research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
ADDENDA AND ERRATA
A correction has been published for this article. To view the correction, click here.

Crystal structures and Hirshfeld surface analyses of (E)-N′-benzyl­­idene-2-oxo-2H-chromene-3-carbo­hydrazide and the disordered hemi-DMSO solvate of (E)-2-oxo-N′-(3,4,5-trimeth­oxybenzyl­­idene)-2H-chromene-3-carbohydrazide: lattice energy and inter­molecular inter­action energy calculations for the former

CROSSMARK_Color_square_no_text.svg

aREQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 687, P-4169-007, Porto, Portugal, bFP-ENAS-Faculdade de Ciências de Saúde, Escola Superior de Saúde da UFP, Universidade Fernando Pessoa, Rua Carlos da Maia, 296, P-4200-150 Porto, Portugal, cDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen, AB24 3UE, Scotland, dInstituto de Tecnologia em Fármacos - Farmanguinhos, Fundaçâo Oswaldo Cruz, 21041-250 Rio de Janeiro, RJ, Brazil, and eEscola de Ciéncia e Tecnologia - ECT, Universidade do, Grande Rio - Unigranrio, 25071-202, Duque de Caxias, RJ, Brazil
*Correspondence e-mail: jnlow111@gmail.com

Edited by A. J. Lough, University of Toronto, Canada (Received 20 August 2019; accepted 29 August 2019; online 3 September 2019)

The crystal structures of the disordered hemi-DMSO solvate of (E)-2-oxo-N′-(3,4,5-tri­meth­oxy­benzyl­idene)-2H-chromene-3-carbohydrazide, C20H18N2O6·0.5C2H6OS, and (E)-N′-benzyl­idene-2-oxo-2H-chromene-3-carbohydrazide, C17H12N2O3 (4: R = C6H5), are discussed. The non-hydrogen atoms in compound [4: R = (3,4,5-MeO)3C6H2)] exhibit a distinct curvature, while those in compound, (4: R = C6H5), are essential coplanar. In (4: R = C6H5), C—H⋯O and ππ intra­molecular inter­actions combine to form a three-dimensional array. A three-dimensional array is also found for the hemi-DMSO solvate of [4: R = (3,4,5-MeO)3C6H2], in which the mol­ecules of coumarin are linked by C—H⋯O and C—H⋯π inter­actions, and form tubes into which the DMSO mol­ecules are cocooned. Hirshfeld surface analyses of both compounds are reported, as are the lattice energy and inter­molecular inter­action energy calculations of compound (4: R = C6H5).

1. Chemical context

Tuberculosis (TB) is one of the world's most infectious killer diseases, claiming 4,500 lives each day (https://www.who.int/en/news-room/fact-sheets/detail/tuberculosis). The development of drug resistance to the first-line drugs seriously compounds the dangers of the disease. The latest multidrug-resistant TB data analysis shows that 4.1% of new and 19% of previously treated TB cases in the world are estimated to have rifampicin- or multidrug-resistant tuberculosis (MDR/RR-TB) and about 6.2% of the MDR-TB cases have additional drug resistance, extensively drug-resistant TB (XDR-TB) (www.who.int/tb/challenges/mdr/MDR-RR_TB_factsheet_2017.pdf). As a result of the increase of MDR-TB/XDR-TB and AIDS cases worldwide, associated with the lack of efficacy of available drugs, the discovery of new potent and safer drug-candidate prototypes able to treat this disease has become an urgent challenge.

The N-acyl­hydrazone functional group, –C(O)—NH—N=CH–, is found in many compounds having important and diverse biological activities (Fraga & Barreiro, 2006[Fraga, C. A. M. & Barreiro, E. J. (2006). Curr. Med. Chem. 13, 167-198.]; Singh et al., 2016[Singh, N., Ranjana, R., Kumari, M. & Kumar, B. (2016). Int. J. Pharm. Clin. Res. 8, 162-166.]), including their use in the fight against tuberculosis, especially the drug-resistant forms (Cardoso et al., 2011[Cardoso, S. H., Barreto, M. B., Lourenço, M. C. S., Henriques, M. das G. M. de O., Candéa, A. L. P., Kaiser, C. R. & de Souza, M. V. N. (2011). Chem. Biol. Drug Des. 77, 489-493.]; Souza et al., 2017[Souza, S. P., Masteloto, H. G., da Silva, D. S., Azambuja, J. H., Braganhol, E., Ribeiro, J. S., Lund, R. G. & Cunico, W. (2017). Lett. Drug. Des. & Discov. 14, 678-685.]). Specifically, N-acyl­hydrazonyl-containing 2H-chromene derivatives have been found to possess significant anti-mycobacterial activities (Angelova et al., 2017[Angelova, V. T., Valcheva, V., Vassilev, N. G., Buyukliev, R., Momekov, G., Dimitrov, I., Saso, L., Djukic, M. & Shivachev, B. (2017). Bioorg. Med. Chem. Lett. 27, 223-227.]; Cardoso et al., 2011[Cardoso, S. H., Barreto, M. B., Lourenço, M. C. S., Henriques, M. das G. M. de O., Candéa, A. L. P., Kaiser, C. R. & de Souza, M. V. N. (2011). Chem. Biol. Drug Des. 77, 489-493.]). The Angelova et al. (2017[Angelova, V. T., Valcheva, V., Vassilev, N. G., Buyukliev, R., Momekov, G., Dimitrov, I., Saso, L., Djukic, M. & Shivachev, B. (2017). Bioorg. Med. Chem. Lett. 27, 223-227.]) study revealed compounds of type 13 (R = ar­yl) in the schematic diagram as having in vitro anti­mycobacterial activities against Mycobacterium tuberculosis H37Rv comparable to the first-line drugs, isoniazid (INH) and ethambutol, while the Cardoso et al. (2011[Cardoso, S. H., Barreto, M. B., Lourenço, M. C. S., Henriques, M. das G. M. de O., Candéa, A. L. P., Kaiser, C. R. & de Souza, M. V. N. (2011). Chem. Biol. Drug Des. 77, 489-493.]) study indicated compounds of type 4 (R = ar­yl) in the schematic diagram to be active against Mycobacterium tuberculosis ATCC 27294. Of inter­est, 4 (R = 3-MeOC6H4) and (R = 4-MeOC6H4), but not 4 [R = 3,4-(MeO)2C6H3] exhibited better activities than did pyrazinamide (Cardoso et al., 2011[Cardoso, S. H., Barreto, M. B., Lourenço, M. C. S., Henriques, M. das G. M. de O., Candéa, A. L. P., Kaiser, C. R. & de Souza, M. V. N. (2011). Chem. Biol. Drug Des. 77, 489-493.]).

We have continued studies of the Mycobacterial activities of compounds of type 4 (Capelini et al., 2019[Capelini, C., Câmara, V. R. F., Figueroa Villar, J. D., Barbosa, J. M. C., Salomão, K., de Castro, S. L., Sales Junior, P. A., Murta, S. M. F., Couto, T. B., Lourenço, M. C. S., Wardell, J. L., Low, J. N., da Silva, E. D. F. & Carvalho, S. A. (2019). Med. Chem. Submitted.]) against various strains, namely M. tuberculosis H37Rv ATCC 27294 INH-resistant Mtb, multidrug-resistant Mtb and wild INH/RIF-resistant Mtb isolates: [4: R = (3,4,5-MeO)3C6H2] exhibited significant activity against the INH resistant/RIP resistant strain, M. tuberculosis SR 5110/1116. We now wish to report the crystal structures and the Hirshfeld surface analyses of a DMSO hemi-solvate of this compound and also that of the parent compound, (4: R = C6H5), an inactive compound. In addition, lattice energy and inter­molecular inter­action energy calculations are reported for 4 (R = C6H5). This article also continues our reporting of the structures of nitro­gen-containing 2-oxo-2H-chromene derivatives (Gomes et al., 2016a[Gomes, L. R., Low, J. N., Oliveira, C., Cagide, F. & Borges, F. (2016b). Acta Cryst. E72, 675-682.]).

[Scheme 1]

2. Structural commentary

The solvate [4: R = (3,4,5-MeO)3C6H2·0.5DMSO] crystallizes in the ortho­rhom­bic space group C2/c, with one mol­ecule of the coumarin and with a half DMSO solvate mol­ecule spread over two symmetry-related sites in the asymmetric unit, Fig. 1[link]. Compound (4: R = C6H5) crystallizes in the triclinic space group P[\overline{1}] with one mol­ecule in the asymmetric unit, see Fig. 2[link]. The geometry about the C=N bond of the hydrazine moiety is (E) in both cases. There are intra­molecular C2—H2⋯O1 and C4—H4⋯O31 hydrogen bonds (Tables 2[link] and 3[link]) present in both mol­ecules. The non-hydrogen atoms, with the additional exclusion of atoms in the three meth­oxy groups in the phenyl substituent unit of [4: R = (3,4,5-MeO)3C6H2·0.5DMSO], form a distinctively curved arrangement, as illustrated in Fig. 1[link]b. In contrast, the non-hydrogen atoms in (4: R = C6H5) are essentially co-planar, see Fig. 3[link]. The bond lengths in the linker chain between the coumarin and phenyl moieties are indicative of electronic delocalization, see Table 1[link].The inter­planar angles, coumarin/linker, linker/phenyl and phen­yl/coumarin in [4: R = (3,4,5-MeO)3C6H2·0.5DMSO], are 7.70 (7), 11.43 (8) and 14.97 (5)°, compared to 2.89 (5), 5.07 (5) and 7.05 (4)°, respectively, in (4: R = C6H5). In [4: R = (3,4,5-MeO)3C6H2], as expected for a compound with adjacent meth­oxy groups on the 3,4 and 5 positions of a phenyl ring, the middle meth­oxy group is out of the plane of its phenyl group (see, for example, Peralta et al., 2007[Peralta, M. A., Souza, M. N. V. de, Wardell, S. M. S. V., Wardell, J. L., Low, J. N. & Glidewell, C. (2007). Acta Cryst. C63, o68-o72.]; Howie et al., 2010[Howie, R. A., da Silva Lima, C. H., Kaiser, C. R., de Souza, M. V. N., Wardell, J. L. & Wardell, S. M. S. V. (2010). Z. Kristallogr. 225, 158-166.]; Gomes et al., 2016b[Gomes, L. R., Low, J. N., Fonseca, A., Matos, M. J. & Borges, F. (2016a). Acta Cryst. E72, 926-932.]).

Table 2
Hydrogen-bond geometry (Å, °) for [4: R = (3,4,5-MeO)3C6H2·0.5DMSO][link]

Cg1, Cg2 and Cg3 are the centroids of the O1/C2–C4/C4A/C8A, C4A/C5–C8/C8A and C341–C346 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N32—H32⋯O2 0.870 (16) 1.955 (15) 2.6878 (12) 141.0 (14)
C441—H41C⋯O345i 0.98 2.58 3.4772 (12) 152
C451—H51A⋯O1ii 0.98 2.65 3.4463 (13) 138
C34—H34⋯O1S 0.95 2.57 3.30 (5) 134
C34—H34⋯O1Sii 0.95 2.63 3.34 (5) 133
C34—H34⋯S1S 0.95 2.69 3.6158 (12) 166
C431—H43C⋯O343iii 0.98 2.50 3.2505 (13) 133
C2S—H2SA⋯N32iv 0.98 2.61 3.3000 (6) 127
C4—H4⋯O31 0.95 2.45 2.7761 (12) 100
C4—H4⋯O31v 0.95 2.38 3.2415 (12) 150
C5—H5⋯O31v 0.95 2.59 3.3931 (13) 143
C431—H43BCg3vi 0.98 2.73 3.5882 (13) 147
C451—H51BCg3vi 0.98 2.95 3.8562 (12) 155
C451—H51CCg2vii 0.98 2.83 3.6883 (13) 147
C31—O31⋯Cg1vii 0 0 3.3971 (6) 90 (1)
Symmetry codes: (i) [-x+{\script{3\over 2}}, -y+{\script{3\over 2}}, -z+2]; (ii) [-x+1, y, -z+{\script{3\over 2}}]; (iii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [-x+1, y+1, -z+{\script{3\over 2}}]; (v) -x+1, -y, -z+1; (vi) x, y-1, z; (vii) -x+1, -y+1, -z+1.

Table 3
Hydrogen-bond geometry (Å, °) for (4: R = C6H5)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N32—H1⋯O2 0.857 (15) 2.062 (15) 2.7238 (10) 133.5 (12)
C34—H34⋯O2i 0.95 2.54 3.4417 (11) 159
C4—H4⋯O31 0.95 2.40 2.7415 (11) 101
C4—H4⋯O31ii 0.95 2.28 3.1377 (12) 149
C5—H5⋯O31ii 0.95 2.57 3.3456 (12) 139
C346—H346⋯O1i 0.95 2.63 3.5195 (11) 156
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x+2, -y, -z+1.

Table 1
Selected bond lengths (Å) in the linker chain between the coumarin and phenyl moieties

Bond [4: R = 3,4,5-MeO3C6H2·0.5DMSO] (4: R = C6H5)
C2—O2 1.2133 (12) 1.2103 (11)
C31—O31 1.2234 (13) 1.2237 (12)
C3—C31 1.5056 (13) 1.5003 (13)
C31—N32 1.3543 (13) 1.3530 (13)
N32—N33 1.3793 (11) 1.3768 (11)
N33—C34 1.2753 (14) 1.2753 (13)
C34—C341 1.4629 (14) 1.4649 (13)
[Figure 1]
Figure 1
Compound [4: R = 3,4,5-(MeO)3C6H2·0.5DMSO]. (a) Mol­ecular structure and numbering scheme for [4: R = 3,4,5-(MeO)3C6H2] with displacement ellipsoids drawn at the 50% level, (b) side-on view of the conformation of [4: R = 3,4,5-(MeO)3C6H2] and (c) the DMSO hemi-solvate showing one component of disorder.
[Figure 2]
Figure 2
Compound (4: R = C6H5). (a) Mol­ecular structure and numbering scheme with displacement ellipsoids drawn at the 50% level and (b) side-on view of the conformation.
[Figure 3]
Figure 3
Compound [4: R = 3,4,5-(MeO)3C6H2·0.5DMSO]. (a) A two-mol­ecule-wide column of mol­ecules, formed from C4—H4⋯O31, C5—H5⋯O31 and C441—H41C⋯O345 hydrogen bonds, (b) columns linked into undulating sheets by C31=O31⋯π(1) inter­actions and (c) a spiral of mol­ecules, which creates a channel into which the disordered solvate mol­ecules are held by a number of C—H⋯X (X = O, N or S) hydrogen bonds: the channel is generated from C431–H43Bπ(3), C451—H51Bπ(3) and C451—H51Cπ(2) inter­actions and lies along the crystallographic twofold axis.

3. Supra­molecular features

3.1. Inter­molecular inter­actions

There are no classical inter­molecular O—H⋯X (X = O or N) in the crystal of [4: R = (3,4,5-MeO)3C6H2·0.5DMSO]: the mol­ecules of [4: R = (3,4,5-MeO)3C6H2] are linked by a number of C—H⋯O and C—H⋯π hydrogen bonds (Table 3[link]) and by a C=O⋯π(1) inter­action: the three rings in compounds 4 have been given the designations π(1) for the O1/C2–C4/C4A/C8A, π(2) for the C4A/C5–C8/C8A and π(3) for the C341–C346 rings with centroids Cg1, Cg2 and Cg3, respectively. A two-mol­ecule wide column is generated from a combination of the C4—H4⋯O31, C5—C5⋯O31 and C441—H41C⋯O345 hydrogen bonds, see Fig. 3[link]a. Within the columns, the C4—H4⋯O31 and C5—H5⋯O31 inter­actions generate R21(5) rings and pairs of the C441—H41C⋯O345 hydrogen bonds lead to R22(12) rings. These two-mol­ecule-wide columns are linked by the carbon­yl–arene inter­action C31=O31⋯π(1) into undulating sheets, see Fig. 3[link]b. A further structural subset is formed from a series of C—H⋯π inter­actions: C431—H43Bπ(3) and C451—H51Bπ(3) separately form chains of [4: R = (3,4,5-MeO)3C6H2] propagating in the b-axis direction, while the C451—H51Cπ2 inter­action generates a spiral chain of mol­ecules; together these three inter­actions form a tube, into which the disordered DMSO mol­ecule is cocooned, held there by a number of C—H⋯X (X = O, N and S) hydrogen bonds. A view of the channels in which the the disordered DMSO sits is shown in Fig. 3[link]c. These channels run along the crystallographic twofold axis.

The inter­molecular inter­actions in compound (4: R = C6H5) are C—H⋯O hydrogen bonds, see Table 3[link], and ππ stacking inter­actions. Symmetric dimers are formed from pairs of each of C4—H4⋯O31 and C5—H5⋯O31, see Fig. 4[link]a. Within the dimers are two R21(5) and one R22(10) rings. These dimers are then linked by pairs of C34—H34⋯O2 and C346—H346⋯O1 hydrogen bonds into a one-mol­ecule-wide column, generating two R22(8) and one R22(16) rings. A second sub-structure is formed from alternating ππi and ππii inter­actions, involving the C4A/C5–C8/C8A ring with centroid Cg2 and the C341–C346 ring with centroid Cg3, see Fig. 4[link]b [symmetry codes: (i) 1 − x, −y, 1 − z; (ii) 1 − x, 1 − y, 1 − z]. The ππi inter­action is considered to be the stronger, both from the CgCg separation [3.8417 (6) compared to 4.1750 (6) Å] and from its greater π overlap, average slippages being 1.820 and 2.325 Å (the rings are inclined to each other). Further confirmation of the relative importance of the two inter­actions comes from the energy calculations, see Section 3.3. The combination of all the inter­molecular inter­actions provides a three-dimensional arrangement.

[Figure 4]
Figure 4
Compound (4: R = C6H5). (a) Part of a one-mol­ecule-wide column formed from linking mol­ecules by a combination of C4—H4⋯O31, and C5—H5⋯O31, C34—H34⋯O2 and C346—H346⋯O1 hydrogen bonds. Within these columns are R21(5), R22(10) and R22(16) rings and (b) part of a column formed from two alternating ππi and ππii inter­actions [symmetry codes: (i) 1 − x, −y, 1 − z; (ii) 1 − x, 1 − y, 1 − z].

3.2. Hirshfeld Surface analyses

Hirshfeld surfaces (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) and two-dimensional fingerprint (FP) plots (Spackman & McKinnon, 2002[Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378-392.]), provide complementary information concerning the inter­molecular inter­actions discussed above. The analyses were generated using CrystalExplorer3.1 (Wolff et al., 2012[Wolff, S. K., Grimwood, D. I., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. The University of Western Australia.]). The Hirshfeld surfaces mapped over dnorm were scaled between −0.33 and 1.23, and are shown in Fig. 5[link] for [4: R = (3,4,5-MeO)3C6H2·0.5DMSO] and in Fig. 6[link] for (4: R = C6H5). The red areas on the surfaces correspond to close contacts, and have been designated. The FP plots for [4: R = (3,4,5-MeO)3C6H2·0.5(DMSO)] and (4: R = C6H5) are shown in Fig. 7[link]a and 7b, respectively. The blue spikes in the FP plot for (4: R = C6H5) ending at (1.2; 0.9) and (0.9;1.1) relate to O⋯H/H⋯O contacts and the high intensity of pixels, green and red areas relate to C⋯C contacts.

[Figure 5]
Figure 5
Hirshfeld surface views for [4: R = 3,4,5-(MeO)3C6H2·0.5DMSO]. The red areas on the surfaces correspond to close contacts. In (a) the site of a close H6⋯C431 contract is indicated: H6⋯C431i = 2.85 Å (sum of contact radii = 2.90 Å) [symmetry code: (i) 1 − x, −y, 1 − z].
[Figure 6]
Figure 6
Two views of the Hirshfeld surface of (4: R = C6H5)·The red areas on the surfaces correspond to the designated close contacts.
[Figure 7]
Figure 7
FP plots for (a) [4: R = 3,4,5-(MeO)3C6H2·0.5DMSO] and (b) (4: R = C6H5) in which the blue spikes ending at (1.2; 0.9) and (0.9;1.1) relate to O⋯H/H⋯O contacts and the high intensity of pixels, green and red areas relate to C⋯C contacts.

The percentages of atom⋯atom close contacts are listed in Table 4[link]. Leaving the H⋯H contacts aside, the highest percentages of atom⋯atom close contacts for [4: R = (3,4,5-MeO)3C6H2·0.5DMSO], are 28.4 and 23.7% for H⋯O/O⋯H and H⋯C/C⋯H, respectively. The corresponding values for (4: R = C6H5) are 20.2 and 17.9%.

Table 4
Percentages for atom⋯atom close contacts

Compound [4: R = (3,4,5-MeO)3C6H2·0.5DMSO] (4: R = C6H5)
O⋯H/H⋯O 20.2 28.4
O⋯N/N⋯O 1.9
O⋯C/C⋯O 6.0 2.4
O⋯O 1.2
N⋯C/C⋯N 3.3 2.3
N⋯H/H⋯N 2.4 2.7
H⋯C/C⋯H 17.9 23.7
C⋯C 8.9 1.7
H⋯H 39.2 37.1

3.3. Lattice energy and inter­molecular inter­action energy calculations

Lattice energies and inter­molecular inter­action energies were calculated using the PIXEL routine implemented in the CLP package (Gavezzotti, 2003[Gavezzotti, A. (2003). J. Phys. Chem. B, 107, 2344-2353.], 2008[Gavezzotti, A. (2008). Mol. Phys. 106, 1473-1485.]) which allows the calculation of inter­molecular energies by distributed charge description on the basis of a preliminary evaluation of charge density from GAUSSIAN at the MP2/6-311G** level of theory (CUBE option). The PIXEL mode calculates the total stabilization energies of the crystal packing, Etot, distributed as coulombic, (Ecoul), polarization (Epol), dispersion (Edisp) and repulsion (Erep) terms between separate, rigid mol­ecules. Coulombic terms are treated on the basis of Coulombic law, polarization terms are calculated as a linear dipole approximation, dispersion terms are based on London's inverse six-power approximation involving ionization potentials and polarizabilities and the repulsion term comes from a modulated function of the wave-function overlap.

The presence of a half mol­ecule of DMSO lying at a symmetry centre in [4: R = (3,4,5-MeO)3C6H2·0.5DMSO], precludes the PIXEL analysis for this structure. Partial analysis of the PIXEL calculations, however, was carried out on (4: R = C6H5). The six mol­ecule pairs that contribute most to the total energy of the packing of (4: R = C6H5) are shown in Fig. 8[link].

[Figure 8]
Figure 8
Calculated energies for the most significant mol­ecule pairs in (4: R = C6H5).

The various energies for these six significant mol­ecule pairs are also listed in Fig. 8[link]. As such energy values pertain to both the reference mol­ecule at x, y, z and its partner in the mol­ecule pair, the energies thus associated with the reference mol­ecule at x, y, z are half of these sums. The total PIXEL energy calculated for the complete lattice is −157.9 kJ.mol−1. Of that, −123.9 kJ.mol−1(78.5%) is derived from the six mol­ecule pairs shown in Fig. 8[link]. The percentage contribution of pairs involved in O—H⋯O hydrogen bonds is 29.4% while pairs making C⋯C close contacts contribute 26.6% to the total stabilization energy.

4. Database survey

A search of the Cambridge Structural Database (CSD Version 5.39, August 2018 update; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) found only one structure of type 4, namely R = 4-MeOC6H4), which is currently undergoing enhancement with a current R value of 0.094 (Low & Wardell, 2019[Low, J. N. & Wardell, J. (2019). Private Communication (CCDC 1914876). CCDC, Cambridge, England. doi: 10.5517/ccdc. csd. cc228l65.]) and was briefly mentioned in a submitted article (Capelini et al., 2019[Capelini, C., Câmara, V. R. F., Figueroa Villar, J. D., Barbosa, J. M. C., Salomão, K., de Castro, S. L., Sales Junior, P. A., Murta, S. M. F., Couto, T. B., Lourenço, M. C. S., Wardell, J. L., Low, J. N., da Silva, E. D. F. & Carvalho, S. A. (2019). Med. Chem. Submitted.]). The mol­ecule of (4: R = 4-MeOC6H4) has a near-planar conformation and possesses equivalent intra­molecular hydrogen bonds to those shown by the compounds reported in this article. A database search revealed other types of nitro­gen-containing 2-oxo-2H-chromene derivatives, including amido derivatives (Gomes et al., 2016a[Gomes, L. R., Low, J. N., Fonseca, A., Matos, M. J. & Borges, F. (2016a). Acta Cryst. E72, 926-932.],b[Gomes, L. R., Low, J. N., Oliveira, C., Cagide, F. & Borges, F. (2016b). Acta Cryst. E72, 675-682.]); see also: DOLYEK (Borges et al., 2014a[Borges, F., Gomes, L. R. & Low, J. N. (2014a). Private Communication (refcode DOLYEK). CCDC, Cambridge, England.]), DOLYIO (Cagide et al., 2015[Cagide, F., Silva, T., Reis, J., Gaspar, A., Borges, F., Gomes, L. R. & Low, J. N. (2015). Chem. Commun. 51, 2832-2835.]) and DOLYOU (Borges et al., 2014b[Borges, F., Gomes, L. R. & Low, J. N. (2014b). Private Communication (refcode DOLYOU). CCDC, Cambridge, England.], 2016[Borges, F., Gomes, L. R. & Low, J. N. (2016). Private Communication (refcode DOLYOU01). CCDC, Cambridge, England.]). Angelova et al. (2017[Angelova, V. T., Valcheva, V., Vassilev, N. G., Buyukliev, R., Momekov, G., Dimitrov, I., Saso, L., Djukic, M. & Shivachev, B. (2017). Bioorg. Med. Chem. Lett. 27, 223-227.]) reported the structures of (1: R1 = Me, R = C6H5) and (1: R1 = Me, R = pyridine-4-yl).

5. Synthesis and crystallization

5.1. General procedure for the synthesis of compounds 4

To a suspension of coumarinic acid (cis-o-hydroxycinammic acid, C9H3OH) (29 mmol, 1.0 equiv.) in CH3CN (100 ml) at room temperature, was added HOBt (34.64 mmol, 1.2 equiv.), followed by EDC (65.40 mmol, 2.25 equiv). The reaction was stirred at room temperature for 2 h, and slowly added to a solution of hydrazine hydrate (58.20 mmol, 2.0 equiv.) in CH3CN (100 mL) maintaining the temperature below 283 K. Water (70ml) was added to the reaction mixture, which was extracted successively with chloro­form (3 × 95 mL) and aqueous 5% sodium bicarbonate (3 × 120 mL). The organic phases were collected and rotary evaporated to yield the coumarinic hydrazide (5), as a yellow solid. Crystallization of compound [4: R = (3,4,5-(MeO)3C6H2] from DMSO solution produced the hemi-DMSO solvate, which on heating slowly decomposed to a dark residue. Attempts to gain suitable crystals for the structural study by slow recrystallization from ethanol solution at room temperature failed.

(E)-N'-Benzyl­idene-2-oxo-2H-chromene-3-carbohydrazide (4: R = C6H5). Yield: 78%. m.p. 403.7 K.

1H NMR (400 MHz, DMSO-d6) δ 7.48 (4H, m), 7.55 (1H, d, J = 8.32 Hz), 7.77 (3H, m), 8.02 [1H, dd, J(o) = 7.84 Hz, J(m) = 1.52 Hz], 8.47 (1H, s), 8.92 (1H, s) 11.76 (1H, s).

13C NMR (100 MHz, DMSO-d6) δ 116.2, 118.4, 119.3, 125.3, 127.4, 128.9, 130.3, 130.4, 133.9, 134.3, 147.8, 149.4, 153.9, 158.1, 159.8.

EI/MS (m/z) [M + Na]+: 315.11.

IR (KBr) νmax cm−1: 3216.34 (N—H, bonded), 3064.30 (C—H, sp2), 1695.02 (C=O, lactone), 1663.15 (C=O, amide), 1604.10 (C=C, double bond coumarin), 1531.50 and 1488.69 (C=C, aromatic), 788 and 748 (monosubstituted aromatic).

To a solution of the coumarinic hydrazide (5) (0.98 mmol) in absolute ethanol (25 mL), containing a catalytic amount of 37% aq. hydro­chloric acid, were added 1.03 mmol (1.05 equiv) of the desired benzaldehyde derivative. The mixture was refluxed until TLC indicated the complete consumption of 5 and the precipitate was collected and dried to yield the desired compound 4, in yields ranging from 55 to 84%.

(E)-2-Oxo-N'-(3,4,5-tri­meth­oxy­benzyl­idene)-2H-chromene-3-carbohydrazide [4: R = (3,4,5-MeO)3C6H2]. Yield: 76%. m.p. 368.7 K.

1H NMR (400 MHz, DMSO-d6) δ 3.72 (3H, s), 3.84 (6H, s), 7.08 (2H, s), 7.47 [1H, t, J(o) = 7.88 Hz, J(m) = 0.96 Hz], 7.55 [1H, d, J(o) = 8.36 Hz], 7.78 [1H, t, J(o) = 7.88 Hz, J(m) = 1.6 Hz], 8.02 [1H, dd, J(o) = 7.84 Hz, J(m) = 1.44 Hz], 8.38 (1H, s), 8.90 (1H, s), 11.74 (1H, s).

13C NMR (100 MHz, DMSO-d6)δ 55.8, 60.0, 104.5, 116.1, 118.3, 119.3, 125.2, 129.2, 130.2, 134.2, 139.4, 147.6, 149.3, 153.0, 153.8, 157.9, 159.8.

EI/MS (m/z) [M + H]+: 383.13, [M + Na]+: 405.09.

IR (KBr) νmax cm−1: 3185.12 (N—H), 2941.30 (C—H, sp3), 1698.89 (C=O, lactone), 1666.73 (C=O, amide), 1609.91 (C=C, double bond coumarin), 1532.56 and 1499.88 (C=C, aromatic), 1229.99 and 1121.84 (C—O—C).

Suitable crystals of 4 for the structural study were obtained by slow evaporation of a solution in ethanol at room temperature

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. C-bound H atoms were refined as riding atoms at calculated positions [C—H = 0.95–0.98 Å with Uiso(H) = 1.2–1.5Ueq(C)]. That attached to the N atom was refined.

Table 5
Experimental details

  [4: R = (3,4,5-MeO)3C6H2·0.5DMSO] (4: R = C6H5)
Crystal data
Chemical formula C20H18N2O6·0.5C2H6OS C17H12N2O3
Mr 421.43 292.29
Crystal system, space group Monoclinic, C2/c Triclinic, P[\overline{1}]
Temperature (K) 100 100
a, b, c (Å) 33.0258 (7), 5.4412 (1), 22.4342 (4) 5.6715 (1), 7.4164 (1), 15.9819 (3)
α, β, γ (°) 90, 107.203 (2), 90 88.369 (1), 84.147 (1), 82.961 (2)
V3) 3851.07 (13) 663.60 (2)
Z 8 2
Radiation type Mo Kα Cu Kα
μ (mm−1) 0.16 0.84
Crystal size (mm) 0.40 × 0.08 × 0.04 0.22 × 0.12 × 0.05
 
Data collection
Diffractometer Rigaku FRE+ equipped with VHF Varimax confocal mirrors and an AFC12 goniometer and HyPix 6000 detector Rigaku 007HF equipped with Varimax confocal mirrors and an AFC11 goniometer and HyPix 6000 detector
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2019) Multi-scan (CrysAlis PRO; Rigaku OD, 2019)
Tmin, Tmax 0.837, 1.000 0.930, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 22915, 4381, 3983 11641, 2352, 2250
Rint 0.016 0.027
(sin θ/λ)max−1) 0.649 0.597
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.086, 1.05 0.033, 0.104, 0.88
No. of reflections 4381 2352
No. of parameters 298 203
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.31, −0.30 0.23, −0.19
Computer programs: CrysAlis PRO (Rigaku OD, 2019[Rigaku OD (2019). CryAlis PRO. Rigaku Corporation, Tokyo, Japan.]), OSCAIL (McArdle et al., 2004[McArdle, P., Gilligan, K., Cunningham, D., Dark, R. & Mahon, M. (2004). CrystEngComm. 6, 303-309.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), ShelXle (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]) SHELXL2017 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]), and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

In [4: R = 3,4,5-MeO3C6H2·0.5DMSO] the solvent DMSO mol­ecule lies on a crystallographic twofold axis. It was refined with a fixed occupancy factor of 0.5. A refinement of the s.o.f. gave a value of 0.488. The DMSO mol­ecules are located in channels which run along the twofold axis.

Supporting information


Computing details top

For both structures, data collection: CrysAlis PRO (Rigaku OD, 2019); cell refinement: CrysAlis PRO (Rigaku OD, 2019); data reduction: CrysAlis PRO (Rigaku OD, 2019); program(s) used to solve structure: OSCAIL (McArdle et al., 2004), SHELXT (Sheldrick, 2015a); program(s) used to refine structure: OSCAIL (McArdle et al., 2004), ShelXle (Hübschle et al., 2011) SHELXL2017 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2006). Software used to prepare material for publication: OSCAIL (McArdle et al., 2004), SHELXL2017 (Sheldrick, 2015b) PLATON (Spek, 2009) for (I); OSCAIL (McArdle et al., 2004), SHELX2017/1 (Sheldrick, 2015b) PLATON (Spek, 2009) for (II).

(E)-2-Oxo-N'-(3,4,5-trimethoxybenzylidene)-2H-chromene-3-carbohydrazide dimethyl sulfoxide hemisolvate (I) top
Crystal data top
C20H18N2O6·0.5C2H6OSF(000) = 1768
Mr = 421.43Dx = 1.454 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71075 Å
a = 33.0258 (7) ÅCell parameters from 13857 reflections
b = 5.4412 (1) Åθ = 2.0–31.6°
c = 22.4342 (4) ŵ = 0.16 mm1
β = 107.203 (2)°T = 100 K
V = 3851.07 (13) Å3Block, yellow
Z = 80.40 × 0.08 × 0.04 mm
Data collection top
Rigaku FRE+ equipped with VHF Varimax confocal mirrors and an AFC12 goniometer and HyPix 6000 detector
diffractometer
4381 independent reflections
Radiation source: Rotating Anode, Rigaku FRE+3983 reflections with I > 2σ(I)
Confocal mirrors, VHF Varimax monochromatorRint = 0.016
Detector resolution: 10 pixels mm-1θmax = 27.5°, θmin = 2.6°
profile data from ω–scansh = 4242
Absorption correction: gaussian
(CrysAlisPro; Rigaku OD, 2019)
k = 67
Tmin = 0.837, Tmax = 1.000l = 2629
22915 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.086 w = 1/[σ2(Fo2) + (0.0456P)2 + 2.9167P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
4381 reflectionsΔρmax = 0.31 e Å3
298 parametersΔρmin = 0.30 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.40457 (2)0.68439 (13)0.52398 (3)0.01627 (16)
O20.46021 (2)0.81610 (14)0.59671 (4)0.02005 (17)
O310.53178 (2)0.20068 (14)0.57120 (3)0.01931 (17)
O3430.72470 (2)0.31586 (14)0.80720 (3)0.01717 (16)
O3440.73938 (2)0.64983 (14)0.89856 (3)0.01614 (16)
O3450.67832 (2)0.95654 (15)0.90901 (3)0.02104 (17)
N320.53224 (3)0.55236 (18)0.62643 (4)0.01798 (19)
H320.5171 (5)0.679 (3)0.6305 (7)0.029 (4)*
N330.57200 (3)0.51012 (17)0.66718 (4)0.01668 (18)
C20.44611 (3)0.65614 (18)0.55853 (4)0.01415 (19)
C30.46844 (3)0.43809 (18)0.54634 (4)0.01325 (19)
C40.44791 (3)0.27552 (19)0.50194 (4)0.01369 (19)
H40.4626400.1350450.4940990.016*
C50.38134 (3)0.14563 (19)0.42087 (5)0.0175 (2)
H50.3947750.0039090.4107550.021*
C4A0.40442 (3)0.31084 (18)0.46651 (4)0.01345 (19)
C60.33896 (3)0.1903 (2)0.39072 (5)0.0204 (2)
H60.3232450.0772920.3603520.024*
C70.31911 (3)0.4001 (2)0.40457 (5)0.0194 (2)
H70.2899970.4283090.3834930.023*
C80.34135 (3)0.5677 (2)0.44868 (5)0.0173 (2)
H80.3280200.7115080.4578600.021*
C8A0.38373 (3)0.51893 (18)0.47906 (4)0.01401 (19)
C310.51385 (3)0.38442 (19)0.58215 (4)0.0144 (2)
C340.58354 (3)0.6722 (2)0.70991 (5)0.0234 (2)
H340.5653340.8075150.7097730.028*
C3410.62400 (3)0.6560 (2)0.75915 (5)0.0182 (2)
C3420.65468 (3)0.48341 (19)0.75655 (4)0.0154 (2)
H3420.6497090.3719290.7225550.018*
C3430.69263 (3)0.47723 (18)0.80448 (4)0.01379 (19)
C3440.70034 (3)0.64402 (19)0.85427 (4)0.0140 (2)
C3450.66880 (3)0.80974 (19)0.85746 (5)0.0165 (2)
C3460.63073 (3)0.8169 (2)0.80957 (5)0.0207 (2)
H3460.6093460.9313060.8112110.025*
C4310.71732 (4)0.1389 (2)0.75813 (5)0.0207 (2)
H43A0.7122510.2238120.7180610.031*
H43B0.6924710.0394860.7575750.031*
H43C0.7421750.0320940.7650840.031*
C4410.74230 (3)0.4860 (2)0.94982 (5)0.0195 (2)
H41A0.7366070.3175140.9341550.029*
H41B0.7214290.5336640.9709600.029*
H41C0.7708420.4950510.9793380.029*
C4510.64624 (3)1.1251 (2)0.91407 (5)0.0196 (2)
H51A0.6202801.0343350.9123160.029*
H51B0.6404211.2429530.8795380.029*
H51C0.6560461.2133900.9538270.029*
S1S0.50726 (2)1.12167 (9)0.72755 (2)0.01665 (11)0.5
O1S0.4985 (16)0.8678 (3)0.7444 (12)0.026 (2)0.5
C1S0.45886 (14)1.2893 (14)0.7013 (3)0.0207 (9)0.5
H1SA0.4423391.2284930.6601950.031*0.5
H1SB0.4651031.4641840.6983210.031*0.5
H1SC0.4425361.2674780.7309850.031*0.5
C2S0.52800 (15)1.2784 (15)0.7996 (3)0.0300 (12)0.5
H2SA0.5106061.2412550.8270530.045*0.5
H2SB0.5276431.4558330.7919720.045*0.5
H2SC0.5572031.2245260.8194430.045*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0125 (3)0.0167 (4)0.0169 (3)0.0020 (3)0.0002 (3)0.0032 (3)
O20.0179 (4)0.0181 (4)0.0202 (4)0.0021 (3)0.0004 (3)0.0066 (3)
O310.0143 (3)0.0207 (4)0.0198 (4)0.0040 (3)0.0002 (3)0.0052 (3)
O3430.0150 (3)0.0195 (4)0.0151 (3)0.0036 (3)0.0015 (3)0.0017 (3)
O3440.0122 (3)0.0200 (4)0.0129 (3)0.0033 (3)0.0014 (3)0.0018 (3)
O3450.0171 (4)0.0253 (4)0.0179 (4)0.0004 (3)0.0008 (3)0.0105 (3)
N320.0103 (4)0.0222 (5)0.0177 (4)0.0040 (3)0.0017 (3)0.0063 (3)
N330.0104 (4)0.0231 (5)0.0144 (4)0.0001 (3)0.0003 (3)0.0022 (3)
C20.0122 (4)0.0160 (5)0.0130 (4)0.0007 (4)0.0018 (3)0.0001 (4)
C30.0115 (4)0.0149 (5)0.0124 (4)0.0008 (4)0.0022 (3)0.0002 (4)
C40.0135 (4)0.0140 (5)0.0130 (4)0.0007 (4)0.0031 (4)0.0006 (4)
C50.0183 (5)0.0165 (5)0.0156 (5)0.0020 (4)0.0018 (4)0.0006 (4)
C4A0.0129 (4)0.0147 (5)0.0117 (4)0.0013 (4)0.0021 (3)0.0015 (3)
C60.0189 (5)0.0223 (5)0.0155 (5)0.0060 (4)0.0020 (4)0.0002 (4)
C70.0124 (5)0.0248 (6)0.0171 (5)0.0022 (4)0.0015 (4)0.0060 (4)
C80.0139 (5)0.0186 (5)0.0183 (5)0.0016 (4)0.0031 (4)0.0042 (4)
C8A0.0135 (4)0.0148 (5)0.0125 (4)0.0021 (4)0.0020 (4)0.0008 (4)
C310.0119 (4)0.0179 (5)0.0123 (4)0.0003 (4)0.0019 (3)0.0009 (4)
C340.0143 (5)0.0289 (6)0.0226 (5)0.0051 (4)0.0011 (4)0.0099 (4)
C3410.0131 (5)0.0229 (5)0.0163 (5)0.0007 (4)0.0008 (4)0.0050 (4)
C3420.0142 (4)0.0188 (5)0.0122 (4)0.0016 (4)0.0024 (4)0.0034 (4)
C3430.0132 (4)0.0151 (5)0.0136 (4)0.0005 (4)0.0047 (4)0.0014 (4)
C3440.0109 (4)0.0177 (5)0.0116 (4)0.0032 (4)0.0007 (3)0.0010 (4)
C3450.0157 (5)0.0191 (5)0.0137 (5)0.0032 (4)0.0031 (4)0.0049 (4)
C3460.0140 (5)0.0250 (6)0.0209 (5)0.0029 (4)0.0019 (4)0.0081 (4)
C4310.0224 (5)0.0185 (5)0.0203 (5)0.0032 (4)0.0051 (4)0.0037 (4)
C4410.0193 (5)0.0220 (5)0.0145 (5)0.0009 (4)0.0007 (4)0.0032 (4)
C4510.0180 (5)0.0209 (5)0.0205 (5)0.0021 (4)0.0064 (4)0.0075 (4)
S1S0.0182 (2)0.0149 (2)0.0183 (2)0.00064 (18)0.00770 (19)0.00093 (19)
O1S0.040 (5)0.0140 (6)0.030 (7)0.0000 (17)0.020 (7)0.0005 (12)
C1S0.019 (2)0.0187 (14)0.0218 (14)0.003 (2)0.0018 (17)0.0027 (10)
C2S0.033 (3)0.024 (2)0.0284 (17)0.006 (3)0.001 (2)0.0054 (13)
Geometric parameters (Å, º) top
O1—C21.3702 (12)C34—C3411.4629 (14)
O1—C8A1.3747 (12)C34—H340.9500
O2—C21.2133 (12)C341—C3421.3953 (14)
O31—C311.2234 (13)C341—C3461.3955 (14)
O343—C3431.3631 (12)C342—C3431.3894 (13)
O343—C4311.4280 (12)C342—H3420.9500
O344—C3441.3759 (11)C343—C3441.4028 (14)
O344—C4411.4356 (12)C344—C3451.3955 (14)
O345—C3451.3635 (12)C345—C3461.3921 (14)
O345—C4511.4309 (13)C346—H3460.9500
N32—C311.3543 (13)C431—H43A0.9800
N32—N331.3793 (11)C431—H43B0.9800
N32—H320.870 (16)C431—H43C0.9800
N33—C341.2753 (14)C441—H41A0.9800
C2—C31.4647 (13)C441—H41B0.9800
C3—C41.3547 (14)C441—H41C0.9800
C3—C311.5056 (13)C451—H51A0.9800
C4—C4A1.4340 (13)C451—H51B0.9800
C4—H40.9500C451—H51C0.9800
C5—C61.3840 (15)S1S—O1S1.483 (16)
C5—C4A1.4057 (14)S1S—C2S1.775 (7)
C5—H50.9500S1S—C1S1.782 (5)
C4A—C8A1.3935 (14)C1S—H1SA0.9800
C6—C71.3965 (16)C1S—H1SB0.9800
C6—H60.9500C1S—H1SC0.9800
C7—C81.3856 (15)C2S—H2SA0.9800
C7—H70.9500C2S—H2SB0.9800
C8—C8A1.3890 (13)C2S—H2SC0.9800
C8—H80.9500
C2—O1—C8A122.80 (8)C341—C342—H342120.5
C343—O343—C431116.52 (8)O343—C343—C342124.14 (9)
C344—O344—C441113.00 (8)O343—C343—C344115.17 (8)
C345—O345—C451116.90 (8)C342—C343—C344120.69 (9)
C31—N32—N33120.41 (9)O344—C344—C345120.16 (9)
C31—N32—H32117.6 (10)O344—C344—C343120.05 (9)
N33—N32—H32121.7 (10)C345—C344—C343119.76 (9)
C34—N33—N32113.41 (9)O345—C345—C346124.54 (9)
O2—C2—O1115.46 (9)O345—C345—C344115.71 (9)
O2—C2—C3127.12 (9)C346—C345—C344119.75 (9)
O1—C2—C3117.42 (8)C345—C346—C341119.92 (10)
C4—C3—C2119.74 (9)C345—C346—H346120.0
C4—C3—C31117.95 (9)C341—C346—H346120.0
C2—C3—C31122.31 (9)O343—C431—H43A109.5
C3—C4—C4A121.44 (9)O343—C431—H43B109.5
C3—C4—H4119.3H43A—C431—H43B109.5
C4A—C4—H4119.3O343—C431—H43C109.5
C6—C5—C4A119.72 (10)H43A—C431—H43C109.5
C6—C5—H5120.1H43B—C431—H43C109.5
C4A—C5—H5120.1O344—C441—H41A109.5
C8A—C4A—C5118.30 (9)O344—C441—H41B109.5
C8A—C4A—C4117.88 (9)H41A—C441—H41B109.5
C5—C4A—C4123.81 (9)O344—C441—H41C109.5
C5—C6—C7120.56 (10)H41A—C441—H41C109.5
C5—C6—H6119.7H41B—C441—H41C109.5
C7—C6—H6119.7O345—C451—H51A109.5
C8—C7—C6120.80 (9)O345—C451—H51B109.5
C8—C7—H7119.6H51A—C451—H51B109.5
C6—C7—H7119.6O345—C451—H51C109.5
C7—C8—C8A117.99 (10)H51A—C451—H51C109.5
C7—C8—H8121.0H51B—C451—H51C109.5
C8A—C8—H8121.0O1S—S1S—C2S105.5 (10)
O1—C8A—C8116.63 (9)O1S—S1S—C1S109.8 (19)
O1—C8A—C4A120.73 (9)C2S—S1S—C1S96.99 (18)
C8—C8A—C4A122.62 (9)S1S—C1S—H1SA109.5
O31—C31—N32124.05 (9)S1S—C1S—H1SB109.5
O31—C31—C3121.09 (9)H1SA—C1S—H1SB109.5
N32—C31—C3114.86 (9)S1S—C1S—H1SC109.5
N33—C34—C341121.94 (10)H1SA—C1S—H1SC109.5
N33—C34—H34119.0H1SB—C1S—H1SC109.5
C341—C34—H34119.0S1S—C2S—H2SA109.5
C342—C341—C346120.85 (9)S1S—C2S—H2SB109.5
C342—C341—C34121.44 (9)H2SA—C2S—H2SB109.5
C346—C341—C34117.71 (9)S1S—C2S—H2SC109.5
C343—C342—C341118.94 (9)H2SA—C2S—H2SC109.5
C343—C342—H342120.5H2SB—C2S—H2SC109.5
C31—N32—N33—C34173.67 (10)C4—C3—C31—N32179.03 (9)
C8A—O1—C2—O2179.61 (9)C2—C3—C31—N320.25 (14)
C8A—O1—C2—C30.32 (13)N32—N33—C34—C341177.68 (10)
O2—C2—C3—C4179.69 (10)N33—C34—C341—C3429.81 (18)
O1—C2—C3—C40.50 (14)N33—C34—C341—C346169.23 (11)
O2—C2—C3—C310.42 (16)C346—C341—C342—C3431.33 (16)
O1—C2—C3—C31178.77 (8)C34—C341—C342—C343179.66 (10)
C2—C3—C4—C4A0.40 (14)C431—O343—C343—C3422.19 (14)
C31—C3—C4—C4A178.90 (9)C431—O343—C343—C344178.22 (9)
C6—C5—C4A—C8A1.25 (15)C341—C342—C343—O343179.45 (9)
C6—C5—C4A—C4177.48 (9)C341—C342—C343—C3440.98 (15)
C3—C4—C4A—C8A0.11 (14)C441—O344—C344—C34592.74 (11)
C3—C4—C4A—C5178.62 (9)C441—O344—C344—C34389.56 (11)
C4A—C5—C6—C71.01 (16)O343—C343—C344—O3445.20 (13)
C5—C6—C7—C80.00 (16)C342—C343—C344—O344174.41 (9)
C6—C7—C8—C8A0.72 (15)O343—C343—C344—C345177.09 (9)
C2—O1—C8A—C8178.49 (9)C342—C343—C344—C3453.30 (15)
C2—O1—C8A—C4A0.04 (14)C451—O345—C345—C3461.34 (15)
C7—C8—C8A—O1177.96 (9)C451—O345—C345—C344178.86 (9)
C7—C8—C8A—C4A0.46 (15)O344—C344—C345—O3455.41 (14)
C5—C4A—C8A—O1178.88 (9)C343—C344—C345—O345176.88 (9)
C4—C4A—C8A—O10.08 (14)O344—C344—C345—C346174.40 (9)
C5—C4A—C8A—C80.52 (15)C343—C344—C345—C3463.31 (15)
C4—C4A—C8A—C8178.28 (9)O345—C345—C346—C341179.17 (10)
N33—N32—C31—O317.04 (16)C344—C345—C346—C3411.03 (17)
N33—N32—C31—C3172.52 (8)C342—C341—C346—C3451.31 (17)
C4—C3—C31—O310.54 (14)C34—C341—C346—C345179.64 (10)
C2—C3—C31—O31179.82 (9)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the O1/C2–C4/C4A/C8A, C4A/C5–C8/C8A and C341–C346 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N32—H32···O20.870 (16)1.955 (15)2.6878 (12)141.0 (14)
C441—H41C···O345i0.982.583.4772 (12)152
C451—H51A···O1ii0.982.653.4463 (13)138
C34—H34···O1S0.952.573.30 (5)134
C34—H34···O1Sii0.952.633.34 (5)133
C34—H34···S1S0.952.693.6158 (12)166
C431—H43C···O343iii0.982.503.2505 (13)133
C2S—H2SA···N32iv0.982.613.3000 (6)127
C4—H4···O310.952.452.7761 (12)100
C4—H4···O31v0.952.383.2415 (12)150
C5—H5···O31v0.952.593.3931 (13)143
C431—H43B···Cg3vi0.982.733.5882 (13)147
C451—H51B···Cg3vi0.982.953.8562 (12)155
C451—H51C···Cg2vii0.982.833.6883 (13)147
C31—O31···Cg1vii003.3971 (6)90 (1)
Symmetry codes: (i) x+3/2, y+3/2, z+2; (ii) x+1, y, z+3/2; (iii) x+3/2, y1/2, z+3/2; (iv) x+1, y+1, z+3/2; (v) x+1, y, z+1; (vi) x, y1, z; (vii) x+1, y+1, z+1.
(E)-N'-Benzylidene-2-oxo-2H-chromene-3-carbohydrazide (II) top
Crystal data top
C17H12N2O3Z = 2
Mr = 292.29F(000) = 304
Triclinic, P1Dx = 1.463 Mg m3
a = 5.6715 (1) ÅCu Kα radiation, λ = 1.54178 Å
b = 7.4164 (1) ÅCell parameters from 8290 reflections
c = 15.9819 (3) Åθ = 6.0–70.3°
α = 88.369 (1)°µ = 0.84 mm1
β = 84.147 (1)°T = 100 K
γ = 82.961 (2)°Plate, colourless
V = 663.60 (2) Å30.22 × 0.12 × 0.05 mm
Data collection top
Rigaku 007HF equipped with Varimax confocal mirrors and an AFC11 goniometer and HyPix 6000 detector
diffractometer
2352 independent reflections
Radiation source: Rotating anode, Rigaku 007 HF2250 reflections with I > 2σ(I)
Varimax focusing mirrors monochromatorRint = 0.027
Detector resolution: 10 pixels mm-1θmax = 67.1°, θmin = 5.6°
profile data from ω–scansh = 66
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2019)
k = 88
Tmin = 0.930, Tmax = 1.000l = 1919
11641 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.033H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.104 w = 1/[σ2(Fo2) + (0.0858P)2 + 0.127P]
where P = (Fo2 + 2Fc2)/3
S = 0.88(Δ/σ)max = 0.001
2352 reflectionsΔρmax = 0.23 e Å3
203 parametersΔρmin = 0.19 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.38486 (11)0.36429 (9)0.68964 (4)0.0233 (2)
H10.276 (3)0.3194 (18)0.4545 (9)0.043 (4)*
O20.19764 (11)0.41255 (9)0.57568 (4)0.0256 (2)
O310.77445 (12)0.11739 (10)0.43121 (4)0.0316 (2)
N320.40134 (15)0.26503 (11)0.42751 (5)0.0220 (2)
N330.40966 (14)0.23814 (10)0.34233 (5)0.0227 (2)
C20.37588 (16)0.34215 (12)0.60485 (6)0.0213 (2)
C30.58217 (17)0.23662 (12)0.55958 (6)0.0213 (2)
C40.76971 (17)0.16687 (12)0.60074 (6)0.0223 (2)
H40.90260.09930.57030.027*
C50.96435 (17)0.12171 (13)0.73471 (6)0.0240 (2)
H51.10050.05240.70700.029*
C4A0.77384 (17)0.19200 (12)0.68915 (6)0.0217 (2)
C60.95376 (17)0.15324 (13)0.81971 (6)0.0256 (2)
H61.08350.10680.85040.031*
C70.75272 (18)0.25331 (13)0.86075 (6)0.0264 (2)
H70.74720.27440.91930.032*
C80.56165 (18)0.32215 (13)0.81749 (6)0.0251 (2)
H80.42430.38880.84580.030*
C8A0.57482 (17)0.29175 (12)0.73184 (6)0.0219 (2)
C310.59517 (17)0.20132 (12)0.46715 (6)0.0232 (2)
C340.22002 (17)0.29462 (12)0.30817 (6)0.0216 (2)
H340.08210.34850.34130.026*
C3410.21746 (16)0.27545 (12)0.21730 (6)0.0215 (2)
C3420.41939 (17)0.19665 (13)0.16727 (6)0.0238 (2)
H3420.56050.15230.19230.029*
C3430.41260 (17)0.18368 (13)0.08144 (6)0.0274 (2)
H3430.54950.12990.04780.033*
C3440.20758 (19)0.24849 (14)0.04380 (6)0.0289 (2)
H3440.20480.23990.01530.035*
C3450.00689 (18)0.32579 (14)0.09316 (6)0.0280 (2)
H3450.13370.37030.06780.034*
C3460.01167 (17)0.33801 (13)0.17960 (6)0.0249 (2)
H3460.12670.38950.21320.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0226 (4)0.0284 (4)0.0176 (4)0.0025 (3)0.0017 (3)0.0030 (3)
O20.0214 (4)0.0315 (4)0.0223 (4)0.0050 (3)0.0029 (3)0.0030 (3)
O310.0276 (4)0.0432 (4)0.0196 (4)0.0139 (3)0.0021 (3)0.0048 (3)
N320.0215 (4)0.0275 (4)0.0155 (4)0.0034 (3)0.0008 (3)0.0034 (3)
N330.0251 (4)0.0257 (4)0.0165 (4)0.0002 (3)0.0014 (3)0.0022 (3)
C20.0229 (5)0.0227 (5)0.0181 (5)0.0016 (4)0.0014 (4)0.0013 (3)
C30.0215 (5)0.0223 (5)0.0192 (5)0.0002 (4)0.0009 (4)0.0011 (4)
C40.0226 (5)0.0231 (5)0.0201 (5)0.0001 (4)0.0005 (4)0.0017 (4)
C50.0245 (5)0.0251 (5)0.0224 (5)0.0026 (4)0.0024 (4)0.0004 (4)
C4A0.0236 (5)0.0218 (5)0.0199 (5)0.0032 (4)0.0023 (4)0.0002 (3)
C60.0279 (5)0.0270 (5)0.0232 (5)0.0045 (4)0.0076 (4)0.0016 (4)
C70.0348 (5)0.0279 (5)0.0175 (5)0.0066 (4)0.0037 (4)0.0015 (4)
C80.0285 (5)0.0260 (5)0.0200 (5)0.0021 (4)0.0004 (4)0.0029 (4)
C8A0.0238 (5)0.0221 (5)0.0201 (5)0.0031 (4)0.0031 (4)0.0001 (4)
C310.0237 (5)0.0242 (5)0.0200 (5)0.0021 (4)0.0006 (4)0.0009 (4)
C340.0204 (5)0.0227 (5)0.0208 (5)0.0009 (3)0.0008 (4)0.0013 (3)
C3410.0233 (5)0.0212 (5)0.0200 (5)0.0025 (4)0.0024 (4)0.0008 (4)
C3420.0218 (5)0.0270 (5)0.0222 (5)0.0007 (4)0.0033 (4)0.0009 (4)
C3430.0272 (5)0.0315 (5)0.0225 (5)0.0025 (4)0.0022 (4)0.0036 (4)
C3440.0360 (6)0.0336 (5)0.0178 (5)0.0057 (4)0.0040 (4)0.0014 (4)
C3450.0288 (5)0.0310 (5)0.0247 (5)0.0011 (4)0.0089 (4)0.0005 (4)
C3460.0236 (5)0.0262 (5)0.0239 (5)0.0013 (4)0.0028 (4)0.0015 (4)
Geometric parameters (Å, º) top
O1—C8A1.3749 (11)C6—H60.9500
O1—C21.3765 (11)C7—C81.3820 (14)
O2—C21.2103 (11)C7—H70.9500
O31—C311.2237 (12)C8—C8A1.3867 (13)
N32—C311.3530 (13)C8—H80.9500
N32—N331.3768 (11)C34—C3411.4649 (13)
N32—H10.857 (15)C34—H340.9500
N33—C341.2753 (13)C341—C3461.3912 (13)
C2—C31.4629 (13)C341—C3421.4030 (13)
C3—C41.3492 (13)C342—C3431.3826 (13)
C3—C311.5003 (13)C342—H3420.9500
C4—C4A1.4334 (13)C343—C3441.3908 (14)
C4—H40.9500C343—H3430.9500
C5—C61.3790 (13)C344—C3451.3890 (15)
C5—C4A1.4036 (13)C344—H3440.9500
C5—H50.9500C345—C3461.3903 (13)
C4A—C8A1.3978 (14)C345—H3450.9500
C6—C71.3960 (14)C346—H3460.9500
C8A—O1—C2123.10 (7)C8A—C8—H8120.7
C31—N32—N33118.22 (8)O1—C8A—C8117.65 (8)
C31—N32—H1121.3 (9)O1—C8A—C4A120.69 (8)
N33—N32—H1120.5 (9)C8—C8A—C4A121.66 (9)
C34—N33—N32116.05 (8)O31—C31—N32123.05 (9)
O2—C2—O1116.32 (8)O31—C31—C3120.11 (9)
O2—C2—C3126.92 (8)N32—C31—C3116.83 (8)
O1—C2—C3116.76 (8)N33—C34—C341119.21 (8)
C4—C3—C2120.21 (9)N33—C34—H34120.4
C4—C3—C31117.51 (8)C341—C34—H34120.4
C2—C3—C31122.28 (8)C346—C341—C342119.23 (9)
C3—C4—C4A121.77 (9)C346—C341—C34119.47 (8)
C3—C4—H4119.1C342—C341—C34121.30 (9)
C4A—C4—H4119.1C343—C342—C341119.88 (9)
C6—C5—C4A119.97 (9)C343—C342—H342120.1
C6—C5—H5120.0C341—C342—H342120.1
C4A—C5—H5120.0C342—C343—C344120.75 (9)
C5—C4A—C8A118.69 (9)C342—C343—H343119.6
C5—C4A—C4123.84 (9)C344—C343—H343119.6
C8A—C4A—C4117.47 (9)C345—C344—C343119.56 (9)
C5—C6—C7120.12 (9)C345—C344—H344120.2
C5—C6—H6119.9C343—C344—H344120.2
C7—C6—H6119.9C344—C345—C346120.04 (9)
C8—C7—C6121.01 (9)C344—C345—H345120.0
C8—C7—H7119.5C346—C345—H345120.0
C6—C7—H7119.5C341—C346—C345120.54 (9)
C7—C8—C8A118.53 (9)C341—C346—H346119.7
C7—C8—H8120.7C345—C346—H346119.7
C31—N32—N33—C34177.57 (7)C4—C4A—C8A—O10.84 (14)
C8A—O1—C2—O2179.69 (7)C5—C4A—C8A—C80.11 (14)
C8A—O1—C2—C30.40 (13)C4—C4A—C8A—C8179.54 (8)
O2—C2—C3—C4179.63 (9)N33—N32—C31—O311.83 (15)
O1—C2—C3—C40.27 (13)N33—N32—C31—C3178.66 (7)
O2—C2—C3—C310.41 (16)C4—C3—C31—O312.44 (14)
O1—C2—C3—C31179.69 (7)C2—C3—C31—O31177.61 (9)
C2—C3—C4—C4A0.36 (15)C4—C3—C31—N32177.08 (7)
C31—C3—C4—C4A179.59 (7)C2—C3—C31—N322.87 (14)
C6—C5—C4A—C8A0.67 (14)N32—N33—C34—C341178.28 (7)
C6—C5—C4A—C4179.70 (8)N33—C34—C341—C346179.53 (8)
C3—C4—C4A—C5179.82 (8)N33—C34—C341—C3420.13 (14)
C3—C4—C4A—C8A0.18 (15)C346—C341—C342—C3430.63 (14)
C4A—C5—C6—C70.70 (14)C34—C341—C342—C343178.78 (8)
C5—C6—C7—C80.06 (14)C341—C342—C343—C3440.20 (15)
C6—C7—C8—C8A0.82 (14)C342—C343—C344—C3450.51 (15)
C2—O1—C8A—C8179.39 (7)C343—C344—C345—C3460.01 (15)
C2—O1—C8A—C4A0.97 (14)C342—C341—C346—C3451.15 (14)
C7—C8—C8A—O1178.79 (7)C34—C341—C346—C345178.27 (8)
C7—C8—C8A—C4A0.85 (15)C344—C345—C346—C3410.85 (15)
C5—C4A—C8A—O1179.51 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N32—H1···O20.857 (15)2.062 (15)2.7238 (10)133.5 (12)
C34—H34···O2i0.952.543.4417 (11)159
C4—H4···O310.952.402.7415 (11)101
C4—H4···O31ii0.952.283.1377 (12)149
C5—H5···O31ii0.952.573.3456 (12)139
C346—H346···O1i0.952.633.5195 (11)156
Symmetry codes: (i) x, y+1, z+1; (ii) x+2, y, z+1.
Selected bond lengths (Å) in the linker chain between the coumarin and phenyl moieties top
Bond[4: R = 3,4,5-MeO3C6H2·0.5DMSO](4: R = C6H5)
C2—O21.2133 (12)1.2103 (11)
C31—O311.2234 (13)1.2237 (12)
C3—C311.5056 (13)1.5003 (13)
C31—N321.3543 (13)1.3530 (13)
N32—N331.3793 (11)1.3768 (11)
N33—C341.2753 (14)1.2753 (13)
C34—C3411.4629 (14)1.4649 (13)
Percentages for atom···atom close contacts top
Compound[4: R = (3,4,5-MeO)3C6H2·0.5DMSO](4: R = C6H5)
O···H/H···O20.228.4
O···N/N···O1.9
O···C/C···O6.02.4
O···O1.2
N···C/C···N3.32.3
N···H/H···N2.42.7
H···C/C···H17.923.7
C···C8.91.7
H···H39.237.1
 

Acknowledgements

The authors thank the staff at the National Crystallographic Service, University of Southampton (Coles & Gale, 2012[Coles, S. J. & Gale, P. A. (2012). Chem. Sci. 3, 683-689.]) for the data collection, help and advice.

References

First citationAngelova, V. T., Valcheva, V., Vassilev, N. G., Buyukliev, R., Momekov, G., Dimitrov, I., Saso, L., Djukic, M. & Shivachev, B. (2017). Bioorg. Med. Chem. Lett. 27, 223–227.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBorges, F., Gomes, L. R. & Low, J. N. (2014a). Private Communication (refcode DOLYEK). CCDC, Cambridge, England.  Google Scholar
First citationBorges, F., Gomes, L. R. & Low, J. N. (2014b). Private Communication (refcode DOLYOU). CCDC, Cambridge, England.  Google Scholar
First citationBorges, F., Gomes, L. R. & Low, J. N. (2016). Private Communication (refcode DOLYOU01). CCDC, Cambridge, England.  Google Scholar
First citationCagide, F., Silva, T., Reis, J., Gaspar, A., Borges, F., Gomes, L. R. & Low, J. N. (2015). Chem. Commun. 51, 2832–2835.  Web of Science CSD CrossRef CAS Google Scholar
First citationCapelini, C., Câmara, V. R. F., Figueroa Villar, J. D., Barbosa, J. M. C., Salomão, K., de Castro, S. L., Sales Junior, P. A., Murta, S. M. F., Couto, T. B., Lourenço, M. C. S., Wardell, J. L., Low, J. N., da Silva, E. D. F. & Carvalho, S. A. (2019). Med. Chem. Submitted.  Google Scholar
First citationCardoso, S. H., Barreto, M. B., Lourenço, M. C. S., Henriques, M. das G. M. de O., Candéa, A. L. P., Kaiser, C. R. & de Souza, M. V. N. (2011). Chem. Biol. Drug Des. 77, 489–493.  Google Scholar
First citationColes, S. J. & Gale, P. A. (2012). Chem. Sci. 3, 683–689.  Web of Science CSD CrossRef CAS Google Scholar
First citationFraga, C. A. M. & Barreiro, E. J. (2006). Curr. Med. Chem. 13, 167–198.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGavezzotti, A. (2003). J. Phys. Chem. B, 107, 2344–2353.  Web of Science CrossRef CAS Google Scholar
First citationGavezzotti, A. (2008). Mol. Phys. 106, 1473–1485.  Web of Science CrossRef CAS Google Scholar
First citationGomes, L. R., Low, J. N., Fonseca, A., Matos, M. J. & Borges, F. (2016a). Acta Cryst. E72, 926–932.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGomes, L. R., Low, J. N., Oliveira, C., Cagide, F. & Borges, F. (2016b). Acta Cryst. E72, 675–682.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHowie, R. A., da Silva Lima, C. H., Kaiser, C. R., de Souza, M. V. N., Wardell, J. L. & Wardell, S. M. S. V. (2010). Z. Kristallogr. 225, 158–166.  Web of Science CSD CrossRef CAS Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLow, J. N. & Wardell, J. (2019). Private Communication (CCDC 1914876). CCDC, Cambridge, England. doi: 10.5517/ccdc. csd. cc228l65.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcArdle, P., Gilligan, K., Cunningham, D., Dark, R. & Mahon, M. (2004). CrystEngComm. 6, 303–309.  Web of Science CSD CrossRef CAS Google Scholar
First citationPeralta, M. A., Souza, M. N. V. de, Wardell, S. M. S. V., Wardell, J. L., Low, J. N. & Glidewell, C. (2007). Acta Cryst. C63, o68–o72.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku OD (2019). CryAlis PRO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSingh, N., Ranjana, R., Kumari, M. & Kumar, B. (2016). Int. J. Pharm. Clin. Res. 8, 162-166.  Google Scholar
First citationSouza, S. P., Masteloto, H. G., da Silva, D. S., Azambuja, J. H., Braganhol, E., Ribeiro, J. S., Lund, R. G. & Cunico, W. (2017). Lett. Drug. Des. & Discov. 14, 678–685.  Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWolff, S. K., Grimwood, D. I., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. The University of Western Australia.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds