research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bis­­[2-(1H-benzimidazol-2-yl-κN3)aniline-κN]bis­­(nitrato-κO)cadmium(II)

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Chungnam National University, Daejeon 305-764, Republic of Korea
*Correspondence e-mail: skkang@cnu.ac.kr

Edited by H. Ishida, Okayama University, Japan (Received 2 September 2019; accepted 6 September 2019; online 12 September 2019)

In the title compound, [Cd(NO3)2(C13H11N3)2], the CdII atom lies on a twofold rotation axis and is coordinated by four N atoms and two O atoms, provided by two bidentate 2-(1H-benzimidazol-2-yl)aniline ligands, and two nitrato O atoms, forming a distorted octa­hedral geometry [range of bond angles around the Cd atom = 73.82 (2)–106.95 (8)°]. In the ligand, the dihedral angle between the aniline ring and the benzimidazole ring system is 30.43 (7)°. The discrete complex mol­ecule is stabilized by an intra­molecular N—H⋯O hydrogen bond. In the crystal, inter­molecular N—H⋯O hydrogen bonds link the mol­ecules, forming a three-dimensional network.

1. Chemical context

Azole and benzazole derivatives are well-known nitro­gen-containing heterocyclic compounds, and are of great inter­est because of their broad spectrum of biological activity (Esparza-Ruiz et al., 2011[Esparza-Ruiz, A., Peña-Hueso, A., Mijangos, E., Osorio-Monreal, G., Nöth, H., Flores-Parra, A., Contreras, R. & Barba-Behrens, N. (2011). Polyhedron, 30, 2090-2098.]; Hock et al., 2013[Hock, S. J., Schaper, L., Herrmann, W. A. & Kühn, F. E. (2013). Chem. Soc. Rev. 42, 5073-5089.]). Imidazole is an aza­pyrrole in which the nitro­gen atoms are separated by one carbon atom. Benzimidazole, a fused heterocycle with benzene and imidazole, is associated with a wide array of pharmacological activities (Akhtar et al., 2017[Akhtar, W., Khan, M. F., Verma, G., Shaquiquzzaman, M., Rizvi, M. A., Mehdi, S. H., Akhter, M. & Alam, M. M. (2017). Eur. J. Med. Chem. 126, 705-753.]), and benzimidazole derivatives exhibit a wide range of various biological activities. These include bactericidal (Carcanague et al., 2002[Carcanague, D., Shue, Y. K., Wuonola, M. A., Uria-Nickelsen, M., Joubran, C., Abedi, J. K., Jones, J. & Kühler, T. C. (2002). J. Med. Chem. 45, 4300-4309.]) and fungicidal (Lezcano et al., 2002[Lezcano, M., Al-Soufi, W., Novo, M., Rodríguez-Núñez, E. & Tato, J. V. (2002). J. Agric. Food Chem. 50, 108-112.]; Aghatabay et al., 2007[Aghatabay, N. M., Somer, M., Senel, M., Dulger, B. & Gucin, F. (2007). Eur. J. Med. Chem. 42, 1069-1075.]) properties. Their metal complexes have been shown to display anti­tumor activity and are important biological mol­ecules (Sánchez-Guadarrama et al., 2009[Sánchez-Guadarrama, O., López-Sandoval, H., Sánchez-Bartéz, F., Gracia-Mora, I., Höpfl, H. & Barba-Behrens, N. (2009). J. Inorg. Biochem. 103, 1204-1213.]; Ramla et al., 2007[Ramla, M. M., Omar, M. A., Tokuda, H. & El-Diwani, H. I. (2007). Bioorg. Med. Chem. 15, 6489-6496.]; Wang et al., 2007[Wang, X. A., Cianci, C. W., Yu, K.-L., Combrink, K. D., Thuring, J. W., Zhang, Y., Civiello, R. L., Kadow, K. F., Roach, J., Li, Z., Langley, D. R., Krystal, M. & Meanwell, N. A. (2007). Bioorg. Med. Chem. Lett. 17, 4592-4598.]). Recently, we reported on the synthesis and structural features of Zn (Kim & Kang, 2015a[Kim, Y. & Kang, S. K. (2015a). Acta Cryst. E71, m85-m86.]) and Ag (Kim & Kang, 2015b[Kim, Y. & Kang, S. K. (2015b). Acta Cryst. E71, 1058-1060.]) complexes with benzimidazole derivatives. In this work, we have synthesized the title compound and characterized it by single crystal X-ray crystallography.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title complex is shown in Fig. 1[link]. The complex lies about a twofold rotation axis which passes through the CdII atom, the coordination geometry around which is distorted octa­hedral with two O atoms of two nitrato ligands and four N atoms of two bidentate 2-(1H-benzimidazol-2-yl)aniline ligands. The Cd—N and Cd—O bond lengths [Cd1—N2 = 2.317 (2), Cd1—N17 = 2.437 (2) and Cd1—O19 = 2.3175 (19) Å] are comparable with those of other Cd complexes (Barszcz et al., 2013[Barszcz, B., Masternak, J. & Sawka-Dobrowolska, W. (2013). Dalton Trans. 42, 5960-5963.]; Jalilehvand et al., 2009[Jalilehvand, F., Leung, B. O. & Mah, V. (2009). Inorg. Chem. 48, 5758-5771.]). The bond angles around the Cd1 atom are in the range of 73.82 (8)–106.95 (8)°. The dihedral angle between the benzimidazole (N2/C3–C8/N9/C10) ring system and the aniline (C11–C16/N17) plane in the bidentate ligand is 30.43 (7)°. This twisting is a driving force in the formation of weak Cd1—N17 bonding, this bond being [2.437 (2) Å] a little longer than Cd1—N2 [2.317 (2) Å]. This elongation was also observed in our previous studies of imidazole­aniline–metal complexes (Zn: Kim & Kang, 2015a[Kim, Y. & Kang, S. K. (2015a). Acta Cryst. E71, m85-m86.]; Ag: Kim & Kang, 2015b[Kim, Y. & Kang, S. K. (2015b). Acta Cryst. E71, 1058-1060.]). The N2—C10 bond length of 1.327 (3) Å in the imidazole ring shows double-bond character compared to the other N—C bond lengths [N2—C3 = 1.397 (3), C8—N9 = 1.384 (3) and N9—C10 = 1.355 (3) Å]. The discrete mol­ecule is stabilized by an intra­molecular N—H⋯O hydrogen bond (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N9—H9⋯O20i 0.75 (3) 2.39 (3) 3.012 (3) 140 (3)
N9—H9⋯O21i 0.75 (3) 2.51 (3) 3.238 (3) 163 (3)
N17—H17A⋯O21 0.86 (3) 2.34 (3) 2.973 (3) 131 (2)
N17—H17B⋯O20ii 0.79 (3) 2.24 (3) 3.024 (3) 170 (3)
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x, -y+1, z+{\script{1\over 2}}].
[Figure 1]
Figure 1
Mol­ecular structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids drawn at the 30% probability level. The intramolecular N—H⋯O hydrogen bonds are indicated by dashed lines. [Symmetry code: (i) −x + 1, y, −z + [{3\over 2}].]

3. Supra­molecular features

In the crystal, mol­ecules are linked by a series of N—H⋯O inter­actions. The nitrate group containing oxygen atom O21 forms both intra- and inter­molecular hydrogen bonds. Mol­ecules are arranged into a zigzag chain along the c-axis direction via an N—H⋯O hydrogen bond (N17—H17B⋯O20ii; symmetry code as in Table 1[link]; Fig. 2[link]). The other N—H⋯O hydrogen bonds (N9—H9⋯O20i and N9—H9⋯O21i; Table 1[link]) link the mol­ecules into a three-dimensional network (Fig. 3[link]).

[Figure 2]
Figure 2
Partial packing diagram of the title compound, showing mol­ecules linked by inter­molecular N—H⋯O hydrogen bonds (dashed lines), viewed along the a-axis direction.
[Figure 3]
Figure 3
A view along the b axis of the crystal packing of the title compound, showing the three-dimensional network linked of molecules linked by N—H⋯O hydrogen bonds (dashed lines, Table 1[link]).

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.40, Feb. 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) gave 4678 entries for crystal structures related to benzimidazoles. However, there are only 14 entries involving the ligands 2-(1H-benzimidazol-2-yl)aniline or 2-(2-amino­phen­yl)-1H-benzimidazole with a transition metal. These include Ni (refcode EWUZOM; Esparza-Ruiz et al., 2011[Esparza-Ruiz, A., Peña-Hueso, A., Mijangos, E., Osorio-Monreal, G., Nöth, H., Flores-Parra, A., Contreras, R. & Barba-Behrens, N. (2011). Polyhedron, 30, 2090-2098.]), Zn [AWOLEE (Eltayeb et al., 2011[Eltayeb, N. E., Teoh, S. G., Chantrapromma, S. & Fun, H.-K. (2011). Acta Cryst. E67, m1062-m1063.]) and JUFCOE (Kim & Kang, 2015a[Kim, Y. & Kang, S. K. (2015a). Acta Cryst. E71, m85-m86.])], Ru (NUNLID; Małecki, 2012[Małecki, J. G. (2012). Struct. Chem. 23, 461-472.]) and Re (UYELEQ; Machura et al., 2011[Machura, B., Wolff, M., Gryca, I., Palion, A. & Michalik, K. (2011). Polyhedron, 30, 2275-2285.]).

5. Synthesis and crystallization

Chemicals were obtained commercially in reagent grade and used as received. Solvents were dried using standard procedures described in the literature. To a stirred solution of Cd(NO3)·4H2O (0.154 g, 0.5 mmol) in ethanol (20 ml) was added a solution of 2-(1H-benzimidazol-2-yl)aniline (0.209 g, 1.0 mmol) in ethanol (10 ml) at 333 K. After 24 h of stirring, the title complex was obtained as a white powder. The powder was filtered off and washed with ethanol. Colourless crystals of the title complex were obtained by slow evaporation of the methanol solvent at room temperature within two weeks.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms of the NH and NH2 groups were located in a difference-Fourier map and refined freely [refined distances: N—H = 0.75 (3)–0.86 (3) Å]. Other H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å, and with Uiso(H) = 1.2Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula [Cd(NO3)2(C13H11N3)2]
Mr 654.91
Crystal system, space group Monoclinic, C2/c
Temperature (K) 296
a, b, c (Å) 14.6899 (4), 15.0250 (3), 12.2269 (3)
β (°) 106.8431 (15)
V3) 2582.90 (11)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.91
Crystal size (mm) 0.15 × 0.13 × 0.12
 
Data collection
Diffractometer Bruker SMART CCD area-detector
Absorption correction Multi-scan (SADABS; Bruker, 2012[Bruker (2012). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.546, 0.726
No. of measured, independent and observed [I > 2σ(I)] reflections 11727, 3087, 2729
Rint 0.031
(sin θ/λ)max−1) 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.078, 1.06
No. of reflections 3087
No. of parameters 198
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.82, −0.35
Computer programs: SMART and SAINT (Bruker, 2012[Bruker (2012). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

Data collection: SMART (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Bis[2-(1H-benzimidazol-2-yl-κN3)aniline-κN]bis(nitrato-κO)cadmium(II) top
Crystal data top
[Cd(NO3)2(C13H11N3)2]F(000) = 1320
Mr = 654.91Dx = 1.684 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 14.6899 (4) ÅCell parameters from 5554 reflections
b = 15.0250 (3) Åθ = 2.4–28.0°
c = 12.2269 (3) ŵ = 0.91 mm1
β = 106.8431 (15)°T = 296 K
V = 2582.90 (11) Å3Block, colourless
Z = 40.15 × 0.13 × 0.12 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2729 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.031
φ and ω scansθmax = 28.3°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
h = 1917
Tmin = 0.546, Tmax = 0.726k = 1920
11727 measured reflectionsl = 1616
3087 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.035H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.078 w = 1/[σ2(Fo2) + (0.0422P)2 + 0.8298P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
3087 reflectionsΔρmax = 0.82 e Å3
198 parametersΔρmin = 0.35 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.50000.62214 (2)0.75000.03198 (10)
N20.59443 (14)0.72062 (13)0.68561 (17)0.0345 (4)
C30.60535 (16)0.72958 (16)0.5763 (2)0.0357 (5)
C40.57954 (19)0.6718 (2)0.4835 (2)0.0470 (7)
H40.55070.61730.48770.056*
C50.5990 (2)0.6994 (2)0.3847 (3)0.0562 (8)
H50.58260.66280.32060.067*
C60.6425 (2)0.7807 (2)0.3793 (3)0.0594 (8)
H60.65380.79700.31100.071*
C70.6695 (2)0.8379 (2)0.4705 (3)0.0495 (7)
H70.69970.89170.46630.059*
C80.64909 (17)0.81075 (17)0.5695 (2)0.0373 (5)
N90.66350 (16)0.85021 (15)0.67542 (19)0.0380 (5)
H90.696 (2)0.889 (2)0.697 (3)0.054 (10)*
C100.62989 (16)0.79434 (15)0.7417 (2)0.0323 (5)
C110.62624 (16)0.81778 (15)0.8566 (2)0.0334 (5)
C120.6159 (2)0.90724 (18)0.8829 (2)0.0443 (6)
H120.61550.95060.82850.053*
C130.6065 (2)0.93253 (19)0.9865 (3)0.0540 (7)
H130.59840.99221.00170.065*
C140.6090 (2)0.86845 (19)1.0683 (3)0.0520 (7)
H140.60280.88521.13900.062*
C150.62043 (18)0.78054 (18)1.0463 (2)0.0428 (6)
H150.62300.73831.10270.051*
C160.62832 (16)0.75354 (16)0.9400 (2)0.0331 (5)
N170.63122 (16)0.66172 (14)0.9164 (2)0.0367 (5)
H17A0.674 (2)0.6453 (18)0.885 (3)0.040 (8)*
H17B0.640 (2)0.6314 (18)0.972 (3)0.037 (8)*
N180.63805 (17)0.48486 (14)0.6968 (2)0.0457 (5)
O190.55302 (15)0.50697 (13)0.6581 (2)0.0584 (6)
O200.67211 (17)0.43131 (17)0.6449 (2)0.0793 (8)
O210.6875 (2)0.51407 (17)0.7877 (2)0.0861 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.02785 (14)0.02431 (13)0.04112 (16)0.0000.00582 (10)0.000
N20.0292 (11)0.0388 (11)0.0348 (11)0.0043 (8)0.0083 (8)0.0076 (9)
C30.0269 (12)0.0433 (14)0.0362 (14)0.0012 (9)0.0078 (10)0.0038 (11)
C40.0370 (15)0.0591 (18)0.0432 (16)0.0004 (12)0.0090 (11)0.0138 (13)
C50.0521 (18)0.076 (2)0.0366 (16)0.0124 (15)0.0060 (13)0.0119 (15)
C60.066 (2)0.079 (2)0.0350 (16)0.0263 (17)0.0172 (14)0.0110 (16)
C70.0522 (18)0.0522 (17)0.0479 (17)0.0117 (13)0.0205 (13)0.0133 (14)
C80.0321 (13)0.0434 (14)0.0361 (14)0.0049 (10)0.0092 (10)0.0016 (11)
N90.0379 (12)0.0354 (11)0.0402 (12)0.0066 (9)0.0107 (9)0.0014 (10)
C100.0267 (12)0.0323 (12)0.0351 (13)0.0033 (9)0.0046 (9)0.0005 (10)
C110.0320 (13)0.0318 (12)0.0355 (13)0.0066 (9)0.0084 (10)0.0045 (10)
C120.0547 (17)0.0322 (12)0.0476 (16)0.0077 (11)0.0175 (13)0.0027 (12)
C130.070 (2)0.0368 (15)0.0595 (19)0.0068 (13)0.0257 (16)0.0164 (14)
C140.066 (2)0.0513 (17)0.0434 (16)0.0139 (14)0.0238 (14)0.0129 (13)
C150.0465 (16)0.0441 (15)0.0365 (15)0.0082 (11)0.0097 (11)0.0019 (11)
C160.0265 (12)0.0341 (12)0.0357 (13)0.0047 (9)0.0042 (9)0.0031 (10)
N170.0372 (13)0.0329 (11)0.0374 (13)0.0007 (9)0.0068 (10)0.0019 (10)
N180.0556 (15)0.0329 (11)0.0444 (14)0.0093 (10)0.0079 (11)0.0038 (10)
O190.0457 (12)0.0411 (11)0.0832 (16)0.0077 (8)0.0105 (11)0.0139 (10)
O200.0740 (16)0.0897 (19)0.0650 (15)0.0407 (14)0.0059 (12)0.0261 (14)
O210.099 (2)0.0681 (16)0.0665 (17)0.0171 (14)0.0153 (14)0.0294 (13)
Geometric parameters (Å, º) top
Cd1—N22.317 (2)N9—C101.355 (3)
Cd1—N2i2.317 (2)N9—H90.75 (3)
Cd1—O192.3175 (19)C10—C111.464 (3)
Cd1—O19i2.3175 (19)C11—C161.398 (3)
Cd1—N172.437 (2)C11—C121.401 (3)
Cd1—N17i2.437 (2)C12—C131.368 (4)
N2—C101.327 (3)C12—H120.9300
N2—C31.397 (3)C13—C141.381 (4)
C3—C41.392 (4)C13—H130.9300
C3—C81.392 (3)C14—C151.368 (4)
C4—C51.384 (4)C14—H140.9300
C4—H40.9300C15—C161.398 (4)
C5—C61.389 (5)C15—H150.9300
C5—H50.9300C16—N171.413 (3)
C6—C71.373 (4)N17—H17A0.86 (3)
C6—H60.9300N17—H17B0.79 (3)
C7—C81.390 (4)N18—O201.218 (3)
C7—H70.9300N18—O211.219 (3)
C8—N91.384 (3)N18—O191.246 (3)
N2—Cd1—N2i100.60 (10)C7—C8—C3122.0 (3)
N2—Cd1—O1989.64 (8)C10—N9—C8108.1 (2)
N2i—Cd1—O19163.78 (7)C10—N9—H9125 (3)
N2—Cd1—O19i163.78 (7)C8—N9—H9125 (3)
N2i—Cd1—O19i89.64 (8)N2—C10—N9111.4 (2)
O19—Cd1—O19i83.39 (11)N2—C10—C11125.3 (2)
N2—Cd1—N1773.82 (8)N9—C10—C11123.1 (2)
N2i—Cd1—N1788.10 (7)C16—C11—C12118.4 (2)
O19—Cd1—N17106.95 (8)C16—C11—C10122.3 (2)
O19i—Cd1—N1794.19 (8)C12—C11—C10119.2 (2)
N2—Cd1—N17i88.10 (7)C13—C12—C11121.8 (3)
N2i—Cd1—N17i73.82 (8)C13—C12—H12119.1
O19—Cd1—N17i94.18 (8)C11—C12—H12119.1
O19i—Cd1—N17i106.95 (8)C12—C13—C14119.2 (3)
N17—Cd1—N17i151.75 (10)C12—C13—H13120.4
C10—N2—C3106.1 (2)C14—C13—H13120.4
C10—N2—Cd1122.79 (16)C15—C14—C13120.6 (3)
C3—N2—Cd1129.23 (15)C15—C14—H14119.7
C4—C3—C8121.3 (2)C13—C14—H14119.7
C4—C3—N2129.8 (2)C14—C15—C16120.7 (3)
C8—C3—N2109.0 (2)C14—C15—H15119.6
C5—C4—C3116.7 (3)C16—C15—H15119.6
C5—C4—H4121.7C15—C16—C11119.2 (2)
C3—C4—H4121.7C15—C16—N17119.2 (2)
C4—C5—C6121.3 (3)C11—C16—N17121.4 (2)
C4—C5—H5119.3C16—N17—Cd1110.21 (15)
C6—C5—H5119.3C16—N17—H17A116.2 (19)
C7—C6—C5122.7 (3)Cd1—N17—H17A93 (2)
C7—C6—H6118.6C16—N17—H17B113 (2)
C5—C6—H6118.6Cd1—N17—H17B118 (2)
C6—C7—C8116.1 (3)H17A—N17—H17B105 (3)
C6—C7—H7122.0O20—N18—O21119.1 (3)
C8—C7—H7122.0O20—N18—O19119.7 (2)
N9—C8—C7132.5 (3)O21—N18—O19121.1 (2)
N9—C8—C3105.5 (2)N18—O19—Cd1117.12 (17)
C10—N2—C3—C4179.5 (3)C8—N9—C10—N20.1 (3)
Cd1—N2—C3—C415.2 (4)C8—N9—C10—C11174.8 (2)
C10—N2—C3—C80.4 (3)N2—C10—C11—C1631.7 (4)
Cd1—N2—C3—C8164.74 (16)N9—C10—C11—C16154.1 (2)
C8—C3—C4—C50.4 (4)N2—C10—C11—C12145.3 (2)
N2—C3—C4—C5179.5 (3)N9—C10—C11—C1228.9 (4)
C3—C4—C5—C60.3 (4)C16—C11—C12—C131.0 (4)
C4—C5—C6—C70.6 (5)C10—C11—C12—C13176.1 (3)
C5—C6—C7—C81.2 (4)C11—C12—C13—C141.3 (5)
C6—C7—C8—N9178.7 (3)C12—C13—C14—C150.2 (5)
C6—C7—C8—C31.1 (4)C13—C14—C15—C161.0 (5)
C4—C3—C8—N9179.5 (2)C14—C15—C16—C111.3 (4)
N2—C3—C8—N90.4 (3)C14—C15—C16—N17174.2 (3)
C4—C3—C8—C70.3 (4)C12—C11—C16—C150.2 (3)
N2—C3—C8—C7179.8 (2)C10—C11—C16—C15177.2 (2)
C7—C8—N9—C10180.0 (3)C12—C11—C16—N17175.1 (2)
C3—C8—N9—C100.2 (3)C10—C11—C16—N171.9 (3)
C3—N2—C10—N90.3 (3)C15—C16—N17—Cd1120.8 (2)
Cd1—N2—C10—N9165.88 (16)C11—C16—N17—Cd154.5 (3)
C3—N2—C10—C11174.4 (2)O20—N18—O19—Cd1172.3 (2)
Cd1—N2—C10—C118.8 (3)O21—N18—O19—Cd19.7 (3)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N9—H9···O20ii0.75 (3)2.39 (3)3.012 (3)140 (3)
N9—H9···O21ii0.75 (3)2.51 (3)3.238 (3)163 (3)
N17—H17A···O210.86 (3)2.34 (3)2.973 (3)131 (2)
N17—H17B···O20iii0.79 (3)2.24 (3)3.024 (3)170 (3)
Symmetry codes: (ii) x+3/2, y+1/2, z+3/2; (iii) x, y+1, z+1/2.
 

Funding information

This work was supported by the research fund of Chungnam National University.

References

First citationAghatabay, N. M., Somer, M., Senel, M., Dulger, B. & Gucin, F. (2007). Eur. J. Med. Chem. 42, 1069–1075.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationAkhtar, W., Khan, M. F., Verma, G., Shaquiquzzaman, M., Rizvi, M. A., Mehdi, S. H., Akhter, M. & Alam, M. M. (2017). Eur. J. Med. Chem. 126, 705–753.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBarszcz, B., Masternak, J. & Sawka-Dobrowolska, W. (2013). Dalton Trans. 42, 5960–5963.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBruker (2012). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarcanague, D., Shue, Y. K., Wuonola, M. A., Uria-Nickelsen, M., Joubran, C., Abedi, J. K., Jones, J. & Kühler, T. C. (2002). J. Med. Chem. 45, 4300–4309.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEltayeb, N. E., Teoh, S. G., Chantrapromma, S. & Fun, H.-K. (2011). Acta Cryst. E67, m1062–m1063.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEsparza-Ruiz, A., Peña-Hueso, A., Mijangos, E., Osorio-Monreal, G., Nöth, H., Flores-Parra, A., Contreras, R. & Barba-Behrens, N. (2011). Polyhedron, 30, 2090–2098.  CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHock, S. J., Schaper, L., Herrmann, W. A. & Kühn, F. E. (2013). Chem. Soc. Rev. 42, 5073–5089.  Web of Science CrossRef CAS PubMed Google Scholar
First citationJalilehvand, F., Leung, B. O. & Mah, V. (2009). Inorg. Chem. 48, 5758–5771.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKim, Y. & Kang, S. K. (2015a). Acta Cryst. E71, m85–m86.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKim, Y. & Kang, S. K. (2015b). Acta Cryst. E71, 1058–1060.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLezcano, M., Al-Soufi, W., Novo, M., Rodríguez-Núñez, E. & Tato, J. V. (2002). J. Agric. Food Chem. 50, 108–112.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMachura, B., Wolff, M., Gryca, I., Palion, A. & Michalik, K. (2011). Polyhedron, 30, 2275–2285.  Web of Science CSD CrossRef CAS Google Scholar
First citationMałecki, J. G. (2012). Struct. Chem. 23, 461–472.  Google Scholar
First citationRamla, M. M., Omar, M. A., Tokuda, H. & El-Diwani, H. I. (2007). Bioorg. Med. Chem. 15, 6489–6496.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSánchez-Guadarrama, O., López-Sandoval, H., Sánchez-Bartéz, F., Gracia-Mora, I., Höpfl, H. & Barba-Behrens, N. (2009). J. Inorg. Biochem. 103, 1204–1213.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWang, X. A., Cianci, C. W., Yu, K.-L., Combrink, K. D., Thuring, J. W., Zhang, Y., Civiello, R. L., Kadow, K. F., Roach, J., Li, Z., Langley, D. R., Krystal, M. & Meanwell, N. A. (2007). Bioorg. Med. Chem. Lett. 17, 4592–4598.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds