research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 4-bromo-N-[(3,6-di-tert-butyl-9H-carbazol-1-yl)methyl­­idene]aniline

aDivision of Natural Sciences, Osaka Kyoiku University, Kashiwara, Osaka 582-8582, Japan, bInstitute for Materials Chemistry and Engineering, Kyushu University, Kasuga, Fukuoka 816-8580, Japan, and cDepartment of Science Education, Faculty of Education, Osaka Kyoiku University, Kashiwara, Osaka 582-8582, Japan
*Correspondence e-mail: tane@cc.osaka-kyoiku.ac.jp

Edited by H. Ishida, Okayama University, Japan (Received 27 August 2019; accepted 5 September 2019; online 10 September 2019)

In the title compound, C27H29BrN2, the carbazole ring system is essentially planar, with an r.m.s. deviation of 0.0781 (16) Å. An intra­molecular N—H⋯N hydrogen bond forms an S(6) ring motif. One of the tert-butyl substituents shows rotational disorder over two sites with occupancies of 0.592 (3) and 0.408 (3). In the crystal, two mol­ecules are associated into an inversion dimer through a pair of C—H⋯π inter­actions. The dimers are further linked by another pair of C—H⋯π inter­actions, forming a ribbon along the c-axis direction. A C—H⋯π inter­action involving the minor disordered component and the carbazole ring system links the ribbons, generating a network sheet parallel to (100).

1. Chemical context

Carbazole derivatives have been widely applied in various fields such as pharmaceuticals (Obora, 2018[Obora, Y. (2018). Tetrahedron Lett. 59, 167-172.]), electroluminescent materials (Krucaite & Grigalevicius, 2019[Krucaite, G. & Grigalevicius, S. (2019). Synth. Met. 247, 90-108.]; Taneda, et al., 2015[Taneda, M., Shizu, K., Tanaka, H. & Adachi, C. (2015). Chem. Commun. 51, 5028-5031.]) and dyes (Zhao et al., 2019[Zhao, F., Chen, Z., Fan, C., Liu, G. & Pu, S. (2019). Dyes Pigments, 164, 390-397.]). As a result of the high acidity of the N—H bond, 9H-carbazoles have also attracted much attention as hydrogen donors in hydrogen-bonding systems (Rubio et al., 2015[Rubio, O. H., Fuentes de Arriba, L., Monleón, L. M., Sanz, F., Simón, L., Alcázar, V. & Morán, J. R. (2015). Tetrahedron, 71, 1297-1303.]; Wiosna-Sałyga et al., 2006[Wiosna-Sałyga, G., Dobkowski, J., Mudadu, M. S., Sazanovich, I., Thummel, R. P. & Waluk, J. (2006). Chem. Phys. Lett. 423, 288-292.]). Substitution of the 1 position of 9H-carbazole with a hydrogen acceptor can afford an intra­molecular hydrogen-bonding system in the mol­ecules. In this work, a Schiff base including carbazole, N-(3,6-di-tert-butyl-9H-calbazol-1-yl­methyl­idene)-4-bromo­aniline, is newly synthesized. 3,6-Di-tert-butyl-9H-carbazole is useful in order to substitute the 1-position of the 9H-carbazole moiety because the substitution reaction would only occur at its 1- and 8-positions. Thus, the title compound has two tert-butyl groups on the carbazole moiety. The title compound is a suitable model to investigate an intra­molecular hydrogen bond between the heteroaromatic N—H and the N atom of the imino group. We report herein on its mol­ecular and crystal structures.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound is shown in Fig. 1[link]. The mol­ecule adopts an E configuration with respect to the C=N double bond. The carbazole ring is almost planar with a maximum deviation of 0.0781 (16) Å at atom C8. There is an intra­molecular N—H⋯N hydrogen bond involving the amino group (N3—H3) in the carbazole ring and an imine N atom (N2), generating an S(6) ring motif (Table 1[link]). The dihedral angle between the mean planes of the carbazole ring system and the benzene C25–C30 ring is 42.72 (7)°. The bond lengths and angles of the title compound are normal and agree with those values in other carbazole imine compounds (Gibson et al., 2003[Gibson, V. C., Spitzmesser, S. K., White, A. J. P. & Williams, D. J. (2003). Dalton Trans. pp. 2718.]; Nolla-Saltiel et al., 2018[Nolla-Saltiel, R., Geer, A. M., Lewis, W., Blake, A. J. & Kays, D. L. (2018). Chem. Commun. 54, 1825-1828.]). One of the tert-butyl substituents shows rotational disorder around the C13—C20 bond axis over two sites with occupancies of 0.592 (3) and 0.408 (3).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg3 are the centroids of the C25–C30, C4–C9 and N3/C4/C5/C11/C10 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯N2 0.76 (2) 2.39 (2) 2.862 (2) 121.3 (16)
C22A—H22CCg1i 0.96 2.92 3.878 (4) 177
C29—H29⋯Cg2ii 0.93 2.95 3.613 (2) 129
C21B—H21ECg1i 0.96 2.62 3.391 (5) 138
C22B—H22DCg3iii 0.96 2.92 3.839 (5) 159
Symmetry codes: (i) -x, -y, -z+1; (ii) -x, -y, -z; (iii) [x, -y-{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with atom labelling. Only the major disordered component is shown. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by spheres of arbitrary radius. The intra­molecular N—H⋯N hydrogen bond is shown as a dashed line.

3. Supra­molecular features

In the crystal, two mol­ecules are associated through a pair of C—H⋯π inter­actions (C22A—H22CCg1i in the major disorder component or C21B—H21ECg1i in the minor disorder component; Cg1 is the centroid of the C25–C30 ring; symmetry code as in Table 1[link]), forming a centrosymmetric dimer. The dimers are linked by another pair of C—H⋯π inter­actions (C29—H29⋯Cg2ii; Cg2 is the centroid of the C4–C9 ring; symmetry code as in Table 1[link]), forming a ribbon along the c-axis direction (Fig. 2[link]). These ribbons are linked via a C—H⋯π inter­action involving the minor disorder component (C22B—H22DCg3iii; Cg3 is the centroid of the N3/C4/C5/C11/C10 ring; symmetry code as in Table 1[link]) into a network sheet parallel to (100) (Fig. 3[link]).

[Figure 2]
Figure 2
A packing diagram of the title compound, showing the ribbon structure. The N—H⋯N hydrogen bonds and the C—H⋯π inter­actions are shown as dashed lines. H atoms not involved in the inter­actions and the minor disorder component have been omitted for clarity.
[Figure 3]
Figure 3
A packing diagram of the title compound viewed along the a axis, showing a sheet structure. The minor disorder component is shown with bold dashed lines. The N—H⋯N hydrogen bonds and the C—H⋯π inter­actions are shown as dashed lines. H atoms not involved in the inter­actions and the major disorder component have been omitted for clarity.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.40; February 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) gave 56 and 5 hits, respectively, for the 3,6-di-tert-butyl-9H-carbazole and 9H-carbazol-1-yl­methyl­idene fragments. Of these structures, the compounds that resemble the title compound are (3,6-di-tert-butyl-9H-carbazole-1,8-di­yl)bis­[N-(naphthalen-1-yl)methanimine] (Nolla-Saltiel et al., 2018[Nolla-Saltiel, R., Geer, A. M., Lewis, W., Blake, A. J. & Kays, D. L. (2018). Chem. Commun. 54, 1825-1828.]) and 1,8-bis­[(2,4,6-tri­methyl­phen­yl)imino­meth­yl]-3,6-dimethyl-9H-carbazole (Gibson et al., 2003[Gibson, V. C., Spitzmesser, S. K., White, A. J. P. & Williams, D. J. (2003). Dalton Trans. pp. 2718.]).

5. Synthesis and crystallization

3,6-Di-tert-butyl-9H-carbazole-1-carbaldehyde (154 mg, 0.50 mmol) and 4-bromo­aniline (86 mg, 0.50 mmol) were treated in xylene (10 ml) at 423 K under inert gas overnight, followed by evaporation. The recrystallization of the residue from a solvent mixture of acetone and methanol (1:1, v:v) afforded single crystals of the title compound suitable for X-ray structure analysis (97 mg, 0.21 mmol; yield 42%). 1H NMR (CDCl3, 400 MHz) δ = 1.47 [s, 9H, C(CH3)3], 1.49 [s, 9H, C(CH3)3], 7.22 (td, 2H, Jortho = 8.6 Hz, Jmeta = 2.4 Hz, ArH), 7.47–7.58 (m, 4H, ArH), 7.67 (d, 1H, Jmeta = 1.8 Hz, ArH), 8.13 (d, 1H, Jmeta = 1.8 Hz, ArH), 8.26 (d, 1H, Jmeta = 1.7 Hz, ArH), 8.72 (s, 1H, CH=N), 10.55 (b, 1H, NH). HR–MS (m/z): calculated for [C27H30BrN2]+, m/z = 461.1587; found, 461.1627.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The H atom attached to atom N3 was located in a difference-Fourier map and freely refined. The C-bound H atoms were positioned geometrically (C—H = 0.93–0.96 Å) and refined using a riding model with Uiso(H) = 1.2Ueq(C). Orientational disorder of the tert-butyl substituent (C20–C23) around the C13—C20 bond axis is observed and the occupancies refined to 0.592 (3) and 0.408 (3).

Table 2
Experimental details

Crystal data
Chemical formula C27H29BrN2
Mr 461.42
Crystal system, space group Monoclinic, P21/c
Temperature (K) 123
a, b, c (Å) 9.9949 (5), 23.546 (1), 10.2919 (6)
β (°) 108.334 (6)
V3) 2299.2 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.80
Crystal size (mm) 0.40 × 0.30 × 0.20
 
Data collection
Diffractometer Rigaku AFC HyPix-6000
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.610, 0.696
No. of measured, independent and observed [F2 > 2.0σ(F2)] reflections 19373, 5268, 4580
Rint 0.025
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.076, 1.03
No. of reflections 5268
No. of parameters 312
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.56, −0.54
Computer programs: CrysAlis PRO (Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.]), SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and CrystalStructure (Rigaku, 2016[Rigaku (2016). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2018); cell refinement: CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: CrystalStructure (Rigaku, 2016).

4-Bromo-N-[(3,6-di-tert-butyl-9H-carbazol-1-yl)methylidene]aniline top
Crystal data top
C27H29BrN2F(000) = 960.00
Mr = 461.42Dx = 1.333 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71075 Å
a = 9.9949 (5) ÅCell parameters from 8890 reflections
b = 23.546 (1) Åθ = 2.3–30.3°
c = 10.2919 (6) ŵ = 1.80 mm1
β = 108.334 (6)°T = 123 K
V = 2299.2 (2) Å3Prism, yellow
Z = 40.40 × 0.30 × 0.20 mm
Data collection top
Rigaku AFC HyPix-6000
diffractometer
5268 independent reflections
Radiation source: rotating anode X-ray generator, FR-E+4580 reflections with F2 > 2.0σ(F2)
Multi-layer mirror optics monochromatorRint = 0.025
Detector resolution: 10.0 pixels mm-1θmax = 27.5°, θmin = 2.3°
ω scansh = 1012
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2018)
k = 2630
Tmin = 0.610, Tmax = 0.696l = 1313
19373 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0306P)2 + 1.3852P]
where P = (Fo2 + 2Fc2)/3
5268 reflections(Δ/σ)max < 0.001
312 parametersΔρmax = 0.56 e Å3
0 restraintsΔρmin = 0.54 e Å3
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 sigma(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.32389 (2)0.22866 (2)0.02368 (2)0.04191 (8)
N20.10884 (14)0.03518 (6)0.24791 (14)0.0214 (3)
N30.13607 (14)0.05539 (6)0.44000 (14)0.0194 (3)
C40.00730 (16)0.05269 (6)0.37843 (15)0.0178 (3)
C50.07237 (16)0.09426 (6)0.43609 (15)0.0171 (3)
C60.21856 (16)0.10061 (7)0.38848 (16)0.0190 (3)
H60.26090.12920.42430.023*
C70.30146 (16)0.06474 (7)0.28826 (16)0.0202 (3)
C80.23344 (17)0.02255 (7)0.23600 (16)0.0210 (3)
H80.28870.00210.17030.025*
C90.08739 (16)0.01562 (6)0.27729 (16)0.0187 (3)
C100.16594 (16)0.09673 (6)0.54128 (16)0.0183 (3)
C110.03872 (15)0.12215 (6)0.54154 (15)0.0169 (3)
C120.03888 (16)0.16442 (6)0.63623 (15)0.0172 (3)
H120.04560.18110.63590.021*
C130.16444 (16)0.18174 (6)0.73110 (15)0.0183 (3)
C140.29004 (16)0.15590 (7)0.72658 (16)0.0213 (3)
H140.37480.16750.78940.026*
C150.29330 (16)0.11409 (7)0.63310 (17)0.0216 (3)
H150.37810.09820.63190.026*
C160.46276 (17)0.06969 (7)0.23445 (18)0.0249 (4)
C170.5292 (2)0.01470 (9)0.2628 (2)0.0423 (5)
H17A0.50020.00790.35970.051*
H17B0.49910.01630.21820.051*
H17C0.63000.01790.22850.051*
C180.5096 (2)0.07977 (9)0.07942 (19)0.0351 (4)
H18A0.61060.08110.04470.042*
H18B0.47580.04940.03590.042*
H18C0.47160.11520.06060.042*
C190.51743 (19)0.11897 (9)0.2992 (2)0.0386 (5)
H19A0.47660.15380.28120.046*
H19B0.49200.11320.39630.046*
H19C0.61820.12100.26100.046*
C200.16630 (17)0.22683 (7)0.83868 (17)0.0226 (3)
C21A0.2398 (4)0.20070 (14)0.9822 (3)0.0349 (8)0.592 (3)
H21A0.24110.22811.05170.042*0.592 (3)
H21B0.33470.19030.98930.042*0.592 (3)
H21C0.18900.16760.99430.042*0.592 (3)
C22A0.0240 (4)0.24682 (17)0.8322 (4)0.0458 (11)0.592 (3)
H22A0.02020.26440.74520.055*0.592 (3)
H22B0.03170.27390.90400.055*0.592 (3)
H22C0.03180.21510.84340.055*0.592 (3)
C23A0.2585 (4)0.27633 (13)0.8214 (3)0.0344 (8)0.592 (3)
H23A0.21700.29350.73330.041*0.592 (3)
H23B0.35090.26250.82840.041*0.592 (3)
H23C0.26550.30400.89170.041*0.592 (3)
C21B0.0816 (5)0.2036 (2)0.9295 (4)0.0310 (11)0.408 (3)
H21D0.12770.17050.97750.037*0.408 (3)
H21E0.01180.19370.87310.037*0.408 (3)
H21F0.07620.23210.99430.037*0.408 (3)
C22B0.0843 (5)0.28167 (19)0.7672 (5)0.0324 (11)0.408 (3)
H22D0.07600.30780.83590.039*0.408 (3)
H22E0.00800.27110.70940.039*0.408 (3)
H22F0.13510.29940.71300.039*0.408 (3)
C23B0.3089 (4)0.2460 (2)0.9280 (5)0.0346 (12)0.408 (3)
H23D0.36010.21400.97720.041*0.408 (3)
H23E0.29790.27390.99170.041*0.408 (3)
H23F0.35990.26220.87210.041*0.408 (3)
C240.02473 (16)0.02866 (7)0.21740 (16)0.0197 (3)
H240.08380.05330.15440.024*
C250.15800 (17)0.07912 (7)0.18052 (16)0.0207 (3)
C260.26499 (17)0.11434 (7)0.25860 (18)0.0235 (3)
H260.30370.10790.35210.028*
C270.31439 (17)0.15892 (7)0.19842 (19)0.0263 (4)
H270.38340.18330.25140.032*
C280.25953 (18)0.16661 (7)0.05853 (19)0.0263 (4)
C290.15945 (19)0.13042 (8)0.02231 (19)0.0288 (4)
H290.12690.13510.11680.035*
C300.10778 (18)0.08681 (7)0.03954 (17)0.0261 (4)
H300.03890.06250.01400.031*
H30.187 (2)0.0341 (9)0.426 (2)0.027 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.03992 (12)0.03025 (11)0.05975 (15)0.00525 (8)0.02168 (10)0.01567 (9)
N20.0257 (7)0.0183 (6)0.0222 (7)0.0004 (5)0.0103 (6)0.0001 (5)
N30.0172 (6)0.0193 (7)0.0222 (7)0.0024 (5)0.0069 (5)0.0017 (5)
C40.0192 (7)0.0168 (7)0.0181 (7)0.0000 (6)0.0066 (6)0.0036 (6)
C50.0208 (7)0.0157 (7)0.0154 (7)0.0007 (6)0.0065 (6)0.0015 (6)
C60.0196 (7)0.0182 (7)0.0194 (8)0.0025 (6)0.0065 (6)0.0007 (6)
C70.0185 (8)0.0211 (8)0.0198 (8)0.0005 (6)0.0045 (6)0.0009 (6)
C80.0229 (8)0.0183 (7)0.0202 (8)0.0021 (6)0.0045 (6)0.0017 (6)
C90.0225 (8)0.0161 (7)0.0188 (7)0.0000 (6)0.0082 (6)0.0016 (6)
C100.0214 (8)0.0160 (7)0.0186 (7)0.0009 (6)0.0078 (6)0.0021 (6)
C110.0166 (7)0.0165 (7)0.0175 (7)0.0006 (6)0.0053 (6)0.0035 (6)
C120.0163 (7)0.0166 (7)0.0193 (7)0.0007 (6)0.0063 (6)0.0020 (6)
C130.0200 (7)0.0178 (7)0.0178 (7)0.0018 (6)0.0068 (6)0.0018 (6)
C140.0164 (7)0.0246 (8)0.0207 (8)0.0023 (6)0.0025 (6)0.0006 (6)
C150.0159 (7)0.0234 (8)0.0258 (8)0.0029 (6)0.0067 (6)0.0020 (7)
C160.0175 (8)0.0246 (8)0.0291 (9)0.0008 (6)0.0023 (7)0.0044 (7)
C170.0228 (9)0.0388 (11)0.0652 (14)0.0008 (8)0.0135 (9)0.0078 (10)
C180.0256 (9)0.0400 (11)0.0324 (10)0.0030 (8)0.0013 (8)0.0039 (8)
C190.0195 (8)0.0479 (12)0.0426 (11)0.0070 (8)0.0017 (8)0.0161 (9)
C200.0229 (8)0.0219 (8)0.0220 (8)0.0047 (6)0.0058 (6)0.0037 (6)
C21A0.049 (2)0.0336 (17)0.0241 (16)0.0039 (14)0.0149 (14)0.0042 (13)
C22A0.0303 (17)0.047 (2)0.054 (2)0.0007 (15)0.0055 (16)0.0364 (19)
C23A0.0448 (19)0.0241 (15)0.0292 (17)0.0123 (13)0.0045 (14)0.0049 (13)
C21B0.039 (3)0.035 (2)0.021 (2)0.012 (2)0.0112 (19)0.0070 (18)
C22B0.045 (3)0.026 (2)0.026 (2)0.0088 (19)0.012 (2)0.0038 (18)
C23B0.021 (2)0.038 (3)0.043 (3)0.0064 (18)0.006 (2)0.016 (2)
C240.0243 (8)0.0169 (7)0.0179 (7)0.0011 (6)0.0066 (6)0.0000 (6)
C250.0229 (8)0.0171 (7)0.0248 (8)0.0020 (6)0.0114 (7)0.0019 (6)
C260.0199 (8)0.0268 (8)0.0244 (8)0.0016 (6)0.0080 (7)0.0007 (7)
C270.0202 (8)0.0238 (8)0.0368 (10)0.0024 (6)0.0117 (7)0.0028 (7)
C280.0258 (8)0.0194 (8)0.0389 (10)0.0004 (6)0.0175 (8)0.0067 (7)
C290.0342 (9)0.0286 (9)0.0244 (9)0.0021 (7)0.0104 (7)0.0050 (7)
C300.0306 (9)0.0232 (8)0.0244 (9)0.0054 (7)0.0084 (7)0.0016 (7)
Geometric parameters (Å, º) top
Br1—C281.8992 (16)C19—H19B0.9600
N2—C241.281 (2)C19—H19C0.9600
N2—C251.417 (2)C20—C22A1.479 (4)
N3—C41.374 (2)C20—C23B1.502 (4)
N3—C101.388 (2)C20—C23A1.530 (3)
N3—H30.76 (2)C20—C21B1.545 (5)
C4—C91.401 (2)C20—C21A1.555 (4)
C4—C51.406 (2)C20—C22B1.581 (5)
C5—C61.395 (2)C21A—H21A0.9600
C5—C111.444 (2)C21A—H21B0.9600
C6—C71.388 (2)C21A—H21C0.9600
C6—H60.9300C22A—H22A0.9600
C7—C81.403 (2)C22A—H22B0.9600
C7—C161.535 (2)C22A—H22C0.9600
C8—C91.396 (2)C23A—H23A0.9600
C8—H80.9300C23A—H23B0.9600
C9—C241.450 (2)C23A—H23C0.9600
C10—C151.387 (2)C21B—H21D0.9600
C10—C111.406 (2)C21B—H21E0.9600
C11—C121.393 (2)C21B—H21F0.9600
C12—C131.387 (2)C22B—H22D0.9600
C12—H120.9300C22B—H22E0.9600
C13—C141.409 (2)C22B—H22F0.9600
C13—C201.530 (2)C23B—H23D0.9600
C14—C151.384 (2)C23B—H23E0.9600
C14—H140.9300C23B—H23F0.9600
C15—H150.9300C24—H240.9300
C16—C191.523 (2)C25—C301.390 (2)
C16—C171.525 (3)C25—C261.392 (2)
C16—C181.533 (3)C26—C271.386 (2)
C17—H17A0.9600C26—H260.9300
C17—H17B0.9600C27—C281.382 (3)
C17—H17C0.9600C27—H270.9300
C18—H18A0.9600C28—C291.377 (3)
C18—H18B0.9600C29—C301.390 (2)
C18—H18C0.9600C29—H290.9300
C19—H19A0.9600C30—H300.9300
C24—N2—C25117.55 (14)C13—C20—C23A108.37 (17)
C4—N3—C10108.99 (13)C23B—C20—C21B109.3 (3)
C4—N3—H3123.0 (15)C13—C20—C21B107.9 (2)
C10—N3—H3127.4 (15)C22A—C20—C21A109.2 (2)
N3—C4—C9129.86 (14)C13—C20—C21A107.92 (17)
N3—C4—C5109.09 (13)C23A—C20—C21A106.8 (2)
C9—C4—C5121.03 (14)C23B—C20—C22B107.0 (3)
C6—C5—C4119.92 (14)C13—C20—C22B110.1 (2)
C6—C5—C11133.48 (14)C21B—C20—C22B105.5 (3)
C4—C5—C11106.59 (13)C20—C21A—H21A109.5
C7—C6—C5120.68 (14)C20—C21A—H21B109.5
C7—C6—H6119.7H21A—C21A—H21B109.5
C5—C6—H6119.7C20—C21A—H21C109.5
C6—C7—C8117.89 (14)H21A—C21A—H21C109.5
C6—C7—C16122.38 (14)H21B—C21A—H21C109.5
C8—C7—C16119.73 (14)C20—C22A—H22A109.5
C9—C8—C7123.55 (15)C20—C22A—H22B109.5
C9—C8—H8118.2H22A—C22A—H22B109.5
C7—C8—H8118.2C20—C22A—H22C109.5
C8—C9—C4116.87 (14)H22A—C22A—H22C109.5
C8—C9—C24120.32 (14)H22B—C22A—H22C109.5
C4—C9—C24122.80 (14)C20—C23A—H23A109.5
C15—C10—N3130.74 (14)C20—C23A—H23B109.5
C15—C10—C11120.66 (14)H23A—C23A—H23B109.5
N3—C10—C11108.59 (13)C20—C23A—H23C109.5
C12—C11—C10120.24 (14)H23A—C23A—H23C109.5
C12—C11—C5133.04 (14)H23B—C23A—H23C109.5
C10—C11—C5106.69 (13)C20—C21B—H21D109.5
C13—C12—C11120.29 (14)C20—C21B—H21E109.5
C13—C12—H12119.9H21D—C21B—H21E109.5
C11—C12—H12119.9C20—C21B—H21F109.5
C12—C13—C14117.91 (14)H21D—C21B—H21F109.5
C12—C13—C20121.06 (14)H21E—C21B—H21F109.5
C14—C13—C20121.03 (14)C20—C22B—H22D109.5
C15—C14—C13123.11 (14)C20—C22B—H22E109.5
C15—C14—H14118.4H22D—C22B—H22E109.5
C13—C14—H14118.4C20—C22B—H22F109.5
C14—C15—C10117.77 (14)H22D—C22B—H22F109.5
C14—C15—H15121.1H22E—C22B—H22F109.5
C10—C15—H15121.1C20—C23B—H23D109.5
C19—C16—C17109.00 (16)C20—C23B—H23E109.5
C19—C16—C18107.66 (15)H23D—C23B—H23E109.5
C17—C16—C18108.79 (15)C20—C23B—H23F109.5
C19—C16—C7112.37 (14)H23D—C23B—H23F109.5
C17—C16—C7109.72 (14)H23E—C23B—H23F109.5
C18—C16—C7109.22 (14)N2—C24—C9122.55 (15)
C16—C17—H17A109.5N2—C24—H24118.7
C16—C17—H17B109.5C9—C24—H24118.7
H17A—C17—H17B109.5C30—C25—C26119.00 (15)
C16—C17—H17C109.5C30—C25—N2122.63 (15)
H17A—C17—H17C109.5C26—C25—N2118.32 (14)
H17B—C17—H17C109.5C27—C26—C25120.68 (16)
C16—C18—H18A109.5C27—C26—H26119.7
C16—C18—H18B109.5C25—C26—H26119.7
H18A—C18—H18B109.5C28—C27—C26118.97 (16)
C16—C18—H18C109.5C28—C27—H27120.5
H18A—C18—H18C109.5C26—C27—H27120.5
H18B—C18—H18C109.5C29—C28—C27121.56 (15)
C16—C19—H19A109.5C29—C28—Br1119.37 (14)
C16—C19—H19B109.5C27—C28—Br1119.07 (13)
H19A—C19—H19B109.5C28—C29—C30118.97 (16)
C16—C19—H19C109.5C28—C29—H29120.5
H19A—C19—H19C109.5C30—C29—H29120.5
H19B—C19—H19C109.5C25—C30—C29120.66 (16)
C22A—C20—C13113.32 (17)C25—C30—H30119.7
C23B—C20—C13116.4 (2)C29—C30—H30119.7
C22A—C20—C23A111.0 (2)
C10—N3—C4—C9175.87 (15)N3—C10—C15—C14178.10 (16)
C10—N3—C4—C52.32 (17)C11—C10—C15—C141.7 (2)
N3—C4—C5—C6178.89 (13)C6—C7—C16—C192.2 (2)
C9—C4—C5—C62.7 (2)C8—C7—C16—C19178.06 (16)
N3—C4—C5—C111.96 (16)C6—C7—C16—C17119.19 (18)
C9—C4—C5—C11176.41 (14)C8—C7—C16—C1760.5 (2)
C4—C5—C6—C72.6 (2)C6—C7—C16—C18121.64 (17)
C11—C5—C6—C7176.26 (16)C8—C7—C16—C1858.7 (2)
C5—C6—C7—C80.6 (2)C12—C13—C20—C22A2.2 (3)
C5—C6—C7—C16179.10 (14)C14—C13—C20—C22A176.9 (2)
C6—C7—C8—C91.4 (2)C12—C13—C20—C23B174.8 (3)
C16—C7—C8—C9178.89 (15)C14—C13—C20—C23B6.2 (3)
C7—C8—C9—C41.3 (2)C12—C13—C20—C23A121.4 (2)
C7—C8—C9—C24179.34 (15)C14—C13—C20—C23A59.5 (2)
N3—C4—C9—C8178.81 (15)C12—C13—C20—C21B61.9 (3)
C5—C4—C9—C80.8 (2)C14—C13—C20—C21B117.1 (2)
N3—C4—C9—C240.6 (3)C12—C13—C20—C21A123.2 (2)
C5—C4—C9—C24178.55 (14)C14—C13—C20—C21A55.9 (2)
C4—N3—C10—C15178.11 (16)C12—C13—C20—C22B52.8 (3)
C4—N3—C10—C111.74 (17)C14—C13—C20—C22B128.1 (2)
C15—C10—C11—C121.3 (2)C25—N2—C24—C9178.58 (14)
N3—C10—C11—C12178.55 (13)C8—C9—C24—N2177.08 (15)
C15—C10—C11—C5179.37 (14)C4—C9—C24—N23.6 (2)
N3—C10—C11—C50.50 (17)C24—N2—C25—C3048.4 (2)
C6—C5—C11—C122.2 (3)C24—N2—C25—C26134.37 (16)
C4—C5—C11—C12176.82 (16)C30—C25—C26—C274.4 (2)
C6—C5—C11—C10179.87 (16)N2—C25—C26—C27178.28 (14)
C4—C5—C11—C100.88 (16)C25—C26—C27—C282.5 (2)
C10—C11—C12—C130.1 (2)C26—C27—C28—C291.3 (3)
C5—C11—C12—C13177.38 (15)C26—C27—C28—Br1178.58 (12)
C11—C12—C13—C140.9 (2)C27—C28—C29—C303.1 (3)
C11—C12—C13—C20178.14 (14)Br1—C28—C29—C30176.80 (13)
C12—C13—C14—C150.5 (2)C26—C25—C30—C292.5 (3)
C20—C13—C14—C15178.59 (15)N2—C25—C30—C29179.78 (15)
C13—C14—C15—C100.8 (2)C28—C29—C30—C251.1 (3)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the C25–C30, C4–C9 and N3/C4/C5/C11/C10 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N3—H3···N20.76 (2)2.39 (2)2.862 (2)121.3 (16)
C22A—H22C···Cg1i0.962.923.878 (4)177
C29—H29···Cg2ii0.932.953.613 (2)129
C21B—H21E···Cg1i0.962.623.391 (5)138
C22B—H22D···Cg3iii0.962.923.839 (5)159
Symmetry codes: (i) x, y, z+1; (ii) x, y, z; (iii) x, y1/2, z1/2.
 

Funding information

Funding for this research was provided by: the Cooperative Research Program of Network Joint Reserarch Center for Materials and Devices (Institute for Materials Chemistry and Engineering, Kyushu University) (No. 20192018).

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationGibson, V. C., Spitzmesser, S. K., White, A. J. P. & Williams, D. J. (2003). Dalton Trans. pp. 2718.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKrucaite, G. & Grigalevicius, S. (2019). Synth. Met. 247, 90–108.  Web of Science CrossRef CAS Google Scholar
First citationNolla-Saltiel, R., Geer, A. M., Lewis, W., Blake, A. J. & Kays, D. L. (2018). Chem. Commun. 54, 1825–1828.  CAS Google Scholar
First citationObora, Y. (2018). Tetrahedron Lett. 59, 167–172.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (2016). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku OD (2018). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRubio, O. H., Fuentes de Arriba, L., Monleón, L. M., Sanz, F., Simón, L., Alcázar, V. & Morán, J. R. (2015). Tetrahedron, 71, 1297–1303.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTaneda, M., Shizu, K., Tanaka, H. & Adachi, C. (2015). Chem. Commun. 51, 5028–5031.  Web of Science CrossRef CAS Google Scholar
First citationWiosna-Sałyga, G., Dobkowski, J., Mudadu, M. S., Sazanovich, I., Thummel, R. P. & Waluk, J. (2006). Chem. Phys. Lett. 423, 288–292.  Google Scholar
First citationZhao, F., Chen, Z., Fan, C., Liu, G. & Pu, S. (2019). Dyes Pigments, 164, 390–397.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds