research communications
and molecular Hirshfeld surface analysis of acenaphthene derivatives obeying the chlorine–methyl exchange rule
aDepartment of Physics, Thiagarajar College, Madurai - 625 009, Tamilnadu, India, and bSchool of Chemistry, Madurai Kamaraj University, Madurai - 625 021, Tamilnadu, India
*Correspondence e-mail: vasan692000@yahoo.co.in
Instances of crystal structures that remain isomorphous in spite of some minor changes in their respective molecules, such as change in a substituent atom/group, can provide insights into the factors that govern crystal packing. In this context, an accurate description of the crystal structures of an isomorphous pair that differ from each other only by a chlorine–methyl substituent, viz. 5′′-(2-chlorobenzylidene)-4′-(2-chlorophenyl)-1′-methyldispiro[acenaphthene-1,2′-pyrrolidine-3′,3′′-piperidine]-2,4′′-dione, C34H28Cl2N2O2, (I), and its analogue 1′-methyl-5′′-(2-methylbenzylidene)-4′-(2-methylphenyl)dispiro[acenaphthene-1,2′-pyrrolidine-3′,3′′-piperidine]-2,4′′-dione, C36H34N2O2, (II), is presented. While there are two C—H⋯O weak intermolecular interactions present in both (I) and (II), the change of substituent from chlorine to methyl has given rise to an additional weak C—H⋯O intermolecular interaction that is relatively stronger than the other two. However, the presence of the stronger C—H⋯O interaction in (II) has not disrupted the validity of the chloro-methyl exchange rule. Details of the crystal structures and Hirshfeld analyses of the two compounds are presented.
1. Chemical context
The prediction of crystal structures has emerged as an exciting field involving researchers from diverse fields primarily because of its challenging complexity, which is considered analogous to that of the protein-folding problem. Attempts made in the field of crystal-structure prediction, its present status and the challenges ahead were discussed in detail in a recent article (Oganov, 2018). In this context, instances of crystal structures that remain isomorphous in spite of some minor changes in their respective molecules, such as a change in a substituent atom/group, are worthy of study as they might provide some insights regarding the subtle factors that govern the crystal packing.
The title compounds (I) and (II) are good examples of crystal structures that obey the Cl–Me exchange rule, complying with the general conclusions arrived at in earlier studies (Jones et al., 1981; Gnanaguru et al., 1984; Desiraju & Sarma, 1986). In some recent studies carried out in our laboratory on molecules that showcase the validity of the Cl–Me exchange rule, it has been observed that factors such as the presence of disorder and minor conformational differences have not disturbed the tendency of molecules to remain as isomorphous pairs (Rajni Swamy, et al., 2013; Sribala et al., 2018). Interestingly, the validity of the Cl–Me exchange rule has also been observed in some regularly shaped planar molecules (Nath & Nangia, 2012).
From a pharmacological view point, the title compounds (I) and (II) are that consist of a methylpyrrole moiety with its 2- and 3- positions as spiro carbons linked, respectively, to acenapthene and methyl pyridinone ring systems. Each of these ring systems has a variety of associated biological properties. Studies on some 4-pyridone derivatives have shown them to be potent antimalarial agents (Bueno et al., 2011) and effective in the treatment and prophylaxis of the hepatitis B virus infection (Cheng et al., 2018). Acenaphthene is a pollutant known for its cytotoxicity (Jiang et al., 2019) but is also useful as a dye intermediate. Derivatives of acenaphthene are found to exhibit antitumor (El-Ayaan et al., 2007; Zhu et al., 2008) and fungistatic properties (McDavids & Daniels, 1951). Pyrrole derivatives belong to an important class of heterocycles owing to their potential applications as antimicrobial, antiviral, antimalarial, antitubercular, anti-inflammatory and anticancer agents (Gholap, 2016).
2. Structural commentary
The molecular structures of (I) and (II) (Figs. 1 and 2, respectively) differ from each other only by a chlorine atom in (I) being replaced by a methyl group in (II). This replacement has not induced any significant change in their unit-cell parameters, lattice type or Similarly, there are no substantial changes in the torsion angles of the title compounds (see Tables 1 and 2), as (I) and (II) are isomorphous.
|
|
As expected, the conformational features of both compounds are nearly identical, as shown in a overlay diagram (Fig. 3). The five-membered pyrrolo ring (N2/C21/C20/C2/C23) adopts an on N2 with puckering parameters Q(2) = 0.4011 (2) Å and φ = 180.3733 (3)° for (I), which are comparable with the values of Q(2) = 0.4047 (2) Å and φ = 180.3444 (3)° for (II). In both of the structures, the six-membered pyridinone ring (N1/C3/C2/C1/C6/C5) adopts a screw-boat conformation with puckering parameters Q = 0.5572 (16) Å, θ = 138.9 (2)°, φ = 219.8 (3)° in (I) and Q = 0.5603 (17) Å, θ = 137.7 (2)°, φ = 219.6 (3)° in (II). The acenaphthene ring system is planar in both (I) and (II). However, the O2 atom deviates from the mean plane of the acenaphthene ring system by 0.289 (2) Å in (I) and 0.311 (2) Å in (II), with the r.m.s. deviation of the fitted atoms being 0.043 and 0.044, respectively. This deviation is presumably due to the fact that the O2 atom is involved in two weak C—H⋯O interactions that are characteristic of the molecular interaction patterns of both (I) and (II).
The dihedral angle between the mean planes of the two chlorophenyl groups in (I) is 67.66 (9)°, similarly the corresponding angle between the two methylphenyl groups in (II) is 66.78 (11)°. The dihedral angles between the acenaphthene ring system and the chlorophenyl groups are 69.1 (1) and 49.4 (1)°, respectively. The corresponding angles in the methyl-substituted analogue are 72.3 (1) and 47.8 (1)°, respectively. Thus, it is clear that the minor differences observed in the conformation of the molecules are insufficient to disrupt the tendency of these molecules to remain isomorphous.
3. Supramolecular features
There are no classical hydrogen bonds in the structures of either (I) or (II). However, in both structures two weak C—H⋯O-type intermolecular interactions, viz. C10—H10⋯O2 and C16—H16⋯O2, which are identical in nature and characteristic of similar fundamental molecular interaction patterns are present (Tables 3 and 4). The C16—H16⋯O2 interaction occurs between centrosymmetric pairs (Fig. 4), leading to the formation of R22(20) graph-set motifs along the b-axis direction in both (I) and (II). Similarly, in both (I) and (II) the C10—H10⋯O2 interaction links glide-related molecules along the b-axis direction (Fig. 5). The molecular aggregation pattern may be visualized as being composed of these two characteristic weak interactions in such a manner that centrosymmetric dimeric pairs are linked through glide-related chains of molecules, forming a two-dimensional layer parallel to the bc plane in both structures, as shown in Figs. 6 and 7, respectively.
|
In (II), an additional intermolecular interaction is observed, viz. C36—H36A⋯O1, that is stronger than the two characteristic weak intermolecular interactions and involves the replaced substituent methyl group (C36—H36A) as a donor and the piperidinone O1 atom as an acceptor (see Table 4). It may be concluded that the presence of this additional C—H⋯O interaction in (II) has not disrupted the validity of the chloro–methyl exchange rule.
In addition, a weak C—H⋯π interaction involving different donor groups and acceptor π-ring systems is present in both (I) and (II). The C5—H5B⋯π interaction observed in (I) is between the C5 atom of the methylpiperidinone ring as a donor and the C25—C29/C34 ring of the acenaphthenone system as an acceptor. Interestingly, a geometrically identical weak π–π interaction about an inversion centre is observed with centroid–centroid Cg3⋯Cg3(1 − x, 2 − y, −z) distances of 3.7459 (2) Å in (I) and 3.8351 (2) Å in (II) with respective slippages of 1.250 and 1.367 Å where Cg3 is the centroid of the C14–C19 ring. The shortest Cl⋯Cl distance observed [Cl1 ⋯Cl1(−x + 1, −y + 2, −z + 1)] is 4.088 (1) Å and bears no structural significance.
4. Database survey
A thorough search in the Cambridge Structural Database (CSD Version 5.39, update Nov 2017; Groom et al., 2016) using the main skeleton of the title compounds (having 3D coordinates with no disorder, no ions and no other errors with R factors less than 0.05) gave only three hits: 5′′-(4-chlorobenzylidene)-4′-(4-chlorophenyl)-1′,1′′-dimethyl-2H,4′′H-dispiro[acenaphthylene-1,2′-pyrrolidine-3′,3′′-piperidine]-2,4′′-dione (YIRKUG; Pandiarajan et al., 2008), 5′′-benzylidene-1′,1′′-dimethyl-4′-phenyl-acenapthene-2-spiro-2′-pyrrolidine-3′-spiro-3′′-piperidine-1,4′′-dione (MAJHEL; Aravindan et al., 2004) and 1-methyl-4-(4-methylphenyl)pyrrolo-(spiro[2.2′′]acenaphthene-1′′-one)-spiro-[3.3′]-(spiro-[5′.5′′′]-3′′′-(4-chlorophenyl)-4′′′-(4-methylphenyl)-isoxazoline)-1′-methyltetrahydro-4′(1H)-pyridinone (XUQFOF; Kumar, et al., 2009).
5. Hirshfeld surface analysis
Hirshfeld surface (HS) analysis was used to investigate and visualize the weak intermolecular interactions influential in the packing of the molecules in the crystal. The visual representation of molecular interactions on this isosurface is determined using two parameters, viz. di and de , which represent the distances from a given point on the surface to the nearest atom inside and outside the surface, respectively. The normalized contact distance, dnorm is based on the values of di and de.
In the present work, the Hirshfeld surfaces (Spackman & Jayatilaka, 2009) and the associated two-dimensional fingerprint plots for title compounds (I) and (II) were generated using CrystalExplorer3.0 (Wolff et al., 2012). The Hirshfeld surfaces mapped over dnorm together with decomposed finger print plots (McKinnon et al., 2007; Tan et al., 2019) for (I) and (II) are presented in Figs. 8 and 9, respectively. Being isomorphic and isostructural in nature, both (I) and (II) display similar C—H⋯O intermolecular interactions. The combined O⋯H and H⋯O interactions appear symmetrically as distinct spikes at the bottom of the fingerprint plot and contribute 7.5 and 6.9%, respectively, of the total surface in compounds (I) and (II).
The symmetrical internal wing-like projections correspond to C⋯H/H⋯C contacts, which account for 16% of the HS in (I) and 19.1% in (II). The dominant contribution is from the H⋯H contacts [56.3% in (I) and 70.2% in (II)], as shown by the area occupied between the spikes. Such prominent differences may be accounted for by the presence of a Cl⋯H/H⋯Cl contact in (I) (11.3% contribution) and its absence in (II).
6. Synthesis and crystallization
For (I), a mixture of 1-methyl-3,5-bis[(E)-2-chlorophenylmethylidene] tetrahydro-4(1H)- pyridinone (1 mmol), acenaphthenequinone (1 mmol) and sarcosine (1 mmol) was dissolved in methanol (15 mL) and refluxed for 30 min. After completion of the reaction, as evident from TLC, the mixture was poured into water (50 mL) and the precipitated solid was filtered and washed with water (100 mL) to obtain pure (I) as a yellow solid, (0.31 g, 98%), mp 448–449 K, Rf (petroleum ether/EtOAc, 4:1) 0.40. Suitable crystals for single-crystal X-ray studies were obtained by recrystallization of the product from ethanol.
A similar procedure for (II) was adopted by dissolving a mixture of 1-methyl-3,5-bis[(E)-2-methylphenylmethylidene] tetrahydro-4(1H)-pyridinone (1 mmol), acenaphthenequinone (1 mmol) and sarcosine (1 mmol) in methanol (15 mL) to yield yellow crystals.
7. Refinement
Crystal data, data collection and structure . C-bound H atoms were included in calculated positions and treated as riding, with C—H = 0.95–1.00 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms or 1.2Ueq(C) otherwise. The H atoms of the methyl atoms C35 and C36 in (II) were refined as idealized and disordered over two positions since significant residual electron densities were noticed between the three hydrogen atoms of the respective methyl C atoms. The introduction of a disordered model for these two methyl groups had appreciable impact on the final structural parameters.
details are summarized in Table 5
|
Supporting information
https://doi.org/10.1107/S2056989019012428/jj2215sup1.cif
contains datablocks I, II. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019012428/jj2215Isup2.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989019012428/jj2215IIsup3.hkl
For both structures, data collection: APEX2 (Bruker, 2012); cell
SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).C34H28Cl2N2O2 | F(000) = 1184 |
Mr = 567.48 | Dx = 1.373 Mg m−3 Dm = 1.37 Mg m−3 Dm measured by floatation method |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 8.6710 (4) Å | Cell parameters from 7274 reflections |
b = 15.6756 (7) Å | θ = 4.8–57.2° |
c = 20.2284 (9) Å | µ = 0.27 mm−1 |
β = 93.036 (2)° | T = 293 K |
V = 2745.6 (2) Å3 | Block, yellow |
Z = 4 | 0.31 × 0.22 × 0.19 mm |
Bruker SMART APEXII CCD diffractometer | 5025 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.026 |
φ and ω scans | θmax = 29.1°, θmin = 2.4° |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | h = −11→11 |
Tmin = 0.771, Tmax = 1.000 | k = −21→21 |
33739 measured reflections | l = −27→27 |
7274 independent reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.044 | H-atom parameters constrained |
wR(F2) = 0.122 | w = 1/[σ2(Fo2) + (0.0458P)2 + 1.2817P] where P = (Fo2 + 2Fc2)/3 |
S = 1.01 | (Δ/σ)max = 0.001 |
7274 reflections | Δρmax = 0.33 e Å−3 |
361 parameters | Δρmin = −0.46 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.38200 (9) | 0.88710 (4) | 0.49943 (3) | 0.0749 (2) | |
Cl2 | 0.53437 (6) | 1.07386 (3) | 0.14315 (3) | 0.05500 (14) | |
O1 | 0.48210 (14) | 0.92211 (9) | 0.26952 (6) | 0.0509 (3) | |
O2 | 0.01681 (16) | 0.80480 (10) | 0.10859 (7) | 0.0587 (4) | |
N1 | 0.02281 (15) | 0.96435 (9) | 0.23726 (6) | 0.0345 (3) | |
N2 | 0.32804 (16) | 0.76391 (9) | 0.17821 (7) | 0.0379 (3) | |
C1 | 0.34543 (18) | 0.93585 (10) | 0.26001 (8) | 0.0339 (3) | |
C2 | 0.25834 (17) | 0.90781 (10) | 0.19571 (7) | 0.0298 (3) | |
C3 | 0.12354 (18) | 0.96919 (10) | 0.18237 (8) | 0.0330 (3) | |
H3A | 0.161841 | 1.026946 | 0.177987 | 0.040* | |
H3B | 0.066923 | 0.953767 | 0.141473 | 0.040* | |
C4 | −0.1310 (2) | 0.99694 (13) | 0.21990 (10) | 0.0486 (4) | |
H4A | −0.175090 | 0.965861 | 0.182623 | 0.073* | |
H4B | −0.194961 | 0.990171 | 0.256864 | 0.073* | |
H4C | −0.124570 | 1.056321 | 0.208758 | 0.073* | |
C5 | 0.0931 (2) | 1.00991 (11) | 0.29351 (8) | 0.0412 (4) | |
H5A | 0.029809 | 1.002742 | 0.331249 | 0.049* | |
H5B | 0.096552 | 1.070296 | 0.283217 | 0.049* | |
C6 | 0.2542 (2) | 0.97887 (10) | 0.31150 (8) | 0.0367 (3) | |
C7 | 0.3209 (2) | 0.98384 (12) | 0.37223 (9) | 0.0453 (4) | |
H7 | 0.419755 | 0.961011 | 0.377724 | 0.054* | |
C8 | 0.2571 (2) | 1.02102 (12) | 0.43141 (9) | 0.0498 (5) | |
C9 | 0.1760 (3) | 1.09734 (15) | 0.42992 (11) | 0.0700 (7) | |
H9 | 0.157858 | 1.125378 | 0.389746 | 0.084* | |
C10 | 0.1219 (4) | 1.13245 (17) | 0.48645 (13) | 0.0900 (9) | |
H10 | 0.067945 | 1.183728 | 0.484082 | 0.108* | |
C11 | 0.1467 (4) | 1.09265 (18) | 0.54595 (12) | 0.0925 (10) | |
H11 | 0.109239 | 1.116503 | 0.584021 | 0.111* | |
C12 | 0.2269 (3) | 1.01755 (16) | 0.54950 (11) | 0.0761 (7) | |
H12 | 0.244309 | 0.990238 | 0.590018 | 0.091* | |
C13 | 0.2817 (3) | 0.98246 (13) | 0.49292 (9) | 0.0546 (5) | |
C14 | 0.40575 (19) | 1.04221 (11) | 0.07931 (8) | 0.0395 (4) | |
C15 | 0.3746 (2) | 1.09964 (13) | 0.02837 (10) | 0.0524 (5) | |
H15 | 0.424605 | 1.152112 | 0.028284 | 0.063* | |
C16 | 0.2695 (3) | 1.07856 (15) | −0.02190 (10) | 0.0604 (6) | |
H16 | 0.247308 | 1.116892 | −0.056185 | 0.073* | |
C17 | 0.1973 (2) | 1.00115 (16) | −0.02157 (10) | 0.0589 (6) | |
H17 | 0.125775 | 0.986900 | −0.055648 | 0.071* | |
C18 | 0.2301 (2) | 0.94401 (13) | 0.02908 (9) | 0.0475 (4) | |
H18 | 0.180273 | 0.891469 | 0.028376 | 0.057* | |
C19 | 0.33571 (18) | 0.96284 (11) | 0.08114 (8) | 0.0355 (3) | |
C20 | 0.37056 (18) | 0.90127 (10) | 0.13774 (7) | 0.0333 (3) | |
H20 | 0.474518 | 0.914578 | 0.156241 | 0.040* | |
C21 | 0.3698 (2) | 0.80722 (11) | 0.11831 (9) | 0.0418 (4) | |
H21A | 0.294485 | 0.796255 | 0.082138 | 0.050* | |
H21B | 0.470866 | 0.789228 | 0.105323 | 0.050* | |
C22 | 0.3020 (3) | 0.67327 (12) | 0.17056 (11) | 0.0576 (5) | |
H22A | 0.275049 | 0.649399 | 0.212106 | 0.086* | |
H22B | 0.219323 | 0.663728 | 0.137946 | 0.086* | |
H22C | 0.394350 | 0.646490 | 0.156564 | 0.086* | |
C23 | 0.20239 (17) | 0.81269 (10) | 0.20545 (8) | 0.0322 (3) | |
C24 | 0.0411 (2) | 0.79856 (11) | 0.16774 (9) | 0.0410 (4) | |
C25 | −0.06990 (19) | 0.77207 (11) | 0.21615 (10) | 0.0429 (4) | |
C26 | −0.2263 (2) | 0.75748 (13) | 0.21054 (12) | 0.0572 (5) | |
H26 | −0.281931 | 0.764906 | 0.170370 | 0.069* | |
C27 | −0.2990 (2) | 0.73129 (15) | 0.26675 (14) | 0.0684 (7) | |
H27 | −0.405325 | 0.722892 | 0.264134 | 0.082* | |
C28 | −0.2189 (3) | 0.71761 (13) | 0.32545 (13) | 0.0628 (6) | |
H28 | −0.271567 | 0.698729 | 0.361561 | 0.075* | |
C29 | −0.0578 (2) | 0.73134 (11) | 0.33300 (10) | 0.0461 (4) | |
C30 | 0.0409 (3) | 0.71831 (12) | 0.38919 (10) | 0.0526 (5) | |
H30 | 0.001188 | 0.698030 | 0.428006 | 0.063* | |
C31 | 0.1947 (2) | 0.73521 (12) | 0.38725 (9) | 0.0496 (5) | |
H31 | 0.258210 | 0.724857 | 0.424875 | 0.060* | |
C32 | 0.2616 (2) | 0.76802 (11) | 0.32996 (9) | 0.0410 (4) | |
H32 | 0.366809 | 0.779746 | 0.330281 | 0.049* | |
C33 | 0.16946 (18) | 0.78193 (10) | 0.27480 (8) | 0.0339 (3) | |
C34 | 0.01184 (19) | 0.76132 (10) | 0.27645 (9) | 0.0379 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.1164 (5) | 0.0651 (4) | 0.0426 (3) | 0.0162 (3) | −0.0028 (3) | 0.0052 (2) |
Cl2 | 0.0520 (3) | 0.0486 (3) | 0.0634 (3) | −0.0065 (2) | −0.0062 (2) | −0.0027 (2) |
O1 | 0.0375 (6) | 0.0762 (9) | 0.0382 (7) | 0.0023 (6) | −0.0059 (5) | −0.0024 (6) |
O2 | 0.0606 (8) | 0.0712 (10) | 0.0422 (8) | −0.0164 (7) | −0.0156 (6) | 0.0065 (7) |
N1 | 0.0344 (7) | 0.0376 (7) | 0.0316 (7) | 0.0049 (5) | 0.0030 (5) | −0.0007 (6) |
N2 | 0.0460 (8) | 0.0329 (7) | 0.0352 (8) | 0.0044 (6) | 0.0067 (6) | −0.0027 (6) |
C1 | 0.0384 (8) | 0.0354 (8) | 0.0275 (8) | −0.0033 (6) | −0.0013 (6) | 0.0035 (6) |
C2 | 0.0309 (7) | 0.0335 (8) | 0.0252 (7) | 0.0007 (6) | 0.0013 (6) | 0.0008 (6) |
C3 | 0.0365 (8) | 0.0355 (8) | 0.0268 (8) | 0.0039 (6) | −0.0005 (6) | 0.0016 (6) |
C4 | 0.0411 (9) | 0.0537 (11) | 0.0511 (11) | 0.0131 (8) | 0.0035 (8) | 0.0005 (9) |
C5 | 0.0517 (10) | 0.0408 (9) | 0.0315 (9) | 0.0077 (7) | 0.0039 (7) | −0.0038 (7) |
C6 | 0.0465 (9) | 0.0344 (8) | 0.0291 (8) | −0.0030 (7) | 0.0010 (7) | −0.0008 (6) |
C7 | 0.0571 (11) | 0.0466 (10) | 0.0318 (9) | −0.0019 (8) | −0.0023 (8) | −0.0012 (7) |
C8 | 0.0732 (13) | 0.0468 (10) | 0.0288 (9) | −0.0039 (9) | −0.0025 (8) | −0.0063 (8) |
C9 | 0.117 (2) | 0.0542 (13) | 0.0381 (11) | 0.0107 (13) | −0.0047 (12) | −0.0076 (9) |
C10 | 0.153 (3) | 0.0611 (15) | 0.0555 (15) | 0.0301 (16) | 0.0057 (16) | −0.0159 (12) |
C11 | 0.163 (3) | 0.0710 (17) | 0.0448 (14) | 0.0170 (18) | 0.0209 (16) | −0.0168 (12) |
C12 | 0.133 (2) | 0.0629 (14) | 0.0337 (11) | 0.0001 (15) | 0.0128 (13) | −0.0019 (10) |
C13 | 0.0821 (14) | 0.0460 (11) | 0.0356 (10) | −0.0045 (10) | 0.0017 (9) | −0.0034 (8) |
C14 | 0.0358 (8) | 0.0465 (9) | 0.0369 (9) | 0.0042 (7) | 0.0078 (7) | 0.0023 (7) |
C15 | 0.0570 (11) | 0.0509 (11) | 0.0507 (12) | 0.0045 (9) | 0.0165 (9) | 0.0135 (9) |
C16 | 0.0635 (13) | 0.0777 (15) | 0.0409 (11) | 0.0173 (11) | 0.0104 (9) | 0.0262 (10) |
C17 | 0.0525 (11) | 0.0899 (17) | 0.0337 (10) | 0.0036 (11) | −0.0023 (8) | 0.0126 (10) |
C18 | 0.0463 (10) | 0.0642 (12) | 0.0319 (9) | −0.0031 (8) | 0.0010 (7) | 0.0051 (8) |
C19 | 0.0337 (8) | 0.0459 (9) | 0.0275 (8) | 0.0032 (7) | 0.0065 (6) | 0.0027 (7) |
C20 | 0.0324 (7) | 0.0403 (8) | 0.0273 (8) | 0.0011 (6) | 0.0013 (6) | 0.0002 (6) |
C21 | 0.0485 (9) | 0.0432 (9) | 0.0343 (9) | 0.0054 (7) | 0.0075 (7) | −0.0040 (7) |
C22 | 0.0804 (14) | 0.0358 (10) | 0.0577 (13) | 0.0030 (9) | 0.0133 (11) | −0.0059 (9) |
C23 | 0.0335 (7) | 0.0336 (8) | 0.0292 (8) | 0.0001 (6) | −0.0006 (6) | 0.0014 (6) |
C24 | 0.0413 (9) | 0.0364 (9) | 0.0443 (10) | −0.0033 (7) | −0.0059 (7) | 0.0012 (7) |
C25 | 0.0367 (8) | 0.0342 (9) | 0.0574 (11) | −0.0009 (7) | −0.0002 (8) | 0.0006 (8) |
C26 | 0.0391 (9) | 0.0519 (11) | 0.0798 (15) | −0.0016 (8) | −0.0034 (10) | −0.0004 (10) |
C27 | 0.0395 (10) | 0.0635 (14) | 0.104 (2) | −0.0058 (9) | 0.0173 (12) | −0.0037 (13) |
C28 | 0.0549 (12) | 0.0518 (12) | 0.0851 (17) | −0.0068 (9) | 0.0344 (12) | −0.0017 (11) |
C29 | 0.0539 (10) | 0.0309 (8) | 0.0555 (12) | 0.0016 (7) | 0.0216 (9) | 0.0003 (8) |
C30 | 0.0744 (13) | 0.0377 (9) | 0.0482 (11) | 0.0050 (9) | 0.0253 (10) | 0.0054 (8) |
C31 | 0.0711 (13) | 0.0406 (10) | 0.0374 (10) | 0.0110 (9) | 0.0051 (9) | 0.0074 (8) |
C32 | 0.0461 (9) | 0.0382 (9) | 0.0389 (9) | 0.0067 (7) | 0.0033 (7) | 0.0048 (7) |
C33 | 0.0377 (8) | 0.0288 (7) | 0.0355 (9) | 0.0029 (6) | 0.0049 (6) | 0.0026 (6) |
C34 | 0.0403 (8) | 0.0261 (7) | 0.0479 (10) | 0.0012 (6) | 0.0090 (7) | 0.0000 (7) |
Cl1—C13 | 1.731 (2) | C14—C19 | 1.386 (2) |
Cl2—C14 | 1.7336 (18) | C15—C16 | 1.369 (3) |
O1—C1 | 1.2098 (19) | C15—H15 | 0.9300 |
O2—C24 | 1.208 (2) | C16—C17 | 1.365 (3) |
N1—C5 | 1.450 (2) | C16—H16 | 0.9300 |
N1—C3 | 1.4506 (19) | C17—C18 | 1.379 (3) |
N1—C4 | 1.454 (2) | C17—H17 | 0.9300 |
N2—C22 | 1.446 (2) | C18—C19 | 1.390 (2) |
N2—C21 | 1.451 (2) | C18—H18 | 0.9300 |
N2—C23 | 1.462 (2) | C19—C20 | 1.516 (2) |
C1—C6 | 1.501 (2) | C20—C21 | 1.526 (2) |
C1—C2 | 1.533 (2) | C20—H20 | 0.9800 |
C2—C3 | 1.527 (2) | C21—H21A | 0.9700 |
C2—C20 | 1.566 (2) | C21—H21B | 0.9700 |
C2—C23 | 1.584 (2) | C22—H22A | 0.9600 |
C3—H3A | 0.9700 | C22—H22B | 0.9600 |
C3—H3B | 0.9700 | C22—H22C | 0.9600 |
C4—H4A | 0.9600 | C23—C33 | 1.525 (2) |
C4—H4B | 0.9600 | C23—C24 | 1.573 (2) |
C4—H4C | 0.9600 | C24—C25 | 1.469 (3) |
C5—C6 | 1.505 (2) | C25—C26 | 1.374 (2) |
C5—H5A | 0.9700 | C25—C34 | 1.388 (3) |
C5—H5B | 0.9700 | C26—C27 | 1.391 (3) |
C6—C7 | 1.332 (2) | C26—H26 | 0.9300 |
C7—C8 | 1.466 (3) | C27—C28 | 1.360 (3) |
C7—H7 | 0.9300 | C27—H27 | 0.9300 |
C8—C9 | 1.387 (3) | C28—C29 | 1.414 (3) |
C8—C13 | 1.390 (3) | C28—H28 | 0.9300 |
C9—C10 | 1.374 (3) | C29—C30 | 1.401 (3) |
C9—H9 | 0.9300 | C29—C34 | 1.402 (2) |
C10—C11 | 1.363 (4) | C30—C31 | 1.362 (3) |
C10—H10 | 0.9300 | C30—H30 | 0.9300 |
C11—C12 | 1.367 (4) | C31—C32 | 1.420 (2) |
C11—H11 | 0.9300 | C31—H31 | 0.9300 |
C12—C13 | 1.377 (3) | C32—C33 | 1.355 (2) |
C12—H12 | 0.9300 | C32—H32 | 0.9300 |
C14—C15 | 1.384 (3) | C33—C34 | 1.406 (2) |
C5—N1—C3 | 109.25 (13) | C16—C17—C18 | 120.3 (2) |
C5—N1—C4 | 111.01 (13) | C16—C17—H17 | 119.9 |
C3—N1—C4 | 112.25 (13) | C18—C17—H17 | 119.9 |
C22—N2—C21 | 114.51 (14) | C17—C18—C19 | 121.78 (19) |
C22—N2—C23 | 116.03 (14) | C17—C18—H18 | 119.1 |
C21—N2—C23 | 107.08 (13) | C19—C18—H18 | 119.1 |
O1—C1—C6 | 121.17 (15) | C14—C19—C18 | 116.24 (16) |
O1—C1—C2 | 121.21 (15) | C14—C19—C20 | 121.46 (15) |
C6—C1—C2 | 117.60 (13) | C18—C19—C20 | 122.29 (16) |
C3—C2—C1 | 107.89 (12) | C19—C20—C21 | 115.01 (13) |
C3—C2—C20 | 114.15 (12) | C19—C20—C2 | 114.64 (12) |
C1—C2—C20 | 110.87 (12) | C21—C20—C2 | 105.17 (13) |
C3—C2—C23 | 112.25 (12) | C19—C20—H20 | 107.2 |
C1—C2—C23 | 107.74 (12) | C21—C20—H20 | 107.2 |
C20—C2—C23 | 103.77 (12) | C2—C20—H20 | 107.2 |
N1—C3—C2 | 108.55 (12) | N2—C21—C20 | 103.58 (13) |
N1—C3—H3A | 110.0 | N2—C21—H21A | 111.0 |
C2—C3—H3A | 110.0 | C20—C21—H21A | 111.0 |
N1—C3—H3B | 110.0 | N2—C21—H21B | 111.0 |
C2—C3—H3B | 110.0 | C20—C21—H21B | 111.0 |
H3A—C3—H3B | 108.4 | H21A—C21—H21B | 109.0 |
N1—C4—H4A | 109.5 | N2—C22—H22A | 109.5 |
N1—C4—H4B | 109.5 | N2—C22—H22B | 109.5 |
H4A—C4—H4B | 109.5 | H22A—C22—H22B | 109.5 |
N1—C4—H4C | 109.5 | N2—C22—H22C | 109.5 |
H4A—C4—H4C | 109.5 | H22A—C22—H22C | 109.5 |
H4B—C4—H4C | 109.5 | H22B—C22—H22C | 109.5 |
N1—C5—C6 | 112.12 (13) | N2—C23—C33 | 111.16 (12) |
N1—C5—H5A | 109.2 | N2—C23—C24 | 113.88 (13) |
C6—C5—H5A | 109.2 | C33—C23—C24 | 101.34 (12) |
N1—C5—H5B | 109.2 | N2—C23—C2 | 101.90 (12) |
C6—C5—H5B | 109.2 | C33—C23—C2 | 119.06 (13) |
H5A—C5—H5B | 107.9 | C24—C23—C2 | 110.04 (12) |
C7—C6—C1 | 116.54 (16) | O2—C24—C25 | 126.70 (16) |
C7—C6—C5 | 123.80 (16) | O2—C24—C23 | 124.93 (16) |
C1—C6—C5 | 119.60 (14) | C25—C24—C23 | 108.28 (14) |
C6—C7—C8 | 127.74 (18) | C26—C25—C34 | 120.53 (18) |
C6—C7—H7 | 116.1 | C26—C25—C24 | 132.12 (19) |
C8—C7—H7 | 116.1 | C34—C25—C24 | 107.35 (15) |
C9—C8—C13 | 116.62 (18) | C25—C26—C27 | 118.0 (2) |
C9—C8—C7 | 122.54 (18) | C25—C26—H26 | 121.0 |
C13—C8—C7 | 120.78 (18) | C27—C26—H26 | 121.0 |
C10—C9—C8 | 121.5 (2) | C28—C27—C26 | 121.8 (2) |
C10—C9—H9 | 119.2 | C28—C27—H27 | 119.1 |
C8—C9—H9 | 119.2 | C26—C27—H27 | 119.1 |
C11—C10—C9 | 120.5 (2) | C27—C28—C29 | 121.7 (2) |
C11—C10—H10 | 119.8 | C27—C28—H28 | 119.1 |
C9—C10—H10 | 119.8 | C29—C28—H28 | 119.1 |
C10—C11—C12 | 119.8 (2) | C30—C29—C34 | 116.10 (17) |
C10—C11—H11 | 120.1 | C30—C29—C28 | 128.53 (19) |
C12—C11—H11 | 120.1 | C34—C29—C28 | 115.4 (2) |
C11—C12—C13 | 119.8 (2) | C31—C30—C29 | 120.33 (17) |
C11—C12—H12 | 120.1 | C31—C30—H30 | 119.8 |
C13—C12—H12 | 120.1 | C29—C30—H30 | 119.8 |
C12—C13—C8 | 121.8 (2) | C30—C31—C32 | 122.50 (18) |
C12—C13—Cl1 | 118.43 (17) | C30—C31—H31 | 118.8 |
C8—C13—Cl1 | 119.76 (15) | C32—C31—H31 | 118.8 |
C15—C14—C19 | 122.37 (17) | C33—C32—C31 | 118.77 (17) |
C15—C14—Cl2 | 117.45 (15) | C33—C32—H32 | 120.6 |
C19—C14—Cl2 | 120.17 (13) | C31—C32—H32 | 120.6 |
C16—C15—C14 | 119.5 (2) | C32—C33—C34 | 118.36 (15) |
C16—C15—H15 | 120.3 | C32—C33—C23 | 132.64 (15) |
C14—C15—H15 | 120.3 | C34—C33—C23 | 108.90 (14) |
C17—C16—C15 | 119.85 (19) | C25—C34—C29 | 122.39 (17) |
C17—C16—H16 | 120.1 | C25—C34—C33 | 113.76 (15) |
C15—C16—H16 | 120.1 | C29—C34—C33 | 123.85 (17) |
O1—C1—C2—C3 | −151.50 (15) | C19—C20—C21—N2 | −152.40 (13) |
C6—C1—C2—C3 | 30.10 (18) | C2—C20—C21—N2 | −25.30 (16) |
O1—C1—C2—C20 | −25.8 (2) | C22—N2—C23—C33 | 60.97 (19) |
C6—C1—C2—C20 | 155.77 (13) | C21—N2—C23—C33 | −169.74 (13) |
O1—C1—C2—C23 | 87.09 (18) | C22—N2—C23—C24 | −52.7 (2) |
C6—C1—C2—C23 | −91.31 (15) | C21—N2—C23—C24 | 76.57 (16) |
C5—N1—C3—C2 | 75.82 (16) | C22—N2—C23—C2 | −171.16 (15) |
C4—N1—C3—C2 | −160.58 (14) | C21—N2—C23—C2 | −41.87 (15) |
C1—C2—C3—N1 | −60.62 (16) | C3—C2—C23—N2 | 147.45 (12) |
C20—C2—C3—N1 | 175.67 (13) | C1—C2—C23—N2 | −93.90 (14) |
C23—C2—C3—N1 | 57.94 (16) | C20—C2—C23—N2 | 23.71 (14) |
C3—N1—C5—C6 | −54.27 (18) | C3—C2—C23—C33 | −89.93 (16) |
C4—N1—C5—C6 | −178.59 (14) | C1—C2—C23—C33 | 28.72 (17) |
O1—C1—C6—C7 | −14.3 (2) | C20—C2—C23—C33 | 146.34 (13) |
C2—C1—C6—C7 | 164.07 (15) | C3—C2—C23—C24 | 26.31 (17) |
O1—C1—C6—C5 | 168.41 (16) | C1—C2—C23—C24 | 144.96 (13) |
C2—C1—C6—C5 | −13.2 (2) | C20—C2—C23—C24 | −97.43 (14) |
N1—C5—C6—C7 | −153.17 (16) | N2—C23—C24—O2 | −51.3 (2) |
N1—C5—C6—C1 | 23.9 (2) | C33—C23—C24—O2 | −170.73 (17) |
C1—C6—C7—C8 | −179.00 (17) | C2—C23—C24—O2 | 62.4 (2) |
C5—C6—C7—C8 | −1.9 (3) | N2—C23—C24—C25 | 125.47 (15) |
C6—C7—C8—C9 | −42.2 (3) | C33—C23—C24—C25 | 6.04 (16) |
C6—C7—C8—C13 | 140.7 (2) | C2—C23—C24—C25 | −120.86 (14) |
C13—C8—C9—C10 | −0.5 (4) | O2—C24—C25—C26 | −8.4 (3) |
C7—C8—C9—C10 | −177.7 (3) | C23—C24—C25—C26 | 174.85 (19) |
C8—C9—C10—C11 | −0.1 (5) | O2—C24—C25—C34 | 171.10 (18) |
C9—C10—C11—C12 | 0.4 (5) | C23—C24—C25—C34 | −5.60 (18) |
C10—C11—C12—C13 | −0.2 (5) | C34—C25—C26—C27 | −0.4 (3) |
C11—C12—C13—C8 | −0.4 (4) | C24—C25—C26—C27 | 179.1 (2) |
C11—C12—C13—Cl1 | −179.7 (2) | C25—C26—C27—C28 | −2.0 (3) |
C9—C8—C13—C12 | 0.8 (3) | C26—C27—C28—C29 | 1.6 (3) |
C7—C8—C13—C12 | 178.0 (2) | C27—C28—C29—C30 | −178.3 (2) |
C9—C8—C13—Cl1 | −179.95 (18) | C27—C28—C29—C34 | 1.2 (3) |
C7—C8—C13—Cl1 | −2.7 (3) | C34—C29—C30—C31 | 0.5 (3) |
C19—C14—C15—C16 | 0.9 (3) | C28—C29—C30—C31 | 179.99 (19) |
Cl2—C14—C15—C16 | −177.66 (15) | C29—C30—C31—C32 | 1.4 (3) |
C14—C15—C16—C17 | −0.4 (3) | C30—C31—C32—C33 | −1.0 (3) |
C15—C16—C17—C18 | −0.2 (3) | C31—C32—C33—C34 | −1.4 (2) |
C16—C17—C18—C19 | 0.3 (3) | C31—C32—C33—C23 | −177.36 (16) |
C15—C14—C19—C18 | −0.7 (2) | N2—C23—C33—C32 | 50.4 (2) |
Cl2—C14—C19—C18 | 177.79 (13) | C24—C23—C33—C32 | 171.78 (17) |
C15—C14—C19—C20 | −179.46 (15) | C2—C23—C33—C32 | −67.5 (2) |
Cl2—C14—C19—C20 | −0.9 (2) | N2—C23—C33—C34 | −125.80 (14) |
C17—C18—C19—C14 | 0.1 (3) | C24—C23—C33—C34 | −4.45 (16) |
C17—C18—C19—C20 | 178.84 (17) | C2—C23—C33—C34 | 116.30 (15) |
C14—C19—C20—C21 | −145.35 (15) | C26—C25—C34—C29 | 3.3 (3) |
C18—C19—C20—C21 | 36.0 (2) | C24—C25—C34—C29 | −176.29 (15) |
C14—C19—C20—C2 | 92.53 (18) | C26—C25—C34—C33 | −177.61 (16) |
C18—C19—C20—C2 | −86.13 (19) | C24—C25—C34—C33 | 2.8 (2) |
C3—C2—C20—C19 | 5.57 (19) | C30—C29—C34—C25 | 175.93 (16) |
C1—C2—C20—C19 | −116.52 (15) | C28—C29—C34—C25 | −3.6 (2) |
C23—C2—C20—C19 | 128.06 (14) | C30—C29—C34—C33 | −3.0 (2) |
C3—C2—C20—C21 | −121.76 (14) | C28—C29—C34—C33 | 177.43 (16) |
C1—C2—C20—C21 | 116.15 (14) | C32—C33—C34—C25 | −175.52 (15) |
C23—C2—C20—C21 | 0.73 (15) | C23—C33—C34—C25 | 1.33 (19) |
C22—N2—C21—C20 | 173.28 (15) | C32—C33—C34—C29 | 3.5 (2) |
C23—N2—C21—C20 | 43.13 (17) | C23—C33—C34—C29 | −179.62 (15) |
Cg1 is the centroid of the C25–C29/C34 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C10—H10···O2i | 0.93 | 2.74 | 3.492 (3) | 139 |
C16—H16···O2ii | 0.93 | 2.76 | 3.481 (3) | 135 |
C5—H5B···Cg1i | 0.97 | 2.99 | 3.9466 (19) | 168 |
Symmetry codes: (i) −x, y+1/2, −z+1/2; (ii) −x, −y+2, −z. |
C36H34N2O2 | F(000) = 1120 |
Mr = 526.65 | Dx = 1.240 Mg m−3 Dm = 1.24 Mg m−3 Dm measured by floatation method |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 8.7507 (5) Å | Cell parameters from 5358 reflections |
b = 15.9089 (8) Å | θ = 4.7–42.0° |
c = 20.2879 (10) Å | µ = 0.08 mm−1 |
β = 92.935 (2)° | T = 293 K |
V = 2820.7 (3) Å3 | Block, yellow |
Z = 4 | 0.32 × 0.24 × 0.18 mm |
Bruker SMART APEXII CCD diffractometer | 3349 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.040 |
φ and ω scans | θmax = 25.7°, θmin = 2.3° |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | h = −10→10 |
Tmin = 0.816, Tmax = 1.000 | k = −19→19 |
28946 measured reflections | l = −24→18 |
5339 independent reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.045 | w = 1/[σ2(Fo2) + (0.0506P)2 + 0.5169P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.121 | (Δ/σ)max = 0.001 |
S = 1.02 | Δρmax = 0.17 e Å−3 |
5339 reflections | Δρmin = −0.15 e Å−3 |
362 parameters | Extinction correction: SHELXL2018 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0040 (6) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
O1 | 0.47706 (15) | 0.91884 (10) | 0.26949 (6) | 0.0632 (4) | |
O2 | 0.01075 (17) | 0.80552 (10) | 0.11060 (7) | 0.0749 (5) | |
N1 | 0.02197 (15) | 0.96279 (9) | 0.23966 (7) | 0.0438 (4) | |
N2 | 0.32038 (17) | 0.76401 (9) | 0.17891 (7) | 0.0488 (4) | |
C1 | 0.3410 (2) | 0.93366 (11) | 0.26053 (8) | 0.0434 (4) | |
C2 | 0.25341 (18) | 0.90633 (11) | 0.19667 (8) | 0.0377 (4) | |
C3 | 0.12046 (19) | 0.96732 (11) | 0.18425 (8) | 0.0420 (4) | |
H3A | 0.159005 | 1.024095 | 0.179771 | 0.050* | |
H3B | 0.063116 | 0.952451 | 0.143748 | 0.050* | |
C4 | −0.1307 (2) | 0.99492 (14) | 0.22319 (10) | 0.0619 (6) | |
H4A | −0.175538 | 0.964127 | 0.186372 | 0.093* | |
H4B | −0.192980 | 0.988480 | 0.260484 | 0.093* | |
H4C | −0.124579 | 1.053358 | 0.211850 | 0.093* | |
C5 | 0.0937 (2) | 1.00778 (12) | 0.29519 (9) | 0.0529 (5) | |
H5A | 0.032387 | 1.000780 | 0.333317 | 0.063* | |
H5B | 0.096585 | 1.067257 | 0.284807 | 0.063* | |
C6 | 0.2541 (2) | 0.97734 (11) | 0.31209 (8) | 0.0459 (4) | |
C7 | 0.3224 (2) | 0.98436 (13) | 0.37200 (9) | 0.0566 (5) | |
H7 | 0.420638 | 0.962182 | 0.376842 | 0.068* | |
C8 | 0.2630 (3) | 1.02252 (14) | 0.43153 (9) | 0.0637 (6) | |
C9 | 0.1907 (3) | 1.09994 (16) | 0.42926 (11) | 0.0862 (8) | |
H9 | 0.176292 | 1.127477 | 0.388985 | 0.103* | |
C10 | 0.1399 (4) | 1.13691 (19) | 0.48527 (13) | 0.1125 (11) | |
H10 | 0.092416 | 1.189186 | 0.482807 | 0.135* | |
C11 | 0.1595 (4) | 1.0966 (2) | 0.54474 (13) | 0.1158 (11) | |
H11 | 0.124439 | 1.121064 | 0.582782 | 0.139* | |
C12 | 0.2304 (4) | 1.02073 (18) | 0.54774 (12) | 0.1011 (10) | |
H12 | 0.242808 | 0.993784 | 0.588346 | 0.121* | |
C13 | 0.2852 (3) | 0.98180 (14) | 0.49223 (10) | 0.0736 (7) | |
C14 | 0.4072 (2) | 1.03916 (12) | 0.08230 (9) | 0.0477 (5) | |
C15 | 0.3741 (2) | 1.09458 (14) | 0.03059 (10) | 0.0627 (6) | |
H15 | 0.425474 | 1.145727 | 0.029917 | 0.075* | |
C16 | 0.2684 (3) | 1.07634 (17) | −0.01936 (11) | 0.0716 (7) | |
H16 | 0.247654 | 1.114850 | −0.053129 | 0.086* | |
C17 | 0.1933 (2) | 1.00083 (17) | −0.01915 (10) | 0.0693 (6) | |
H17 | 0.121043 | 0.987782 | −0.052809 | 0.083* | |
C18 | 0.2252 (2) | 0.94425 (14) | 0.03112 (9) | 0.0563 (5) | |
H18 | 0.173963 | 0.893017 | 0.030703 | 0.068* | |
C19 | 0.33151 (19) | 0.96161 (12) | 0.08224 (8) | 0.0429 (4) | |
C20 | 0.36354 (19) | 0.89945 (11) | 0.13800 (8) | 0.0420 (4) | |
H20 | 0.466999 | 0.911443 | 0.156377 | 0.050* | |
C21 | 0.3607 (2) | 0.80656 (12) | 0.11868 (9) | 0.0529 (5) | |
H21A | 0.284808 | 0.796067 | 0.083082 | 0.063* | |
H21B | 0.460023 | 0.788322 | 0.105068 | 0.063* | |
C22 | 0.2938 (3) | 0.67430 (13) | 0.17162 (11) | 0.0731 (7) | |
H22A | 0.268011 | 0.651006 | 0.213260 | 0.110* | |
H22B | 0.211144 | 0.664885 | 0.139531 | 0.110* | |
H22C | 0.384812 | 0.647695 | 0.157250 | 0.110* | |
C23 | 0.19669 (19) | 0.81255 (11) | 0.20669 (8) | 0.0422 (4) | |
C24 | 0.0359 (2) | 0.79910 (12) | 0.16969 (10) | 0.0523 (5) | |
C25 | −0.0735 (2) | 0.77254 (12) | 0.21815 (10) | 0.0540 (5) | |
C26 | −0.2285 (2) | 0.75824 (14) | 0.21310 (13) | 0.0723 (6) | |
H26 | −0.284279 | 0.766562 | 0.173375 | 0.087* | |
C27 | −0.2998 (3) | 0.73101 (16) | 0.26895 (16) | 0.0843 (8) | |
H27 | −0.405192 | 0.722827 | 0.266586 | 0.101* | |
C28 | −0.2194 (3) | 0.71598 (14) | 0.32708 (14) | 0.0765 (7) | |
H28 | −0.270670 | 0.696290 | 0.363029 | 0.092* | |
C29 | −0.0593 (2) | 0.72969 (12) | 0.33393 (11) | 0.0580 (5) | |
C30 | 0.0395 (3) | 0.71575 (13) | 0.38964 (11) | 0.0661 (6) | |
H30 | 0.000748 | 0.694837 | 0.428213 | 0.079* | |
C31 | 0.1921 (3) | 0.73275 (12) | 0.38742 (10) | 0.0618 (6) | |
H31 | 0.255708 | 0.721647 | 0.424532 | 0.074* | |
C32 | 0.2575 (2) | 0.76681 (11) | 0.33047 (9) | 0.0504 (5) | |
H32 | 0.361543 | 0.778819 | 0.330644 | 0.060* | |
C33 | 0.1650 (2) | 0.78149 (11) | 0.27577 (8) | 0.0430 (4) | |
C34 | 0.0085 (2) | 0.76075 (11) | 0.27794 (9) | 0.0473 (5) | |
C35 | 0.3604 (4) | 0.89722 (16) | 0.49768 (11) | 0.0951 (9) | |
H35A | 0.391046 | 0.879874 | 0.454998 | 0.143* | 0.5 |
H35B | 0.448790 | 0.900568 | 0.527609 | 0.143* | 0.5 |
H35C | 0.289565 | 0.857078 | 0.513916 | 0.143* | 0.5 |
H35D | 0.361888 | 0.878473 | 0.542684 | 0.143* | 0.5 |
H35E | 0.304143 | 0.857779 | 0.470073 | 0.143* | 0.5 |
H35F | 0.463369 | 0.901268 | 0.483766 | 0.143* | 0.5 |
C36 | 0.5214 (2) | 1.06401 (14) | 0.13658 (11) | 0.0659 (6) | |
H36A | 0.531595 | 1.019372 | 0.168344 | 0.099* | 0.5 |
H36B | 0.618648 | 1.074534 | 0.118366 | 0.099* | 0.5 |
H36C | 0.486814 | 1.114002 | 0.157740 | 0.099* | 0.5 |
H36D | 0.559776 | 1.119233 | 0.127956 | 0.099* | 0.5 |
H36E | 0.472723 | 1.064071 | 0.177934 | 0.099* | 0.5 |
H36F | 0.604557 | 1.024604 | 0.138560 | 0.099* | 0.5 |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0476 (8) | 0.0952 (11) | 0.0459 (8) | 0.0049 (7) | −0.0050 (6) | −0.0030 (7) |
O2 | 0.0784 (10) | 0.0890 (12) | 0.0551 (10) | −0.0227 (8) | −0.0182 (8) | 0.0099 (8) |
N1 | 0.0438 (8) | 0.0493 (9) | 0.0386 (9) | 0.0075 (7) | 0.0052 (7) | 0.0005 (7) |
N2 | 0.0621 (10) | 0.0420 (9) | 0.0434 (9) | 0.0056 (7) | 0.0121 (7) | −0.0019 (7) |
C1 | 0.0449 (11) | 0.0489 (11) | 0.0361 (10) | −0.0008 (8) | 0.0004 (8) | 0.0042 (8) |
C2 | 0.0396 (9) | 0.0432 (10) | 0.0303 (9) | 0.0010 (8) | 0.0026 (7) | 0.0004 (8) |
C3 | 0.0471 (10) | 0.0452 (10) | 0.0336 (10) | 0.0022 (8) | 0.0018 (8) | 0.0018 (8) |
C4 | 0.0526 (12) | 0.0685 (14) | 0.0650 (14) | 0.0164 (10) | 0.0071 (10) | −0.0003 (11) |
C5 | 0.0666 (13) | 0.0533 (12) | 0.0391 (11) | 0.0101 (10) | 0.0072 (9) | −0.0033 (9) |
C6 | 0.0597 (11) | 0.0439 (11) | 0.0340 (10) | −0.0015 (9) | 0.0009 (8) | 0.0001 (8) |
C7 | 0.0757 (14) | 0.0559 (12) | 0.0377 (11) | −0.0012 (10) | −0.0014 (10) | −0.0005 (9) |
C8 | 0.0948 (16) | 0.0596 (14) | 0.0362 (12) | 0.0032 (12) | −0.0021 (10) | −0.0079 (10) |
C9 | 0.143 (2) | 0.0701 (16) | 0.0441 (14) | 0.0211 (16) | −0.0056 (14) | −0.0085 (12) |
C10 | 0.193 (3) | 0.0801 (19) | 0.0642 (18) | 0.040 (2) | 0.0039 (19) | −0.0204 (15) |
C11 | 0.202 (3) | 0.093 (2) | 0.0542 (17) | 0.028 (2) | 0.0216 (18) | −0.0222 (16) |
C12 | 0.179 (3) | 0.0834 (19) | 0.0420 (14) | 0.013 (2) | 0.0156 (16) | −0.0069 (13) |
C13 | 0.118 (2) | 0.0631 (15) | 0.0393 (12) | 0.0007 (14) | 0.0031 (12) | −0.0062 (11) |
C14 | 0.0447 (10) | 0.0549 (12) | 0.0444 (11) | 0.0043 (9) | 0.0126 (8) | 0.0033 (9) |
C15 | 0.0696 (14) | 0.0620 (14) | 0.0584 (14) | 0.0034 (11) | 0.0222 (11) | 0.0141 (11) |
C16 | 0.0759 (16) | 0.0903 (18) | 0.0497 (14) | 0.0212 (14) | 0.0140 (12) | 0.0276 (12) |
C17 | 0.0593 (13) | 0.107 (2) | 0.0415 (12) | 0.0025 (13) | 0.0008 (10) | 0.0154 (12) |
C18 | 0.0545 (12) | 0.0767 (14) | 0.0377 (11) | −0.0056 (10) | 0.0028 (9) | 0.0068 (10) |
C19 | 0.0414 (10) | 0.0557 (12) | 0.0322 (10) | 0.0019 (9) | 0.0084 (8) | 0.0030 (8) |
C20 | 0.0402 (10) | 0.0518 (11) | 0.0342 (10) | −0.0004 (8) | 0.0025 (7) | −0.0005 (8) |
C21 | 0.0609 (12) | 0.0562 (12) | 0.0425 (11) | 0.0046 (9) | 0.0117 (9) | −0.0047 (9) |
C22 | 0.1067 (18) | 0.0462 (12) | 0.0682 (15) | 0.0039 (12) | 0.0207 (13) | −0.0071 (11) |
C23 | 0.0437 (10) | 0.0457 (11) | 0.0372 (10) | 0.0020 (8) | 0.0029 (8) | 0.0007 (8) |
C24 | 0.0573 (12) | 0.0463 (11) | 0.0524 (13) | −0.0040 (9) | −0.0057 (10) | 0.0040 (9) |
C25 | 0.0477 (11) | 0.0459 (11) | 0.0684 (14) | −0.0011 (9) | 0.0045 (10) | 0.0018 (10) |
C26 | 0.0524 (13) | 0.0648 (14) | 0.0994 (19) | −0.0021 (11) | 0.0012 (12) | −0.0008 (13) |
C27 | 0.0542 (14) | 0.0776 (17) | 0.123 (2) | −0.0061 (13) | 0.0221 (16) | −0.0055 (17) |
C28 | 0.0690 (16) | 0.0648 (15) | 0.100 (2) | −0.0065 (12) | 0.0418 (15) | −0.0021 (14) |
C29 | 0.0696 (14) | 0.0404 (11) | 0.0664 (14) | 0.0048 (10) | 0.0249 (12) | 0.0005 (10) |
C30 | 0.0901 (17) | 0.0501 (13) | 0.0613 (14) | 0.0083 (12) | 0.0364 (13) | 0.0071 (10) |
C31 | 0.0919 (17) | 0.0501 (12) | 0.0439 (12) | 0.0184 (12) | 0.0088 (11) | 0.0087 (9) |
C32 | 0.0591 (12) | 0.0465 (11) | 0.0460 (11) | 0.0112 (9) | 0.0069 (9) | 0.0061 (9) |
C33 | 0.0509 (11) | 0.0366 (10) | 0.0422 (11) | 0.0069 (8) | 0.0082 (8) | 0.0033 (8) |
C34 | 0.0519 (11) | 0.0349 (10) | 0.0563 (12) | 0.0028 (8) | 0.0149 (10) | 0.0026 (9) |
C35 | 0.157 (3) | 0.0752 (17) | 0.0521 (14) | 0.0178 (17) | −0.0015 (15) | 0.0049 (12) |
C36 | 0.0637 (13) | 0.0622 (14) | 0.0717 (15) | −0.0101 (11) | 0.0025 (11) | −0.0023 (11) |
O1—C1 | 1.218 (2) | C17—H17 | 0.9300 |
O2—C24 | 1.212 (2) | C18—C19 | 1.385 (2) |
N1—C5 | 1.450 (2) | C18—H18 | 0.9300 |
N1—C3 | 1.453 (2) | C19—C20 | 1.518 (2) |
N1—C4 | 1.454 (2) | C20—C21 | 1.529 (3) |
N2—C22 | 1.452 (2) | C20—H20 | 0.9800 |
N2—C21 | 1.456 (2) | C21—H21A | 0.9700 |
N2—C23 | 1.466 (2) | C21—H21B | 0.9700 |
C1—C6 | 1.496 (2) | C22—H22A | 0.9600 |
C1—C2 | 1.534 (2) | C22—H22B | 0.9600 |
C2—C3 | 1.526 (2) | C22—H22C | 0.9600 |
C2—C20 | 1.573 (2) | C23—C33 | 1.525 (2) |
C2—C23 | 1.589 (2) | C23—C24 | 1.575 (3) |
C3—H3A | 0.9700 | C24—C25 | 1.469 (3) |
C3—H3B | 0.9700 | C25—C26 | 1.374 (3) |
C4—H4A | 0.9600 | C25—C34 | 1.390 (3) |
C4—H4B | 0.9600 | C26—C27 | 1.390 (3) |
C4—H4C | 0.9600 | C26—H26 | 0.9300 |
C5—C6 | 1.508 (3) | C27—C28 | 1.363 (3) |
C5—H5A | 0.9700 | C27—H27 | 0.9300 |
C5—H5B | 0.9700 | C28—C29 | 1.417 (3) |
C6—C7 | 1.331 (2) | C28—H28 | 0.9300 |
C7—C8 | 1.470 (3) | C29—C34 | 1.398 (3) |
C7—H7 | 0.9300 | C29—C30 | 1.405 (3) |
C8—C9 | 1.384 (3) | C30—C31 | 1.366 (3) |
C8—C13 | 1.396 (3) | C30—H30 | 0.9300 |
C9—C10 | 1.374 (3) | C31—C32 | 1.423 (3) |
C9—H9 | 0.9300 | C31—H31 | 0.9300 |
C10—C11 | 1.369 (4) | C32—C33 | 1.360 (2) |
C10—H10 | 0.9300 | C32—H32 | 0.9300 |
C11—C12 | 1.358 (4) | C33—C34 | 1.412 (2) |
C11—H11 | 0.9300 | C35—H35A | 0.9600 |
C12—C13 | 1.392 (3) | C35—H35B | 0.9600 |
C12—H12 | 0.9300 | C35—H35C | 0.9600 |
C13—C35 | 1.500 (3) | C35—H35D | 0.9600 |
C14—C15 | 1.390 (3) | C35—H35E | 0.9600 |
C14—C19 | 1.400 (3) | C35—H35F | 0.9600 |
C14—C36 | 1.501 (3) | C36—H36A | 0.9600 |
C15—C16 | 1.368 (3) | C36—H36B | 0.9600 |
C15—H15 | 0.9300 | C36—H36C | 0.9600 |
C16—C17 | 1.369 (3) | C36—H36D | 0.9600 |
C16—H16 | 0.9300 | C36—H36E | 0.9600 |
C17—C18 | 1.378 (3) | C36—H36F | 0.9600 |
C5—N1—C3 | 109.05 (14) | C19—C20—C21 | 116.01 (14) |
C5—N1—C4 | 111.16 (15) | C19—C20—C2 | 114.95 (14) |
C3—N1—C4 | 112.30 (14) | C21—C20—C2 | 104.99 (14) |
C22—N2—C21 | 114.57 (15) | C19—C20—H20 | 106.8 |
C22—N2—C23 | 116.08 (15) | C21—C20—H20 | 106.8 |
C21—N2—C23 | 107.05 (13) | C2—C20—H20 | 106.8 |
O1—C1—C6 | 120.91 (16) | N2—C21—C20 | 103.63 (13) |
O1—C1—C2 | 120.90 (16) | N2—C21—H21A | 111.0 |
C6—C1—C2 | 118.18 (15) | C20—C21—H21A | 111.0 |
C3—C2—C1 | 107.64 (14) | N2—C21—H21B | 111.0 |
C3—C2—C20 | 114.25 (13) | C20—C21—H21B | 111.0 |
C1—C2—C20 | 111.07 (13) | H21A—C21—H21B | 109.0 |
C3—C2—C23 | 112.19 (13) | N2—C22—H22A | 109.5 |
C1—C2—C23 | 107.70 (13) | N2—C22—H22B | 109.5 |
C20—C2—C23 | 103.83 (13) | H22A—C22—H22B | 109.5 |
N1—C3—C2 | 108.55 (13) | N2—C22—H22C | 109.5 |
N1—C3—H3A | 110.0 | H22A—C22—H22C | 109.5 |
C2—C3—H3A | 110.0 | H22B—C22—H22C | 109.5 |
N1—C3—H3B | 110.0 | N2—C23—C33 | 110.81 (14) |
C2—C3—H3B | 110.0 | N2—C23—C24 | 113.84 (14) |
H3A—C3—H3B | 108.4 | C33—C23—C24 | 101.21 (14) |
N1—C4—H4A | 109.5 | N2—C23—C2 | 101.76 (13) |
N1—C4—H4B | 109.5 | C33—C23—C2 | 119.65 (14) |
H4A—C4—H4B | 109.5 | C24—C23—C2 | 110.12 (13) |
N1—C4—H4C | 109.5 | O2—C24—C25 | 126.46 (18) |
H4A—C4—H4C | 109.5 | O2—C24—C23 | 124.94 (17) |
H4B—C4—H4C | 109.5 | C25—C24—C23 | 108.48 (16) |
N1—C5—C6 | 112.26 (15) | C26—C25—C34 | 120.42 (19) |
N1—C5—H5A | 109.2 | C26—C25—C24 | 132.3 (2) |
C6—C5—H5A | 109.2 | C34—C25—C24 | 107.31 (16) |
N1—C5—H5B | 109.2 | C25—C26—C27 | 118.3 (2) |
C6—C5—H5B | 109.2 | C25—C26—H26 | 120.9 |
H5A—C5—H5B | 107.9 | C27—C26—H26 | 120.9 |
C7—C6—C1 | 117.20 (17) | C28—C27—C26 | 121.8 (2) |
C7—C6—C5 | 123.34 (17) | C28—C27—H27 | 119.1 |
C1—C6—C5 | 119.41 (15) | C26—C27—H27 | 119.1 |
C6—C7—C8 | 128.6 (2) | C27—C28—C29 | 121.4 (2) |
C6—C7—H7 | 115.7 | C27—C28—H28 | 119.3 |
C8—C7—H7 | 115.7 | C29—C28—H28 | 119.3 |
C9—C8—C13 | 119.01 (19) | C34—C29—C30 | 116.11 (19) |
C9—C8—C7 | 121.34 (19) | C34—C29—C28 | 115.7 (2) |
C13—C8—C7 | 119.6 (2) | C30—C29—C28 | 128.2 (2) |
C10—C9—C8 | 121.3 (2) | C31—C30—C29 | 120.30 (19) |
C10—C9—H9 | 119.3 | C31—C30—H30 | 119.8 |
C8—C9—H9 | 119.3 | C29—C30—H30 | 119.8 |
C11—C10—C9 | 119.8 (3) | C30—C31—C32 | 122.5 (2) |
C11—C10—H10 | 120.1 | C30—C31—H31 | 118.8 |
C9—C10—H10 | 120.1 | C32—C31—H31 | 118.8 |
C12—C11—C10 | 119.5 (2) | C33—C32—C31 | 118.75 (19) |
C12—C11—H11 | 120.3 | C33—C32—H32 | 120.6 |
C10—C11—H11 | 120.3 | C31—C32—H32 | 120.6 |
C11—C12—C13 | 122.4 (2) | C32—C33—C34 | 118.17 (17) |
C11—C12—H12 | 118.8 | C32—C33—C23 | 132.64 (16) |
C13—C12—H12 | 118.8 | C34—C33—C23 | 109.07 (15) |
C12—C13—C8 | 118.0 (2) | C25—C34—C29 | 122.33 (19) |
C12—C13—C35 | 120.5 (2) | C25—C34—C33 | 113.55 (16) |
C8—C13—C35 | 121.46 (19) | C29—C34—C33 | 124.10 (19) |
C15—C14—C19 | 118.55 (18) | C13—C35—H35A | 109.5 |
C15—C14—C36 | 119.47 (18) | C13—C35—H35B | 109.5 |
C19—C14—C36 | 121.98 (17) | H35A—C35—H35B | 109.5 |
C16—C15—C14 | 122.1 (2) | C13—C35—H35C | 109.5 |
C16—C15—H15 | 118.9 | H35A—C35—H35C | 109.5 |
C14—C15—H15 | 118.9 | H35B—C35—H35C | 109.5 |
C15—C16—C17 | 119.4 (2) | H35D—C35—H35E | 109.5 |
C15—C16—H16 | 120.3 | H35D—C35—H35F | 109.5 |
C17—C16—H16 | 120.3 | H35E—C35—H35F | 109.5 |
C16—C17—C18 | 119.8 (2) | C14—C36—H36A | 109.5 |
C16—C17—H17 | 120.1 | C14—C36—H36B | 109.5 |
C18—C17—H17 | 120.1 | H36A—C36—H36B | 109.5 |
C17—C18—C19 | 121.8 (2) | C14—C36—H36C | 109.5 |
C17—C18—H18 | 119.1 | H36A—C36—H36C | 109.5 |
C19—C18—H18 | 119.1 | H36B—C36—H36C | 109.5 |
C18—C19—C14 | 118.42 (17) | H36D—C36—H36E | 109.5 |
C18—C19—C20 | 121.30 (17) | H36D—C36—H36F | 109.5 |
C14—C19—C20 | 120.26 (15) | H36E—C36—H36F | 109.5 |
O1—C1—C2—C3 | −152.18 (17) | C19—C20—C21—N2 | −153.51 (14) |
C6—C1—C2—C3 | 29.1 (2) | C2—C20—C21—N2 | −25.45 (17) |
O1—C1—C2—C20 | −26.4 (2) | C22—N2—C23—C33 | 60.2 (2) |
C6—C1—C2—C20 | 154.89 (15) | C21—N2—C23—C33 | −170.39 (14) |
O1—C1—C2—C23 | 86.66 (19) | C22—N2—C23—C24 | −53.0 (2) |
C6—C1—C2—C23 | −92.04 (17) | C21—N2—C23—C24 | 76.33 (18) |
C5—N1—C3—C2 | 76.18 (17) | C22—N2—C23—C2 | −171.47 (15) |
C4—N1—C3—C2 | −160.14 (15) | C21—N2—C23—C2 | −42.10 (16) |
C1—C2—C3—N1 | −60.49 (17) | C3—C2—C23—N2 | 147.72 (13) |
C20—C2—C3—N1 | 175.66 (13) | C1—C2—C23—N2 | −94.01 (15) |
C23—C2—C3—N1 | 57.82 (17) | C20—C2—C23—N2 | 23.85 (15) |
C3—N1—C5—C6 | −54.01 (19) | C3—C2—C23—C33 | −89.87 (17) |
C4—N1—C5—C6 | −178.36 (15) | C1—C2—C23—C33 | 28.4 (2) |
O1—C1—C6—C7 | −12.8 (3) | C20—C2—C23—C33 | 146.26 (14) |
C2—C1—C6—C7 | 165.91 (16) | C3—C2—C23—C24 | 26.65 (18) |
O1—C1—C6—C5 | 169.68 (17) | C1—C2—C23—C24 | 144.93 (14) |
C2—C1—C6—C5 | −11.6 (2) | C20—C2—C23—C24 | −97.21 (15) |
N1—C5—C6—C7 | −154.62 (18) | N2—C23—C24—O2 | −51.5 (2) |
N1—C5—C6—C1 | 22.8 (2) | C33—C23—C24—O2 | −170.37 (18) |
C1—C6—C7—C8 | −178.84 (19) | C2—C23—C24—O2 | 62.1 (2) |
C5—C6—C7—C8 | −1.4 (3) | N2—C23—C24—C25 | 124.97 (16) |
C6—C7—C8—C9 | −46.1 (3) | C33—C23—C24—C25 | 6.06 (18) |
C6—C7—C8—C13 | 136.6 (2) | C2—C23—C24—C25 | −121.50 (15) |
C13—C8—C9—C10 | −0.4 (4) | O2—C24—C25—C26 | −8.7 (4) |
C7—C8—C9—C10 | −177.7 (3) | C23—C24—C25—C26 | 174.9 (2) |
C8—C9—C10—C11 | −0.5 (5) | O2—C24—C25—C34 | 170.5 (2) |
C9—C10—C11—C12 | 0.6 (6) | C23—C24—C25—C34 | −5.9 (2) |
C10—C11—C12—C13 | 0.2 (5) | C34—C25—C26—C27 | −0.7 (3) |
C11—C12—C13—C8 | −1.1 (5) | C24—C25—C26—C27 | 178.4 (2) |
C11—C12—C13—C35 | −179.0 (3) | C25—C26—C27—C28 | −2.0 (4) |
C9—C8—C13—C12 | 1.2 (4) | C26—C27—C28—C29 | 1.8 (4) |
C7—C8—C13—C12 | 178.6 (2) | C27—C28—C29—C34 | 1.1 (3) |
C9—C8—C13—C35 | 179.0 (3) | C27—C28—C29—C30 | −178.6 (2) |
C7—C8—C13—C35 | −3.6 (4) | C34—C29—C30—C31 | 0.3 (3) |
C19—C14—C15—C16 | 1.2 (3) | C28—C29—C30—C31 | −179.9 (2) |
C36—C14—C15—C16 | −178.30 (19) | C29—C30—C31—C32 | 1.6 (3) |
C14—C15—C16—C17 | −0.7 (3) | C30—C31—C32—C33 | −1.3 (3) |
C15—C16—C17—C18 | −0.1 (3) | C31—C32—C33—C34 | −1.0 (3) |
C16—C17—C18—C19 | 0.3 (3) | C31—C32—C33—C23 | −176.46 (17) |
C17—C18—C19—C14 | 0.3 (3) | N2—C23—C33—C32 | 50.5 (3) |
C17—C18—C19—C20 | 178.85 (17) | C24—C23—C33—C32 | 171.57 (19) |
C15—C14—C19—C18 | −1.0 (3) | C2—C23—C33—C32 | −67.4 (2) |
C36—C14—C19—C18 | 178.52 (17) | N2—C23—C33—C34 | −125.23 (15) |
C15—C14—C19—C20 | −179.60 (16) | C24—C23—C33—C34 | −4.16 (17) |
C36—C14—C19—C20 | −0.1 (3) | C2—C23—C33—C34 | 116.91 (16) |
C18—C19—C20—C21 | 36.9 (2) | C26—C25—C34—C29 | 3.7 (3) |
C14—C19—C20—C21 | −144.55 (17) | C24—C25—C34—C29 | −175.53 (17) |
C18—C19—C20—C2 | −86.1 (2) | C26—C25—C34—C33 | −177.43 (17) |
C14—C19—C20—C2 | 92.47 (19) | C24—C25—C34—C33 | 3.3 (2) |
C3—C2—C20—C19 | 6.9 (2) | C30—C29—C34—C25 | 175.91 (18) |
C1—C2—C20—C19 | −115.06 (16) | C28—C29—C34—C25 | −3.9 (3) |
C23—C2—C20—C19 | 129.45 (15) | C30—C29—C34—C33 | −2.8 (3) |
C3—C2—C20—C21 | −121.77 (16) | C28—C29—C34—C33 | 177.44 (17) |
C1—C2—C20—C21 | 116.24 (16) | C32—C33—C34—C25 | −175.63 (17) |
C23—C2—C20—C21 | 0.75 (16) | C23—C33—C34—C25 | 0.8 (2) |
C22—N2—C21—C20 | 173.69 (16) | C32—C33—C34—C29 | 3.2 (3) |
C23—N2—C21—C20 | 43.47 (18) | C23—C33—C34—C29 | 179.61 (17) |
Cg2 is the centroid of the C8–C13 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C36—H36A···O1 | 0.96 | 2.66 | 3.586 (3) | 161 |
C10—H10···O2i | 0.93 | 2.77 | 3.529 (3) | 140 |
C16—H16···O2ii | 0.93 | 2.79 | 3.530 (3) | 137 |
C35—H35F···Cg2iii | 0.96 | 2.94 | 3.805 (4) | 151 |
Symmetry codes: (i) −x, y+1/2, −z+1/2; (ii) −x, −y+2, −z; (iii) −x+1, −y+2, −z+1. |
Acknowledgements
The authors thank the Sophisticated Analytical Instrumental Facility (SAIF), Indian Institute of Technology, Chennai, for the data collection and the Management of Thiagarajar College, Madurai, for financial support in establishing the Cambridge Structural Database in the Department of Physics.
References
Aravindan, P. G., Selvanayagam, S., Velmurugan, D., Ravikumar, K., Sridhar, G. & Raghunathan, R. (2004). Acta Cryst. E60, o2149–o2151. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2012). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bueno, J. M., Manzano, P., García, M. C., Chicharro, J., Puente, M., Lorenzo, M., García, A., Ferrer, S., Gómez, R. M., Fraile, M. T., Lavandera, J. L., Fiandor, J. M., Vidal, J., Herreros, E. & Gargallo-Viola, D. (2011). Bioorg. Med. Chem. Lett. 21, 5214–5218. Web of Science CrossRef CAS PubMed Google Scholar
Cheng, Z., Han, X., Liang, C. & Yang, S. (2018). US Patent Pub. No. US2018/0134705A1. Google Scholar
Desiraju, G. R. & Sarma, J. A. R. P. (1986). Proc. - Indian Acad. Sci. Chem. Sci. 96, 599–605. CrossRef CAS Google Scholar
El-Ayaan, U., Abdel-Aziz, A. A.-M. & Al-Shihry, S. (2007). Eur. J. Med. Chem. 42, 1325–1333. Web of Science PubMed CAS Google Scholar
Gholap, S. S. (2016). Eur. J. Med. Chem. 110, 13–31. Web of Science CrossRef CAS PubMed Google Scholar
Gnanaguru, K., Murthy, G. S., Venkatesan, K. & Ramamurthy, V. (1984). Chem. Phys. Lett. 109, 255–258. CrossRef CAS Web of Science Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Jiang, L., Zhang, B., Wang, Y., Sun, J., Ma, X., Wang, G., Fu, S., Lin, C. & Li, Y. (2019). Nat. Prod. Res. https://doi. org/10.1080/14786419.2019.1647422 Google Scholar
Jones, W., Ramdas, S., Theocharis, C. R., Thomas, J. M. & Thomas, N. W. (1981). J. Phys. Chem. 85, 2594–2597. CSD CrossRef CAS Web of Science Google Scholar
Kumar, R. R., Loganayaki, B. & Perumal, S. (2009). Synth. Commun. 39, 3197–3216. Web of Science CSD CrossRef CAS Google Scholar
McDavids, J. E. & Daniels, T. C. (1951). J. Am. Pharm. Assoc. (Sci. ed.), 40, 325–326. CrossRef Web of Science Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Nath, N. K. & Nangia, A. (2012). Cryst. Growth Des. 12, 5411–5425. Web of Science CSD CrossRef CAS Google Scholar
Oganov, A. R. (2018). Faraday Discuss. 211, 643–660. Web of Science CrossRef CAS PubMed Google Scholar
Pandiarajan, S., Saravanamoorthy, S. N., Kumar, B. R., Kumar, R. R. & Athimoolam, S. (2008). Acta Cryst. E64, o99–o100. Web of Science CSD CrossRef IUCr Journals Google Scholar
Rajni Swamy, V., Müller, P., Srinivasan, N., Perumal, S. & Krishnakumar, R. V. (2013). Acta Cryst. C69, 412–415. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sribala, R., Srinivasan, N., Indumathi, S. & Krishnakumar, R. V. (2018). Acta Cryst. E74, 1267–1271. Web of Science CSD CrossRef IUCr Journals Google Scholar
Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318. Web of Science CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer, University of Western Australia. Google Scholar
Zhu, W., Dai, M., Xu, Y. & Qian, X. (2008). Bioorg. Med. Chem. 16, 3255–3260. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.