research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and mol­ecular Hirshfeld surface analysis of acenaphthene derivatives obeying the chlorine–methyl exchange rule

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Thiagarajar College, Madurai - 625 009, Tamilnadu, India, and bSchool of Chemistry, Madurai Kamaraj University, Madurai - 625 021, Tamilnadu, India
*Correspondence e-mail: vasan692000@yahoo.co.in

Edited by J. Jasinski, Keene State College, USA (Received 25 July 2019; accepted 6 September 2019; online 12 September 2019)

Instances of crystal structures that remain isomorphous in spite of some minor changes in their respective mol­ecules, such as change in a substituent atom/group, can provide insights into the factors that govern crystal packing. In this context, an accurate description of the crystal structures of an isomorphous pair that differ from each other only by a chlorine–methyl substituent, viz. 5′′-(2-chloro­benzyl­idene)-4′-(2-chloro­phen­yl)-1′-methyl­dispiro­[acenaphthene-1,2′-pyrrolidine-3′,3′′-piperidine]-2,4′′-dione, C34H28Cl2N2O2, (I), and its analogue 1′-methyl-5′′-(2-methyl­benzyl­idene)-4′-(2-methyl­phen­yl)di­spiro­[acenaphthene-1,2′-pyrrolidine-3′,3′′-piperidine]-2,4′′-dione, C36H34N2O2, (II), is presented. While there are two C—H⋯O weak inter­molecular inter­actions present in both (I) and (II), the change of substituent from chlorine to methyl has given rise to an additional weak C—H⋯O inter­molecular inter­action that is relatively stronger than the other two. However, the presence of the stronger C—H⋯O inter­action in (II) has not disrupted the validity of the chloro-methyl exchange rule. Details of the crystal structures and Hirshfeld analyses of the two compounds are presented.

1. Chemical context

The prediction of crystal structures has emerged as an exciting field involving researchers from diverse fields primarily because of its challenging complexity, which is considered analogous to that of the protein-folding problem. Attempts made in the field of crystal-structure prediction, its present status and the challenges ahead were discussed in detail in a recent article (Oganov, 2018[Oganov, A. R. (2018). Faraday Discuss. 211, 643-660.]). In this context, instances of crystal structures that remain isomorphous in spite of some minor changes in their respective mol­ecules, such as a change in a substituent atom/group, are worthy of study as they might provide some insights regarding the subtle factors that govern the crystal packing.

[Scheme 1]

The title compounds (I)[link] and (II)[link] are good examples of crystal structures that obey the Cl–Me exchange rule, complying with the general conclusions arrived at in earlier studies (Jones et al., 1981[Jones, W., Ramdas, S., Theocharis, C. R., Thomas, J. M. & Thomas, N. W. (1981). J. Phys. Chem. 85, 2594-2597.]; Gnanaguru et al., 1984[Gnanaguru, K., Murthy, G. S., Venkatesan, K. & Ramamurthy, V. (1984). Chem. Phys. Lett. 109, 255-258.]; Desiraju & Sarma, 1986[Desiraju, G. R. & Sarma, J. A. R. P. (1986). Proc. - Indian Acad. Sci. Chem. Sci. 96, 599-605.]). In some recent studies carried out in our laboratory on mol­ecules that showcase the validity of the Cl–Me exchange rule, it has been observed that factors such as the presence of disorder and minor conformational differences have not disturbed the tendency of mol­ecules to remain as isomorphous pairs (Rajni Swamy, et al., 2013[Rajni Swamy, V., Müller, P., Srinivasan, N., Perumal, S. & Krishnakumar, R. V. (2013). Acta Cryst. C69, 412-415.]; Sribala et al., 2018[Sribala, R., Srinivasan, N., Indumathi, S. & Krishnakumar, R. V. (2018). Acta Cryst. E74, 1267-1271.]). Inter­estingly, the validity of the Cl–Me exchange rule has also been observed in some regularly shaped planar mol­ecules (Nath & Nangia, 2012[Nath, N. K. & Nangia, A. (2012). Cryst. Growth Des. 12, 5411-5425.]).

From a pharmacological view point, the title compounds (I)[link] and (II)[link] are spiro compounds that consist of a methyl­pyrrole moiety with its 2- and 3- positions as spiro carbons linked, respectively, to acenapthene and methyl pyridinone ring systems. Each of these ring systems has a variety of associated biological properties. Studies on some 4-pyridone derivatives have shown them to be potent anti­malarial agents (Bueno et al., 2011[Bueno, J. M., Manzano, P., García, M. C., Chicharro, J., Puente, M., Lorenzo, M., García, A., Ferrer, S., Gómez, R. M., Fraile, M. T., Lavandera, J. L., Fiandor, J. M., Vidal, J., Herreros, E. & Gargallo-Viola, D. (2011). Bioorg. Med. Chem. Lett. 21, 5214-5218.]) and effective in the treatment and prophylaxis of the hepatitis B virus infection (Cheng et al., 2018[Cheng, Z., Han, X., Liang, C. & Yang, S. (2018). US Patent Pub. No. US2018/0134705A1.]). Acenaphthene is a pollutant known for its cytotoxicity (Jiang et al., 2019[Jiang, L., Zhang, B., Wang, Y., Sun, J., Ma, X., Wang, G., Fu, S., Lin, C. & Li, Y. (2019). Nat. Prod. Res. https://doi. org/10.1080/14786419.2019.1647422]) but is also useful as a dye inter­mediate. Derivatives of acenaphthene are found to exhibit anti­tumor (El-Ayaan et al., 2007[El-Ayaan, U., Abdel-Aziz, A. A.-M. & Al-Shihry, S. (2007). Eur. J. Med. Chem. 42, 1325-1333.]; Zhu et al., 2008[Zhu, W., Dai, M., Xu, Y. & Qian, X. (2008). Bioorg. Med. Chem. 16, 3255-3260.]) and fungistatic properties (McDavids & Daniels, 1951[McDavids, J. E. & Daniels, T. C. (1951). J. Am. Pharm. Assoc. (Sci. ed.), 40, 325-326.]). Pyrrole derivatives belong to an important class of heterocycles owing to their potential applications as anti­microbial, anti­viral, anti­malarial, anti­tubercular, anti-inflammatory and anti­cancer agents (Gholap, 2016[Gholap, S. S. (2016). Eur. J. Med. Chem. 110, 13-31.]).

2. Structural commentary

The mol­ecular structures of (I)[link] and (II)[link] (Figs. 1[link] and 2[link], respectively) differ from each other only by a chlorine atom in (I)[link] being replaced by a methyl group in (II)[link]. This replacement has not induced any significant change in their unit-cell parameters, lattice type or space group. Similarly, there are no substantial changes in the torsion angles of the title compounds (see Tables 1[link] and 2[link]), as (I)[link] and (II)[link] are isomorphous.

Table 1
Selected torsion angles (°) for (I)[link]

O1—C1—C6—C7 −14.3 (2) Cl2—C14—C19—C20 −0.9 (2)
C7—C8—C13—Cl1 −2.7 (3) N2—C23—C24—O2 −51.3 (2)

Table 2
Selected torsion angles (°) for (II)[link]

O1—C1—C6—C7 −12.8 (3) C36—C14—C19—C20 −0.1 (3)
C7—C8—C13—C35 −3.6 (4) N2—C23—C24—O2 −51.5 (2)
[Figure 1]
Figure 1
Displacement ellipsoid plot drawn at 50% probability level for (I)[link] showing the atom-labelling scheme. H atoms have been omitted for clarity.
[Figure 2]
Figure 2
Displacement ellipsoid plot drawn at 50% probability level for (II)[link], showing the atom-labelling scheme. H atoms have been omitted for clarity.

As expected, the conformational features of both compounds are nearly identical, as shown in a overlay diagram (Fig. 3[link]). The five-membered pyrrolo ring (N2/C21/C20/C2/C23) adopts an envelope conformation on N2 with puckering parameters Q(2) = 0.4011 (2) Å and φ = 180.3733 (3)° for (I)[link], which are comparable with the values of Q(2) = 0.4047 (2) Å and φ = 180.3444 (3)° for (II)[link]. In both of the structures, the six-membered pyridinone ring (N1/C3/C2/C1/C6/C5) adopts a screw-boat conformation with puckering parameters Q = 0.5572 (16) Å, θ = 138.9 (2)°, φ = 219.8 (3)° in (I)[link] and Q = 0.5603 (17) Å, θ = 137.7 (2)°, φ = 219.6 (3)° in (II)[link]. The acenaphthene ring system is planar in both (I)[link] and (II)[link]. However, the O2 atom deviates from the mean plane of the acenaphthene ring system by 0.289 (2) Å in (I)[link] and 0.311 (2) Å in (II)[link], with the r.m.s. deviation of the fitted atoms being 0.043 and 0.044, respectively. This deviation is presumably due to the fact that the O2 atom is involved in two weak C—H⋯O inter­actions that are characteristic of the mol­ecular inter­action patterns of both (I)[link] and (II)[link].

[Figure 3]
Figure 3
An overlay diagram depicting the superimposition of mol­ecule (I)[link] and (II)[link] showing no differences in the conformations.

The dihedral angle between the mean planes of the two chloro­phenyl groups in (I)[link] is 67.66 (9)°, similarly the corresponding angle between the two methyl­phenyl groups in (II)[link] is 66.78 (11)°. The dihedral angles between the acenaphthene ring system and the chloro­phenyl groups are 69.1 (1) and 49.4 (1)°, respectively. The corresponding angles in the methyl-substituted analogue are 72.3 (1) and 47.8 (1)°, respectively. Thus, it is clear that the minor differences observed in the conformation of the mol­ecules are insufficient to disrupt the tendency of these mol­ecules to remain isomorphous.

3. Supra­molecular features

There are no classical hydrogen bonds in the structures of either (I)[link] or (II)[link]. However, in both structures two weak C—H⋯O-type inter­molecular inter­actions, viz. C10—H10⋯O2 and C16—H16⋯O2, which are identical in nature and characteristic of similar fundamental mol­ecular inter­action patterns are present (Tables 3[link] and 4[link]). The C16—H16⋯O2 inter­action occurs between centrosymmetric pairs (Fig. 4[link]), leading to the formation of R22(20) graph-set motifs along the b-axis direction in both (I)[link] and (II)[link]. Similarly, in both (I)[link] and (II)[link] the C10—H10⋯O2 inter­action links glide-related mol­ecules along the b-axis direction (Fig. 5[link]). The mol­ecular aggregation pattern may be visualized as being composed of these two characteristic weak inter­actions in such a manner that centrosymmetric dimeric pairs are linked through glide-related chains of mol­ecules, forming a two-dimensional layer parallel to the bc plane in both structures, as shown in Figs. 6[link] and 7[link], respectively.

Table 3
Hydrogen-bond geometry (Å, °) for (I)[link]

Cg1 is the centroid of the C25–C29/C34 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯O2i 0.93 2.74 3.492 (3) 139
C16—H16⋯O2ii 0.93 2.76 3.481 (3) 135
C5—H5BCg1i 0.97 2.99 3.9466 (19) 168
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x, -y+2, -z.

Table 4
Hydrogen-bond geometry (Å, °) for (II)[link]

Cg2 is the centroid of the C8–C13 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C36—H36A⋯O1 0.96 2.66 3.586 (3) 161
C10—H10⋯O2i 0.93 2.77 3.529 (3) 140
C16—H16⋯O2ii 0.93 2.79 3.530 (3) 137
C35—H35FCg2iii 0.96 2.94 3.805 (4) 151
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x, -y+2, -z; (iii) -x+1, -y+2, -z+1.
[Figure 4]
Figure 4
Perspective view along the a axis showing the weak C16—H16⋯O2 inter­molecular inter­actions between centrosymmetric pairs of mol­ecules in (I)[link] and (II)[link]. Non-participating H atoms, methyl C atoms and Cl atoms have been omitted for clarity.
[Figure 5]
Figure 5
Perspective view along the a axis showing the weak C10—H10⋯O2 inter­molecular inter­actions between glide-related mol­ecules in (I)[link] and (II)[link]. Non-participating H atoms, methyl C atoms and Cl atoms have been omitted for clarity.
[Figure 6]
Figure 6
A view of the crystal structure of (I)[link] showing the formation of R22(20) graph-set motifs leading to the formation of layers formed parallel to the bc plane. Dashed lines indicate weak C—H⋯O inter­molecular inter­actions. H atoms not involved in the inter­actions have been omitted for clarity.
[Figure 7]
Figure 7
A view of the crystal structure of (II)[link] showing the R22(20) graph-set motifs. Dashed lines indicate weak C—H⋯O inter­molecular inter­actions. H atoms not inter­actions have been omitted for clarity.

In (II)[link], an additional inter­molecular inter­action is observed, viz. C36—H36A⋯O1, that is stronger than the two characteristic weak inter­molecular inter­actions and involves the replaced substituent methyl group (C36—H36A) as a donor and the piperidinone O1 atom as an acceptor (see Table 4[link]). It may be concluded that the presence of this additional C—H⋯O inter­action in (II)[link] has not disrupted the validity of the chloro–methyl exchange rule.

In addition, a weak C—H⋯π inter­action involving different donor groups and acceptor π-ring systems is present in both (I)[link] and (II)[link]. The C5—H5Bπ inter­action observed in (I)[link] is between the C5 atom of the methyl­piperidinone ring as a donor and the C25—C29/C34 ring of the acenaphthenone system as an acceptor. Inter­estingly, a geometrically identical weak ππ inter­action about an inversion centre is observed with centroid–centroid Cg3⋯Cg3(1 − x, 2 − y, −z) distances of 3.7459 (2) Å in (I)[link] and 3.8351 (2) Å in (II)[link] with respective slippages of 1.250 and 1.367 Å where Cg3 is the centroid of the C14–C19 ring. The shortest Cl⋯Cl distance observed [Cl1 ⋯Cl1(−x + 1, −y + 2, −z + 1)] is 4.088 (1) Å and bears no structural significance.

4. Database survey

A thorough search in the Cambridge Structural Database (CSD Version 5.39, update Nov 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) using the main skeleton of the title compounds (having 3D coordinates with no disorder, no ions and no other errors with R factors less than 0.05) gave only three hits: 5′′-(4-chloro­benzyl­idene)-4′-(4-chloro­phen­yl)-1′,1′′-dimethyl-2H,4′′H-di­spiro­[ace­naphthyl­ene-1,2′-pyrrolidine-3′,3′′-piperidine]-2,4′′-dione (YIRKUG; Pandiarajan et al., 2008[Pandiarajan, S., Saravanamoorthy, S. N., Kumar, B. R., Kumar, R. R. & Athimoolam, S. (2008). Acta Cryst. E64, o99-o100.]), 5′′-benzyl­idene-1′,1′′-dimethyl-4′-phenyl-acenapthene-2-spiro-2′-pyrrolidine-3′-spiro-3′′-piperidine-1,4′′-dione (MAJHEL; Aravindan et al., 2004[Aravindan, P. G., Selvanayagam, S., Velmurugan, D., Ravikumar, K., Sridhar, G. & Raghunathan, R. (2004). Acta Cryst. E60, o2149-o2151.]) and 1-methyl-4-(4-methyl­phen­yl)pyrrolo-(spiro­[2.2′′]acenaphthene-1′′-one)-spiro-[3.3′]-(spiro-[5′.5′′′]-3′′′-(4-chloro­phen­yl)-4′′′-(4-methyl­phen­yl)-isoxazoline)-1′-methyl­tetra­hydro-4′(1H)-pyridinone (XUQFOF; Kumar, et al., 2009[Kumar, R. R., Loganayaki, B. & Perumal, S. (2009). Synth. Commun. 39, 3197-3216.]).

5. Hirshfeld surface analysis

Hirshfeld surface (HS) analysis was used to investigate and visualize the weak inter­molecular inter­actions influential in the packing of the mol­ecules in the crystal. The visual representation of mol­ecular inter­actions on this isosurface is determined using two parameters, viz. di and de , which represent the distances from a given point on the surface to the nearest atom inside and outside the surface, respectively. The normalized contact distance, dnorm is based on the values of di and de.

In the present work, the Hirshfeld surfaces (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) and the associated two-dimensional fingerprint plots for title compounds (I)[link] and (II)[link] were generated using CrystalExplorer3.0 (Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer, University of Western Australia.]). The Hirshfeld surfaces mapped over dnorm together with decomposed finger print plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]; Tan et al., 2019[Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308-318.]) for (I)[link] and (II)[link] are presented in Figs. 8[link] and 9[link], respectively. Being isomorphic and isostructural in nature, both (I)[link] and (II)[link] display similar C—H⋯O inter­molecular inter­actions. The combined O⋯H and H⋯O inter­actions appear symmetrically as distinct spikes at the bottom of the fingerprint plot and contribute 7.5 and 6.9%, respectively, of the total surface in compounds (I)[link] and (II)[link].

[Figure 8]
Figure 8
Hirshfeld surface of (I)[link] mapped over shape-index and dnorm and decomposed fingerprint plots of the dominant inter­actions.
[Figure 9]
Figure 9
Hirshfeld surface of (II)[link] mapped over shape-index and dnorm and decomposed fingerprint plots of the dominant inter­actions.

The symmetrical inter­nal wing-like projections correspond to C⋯H/H⋯C contacts, which account for 16% of the HS in (I)[link] and 19.1% in (II)[link]. The dominant contribution is from the H⋯H contacts [56.3% in (I)[link] and 70.2% in (II)], as shown by the area occupied between the spikes. Such prominent differences may be accounted for by the presence of a Cl⋯H/H⋯Cl contact in (I)[link] (11.3% contribution) and its absence in (II)[link].

6. Synthesis and crystallization

For (I)[link], a mixture of 1-methyl-3,5-bis­[(E)-2-chloro­phenyl­methyl­idene] tetra­hydro-4(1H)- pyridinone (1 mmol), acenaphthene­quinone (1 mmol) and sarcosine (1 mmol) was dissolved in methanol (15 mL) and refluxed for 30 min. After completion of the reaction, as evident from TLC, the mixture was poured into water (50 mL) and the precipitated solid was filtered and washed with water (100 mL) to obtain pure (I)[link] as a yellow solid, (0.31 g, 98%), mp 448–449 K, Rf (petroleum ether/EtOAc, 4:1) 0.40. Suitable crystals for single-crystal X-ray studies were obtained by recrystallization of the product from ethanol.

A similar procedure for (II)[link] was adopted by dissolving a mixture of 1-methyl-3,5-bis­[(E)-2-methyl­phenyl­methyl­idene] tetra­hydro-4(1H)-pyridinone (1 mmol), acenaphthene­quinone (1 mmol) and sarcosine (1 mmol) in methanol (15 mL) to yield yellow crystals.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. C-bound H atoms were included in calculated positions and treated as riding, with C—H = 0.95–1.00 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms or 1.2Ueq(C) otherwise. The H atoms of the methyl atoms C35 and C36 in (II)[link] were refined as idealized and disordered over two positions since significant residual electron densities were noticed between the three hydrogen atoms of the respective methyl C atoms. The introduction of a disordered model for these two methyl groups had appreciable impact on the final structural parameters.

Table 5
Experimental details

  (I) (II)
Crystal data
Chemical formula C34H28Cl2N2O2 C36H34N2O2
Mr 567.48 526.65
Crystal system, space group Monoclinic, P21/c Monoclinic, P21/c
Temperature (K) 293 293
a, b, c (Å) 8.6710 (4), 15.6756 (7), 20.2284 (9) 8.7507 (5), 15.9089 (8), 20.2879 (10)
β (°) 93.036 (2) 92.935 (2)
V3) 2745.6 (2) 2820.7 (3)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.27 0.08
Crystal size (mm) 0.31 × 0.22 × 0.19 0.32 × 0.24 × 0.18
 
Data collection
Diffractometer Bruker SMART APEXII CCD Bruker SMART APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.771, 1.000 0.816, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 33739, 7274, 5025 28946, 5339, 3349
Rint 0.026 0.040
(sin θ/λ)max−1) 0.683 0.610
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.122, 1.02 0.045, 0.121, 1.02
No. of reflections 7274 5339
No. of parameters 361 362
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.33, −0.46 0.17, −0.15
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For both structures, data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

5''-(2-Chlorobenzylidene)-4'-(2-chlorophenyl)-1'-methyldispiro[acenaphthene-1,2'-pyrrolidine-3',3''-piperidine]-2,4''-dione (I) top
Crystal data top
C34H28Cl2N2O2F(000) = 1184
Mr = 567.48Dx = 1.373 Mg m3
Dm = 1.37 Mg m3
Dm measured by floatation method
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.6710 (4) ÅCell parameters from 7274 reflections
b = 15.6756 (7) Åθ = 4.8–57.2°
c = 20.2284 (9) ŵ = 0.27 mm1
β = 93.036 (2)°T = 293 K
V = 2745.6 (2) Å3Block, yellow
Z = 40.31 × 0.22 × 0.19 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
5025 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.026
φ and ω scansθmax = 29.1°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1111
Tmin = 0.771, Tmax = 1.000k = 2121
33739 measured reflectionsl = 2727
7274 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.122 w = 1/[σ2(Fo2) + (0.0458P)2 + 1.2817P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
7274 reflectionsΔρmax = 0.33 e Å3
361 parametersΔρmin = 0.46 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.38200 (9)0.88710 (4)0.49943 (3)0.0749 (2)
Cl20.53437 (6)1.07386 (3)0.14315 (3)0.05500 (14)
O10.48210 (14)0.92211 (9)0.26952 (6)0.0509 (3)
O20.01681 (16)0.80480 (10)0.10859 (7)0.0587 (4)
N10.02281 (15)0.96435 (9)0.23726 (6)0.0345 (3)
N20.32804 (16)0.76391 (9)0.17821 (7)0.0379 (3)
C10.34543 (18)0.93585 (10)0.26001 (8)0.0339 (3)
C20.25834 (17)0.90781 (10)0.19571 (7)0.0298 (3)
C30.12354 (18)0.96919 (10)0.18237 (8)0.0330 (3)
H3A0.1618411.0269460.1779870.040*
H3B0.0669230.9537670.1414730.040*
C40.1310 (2)0.99694 (13)0.21990 (10)0.0486 (4)
H4A0.1750900.9658610.1826230.073*
H4B0.1949610.9901710.2568640.073*
H4C0.1245701.0563210.2087580.073*
C50.0931 (2)1.00991 (11)0.29351 (8)0.0412 (4)
H5A0.0298091.0027420.3312490.049*
H5B0.0965521.0702960.2832170.049*
C60.2542 (2)0.97887 (10)0.31150 (8)0.0367 (3)
C70.3209 (2)0.98384 (12)0.37223 (9)0.0453 (4)
H70.4197550.9610110.3777240.054*
C80.2571 (2)1.02102 (12)0.43141 (9)0.0498 (5)
C90.1760 (3)1.09734 (15)0.42992 (11)0.0700 (7)
H90.1578581.1253780.3897460.084*
C100.1219 (4)1.13245 (17)0.48645 (13)0.0900 (9)
H100.0679451.1837280.4840820.108*
C110.1467 (4)1.09265 (18)0.54595 (12)0.0925 (10)
H110.1092391.1165030.5840210.111*
C120.2269 (3)1.01755 (16)0.54950 (11)0.0761 (7)
H120.2443090.9902380.5900180.091*
C130.2817 (3)0.98246 (13)0.49292 (9)0.0546 (5)
C140.40575 (19)1.04221 (11)0.07931 (8)0.0395 (4)
C150.3746 (2)1.09964 (13)0.02837 (10)0.0524 (5)
H150.4246051.1521120.0282840.063*
C160.2695 (3)1.07856 (15)0.02190 (10)0.0604 (6)
H160.2473081.1168920.0561850.073*
C170.1973 (2)1.00115 (16)0.02157 (10)0.0589 (6)
H170.1257750.9869000.0556480.071*
C180.2301 (2)0.94401 (13)0.02908 (9)0.0475 (4)
H180.1802730.8914690.0283760.057*
C190.33571 (18)0.96284 (11)0.08114 (8)0.0355 (3)
C200.37056 (18)0.90127 (10)0.13774 (7)0.0333 (3)
H200.4745180.9145780.1562410.040*
C210.3698 (2)0.80722 (11)0.11831 (9)0.0418 (4)
H21A0.2944850.7962550.0821380.050*
H21B0.4708660.7892280.1053230.050*
C220.3020 (3)0.67327 (12)0.17056 (11)0.0576 (5)
H22A0.2750490.6493990.2121060.086*
H22B0.2193230.6637280.1379460.086*
H22C0.3943500.6464900.1565640.086*
C230.20239 (17)0.81269 (10)0.20545 (8)0.0322 (3)
C240.0411 (2)0.79856 (11)0.16774 (9)0.0410 (4)
C250.06990 (19)0.77207 (11)0.21615 (10)0.0429 (4)
C260.2263 (2)0.75748 (13)0.21054 (12)0.0572 (5)
H260.2819310.7649060.1703700.069*
C270.2990 (2)0.73129 (15)0.26675 (14)0.0684 (7)
H270.4053250.7228920.2641340.082*
C280.2189 (3)0.71761 (13)0.32545 (13)0.0628 (6)
H280.2715670.6987290.3615610.075*
C290.0578 (2)0.73134 (11)0.33300 (10)0.0461 (4)
C300.0409 (3)0.71831 (12)0.38919 (10)0.0526 (5)
H300.0011880.6980300.4280060.063*
C310.1947 (2)0.73521 (12)0.38725 (9)0.0496 (5)
H310.2582100.7248570.4248750.060*
C320.2616 (2)0.76802 (11)0.32996 (9)0.0410 (4)
H320.3668090.7797460.3302810.049*
C330.16946 (18)0.78193 (10)0.27480 (8)0.0339 (3)
C340.01184 (19)0.76132 (10)0.27645 (9)0.0379 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1164 (5)0.0651 (4)0.0426 (3)0.0162 (3)0.0028 (3)0.0052 (2)
Cl20.0520 (3)0.0486 (3)0.0634 (3)0.0065 (2)0.0062 (2)0.0027 (2)
O10.0375 (6)0.0762 (9)0.0382 (7)0.0023 (6)0.0059 (5)0.0024 (6)
O20.0606 (8)0.0712 (10)0.0422 (8)0.0164 (7)0.0156 (6)0.0065 (7)
N10.0344 (7)0.0376 (7)0.0316 (7)0.0049 (5)0.0030 (5)0.0007 (6)
N20.0460 (8)0.0329 (7)0.0352 (8)0.0044 (6)0.0067 (6)0.0027 (6)
C10.0384 (8)0.0354 (8)0.0275 (8)0.0033 (6)0.0013 (6)0.0035 (6)
C20.0309 (7)0.0335 (8)0.0252 (7)0.0007 (6)0.0013 (6)0.0008 (6)
C30.0365 (8)0.0355 (8)0.0268 (8)0.0039 (6)0.0005 (6)0.0016 (6)
C40.0411 (9)0.0537 (11)0.0511 (11)0.0131 (8)0.0035 (8)0.0005 (9)
C50.0517 (10)0.0408 (9)0.0315 (9)0.0077 (7)0.0039 (7)0.0038 (7)
C60.0465 (9)0.0344 (8)0.0291 (8)0.0030 (7)0.0010 (7)0.0008 (6)
C70.0571 (11)0.0466 (10)0.0318 (9)0.0019 (8)0.0023 (8)0.0012 (7)
C80.0732 (13)0.0468 (10)0.0288 (9)0.0039 (9)0.0025 (8)0.0063 (8)
C90.117 (2)0.0542 (13)0.0381 (11)0.0107 (13)0.0047 (12)0.0076 (9)
C100.153 (3)0.0611 (15)0.0555 (15)0.0301 (16)0.0057 (16)0.0159 (12)
C110.163 (3)0.0710 (17)0.0448 (14)0.0170 (18)0.0209 (16)0.0168 (12)
C120.133 (2)0.0629 (14)0.0337 (11)0.0001 (15)0.0128 (13)0.0019 (10)
C130.0821 (14)0.0460 (11)0.0356 (10)0.0045 (10)0.0017 (9)0.0034 (8)
C140.0358 (8)0.0465 (9)0.0369 (9)0.0042 (7)0.0078 (7)0.0023 (7)
C150.0570 (11)0.0509 (11)0.0507 (12)0.0045 (9)0.0165 (9)0.0135 (9)
C160.0635 (13)0.0777 (15)0.0409 (11)0.0173 (11)0.0104 (9)0.0262 (10)
C170.0525 (11)0.0899 (17)0.0337 (10)0.0036 (11)0.0023 (8)0.0126 (10)
C180.0463 (10)0.0642 (12)0.0319 (9)0.0031 (8)0.0010 (7)0.0051 (8)
C190.0337 (8)0.0459 (9)0.0275 (8)0.0032 (7)0.0065 (6)0.0027 (7)
C200.0324 (7)0.0403 (8)0.0273 (8)0.0011 (6)0.0013 (6)0.0002 (6)
C210.0485 (9)0.0432 (9)0.0343 (9)0.0054 (7)0.0075 (7)0.0040 (7)
C220.0804 (14)0.0358 (10)0.0577 (13)0.0030 (9)0.0133 (11)0.0059 (9)
C230.0335 (7)0.0336 (8)0.0292 (8)0.0001 (6)0.0006 (6)0.0014 (6)
C240.0413 (9)0.0364 (9)0.0443 (10)0.0033 (7)0.0059 (7)0.0012 (7)
C250.0367 (8)0.0342 (9)0.0574 (11)0.0009 (7)0.0002 (8)0.0006 (8)
C260.0391 (9)0.0519 (11)0.0798 (15)0.0016 (8)0.0034 (10)0.0004 (10)
C270.0395 (10)0.0635 (14)0.104 (2)0.0058 (9)0.0173 (12)0.0037 (13)
C280.0549 (12)0.0518 (12)0.0851 (17)0.0068 (9)0.0344 (12)0.0017 (11)
C290.0539 (10)0.0309 (8)0.0555 (12)0.0016 (7)0.0216 (9)0.0003 (8)
C300.0744 (13)0.0377 (9)0.0482 (11)0.0050 (9)0.0253 (10)0.0054 (8)
C310.0711 (13)0.0406 (10)0.0374 (10)0.0110 (9)0.0051 (9)0.0074 (8)
C320.0461 (9)0.0382 (9)0.0389 (9)0.0067 (7)0.0033 (7)0.0048 (7)
C330.0377 (8)0.0288 (7)0.0355 (9)0.0029 (6)0.0049 (6)0.0026 (6)
C340.0403 (8)0.0261 (7)0.0479 (10)0.0012 (6)0.0090 (7)0.0000 (7)
Geometric parameters (Å, º) top
Cl1—C131.731 (2)C14—C191.386 (2)
Cl2—C141.7336 (18)C15—C161.369 (3)
O1—C11.2098 (19)C15—H150.9300
O2—C241.208 (2)C16—C171.365 (3)
N1—C51.450 (2)C16—H160.9300
N1—C31.4506 (19)C17—C181.379 (3)
N1—C41.454 (2)C17—H170.9300
N2—C221.446 (2)C18—C191.390 (2)
N2—C211.451 (2)C18—H180.9300
N2—C231.462 (2)C19—C201.516 (2)
C1—C61.501 (2)C20—C211.526 (2)
C1—C21.533 (2)C20—H200.9800
C2—C31.527 (2)C21—H21A0.9700
C2—C201.566 (2)C21—H21B0.9700
C2—C231.584 (2)C22—H22A0.9600
C3—H3A0.9700C22—H22B0.9600
C3—H3B0.9700C22—H22C0.9600
C4—H4A0.9600C23—C331.525 (2)
C4—H4B0.9600C23—C241.573 (2)
C4—H4C0.9600C24—C251.469 (3)
C5—C61.505 (2)C25—C261.374 (2)
C5—H5A0.9700C25—C341.388 (3)
C5—H5B0.9700C26—C271.391 (3)
C6—C71.332 (2)C26—H260.9300
C7—C81.466 (3)C27—C281.360 (3)
C7—H70.9300C27—H270.9300
C8—C91.387 (3)C28—C291.414 (3)
C8—C131.390 (3)C28—H280.9300
C9—C101.374 (3)C29—C301.401 (3)
C9—H90.9300C29—C341.402 (2)
C10—C111.363 (4)C30—C311.362 (3)
C10—H100.9300C30—H300.9300
C11—C121.367 (4)C31—C321.420 (2)
C11—H110.9300C31—H310.9300
C12—C131.377 (3)C32—C331.355 (2)
C12—H120.9300C32—H320.9300
C14—C151.384 (3)C33—C341.406 (2)
C5—N1—C3109.25 (13)C16—C17—C18120.3 (2)
C5—N1—C4111.01 (13)C16—C17—H17119.9
C3—N1—C4112.25 (13)C18—C17—H17119.9
C22—N2—C21114.51 (14)C17—C18—C19121.78 (19)
C22—N2—C23116.03 (14)C17—C18—H18119.1
C21—N2—C23107.08 (13)C19—C18—H18119.1
O1—C1—C6121.17 (15)C14—C19—C18116.24 (16)
O1—C1—C2121.21 (15)C14—C19—C20121.46 (15)
C6—C1—C2117.60 (13)C18—C19—C20122.29 (16)
C3—C2—C1107.89 (12)C19—C20—C21115.01 (13)
C3—C2—C20114.15 (12)C19—C20—C2114.64 (12)
C1—C2—C20110.87 (12)C21—C20—C2105.17 (13)
C3—C2—C23112.25 (12)C19—C20—H20107.2
C1—C2—C23107.74 (12)C21—C20—H20107.2
C20—C2—C23103.77 (12)C2—C20—H20107.2
N1—C3—C2108.55 (12)N2—C21—C20103.58 (13)
N1—C3—H3A110.0N2—C21—H21A111.0
C2—C3—H3A110.0C20—C21—H21A111.0
N1—C3—H3B110.0N2—C21—H21B111.0
C2—C3—H3B110.0C20—C21—H21B111.0
H3A—C3—H3B108.4H21A—C21—H21B109.0
N1—C4—H4A109.5N2—C22—H22A109.5
N1—C4—H4B109.5N2—C22—H22B109.5
H4A—C4—H4B109.5H22A—C22—H22B109.5
N1—C4—H4C109.5N2—C22—H22C109.5
H4A—C4—H4C109.5H22A—C22—H22C109.5
H4B—C4—H4C109.5H22B—C22—H22C109.5
N1—C5—C6112.12 (13)N2—C23—C33111.16 (12)
N1—C5—H5A109.2N2—C23—C24113.88 (13)
C6—C5—H5A109.2C33—C23—C24101.34 (12)
N1—C5—H5B109.2N2—C23—C2101.90 (12)
C6—C5—H5B109.2C33—C23—C2119.06 (13)
H5A—C5—H5B107.9C24—C23—C2110.04 (12)
C7—C6—C1116.54 (16)O2—C24—C25126.70 (16)
C7—C6—C5123.80 (16)O2—C24—C23124.93 (16)
C1—C6—C5119.60 (14)C25—C24—C23108.28 (14)
C6—C7—C8127.74 (18)C26—C25—C34120.53 (18)
C6—C7—H7116.1C26—C25—C24132.12 (19)
C8—C7—H7116.1C34—C25—C24107.35 (15)
C9—C8—C13116.62 (18)C25—C26—C27118.0 (2)
C9—C8—C7122.54 (18)C25—C26—H26121.0
C13—C8—C7120.78 (18)C27—C26—H26121.0
C10—C9—C8121.5 (2)C28—C27—C26121.8 (2)
C10—C9—H9119.2C28—C27—H27119.1
C8—C9—H9119.2C26—C27—H27119.1
C11—C10—C9120.5 (2)C27—C28—C29121.7 (2)
C11—C10—H10119.8C27—C28—H28119.1
C9—C10—H10119.8C29—C28—H28119.1
C10—C11—C12119.8 (2)C30—C29—C34116.10 (17)
C10—C11—H11120.1C30—C29—C28128.53 (19)
C12—C11—H11120.1C34—C29—C28115.4 (2)
C11—C12—C13119.8 (2)C31—C30—C29120.33 (17)
C11—C12—H12120.1C31—C30—H30119.8
C13—C12—H12120.1C29—C30—H30119.8
C12—C13—C8121.8 (2)C30—C31—C32122.50 (18)
C12—C13—Cl1118.43 (17)C30—C31—H31118.8
C8—C13—Cl1119.76 (15)C32—C31—H31118.8
C15—C14—C19122.37 (17)C33—C32—C31118.77 (17)
C15—C14—Cl2117.45 (15)C33—C32—H32120.6
C19—C14—Cl2120.17 (13)C31—C32—H32120.6
C16—C15—C14119.5 (2)C32—C33—C34118.36 (15)
C16—C15—H15120.3C32—C33—C23132.64 (15)
C14—C15—H15120.3C34—C33—C23108.90 (14)
C17—C16—C15119.85 (19)C25—C34—C29122.39 (17)
C17—C16—H16120.1C25—C34—C33113.76 (15)
C15—C16—H16120.1C29—C34—C33123.85 (17)
O1—C1—C2—C3151.50 (15)C19—C20—C21—N2152.40 (13)
C6—C1—C2—C330.10 (18)C2—C20—C21—N225.30 (16)
O1—C1—C2—C2025.8 (2)C22—N2—C23—C3360.97 (19)
C6—C1—C2—C20155.77 (13)C21—N2—C23—C33169.74 (13)
O1—C1—C2—C2387.09 (18)C22—N2—C23—C2452.7 (2)
C6—C1—C2—C2391.31 (15)C21—N2—C23—C2476.57 (16)
C5—N1—C3—C275.82 (16)C22—N2—C23—C2171.16 (15)
C4—N1—C3—C2160.58 (14)C21—N2—C23—C241.87 (15)
C1—C2—C3—N160.62 (16)C3—C2—C23—N2147.45 (12)
C20—C2—C3—N1175.67 (13)C1—C2—C23—N293.90 (14)
C23—C2—C3—N157.94 (16)C20—C2—C23—N223.71 (14)
C3—N1—C5—C654.27 (18)C3—C2—C23—C3389.93 (16)
C4—N1—C5—C6178.59 (14)C1—C2—C23—C3328.72 (17)
O1—C1—C6—C714.3 (2)C20—C2—C23—C33146.34 (13)
C2—C1—C6—C7164.07 (15)C3—C2—C23—C2426.31 (17)
O1—C1—C6—C5168.41 (16)C1—C2—C23—C24144.96 (13)
C2—C1—C6—C513.2 (2)C20—C2—C23—C2497.43 (14)
N1—C5—C6—C7153.17 (16)N2—C23—C24—O251.3 (2)
N1—C5—C6—C123.9 (2)C33—C23—C24—O2170.73 (17)
C1—C6—C7—C8179.00 (17)C2—C23—C24—O262.4 (2)
C5—C6—C7—C81.9 (3)N2—C23—C24—C25125.47 (15)
C6—C7—C8—C942.2 (3)C33—C23—C24—C256.04 (16)
C6—C7—C8—C13140.7 (2)C2—C23—C24—C25120.86 (14)
C13—C8—C9—C100.5 (4)O2—C24—C25—C268.4 (3)
C7—C8—C9—C10177.7 (3)C23—C24—C25—C26174.85 (19)
C8—C9—C10—C110.1 (5)O2—C24—C25—C34171.10 (18)
C9—C10—C11—C120.4 (5)C23—C24—C25—C345.60 (18)
C10—C11—C12—C130.2 (5)C34—C25—C26—C270.4 (3)
C11—C12—C13—C80.4 (4)C24—C25—C26—C27179.1 (2)
C11—C12—C13—Cl1179.7 (2)C25—C26—C27—C282.0 (3)
C9—C8—C13—C120.8 (3)C26—C27—C28—C291.6 (3)
C7—C8—C13—C12178.0 (2)C27—C28—C29—C30178.3 (2)
C9—C8—C13—Cl1179.95 (18)C27—C28—C29—C341.2 (3)
C7—C8—C13—Cl12.7 (3)C34—C29—C30—C310.5 (3)
C19—C14—C15—C160.9 (3)C28—C29—C30—C31179.99 (19)
Cl2—C14—C15—C16177.66 (15)C29—C30—C31—C321.4 (3)
C14—C15—C16—C170.4 (3)C30—C31—C32—C331.0 (3)
C15—C16—C17—C180.2 (3)C31—C32—C33—C341.4 (2)
C16—C17—C18—C190.3 (3)C31—C32—C33—C23177.36 (16)
C15—C14—C19—C180.7 (2)N2—C23—C33—C3250.4 (2)
Cl2—C14—C19—C18177.79 (13)C24—C23—C33—C32171.78 (17)
C15—C14—C19—C20179.46 (15)C2—C23—C33—C3267.5 (2)
Cl2—C14—C19—C200.9 (2)N2—C23—C33—C34125.80 (14)
C17—C18—C19—C140.1 (3)C24—C23—C33—C344.45 (16)
C17—C18—C19—C20178.84 (17)C2—C23—C33—C34116.30 (15)
C14—C19—C20—C21145.35 (15)C26—C25—C34—C293.3 (3)
C18—C19—C20—C2136.0 (2)C24—C25—C34—C29176.29 (15)
C14—C19—C20—C292.53 (18)C26—C25—C34—C33177.61 (16)
C18—C19—C20—C286.13 (19)C24—C25—C34—C332.8 (2)
C3—C2—C20—C195.57 (19)C30—C29—C34—C25175.93 (16)
C1—C2—C20—C19116.52 (15)C28—C29—C34—C253.6 (2)
C23—C2—C20—C19128.06 (14)C30—C29—C34—C333.0 (2)
C3—C2—C20—C21121.76 (14)C28—C29—C34—C33177.43 (16)
C1—C2—C20—C21116.15 (14)C32—C33—C34—C25175.52 (15)
C23—C2—C20—C210.73 (15)C23—C33—C34—C251.33 (19)
C22—N2—C21—C20173.28 (15)C32—C33—C34—C293.5 (2)
C23—N2—C21—C2043.13 (17)C23—C33—C34—C29179.62 (15)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C25–C29/C34 ring.
D—H···AD—HH···AD···AD—H···A
C10—H10···O2i0.932.743.492 (3)139
C16—H16···O2ii0.932.763.481 (3)135
C5—H5B···Cg1i0.972.993.9466 (19)168
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+2, z.
1'-Methyl-5''-(2-methylbenzylidene)-4'-(2-methylphenyl)dispiro[acenaphthene-1,2'-pyrrolidine-3',3''-piperidine]-2,4''-dione (II) top
Crystal data top
C36H34N2O2F(000) = 1120
Mr = 526.65Dx = 1.240 Mg m3
Dm = 1.24 Mg m3
Dm measured by floatation method
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.7507 (5) ÅCell parameters from 5358 reflections
b = 15.9089 (8) Åθ = 4.7–42.0°
c = 20.2879 (10) ŵ = 0.08 mm1
β = 92.935 (2)°T = 293 K
V = 2820.7 (3) Å3Block, yellow
Z = 40.32 × 0.24 × 0.18 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
3349 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.040
φ and ω scansθmax = 25.7°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1010
Tmin = 0.816, Tmax = 1.000k = 1919
28946 measured reflectionsl = 2418
5339 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.045 w = 1/[σ2(Fo2) + (0.0506P)2 + 0.5169P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.121(Δ/σ)max = 0.001
S = 1.02Δρmax = 0.17 e Å3
5339 reflectionsΔρmin = 0.15 e Å3
362 parametersExtinction correction: SHELXL2018 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0040 (6)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.47706 (15)0.91884 (10)0.26949 (6)0.0632 (4)
O20.01075 (17)0.80552 (10)0.11060 (7)0.0749 (5)
N10.02197 (15)0.96279 (9)0.23966 (7)0.0438 (4)
N20.32038 (17)0.76401 (9)0.17891 (7)0.0488 (4)
C10.3410 (2)0.93366 (11)0.26053 (8)0.0434 (4)
C20.25341 (18)0.90633 (11)0.19667 (8)0.0377 (4)
C30.12046 (19)0.96732 (11)0.18425 (8)0.0420 (4)
H3A0.1590051.0240950.1797710.050*
H3B0.0631160.9524510.1437480.050*
C40.1307 (2)0.99492 (14)0.22319 (10)0.0619 (6)
H4A0.1755380.9641270.1863720.093*
H4B0.1929800.9884800.2604840.093*
H4C0.1245791.0533580.2118500.093*
C50.0937 (2)1.00778 (12)0.29519 (9)0.0529 (5)
H5A0.0323871.0007800.3333170.063*
H5B0.0965851.0672570.2848070.063*
C60.2541 (2)0.97734 (11)0.31209 (8)0.0459 (4)
C70.3224 (2)0.98436 (13)0.37200 (9)0.0566 (5)
H70.4206380.9621820.3768420.068*
C80.2630 (3)1.02252 (14)0.43153 (9)0.0637 (6)
C90.1907 (3)1.09994 (16)0.42926 (11)0.0862 (8)
H90.1762921.1274770.3889850.103*
C100.1399 (4)1.13691 (19)0.48527 (13)0.1125 (11)
H100.0924161.1891860.4828070.135*
C110.1595 (4)1.0966 (2)0.54474 (13)0.1158 (11)
H110.1244391.1210640.5827820.139*
C120.2304 (4)1.02073 (18)0.54774 (12)0.1011 (10)
H120.2428080.9937840.5883460.121*
C130.2852 (3)0.98180 (14)0.49223 (10)0.0736 (7)
C140.4072 (2)1.03916 (12)0.08230 (9)0.0477 (5)
C150.3741 (2)1.09458 (14)0.03059 (10)0.0627 (6)
H150.4254741.1457270.0299170.075*
C160.2684 (3)1.07634 (17)0.01936 (11)0.0716 (7)
H160.2476541.1148500.0531290.086*
C170.1933 (2)1.00083 (17)0.01915 (10)0.0693 (6)
H170.1210430.9877820.0528090.083*
C180.2252 (2)0.94425 (14)0.03112 (9)0.0563 (5)
H180.1739630.8930170.0307030.068*
C190.33151 (19)0.96161 (12)0.08224 (8)0.0429 (4)
C200.36354 (19)0.89945 (11)0.13800 (8)0.0420 (4)
H200.4669990.9114430.1563770.050*
C210.3607 (2)0.80656 (12)0.11868 (9)0.0529 (5)
H21A0.2848080.7960670.0830820.063*
H21B0.4600230.7883220.1050680.063*
C220.2938 (3)0.67430 (13)0.17162 (11)0.0731 (7)
H22A0.2680110.6510060.2132600.110*
H22B0.2111440.6648850.1395310.110*
H22C0.3848120.6476950.1572500.110*
C230.19669 (19)0.81255 (11)0.20669 (8)0.0422 (4)
C240.0359 (2)0.79910 (12)0.16969 (10)0.0523 (5)
C250.0735 (2)0.77254 (12)0.21815 (10)0.0540 (5)
C260.2285 (2)0.75824 (14)0.21310 (13)0.0723 (6)
H260.2842790.7665620.1733750.087*
C270.2998 (3)0.73101 (16)0.26895 (16)0.0843 (8)
H270.4051920.7228270.2665860.101*
C280.2194 (3)0.71598 (14)0.32708 (14)0.0765 (7)
H280.2706700.6962900.3630290.092*
C290.0593 (2)0.72969 (12)0.33393 (11)0.0580 (5)
C300.0395 (3)0.71575 (13)0.38964 (11)0.0661 (6)
H300.0007480.6948370.4282130.079*
C310.1921 (3)0.73275 (12)0.38742 (10)0.0618 (6)
H310.2557080.7216470.4245320.074*
C320.2575 (2)0.76681 (11)0.33047 (9)0.0504 (5)
H320.3615430.7788190.3306440.060*
C330.1650 (2)0.78149 (11)0.27577 (8)0.0430 (4)
C340.0085 (2)0.76075 (11)0.27794 (9)0.0473 (5)
C350.3604 (4)0.89722 (16)0.49768 (11)0.0951 (9)
H35A0.3910460.8798740.4549980.143*0.5
H35B0.4487900.9005680.5276090.143*0.5
H35C0.2895650.8570780.5139160.143*0.5
H35D0.3618880.8784730.5426840.143*0.5
H35E0.3041430.8577790.4700730.143*0.5
H35F0.4633690.9012680.4837660.143*0.5
C360.5214 (2)1.06401 (14)0.13658 (11)0.0659 (6)
H36A0.5315951.0193720.1683440.099*0.5
H36B0.6186481.0745340.1183660.099*0.5
H36C0.4868141.1140020.1577400.099*0.5
H36D0.5597761.1192330.1279560.099*0.5
H36E0.4727231.0640710.1779340.099*0.5
H36F0.6045571.0246040.1385600.099*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0476 (8)0.0952 (11)0.0459 (8)0.0049 (7)0.0050 (6)0.0030 (7)
O20.0784 (10)0.0890 (12)0.0551 (10)0.0227 (8)0.0182 (8)0.0099 (8)
N10.0438 (8)0.0493 (9)0.0386 (9)0.0075 (7)0.0052 (7)0.0005 (7)
N20.0621 (10)0.0420 (9)0.0434 (9)0.0056 (7)0.0121 (7)0.0019 (7)
C10.0449 (11)0.0489 (11)0.0361 (10)0.0008 (8)0.0004 (8)0.0042 (8)
C20.0396 (9)0.0432 (10)0.0303 (9)0.0010 (8)0.0026 (7)0.0004 (8)
C30.0471 (10)0.0452 (10)0.0336 (10)0.0022 (8)0.0018 (8)0.0018 (8)
C40.0526 (12)0.0685 (14)0.0650 (14)0.0164 (10)0.0071 (10)0.0003 (11)
C50.0666 (13)0.0533 (12)0.0391 (11)0.0101 (10)0.0072 (9)0.0033 (9)
C60.0597 (11)0.0439 (11)0.0340 (10)0.0015 (9)0.0009 (8)0.0001 (8)
C70.0757 (14)0.0559 (12)0.0377 (11)0.0012 (10)0.0014 (10)0.0005 (9)
C80.0948 (16)0.0596 (14)0.0362 (12)0.0032 (12)0.0021 (10)0.0079 (10)
C90.143 (2)0.0701 (16)0.0441 (14)0.0211 (16)0.0056 (14)0.0085 (12)
C100.193 (3)0.0801 (19)0.0642 (18)0.040 (2)0.0039 (19)0.0204 (15)
C110.202 (3)0.093 (2)0.0542 (17)0.028 (2)0.0216 (18)0.0222 (16)
C120.179 (3)0.0834 (19)0.0420 (14)0.013 (2)0.0156 (16)0.0069 (13)
C130.118 (2)0.0631 (15)0.0393 (12)0.0007 (14)0.0031 (12)0.0062 (11)
C140.0447 (10)0.0549 (12)0.0444 (11)0.0043 (9)0.0126 (8)0.0033 (9)
C150.0696 (14)0.0620 (14)0.0584 (14)0.0034 (11)0.0222 (11)0.0141 (11)
C160.0759 (16)0.0903 (18)0.0497 (14)0.0212 (14)0.0140 (12)0.0276 (12)
C170.0593 (13)0.107 (2)0.0415 (12)0.0025 (13)0.0008 (10)0.0154 (12)
C180.0545 (12)0.0767 (14)0.0377 (11)0.0056 (10)0.0028 (9)0.0068 (10)
C190.0414 (10)0.0557 (12)0.0322 (10)0.0019 (9)0.0084 (8)0.0030 (8)
C200.0402 (10)0.0518 (11)0.0342 (10)0.0004 (8)0.0025 (7)0.0005 (8)
C210.0609 (12)0.0562 (12)0.0425 (11)0.0046 (9)0.0117 (9)0.0047 (9)
C220.1067 (18)0.0462 (12)0.0682 (15)0.0039 (12)0.0207 (13)0.0071 (11)
C230.0437 (10)0.0457 (11)0.0372 (10)0.0020 (8)0.0029 (8)0.0007 (8)
C240.0573 (12)0.0463 (11)0.0524 (13)0.0040 (9)0.0057 (10)0.0040 (9)
C250.0477 (11)0.0459 (11)0.0684 (14)0.0011 (9)0.0045 (10)0.0018 (10)
C260.0524 (13)0.0648 (14)0.0994 (19)0.0021 (11)0.0012 (12)0.0008 (13)
C270.0542 (14)0.0776 (17)0.123 (2)0.0061 (13)0.0221 (16)0.0055 (17)
C280.0690 (16)0.0648 (15)0.100 (2)0.0065 (12)0.0418 (15)0.0021 (14)
C290.0696 (14)0.0404 (11)0.0664 (14)0.0048 (10)0.0249 (12)0.0005 (10)
C300.0901 (17)0.0501 (13)0.0613 (14)0.0083 (12)0.0364 (13)0.0071 (10)
C310.0919 (17)0.0501 (12)0.0439 (12)0.0184 (12)0.0088 (11)0.0087 (9)
C320.0591 (12)0.0465 (11)0.0460 (11)0.0112 (9)0.0069 (9)0.0061 (9)
C330.0509 (11)0.0366 (10)0.0422 (11)0.0069 (8)0.0082 (8)0.0033 (8)
C340.0519 (11)0.0349 (10)0.0563 (12)0.0028 (8)0.0149 (10)0.0026 (9)
C350.157 (3)0.0752 (17)0.0521 (14)0.0178 (17)0.0015 (15)0.0049 (12)
C360.0637 (13)0.0622 (14)0.0717 (15)0.0101 (11)0.0025 (11)0.0023 (11)
Geometric parameters (Å, º) top
O1—C11.218 (2)C17—H170.9300
O2—C241.212 (2)C18—C191.385 (2)
N1—C51.450 (2)C18—H180.9300
N1—C31.453 (2)C19—C201.518 (2)
N1—C41.454 (2)C20—C211.529 (3)
N2—C221.452 (2)C20—H200.9800
N2—C211.456 (2)C21—H21A0.9700
N2—C231.466 (2)C21—H21B0.9700
C1—C61.496 (2)C22—H22A0.9600
C1—C21.534 (2)C22—H22B0.9600
C2—C31.526 (2)C22—H22C0.9600
C2—C201.573 (2)C23—C331.525 (2)
C2—C231.589 (2)C23—C241.575 (3)
C3—H3A0.9700C24—C251.469 (3)
C3—H3B0.9700C25—C261.374 (3)
C4—H4A0.9600C25—C341.390 (3)
C4—H4B0.9600C26—C271.390 (3)
C4—H4C0.9600C26—H260.9300
C5—C61.508 (3)C27—C281.363 (3)
C5—H5A0.9700C27—H270.9300
C5—H5B0.9700C28—C291.417 (3)
C6—C71.331 (2)C28—H280.9300
C7—C81.470 (3)C29—C341.398 (3)
C7—H70.9300C29—C301.405 (3)
C8—C91.384 (3)C30—C311.366 (3)
C8—C131.396 (3)C30—H300.9300
C9—C101.374 (3)C31—C321.423 (3)
C9—H90.9300C31—H310.9300
C10—C111.369 (4)C32—C331.360 (2)
C10—H100.9300C32—H320.9300
C11—C121.358 (4)C33—C341.412 (2)
C11—H110.9300C35—H35A0.9600
C12—C131.392 (3)C35—H35B0.9600
C12—H120.9300C35—H35C0.9600
C13—C351.500 (3)C35—H35D0.9600
C14—C151.390 (3)C35—H35E0.9600
C14—C191.400 (3)C35—H35F0.9600
C14—C361.501 (3)C36—H36A0.9600
C15—C161.368 (3)C36—H36B0.9600
C15—H150.9300C36—H36C0.9600
C16—C171.369 (3)C36—H36D0.9600
C16—H160.9300C36—H36E0.9600
C17—C181.378 (3)C36—H36F0.9600
C5—N1—C3109.05 (14)C19—C20—C21116.01 (14)
C5—N1—C4111.16 (15)C19—C20—C2114.95 (14)
C3—N1—C4112.30 (14)C21—C20—C2104.99 (14)
C22—N2—C21114.57 (15)C19—C20—H20106.8
C22—N2—C23116.08 (15)C21—C20—H20106.8
C21—N2—C23107.05 (13)C2—C20—H20106.8
O1—C1—C6120.91 (16)N2—C21—C20103.63 (13)
O1—C1—C2120.90 (16)N2—C21—H21A111.0
C6—C1—C2118.18 (15)C20—C21—H21A111.0
C3—C2—C1107.64 (14)N2—C21—H21B111.0
C3—C2—C20114.25 (13)C20—C21—H21B111.0
C1—C2—C20111.07 (13)H21A—C21—H21B109.0
C3—C2—C23112.19 (13)N2—C22—H22A109.5
C1—C2—C23107.70 (13)N2—C22—H22B109.5
C20—C2—C23103.83 (13)H22A—C22—H22B109.5
N1—C3—C2108.55 (13)N2—C22—H22C109.5
N1—C3—H3A110.0H22A—C22—H22C109.5
C2—C3—H3A110.0H22B—C22—H22C109.5
N1—C3—H3B110.0N2—C23—C33110.81 (14)
C2—C3—H3B110.0N2—C23—C24113.84 (14)
H3A—C3—H3B108.4C33—C23—C24101.21 (14)
N1—C4—H4A109.5N2—C23—C2101.76 (13)
N1—C4—H4B109.5C33—C23—C2119.65 (14)
H4A—C4—H4B109.5C24—C23—C2110.12 (13)
N1—C4—H4C109.5O2—C24—C25126.46 (18)
H4A—C4—H4C109.5O2—C24—C23124.94 (17)
H4B—C4—H4C109.5C25—C24—C23108.48 (16)
N1—C5—C6112.26 (15)C26—C25—C34120.42 (19)
N1—C5—H5A109.2C26—C25—C24132.3 (2)
C6—C5—H5A109.2C34—C25—C24107.31 (16)
N1—C5—H5B109.2C25—C26—C27118.3 (2)
C6—C5—H5B109.2C25—C26—H26120.9
H5A—C5—H5B107.9C27—C26—H26120.9
C7—C6—C1117.20 (17)C28—C27—C26121.8 (2)
C7—C6—C5123.34 (17)C28—C27—H27119.1
C1—C6—C5119.41 (15)C26—C27—H27119.1
C6—C7—C8128.6 (2)C27—C28—C29121.4 (2)
C6—C7—H7115.7C27—C28—H28119.3
C8—C7—H7115.7C29—C28—H28119.3
C9—C8—C13119.01 (19)C34—C29—C30116.11 (19)
C9—C8—C7121.34 (19)C34—C29—C28115.7 (2)
C13—C8—C7119.6 (2)C30—C29—C28128.2 (2)
C10—C9—C8121.3 (2)C31—C30—C29120.30 (19)
C10—C9—H9119.3C31—C30—H30119.8
C8—C9—H9119.3C29—C30—H30119.8
C11—C10—C9119.8 (3)C30—C31—C32122.5 (2)
C11—C10—H10120.1C30—C31—H31118.8
C9—C10—H10120.1C32—C31—H31118.8
C12—C11—C10119.5 (2)C33—C32—C31118.75 (19)
C12—C11—H11120.3C33—C32—H32120.6
C10—C11—H11120.3C31—C32—H32120.6
C11—C12—C13122.4 (2)C32—C33—C34118.17 (17)
C11—C12—H12118.8C32—C33—C23132.64 (16)
C13—C12—H12118.8C34—C33—C23109.07 (15)
C12—C13—C8118.0 (2)C25—C34—C29122.33 (19)
C12—C13—C35120.5 (2)C25—C34—C33113.55 (16)
C8—C13—C35121.46 (19)C29—C34—C33124.10 (19)
C15—C14—C19118.55 (18)C13—C35—H35A109.5
C15—C14—C36119.47 (18)C13—C35—H35B109.5
C19—C14—C36121.98 (17)H35A—C35—H35B109.5
C16—C15—C14122.1 (2)C13—C35—H35C109.5
C16—C15—H15118.9H35A—C35—H35C109.5
C14—C15—H15118.9H35B—C35—H35C109.5
C15—C16—C17119.4 (2)H35D—C35—H35E109.5
C15—C16—H16120.3H35D—C35—H35F109.5
C17—C16—H16120.3H35E—C35—H35F109.5
C16—C17—C18119.8 (2)C14—C36—H36A109.5
C16—C17—H17120.1C14—C36—H36B109.5
C18—C17—H17120.1H36A—C36—H36B109.5
C17—C18—C19121.8 (2)C14—C36—H36C109.5
C17—C18—H18119.1H36A—C36—H36C109.5
C19—C18—H18119.1H36B—C36—H36C109.5
C18—C19—C14118.42 (17)H36D—C36—H36E109.5
C18—C19—C20121.30 (17)H36D—C36—H36F109.5
C14—C19—C20120.26 (15)H36E—C36—H36F109.5
O1—C1—C2—C3152.18 (17)C19—C20—C21—N2153.51 (14)
C6—C1—C2—C329.1 (2)C2—C20—C21—N225.45 (17)
O1—C1—C2—C2026.4 (2)C22—N2—C23—C3360.2 (2)
C6—C1—C2—C20154.89 (15)C21—N2—C23—C33170.39 (14)
O1—C1—C2—C2386.66 (19)C22—N2—C23—C2453.0 (2)
C6—C1—C2—C2392.04 (17)C21—N2—C23—C2476.33 (18)
C5—N1—C3—C276.18 (17)C22—N2—C23—C2171.47 (15)
C4—N1—C3—C2160.14 (15)C21—N2—C23—C242.10 (16)
C1—C2—C3—N160.49 (17)C3—C2—C23—N2147.72 (13)
C20—C2—C3—N1175.66 (13)C1—C2—C23—N294.01 (15)
C23—C2—C3—N157.82 (17)C20—C2—C23—N223.85 (15)
C3—N1—C5—C654.01 (19)C3—C2—C23—C3389.87 (17)
C4—N1—C5—C6178.36 (15)C1—C2—C23—C3328.4 (2)
O1—C1—C6—C712.8 (3)C20—C2—C23—C33146.26 (14)
C2—C1—C6—C7165.91 (16)C3—C2—C23—C2426.65 (18)
O1—C1—C6—C5169.68 (17)C1—C2—C23—C24144.93 (14)
C2—C1—C6—C511.6 (2)C20—C2—C23—C2497.21 (15)
N1—C5—C6—C7154.62 (18)N2—C23—C24—O251.5 (2)
N1—C5—C6—C122.8 (2)C33—C23—C24—O2170.37 (18)
C1—C6—C7—C8178.84 (19)C2—C23—C24—O262.1 (2)
C5—C6—C7—C81.4 (3)N2—C23—C24—C25124.97 (16)
C6—C7—C8—C946.1 (3)C33—C23—C24—C256.06 (18)
C6—C7—C8—C13136.6 (2)C2—C23—C24—C25121.50 (15)
C13—C8—C9—C100.4 (4)O2—C24—C25—C268.7 (4)
C7—C8—C9—C10177.7 (3)C23—C24—C25—C26174.9 (2)
C8—C9—C10—C110.5 (5)O2—C24—C25—C34170.5 (2)
C9—C10—C11—C120.6 (6)C23—C24—C25—C345.9 (2)
C10—C11—C12—C130.2 (5)C34—C25—C26—C270.7 (3)
C11—C12—C13—C81.1 (5)C24—C25—C26—C27178.4 (2)
C11—C12—C13—C35179.0 (3)C25—C26—C27—C282.0 (4)
C9—C8—C13—C121.2 (4)C26—C27—C28—C291.8 (4)
C7—C8—C13—C12178.6 (2)C27—C28—C29—C341.1 (3)
C9—C8—C13—C35179.0 (3)C27—C28—C29—C30178.6 (2)
C7—C8—C13—C353.6 (4)C34—C29—C30—C310.3 (3)
C19—C14—C15—C161.2 (3)C28—C29—C30—C31179.9 (2)
C36—C14—C15—C16178.30 (19)C29—C30—C31—C321.6 (3)
C14—C15—C16—C170.7 (3)C30—C31—C32—C331.3 (3)
C15—C16—C17—C180.1 (3)C31—C32—C33—C341.0 (3)
C16—C17—C18—C190.3 (3)C31—C32—C33—C23176.46 (17)
C17—C18—C19—C140.3 (3)N2—C23—C33—C3250.5 (3)
C17—C18—C19—C20178.85 (17)C24—C23—C33—C32171.57 (19)
C15—C14—C19—C181.0 (3)C2—C23—C33—C3267.4 (2)
C36—C14—C19—C18178.52 (17)N2—C23—C33—C34125.23 (15)
C15—C14—C19—C20179.60 (16)C24—C23—C33—C344.16 (17)
C36—C14—C19—C200.1 (3)C2—C23—C33—C34116.91 (16)
C18—C19—C20—C2136.9 (2)C26—C25—C34—C293.7 (3)
C14—C19—C20—C21144.55 (17)C24—C25—C34—C29175.53 (17)
C18—C19—C20—C286.1 (2)C26—C25—C34—C33177.43 (17)
C14—C19—C20—C292.47 (19)C24—C25—C34—C333.3 (2)
C3—C2—C20—C196.9 (2)C30—C29—C34—C25175.91 (18)
C1—C2—C20—C19115.06 (16)C28—C29—C34—C253.9 (3)
C23—C2—C20—C19129.45 (15)C30—C29—C34—C332.8 (3)
C3—C2—C20—C21121.77 (16)C28—C29—C34—C33177.44 (17)
C1—C2—C20—C21116.24 (16)C32—C33—C34—C25175.63 (17)
C23—C2—C20—C210.75 (16)C23—C33—C34—C250.8 (2)
C22—N2—C21—C20173.69 (16)C32—C33—C34—C293.2 (3)
C23—N2—C21—C2043.47 (18)C23—C33—C34—C29179.61 (17)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C8–C13 ring.
D—H···AD—HH···AD···AD—H···A
C36—H36A···O10.962.663.586 (3)161
C10—H10···O2i0.932.773.529 (3)140
C16—H16···O2ii0.932.793.530 (3)137
C35—H35F···Cg2iii0.962.943.805 (4)151
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+2, z; (iii) x+1, y+2, z+1.
 

Acknowledgements

The authors thank the Sophisticated Analytical Instrumental Facility (SAIF), Indian Institute of Technology, Chennai, for the data collection and the Management of Thia­garajar College, Madurai, for financial support in establishing the Cambridge Structural Database in the Department of Physics.

References

First citationAravindan, P. G., Selvanayagam, S., Velmurugan, D., Ravikumar, K., Sridhar, G. & Raghunathan, R. (2004). Acta Cryst. E60, o2149–o2151.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2012). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBueno, J. M., Manzano, P., García, M. C., Chicharro, J., Puente, M., Lorenzo, M., García, A., Ferrer, S., Gómez, R. M., Fraile, M. T., Lavandera, J. L., Fiandor, J. M., Vidal, J., Herreros, E. & Gargallo-Viola, D. (2011). Bioorg. Med. Chem. Lett. 21, 5214–5218.  Web of Science CrossRef CAS PubMed Google Scholar
First citationCheng, Z., Han, X., Liang, C. & Yang, S. (2018). US Patent Pub. No. US2018/0134705A1.  Google Scholar
First citationDesiraju, G. R. & Sarma, J. A. R. P. (1986). Proc. - Indian Acad. Sci. Chem. Sci. 96, 599–605.  CrossRef CAS Google Scholar
First citationEl-Ayaan, U., Abdel-Aziz, A. A.-M. & Al-Shihry, S. (2007). Eur. J. Med. Chem. 42, 1325–1333.  Web of Science PubMed CAS Google Scholar
First citationGholap, S. S. (2016). Eur. J. Med. Chem. 110, 13–31.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGnanaguru, K., Murthy, G. S., Venkatesan, K. & Ramamurthy, V. (1984). Chem. Phys. Lett. 109, 255–258.  CrossRef CAS Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJiang, L., Zhang, B., Wang, Y., Sun, J., Ma, X., Wang, G., Fu, S., Lin, C. & Li, Y. (2019). Nat. Prod. Res. https://doi. org/10.1080/14786419.2019.1647422  Google Scholar
First citationJones, W., Ramdas, S., Theocharis, C. R., Thomas, J. M. & Thomas, N. W. (1981). J. Phys. Chem. 85, 2594–2597.  CSD CrossRef CAS Web of Science Google Scholar
First citationKumar, R. R., Loganayaki, B. & Perumal, S. (2009). Synth. Commun. 39, 3197–3216.  Web of Science CSD CrossRef CAS Google Scholar
First citationMcDavids, J. E. & Daniels, T. C. (1951). J. Am. Pharm. Assoc. (Sci. ed.), 40, 325–326.  CrossRef Web of Science Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationNath, N. K. & Nangia, A. (2012). Cryst. Growth Des. 12, 5411–5425.  Web of Science CSD CrossRef CAS Google Scholar
First citationOganov, A. R. (2018). Faraday Discuss. 211, 643–660.  Web of Science CrossRef CAS PubMed Google Scholar
First citationPandiarajan, S., Saravanamoorthy, S. N., Kumar, B. R., Kumar, R. R. & Athimoolam, S. (2008). Acta Cryst. E64, o99–o100.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRajni Swamy, V., Müller, P., Srinivasan, N., Perumal, S. & Krishnakumar, R. V. (2013). Acta Cryst. C69, 412–415.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSribala, R., Srinivasan, N., Indumathi, S. & Krishnakumar, R. V. (2018). Acta Cryst. E74, 1267–1271.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer, University of Western Australia.  Google Scholar
First citationZhu, W., Dai, M., Xu, Y. & Qian, X. (2008). Bioorg. Med. Chem. 16, 3255–3260.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds