0
C36—C37—H37119.5C76B—C75B—H75D111.0
C39—C38—C37120.3 (3)H75C—C75B—H75D109.0
C39—C38—H38119.9C77B—C76B—C75B106.1 (11)
C37—C38—H38119.9C77B—C76B—H76C110.5
C40—C39—C38119.4 (3)C75B—C76B—H76C110.5
C40—C39—H39120.3C77B—C76B—H76D110.5
C38—C39—H39120.3C75B—C76B—H76D110.5
C39—C40—C41120.6 (3)H76C—C76B—H76D108.7
C39—C40—H40119.7C76B—C77B—C78B103.9 (12)
C41—C40—H40119.7C76B—C77B—H77C111.0
C40—C41—C36121.0 (3)C78B—C77B—H77C111.0
C40—C41—H41119.5C76B—C77B—H77D111.0
C36—C41—H41119.5C78B—C77B—H77D111.0
C47—C42—C43119.3 (2)H77C—C77B—H77D109.0
C47—C42—N8120.1 (2)O7B—C78B—C77B106.7 (12)
C43—C42—N8120.6 (2)O7B—C78B—H78C110.4
C44—C43—C42120.0 (3)C77B—C78B—H78C110.4
C44—C43—H43120.0O7B—C78B—H78D110.4
C42—C43—H43120.0C77B—C78B—H78D110.4
C43—C44—C45121.4 (2)H78C—C78B—H78D108.6
C43—C44—H44119.3
C17—C12—C13—C140.7 (5)C54—N8—C48—C53151.5 (2)
C12—C13—C14—C151.6 (5)C42—N8—C48—C5335.9 (3)
C13—C14—C15—C161.6 (5)C54—N8—C48—C4929.4 (4)
C14—C15—C16—C170.7 (5)C42—N8—C48—C49143.2 (2)
C15—C16—C17—C123.0 (4)C53—C48—C49—C501.8 (4)
C15—C16—C17—C18175.8 (3)N8—C48—C49—C50177.3 (2)
C13—C12—C17—C163.0 (4)C48—C49—C50—C510.1 (4)
C13—C12—C17—C18175.7 (3)C49—C50—C51—C521.4 (4)
Zn1—O3—C18—C1914.1 (4)C49—C50—C51—C65175.0 (2)
Zn1—O3—C18—C17164.23 (17)C50—C51—C52—C530.9 (4)
C16—C17—C18—O326.9 (4)C65—C51—C52—C53175.5 (2)
C12—C17—C18—O3154.4 (3)C51—C52—C53—C480.9 (4)
C16—C17—C18—C19151.6 (3)C49—C48—C53—C522.3 (4)
C12—C17—C18—C1927.1 (4)N8—C48—C53—C52176.8 (2)
O3—C18—C19—C204.6 (5)C48—N8—C54—C55138.1 (3)
C17—C18—C19—C20177.1 (3)C42—N8—C54—C5534.6 (4)
Zn1—O4—C20—C1922.9 (4)C48—N8—C54—C5943.6 (4)
Zn1—O4—C20—C21157.62 (16)C42—N8—C54—C59143.6 (3)
C18—C19—C20—O40.5 (5)C59—C54—C55—C560.3 (4)
C18—C19—C20—C21180.0 (2)N8—C54—C55—C56177.9 (2)
O4—C20—C21—C2233.9 (3)C54—C55—C56—C570.8 (4)
C19—C20—C21—C22145.6 (3)C55—C56—C57—C581.4 (4)
O4—C20—C21—C26141.5 (3)C55—C56—C57—C70177.0 (3)
C19—C20—C21—C2639.0 (4)C56—C57—C58—C590.9 (4)
C26—C21—C22—C231.0 (4)C70—C57—C58—C59177.5 (3)
C20—C21—C22—C23176.6 (3)C57—C58—C59—C540.2 (4)
C21—C22—C23—C242.3 (5)C55—C54—C59—C580.8 (4)
C22—C23—C24—C251.9 (5)N8—C54—C59—C58177.4 (2)
C23—C24—C25—C260.1 (6)C44—C45—C60—C6147.1 (4)
C24—C25—C26—C211.3 (5)C46—C45—C60—C61136.1 (3)
C22—C21—C26—C250.8 (4)C44—C45—C60—C64130.2 (3)
C20—C21—C26—C25174.6 (3)C46—C45—C60—C6446.6 (4)
C32—C27—C28—C291.3 (4)C62—N9—C61—C600.2 (4)
C27—C28—C29—C300.3 (5)Zn1—N9—C61—C60175.8 (2)
C28—C29—C30—C311.3 (5)C64—C60—C61—N90.9 (4)
C29—C30—C31—C322.0 (5)C45—C60—C61—N9176.6 (3)
C30—C31—C32—C271.0 (4)C61—N9—C62—C630.5 (4)
C30—C31—C32—C33179.5 (3)Zn1—N9—C62—C63175.9 (2)
C28—C27—C32—C310.6 (4)N9—C62—C63—C640.3 (5)
C28—C27—C32—C33177.7 (2)C61—C60—C64—C631.7 (4)
Zn2—O5—C33—C341.8 (4)C45—C60—C64—C63175.7 (3)
Zn2—O5—C33—C32178.96 (16)C62—C63—C64—C601.5 (4)
C31—C32—C33—O530.8 (4)C52—C51—C65—C6632.2 (4)
C27—C32—C33—O5147.5 (3)C50—C51—C65—C66144.0 (3)
C31—C32—C33—C34148.5 (3)C52—C51—C65—C69149.8 (3)
C27—C32—C33—C3433.1 (4)C50—C51—C65—C6934.0 (4)
O5—C33—C34—C357.6 (5)C67—N10—C66—C650.3 (4)
C32—C33—C34—C35173.1 (2)Zn2—N10—C66—C65176.1 (2)
Zn2—O6—C35—C348.4 (4)C69—C65—C66—N100.3 (4)
Zn2—O6—C35—C36170.81 (16)C51—C65—C66—N10178.4 (2)
C33—C34—C35—O61.9 (4)C66—N10—C67—C680.4 (4)
C33—C34—C35—C36178.9 (3)Zn2—N10—C67—C68177.0 (2)
O6—C35—C36—C41158.3 (3)N10—C67—C68—C691.2 (5)
C34—C35—C36—C4122.5 (4)C67—C68—C69—C651.1 (5)
O6—C35—C36—C3721.6 (3)C66—C65—C69—C680.4 (4)
C34—C35—C36—C37157.6 (3)C51—C65—C69—C68177.7 (3)
C41—C36—C37—C381.4 (4)C58—C57—C70—C7127.2 (4)
C35—C36—C37—C38178.7 (3)C56—C57—C70—C71154.5 (3)
C36—C37—C38—C390.4 (5)C58—C57—C70—C74152.7 (3)
C37—C38—C39—C401.0 (5)C56—C57—C70—C7425.6 (4)
C38—C39—C40—C411.4 (5)C72—N11—C71—C700.7 (5)
C39—C40—C41—C360.4 (4)C74—C70—C71—N111.5 (5)
C37—C36—C41—C401.0 (4)C57—C70—C71—N11178.5 (3)
C35—C36—C41—C40179.1 (3)C71—N11—C72—C730.7 (6)
C48—N8—C42—C47128.3 (3)N11—C72—C73—C741.1 (6)
C54—N8—C42—C4758.8 (3)C72—C73—C74—C700.2 (5)
C48—N8—C42—C4352.4 (3)C71—C70—C74—C731.0 (4)
C54—N8—C42—C43120.5 (3)C57—C70—C74—C73179.0 (3)
C47—C42—C43—C442.2 (4)C78A—O7A—C75A—C76A31.5 (15)
N8—C42—C43—C44177.1 (2)O7A—C75A—C76A—C77A22.7 (14)
C42—C43—C44—C451.7 (4)C75A—C76A—C77A—C78A6.4 (17)
C43—C44—C45—C460.4 (4)C75A—O7A—C78A—C77A28.1 (18)
C43—C44—C45—C60176.5 (2)C76A—C77A—C78A—O7A12.8 (19)
C44—C45—C46—C470.4 (4)C78B—O7B—C75B—C76B33 (3)
C60—C45—C46—C47177.3 (3)O7B—C75B—C76B—C77B19 (3)
C43—C42—C47—C461.4 (4)C75B—C76B—C77B—C78B1 (3)
N8—C42—C47—C46178.0 (2)C75B—O7B—C78B—C77B35 (3)
C45—C46—C47—C420.1 (4)C76B—C77B—C78B—O7B21 (4)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2, Cg3 and Cg4 are the centroids of the N10/C65–C69, C54–C59, C36–C41 and N11/C70–C74 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C13—H13···O7A0.952.473.197 (7)134
C40—H40···Cg1iii0.952.743.594 (3)150
C43—H43···Cg2iv0.952.783.572 (3)142
C68—H68···Cg3v0.952.653.513 (3)152
C75B—H75C···Cg4iv0.992.783.649 (17)146
Symmetry codes: (iii) x, y, z1; (iv) x, y+1/2, z3/2; (v) x, y+1/2, z1/2.
 

Acknowledgements

We thank Professor Takahiko Kojima (University of Tsukuba) for fruitful discussions and assistance with the X-ray crystallographic experiments. We also thank Dr Masashi Saitoh (Osaka Research Institute of Industrial Science and Technology) for his helpful advice.

Funding information

Funding for this research was provided by: MEXT, KAKENHI (grant No. JP18750055); Shorai Foundation for Science and Technology.

References

First citationAgarwala, P. & Kabra, D. (2017). J. Mater. Chem. A, 5, 1348–1373.  Web of Science CrossRef CAS Google Scholar
First citationAllendorf, M. D., Bauer, C. A., Bhakta, R. K. & Houk, R. J. T. (2009). Chem. Soc. Rev. 38, 1330–1352.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBillingsley, K. & Buchwald, S. L. (2007). J. Am. Chem. Soc. 129, 3358–3366.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHu, B., Chen, X., Wang, Y., Lu, P. & Wang, Y. (2013). Chem. Asian J. 8, 1144–1151.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMahmood, A. (2016). Solar Energy, 123, 127–144.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (2006). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2016). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRobin, A. Y. & Fromm, K. M. (2006). Coord. Chem. Rev. 250, 2127–2157.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShirota, Y. & Kageyama, H. (2007). Chem. Rev. 107, 953–1010.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSoldatov, D. V., Henegouwen, A. T., Enright, G. D., Ratcliffe, C. I. & Ripmeester, J. A. (2001). Inorg. Chem. 40, 1626–1636.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSoldatov, D. V., Tinnemans, P., Enright, G. D., Ratcliffe, C. I., Diamente, P. R. & Ripmeester, J. A. (2003). Chem. Mater. 15, 3826–3840.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStavila, V., Talin, A. A. & Allendorf, M. D. (2014). Chem. Soc. Rev. 43, 5994–6010.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWang, T., Liu, L., Xu, K., Xie, H., Shen, H. & Zhao, W.-X. (2016). RSC Adv. 6, 100690–100695.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds