research communications
A correction has been published for this article. To view the correction, click here.
Crystal structures and Hirshfeld surface analyses of (E)-N′-benzylidene-2-oxo-2H-chromene-3-carbohydrazide and the disordered hemi-DMSO solvate of (E)-2-oxo-N′-(3,4,5-trimethoxybenzylidene)-2H-chromene-3-carbohydrazide: lattice energy and intermolecular interaction energy calculations for the former
aREQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 687, P-4169-007, Porto, Portugal, bFP-ENAS-Faculdade de Ciências de Saúde, Escola Superior de Saúde da UFP, Universidade Fernando Pessoa, Rua Carlos da Maia, 296, P-4200-150 Porto, Portugal, cDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen, AB24 3UE, Scotland, dInstituto de Tecnologia em Fármacos - Farmanguinhos, Fundaçâo Oswaldo Cruz, 21041-250 Rio de Janeiro, RJ, Brazil, and eEscola de Ciéncia e Tecnologia - ECT, Universidade do, Grande Rio - Unigranrio, 25071-202, Duque de Caxias, RJ, Brazil
*Correspondence e-mail: jnlow111@gmail.com
The crystal structures of the disordered hemi-DMSO solvate of (E)-2-oxo-N′-(3,4,5-trimethoxybenzylidene)-2H-chromene-3-carbohydrazide, C20H18N2O6·0.5C2H6OS, and (E)-N′-benzylidene-2-oxo-2H-chromene-3-carbohydrazide, C17H12N2O3 (4: R = C6H5), are discussed. The non-hydrogen atoms in compound [4: R = (3,4,5-MeO)3C6H2)] exhibit a distinct curvature, while those in compound, (4: R = C6H5), are essential coplanar. In (4: R = C6H5), C—H⋯O and π–π intramolecular interactions combine to form a three-dimensional array. A three-dimensional array is also found for the hemi-DMSO solvate of [4: R = (3,4,5-MeO)3C6H2], in which the molecules of coumarin are linked by C—H⋯O and C—H⋯π interactions, and form tubes into which the DMSO molecules are cocooned. Hirshfeld surface analyses of both compounds are reported, as are the lattice energy and intermolecular interaction energy calculations of compound (4: R = C6H5).
1. Chemical context
Tuberculosis (TB) is one of the world's most infectious killer diseases, claiming 4,500 lives each day (https://www.who.int/en/news-room/fact-sheets/detail/tuberculosis). The development of drug resistance to the first-line drugs seriously compounds the dangers of the disease. The latest multidrug-resistant TB data analysis shows that 4.1% of new and 19% of previously treated TB cases in the world are estimated to have rifampicin- or multidrug-resistant tuberculosis (MDR/RR-TB) and about 6.2% of the MDR-TB cases have additional drug resistance, extensively drug-resistant TB (XDR-TB) (www.who.int/tb/challenges/mdr/MDR-RR_TB_factsheet_2017.pdf). As a result of the increase of MDR-TB/XDR-TB and AIDS cases worldwide, associated with the lack of efficacy of available drugs, the discovery of new potent and safer drug-candidate prototypes able to treat this disease has become an urgent challenge.
The N-acylhydrazone –C(O)—NH—N=CH–, is found in many compounds having important and diverse biological activities (Fraga & Barreiro, 2006; Singh et al., 2016), including their use in the fight against tuberculosis, especially the drug-resistant forms (Cardoso et al., 2011; Souza et al., 2017). Specifically, N-acylhydrazonyl-containing 2H-chromene derivatives have been found to possess significant anti-mycobacterial activities (Angelova et al., 2017; Cardoso et al., 2011). The Angelova et al. (2017) study revealed compounds of type 1–3 (R = aryl) in the schematic diagram as having in vitro antimycobacterial activities against Mycobacterium tuberculosis H37Rv comparable to the first-line drugs, isoniazid (INH) and ethambutol, while the Cardoso et al. (2011) study indicated compounds of type 4 (R = aryl) in the schematic diagram to be active against Mycobacterium tuberculosis ATCC 27294. Of interest, 4 (R = 3-MeOC6H4) and (R = 4-MeOC6H4), but not 4 [R = 3,4-(MeO)2C6H3] exhibited better activities than did pyrazinamide (Cardoso et al., 2011).
We have continued studies of the Mycobacterial activities of compounds of type 4 (Capelini et al., 2019) against various strains, namely M. tuberculosis H37Rv ATCC 27294 INH-resistant Mtb, multidrug-resistant Mtb and wild INH/RIF-resistant Mtb isolates: [4: R = (3,4,5-MeO)3C6H2] exhibited significant activity against the INH resistant/RIP resistant strain, M. tuberculosis SR 5110/1116. We now wish to report the crystal structures and the Hirshfeld surface analyses of a DMSO hemi-solvate of this compound and also that of the parent compound, (4: R = C6H5), an inactive compound. In addition, lattice energy and intermolecular interaction energy calculations are reported for 4 (R = C6H5). This article also continues our reporting of the structures of nitrogen-containing 2-oxo-2H-chromene derivatives (Gomes et al., 2016a).
2. Structural commentary
The solvate [4: R = (3,4,5-MeO)3C6H2·0.5DMSO] crystallizes in the orthorhombic C2/c, with one molecule of the coumarin and with a half DMSO solvate molecule spread over two symmetry-related sites in the Fig. 1. Compound (4: R = C6H5) crystallizes in the triclinic P with one molecule in the see Fig. 2. The geometry about the C=N bond of the hydrazine moiety is (E) in both cases. There are intramolecular C2—H2⋯O1 and C4—H4⋯O31 hydrogen bonds (Tables 2 and 3) present in both molecules. The non-hydrogen atoms, with the additional exclusion of atoms in the three methoxy groups in the phenyl substituent unit of [4: R = (3,4,5-MeO)3C6H2·0.5DMSO], form a distinctively curved arrangement, as illustrated in Fig. 1b. In contrast, the non-hydrogen atoms in (4: R = C6H5) are essentially co-planar, see Fig. 3. The bond lengths in the linker chain between the coumarin and phenyl moieties are indicative of electronic delocalization, see Table 1.The interplanar angles, coumarin/linker, linker/phenyl and phenyl/coumarin in [4: R = (3,4,5-MeO)3C6H2·0.5DMSO], are 7.70 (7), 11.43 (8) and 14.97 (5)°, compared to 2.89 (5), 5.07 (5) and 7.05 (4)°, respectively, in (4: R = C6H5). In [4: R = (3,4,5-MeO)3C6H2], as expected for a compound with adjacent methoxy groups on the 3,4 and 5 positions of a phenyl ring, the middle methoxy group is out of the plane of its phenyl group (see, for example, Peralta et al., 2007; Howie et al., 2010; Gomes et al., 2016b).
|
|
3. Supramolecular features
3.1. Intermolecular interactions
There are no classical intermolecular O—H⋯X (X = O or N) in the crystal of [4: R = (3,4,5-MeO)3C6H2·0.5DMSO]: the molecules of [4: R = (3,4,5-MeO)3C6H2] are linked by a number of C—H⋯O and C—H⋯π hydrogen bonds (Table 3) and by a C=O⋯π(1) interaction: the three rings in compounds 4 have been given the designations π(1) for the O1/C2–C4/C4A/C8A, π(2) for the C4A/C5–C8/C8A and π(3) for the C341–C346 rings with centroids Cg1, Cg2 and Cg3, respectively. A two-molecule wide column is generated from a combination of the C4—H4⋯O31, C5—C5⋯O31 and C441—H41C⋯O345 hydrogen bonds, see Fig. 3a. Within the columns, the C4—H4⋯O31 and C5—H5⋯O31 interactions generate R21(5) rings and pairs of the C441—H41C⋯O345 hydrogen bonds lead to R22(12) rings. These two-molecule-wide columns are linked by the carbonyl–arene interaction C31=O31⋯π(1) into undulating sheets, see Fig. 3b. A further structural subset is formed from a series of C—H⋯π interactions: C431—H43B⋯π(3) and C451—H51B⋯π(3) separately form chains of [4: R = (3,4,5-MeO)3C6H2] propagating in the b-axis direction, while the C451—H51C⋯π2 interaction generates a spiral chain of molecules; together these three interactions form a tube, into which the disordered DMSO molecule is cocooned, held there by a number of C—H⋯X (X = O, N and S) hydrogen bonds. A view of the channels in which the the disordered DMSO sits is shown in Fig. 3c. These channels run along the crystallographic twofold axis.
The intermolecular interactions in compound (4: R = C6H5) are C—H⋯O hydrogen bonds, see Table 3, and π–π stacking interactions. Symmetric dimers are formed from pairs of each of C4—H4⋯O31 and C5—H5⋯O31, see Fig. 4a. Within the dimers are two R21(5) and one R22(10) rings. These dimers are then linked by pairs of C34—H34⋯O2 and C346—H346⋯O1 hydrogen bonds into a one-molecule-wide column, generating two R22(8) and one R22(16) rings. A second sub-structure is formed from alternating π–πi and π–πii interactions, involving the C4A/C5–C8/C8A ring with centroid Cg2 and the C341–C346 ring with centroid Cg3, see Fig. 4b [symmetry codes: (i) 1 − x, −y, 1 − z; (ii) 1 − x, 1 − y, 1 − z]. The π–πi interaction is considered to be the stronger, both from the Cg⋯Cg separation [3.8417 (6) compared to 4.1750 (6) Å] and from its greater π overlap, average slippages being 1.820 and 2.325 Å (the rings are inclined to each other). Further confirmation of the relative importance of the two interactions comes from the energy calculations, see Section 3.3. The combination of all the intermolecular interactions provides a three-dimensional arrangement.
3.2. Hirshfeld Surface analyses
Hirshfeld surfaces (Spackman & Jayatilaka, 2009) and two-dimensional fingerprint (FP) plots (Spackman & McKinnon, 2002), provide complementary information concerning the intermolecular interactions discussed above. The analyses were generated using CrystalExplorer3.1 (Wolff et al., 2012). The Hirshfeld surfaces mapped over dnorm were scaled between −0.33 and 1.23, and are shown in Fig. 5 for [4: R = (3,4,5-MeO)3C6H2·0.5DMSO] and in Fig. 6 for (4: R = C6H5). The red areas on the surfaces correspond to close contacts, and have been designated. The FP plots for [4: R = (3,4,5-MeO)3C6H2·0.5(DMSO)] and (4: R = C6H5) are shown in Fig. 7a and 7b, respectively. The blue spikes in the FP plot for (4: R = C6H5) ending at (1.2; 0.9) and (0.9;1.1) relate to O⋯H/H⋯O contacts and the high intensity of pixels, green and red areas relate to C⋯C contacts.
The percentages of atom⋯atom close contacts are listed in Table 4. Leaving the H⋯H contacts aside, the highest percentages of atom⋯atom close contacts for [4: R = (3,4,5-MeO)3C6H2·0.5DMSO], are 28.4 and 23.7% for H⋯O/O⋯H and H⋯C/C⋯H, respectively. The corresponding values for (4: R = C6H5) are 20.2 and 17.9%.
|
3.3. Lattice energy and intermolecular interaction energy calculations
Lattice energies and intermolecular interaction energies were calculated using the PIXEL routine implemented in the CLP package (Gavezzotti, 2003, 2008) which allows the calculation of intermolecular energies by distributed charge description on the basis of a preliminary evaluation of charge density from GAUSSIAN at the MP2/6-311G** level of theory (CUBE option). The PIXEL mode calculates the total stabilization energies of the crystal packing, Etot, distributed as coulombic, (Ecoul), polarization (Epol), dispersion (Edisp) and repulsion (Erep) terms between separate, rigid molecules. Coulombic terms are treated on the basis of Coulombic law, polarization terms are calculated as a linear dipole approximation, dispersion terms are based on London's inverse six-power approximation involving ionization potentials and polarizabilities and the repulsion term comes from a modulated function of the wave-function overlap.
The presence of a half molecule of DMSO lying at a symmetry centre in [4: R = (3,4,5-MeO)3C6H2·0.5DMSO], precludes the PIXEL analysis for this structure. Partial analysis of the PIXEL calculations, however, was carried out on (4: R = C6H5). The six molecule pairs that contribute most to the total energy of the packing of (4: R = C6H5) are shown in Fig. 8.
The various energies for these six significant molecule pairs are also listed in Fig. 8. As such energy values pertain to both the reference molecule at x, y, z and its partner in the molecule pair, the energies thus associated with the reference molecule at x, y, z are half of these sums. The total PIXEL energy calculated for the complete lattice is −157.9 kJ.mol−1. Of that, −123.9 kJ.mol−1(78.5%) is derived from the six molecule pairs shown in Fig. 8. The percentage contribution of pairs involved in O—H⋯O hydrogen bonds is 29.4% while pairs making C⋯C close contacts contribute 26.6% to the total stabilization energy.
4. Database survey
A search of the Cambridge Structural Database (CSD Version 5.39, August 2018 update; Groom et al., 2016) found only one structure of type 4, namely R = 4-MeOC6H4), which is currently undergoing enhancement with a current R value of 0.094 (Low & Wardell, 2019) and was briefly mentioned in a submitted article (Capelini et al., 2019). The molecule of (4: R = 4-MeOC6H4) has a near-planar conformation and possesses equivalent intramolecular hydrogen bonds to those shown by the compounds reported in this article. A database search revealed other types of nitrogen-containing 2-oxo-2H-chromene derivatives, including amido derivatives (Gomes et al., 2016a,b); see also: DOLYEK (Borges et al., 2014a), DOLYIO (Cagide et al., 2015) and DOLYOU (Borges et al., 2014b, 2016). Angelova et al. (2017) reported the structures of (1: R1 = Me, R = C6H5) and (1: R1 = Me, R = pyridine-4-yl).
5. Synthesis and crystallization
5.1. General procedure for the synthesis of compounds 4
To a suspension of coumarinic acid (cis-o-hydroxycinammic acid, C9H3OH) (29 mmol, 1.0 equiv.) in CH3CN (100 ml) at room temperature, was added HOBt (34.64 mmol, 1.2 equiv.), followed by EDC (65.40 mmol, 2.25 equiv). The reaction was stirred at room temperature for 2 h, and slowly added to a solution of hydrazine hydrate (58.20 mmol, 2.0 equiv.) in CH3CN (100 mL) maintaining the temperature below 283 K. Water (70ml) was added to the reaction mixture, which was extracted successively with chloroform (3 × 95 mL) and aqueous 5% sodium bicarbonate (3 × 120 mL). The organic phases were collected and rotary evaporated to yield the coumarinic hydrazide (5), as a yellow solid. Crystallization of compound [4: R = (3,4,5-(MeO)3C6H2] from DMSO solution produced the hemi-DMSO solvate, which on heating slowly decomposed to a dark residue. Attempts to gain suitable crystals for the structural study by slow recrystallization from ethanol solution at room temperature failed.
(E)-N'-Benzylidene-2-oxo-2H-chromene-3-carbohydrazide (4: R = C6H5). Yield: 78%. m.p. 403.7 K.
1H NMR (400 MHz, DMSO-d6) δ 7.48 (4H, m), 7.55 (1H, d, J = 8.32 Hz), 7.77 (3H, m), 8.02 [1H, dd, J(o) = 7.84 Hz, J(m) = 1.52 Hz], 8.47 (1H, s), 8.92 (1H, s) 11.76 (1H, s).
13C NMR (100 MHz, DMSO-d6) δ 116.2, 118.4, 119.3, 125.3, 127.4, 128.9, 130.3, 130.4, 133.9, 134.3, 147.8, 149.4, 153.9, 158.1, 159.8.
EI/MS (m/z) [M + Na]+: 315.11.
IR (KBr) νmax cm−1: 3216.34 (N—H, bonded), 3064.30 (C—H, sp2), 1695.02 (C=O, lactone), 1663.15 (C=O, amide), 1604.10 (C=C, double bond coumarin), 1531.50 and 1488.69 (C=C, aromatic), 788 and 748 (monosubstituted aromatic).
To a solution of the coumarinic hydrazide (5) (0.98 mmol) in absolute ethanol (25 mL), containing a catalytic amount of 37% aq. hydrochloric acid, were added 1.03 mmol (1.05 equiv) of the desired benzaldehyde derivative. The mixture was refluxed until TLC indicated the complete consumption of 5 and the precipitate was collected and dried to yield the desired compound 4, in yields ranging from 55 to 84%.
(E)-2-Oxo-N'-(3,4,5-trimethoxybenzylidene)-2H-chromene-3-carbohydrazide [4: R = (3,4,5-MeO)3C6H2]. Yield: 76%. m.p. 368.7 K.
1H NMR (400 MHz, DMSO-d6) δ 3.72 (3H, s), 3.84 (6H, s), 7.08 (2H, s), 7.47 [1H, t, J(o) = 7.88 Hz, J(m) = 0.96 Hz], 7.55 [1H, d, J(o) = 8.36 Hz], 7.78 [1H, t, J(o) = 7.88 Hz, J(m) = 1.6 Hz], 8.02 [1H, dd, J(o) = 7.84 Hz, J(m) = 1.44 Hz], 8.38 (1H, s), 8.90 (1H, s), 11.74 (1H, s).
13C NMR (100 MHz, DMSO-d6)δ 55.8, 60.0, 104.5, 116.1, 118.3, 119.3, 125.2, 129.2, 130.2, 134.2, 139.4, 147.6, 149.3, 153.0, 153.8, 157.9, 159.8.
EI/MS (m/z) [M + H]+: 383.13, [M + Na]+: 405.09.
IR (KBr) νmax cm−1: 3185.12 (N—H), 2941.30 (C—H, sp3), 1698.89 (C=O, lactone), 1666.73 (C=O, amide), 1609.91 (C=C, double bond coumarin), 1532.56 and 1499.88 (C=C, aromatic), 1229.99 and 1121.84 (C—O—C).
Suitable crystals of 4 for the structural study were obtained by slow evaporation of a solution in ethanol at room temperature
6. Refinement
Crystal data, data collection and structure . C-bound H atoms were refined as riding atoms at calculated positions [C—H = 0.95–0.98 Å with Uiso(H) = 1.2–1.5Ueq(C)]. That attached to the N atom was refined.
details are summarized in Table 5
|
In [4: R = 3,4,5-MeO3C6H2·0.5DMSO] the solvent DMSO molecule lies on a crystallographic twofold axis. It was refined with a fixed occupancy factor of 0.5. A of the s.o.f. gave a value of 0.488. The DMSO molecules are located in channels which run along the twofold axis.
Supporting information
https://doi.org/10.1107/S2056989019012015/lh5917sup1.cif
contains datablocks I, II, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019012015/lh5917Isup2.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989019012015/lh5917IIsup3.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989019012015/lh5917Isup4.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989019012015/lh5917IIsup5.cml
For both structures, data collection: CrysAlis PRO (Rigaku OD, 2019); cell
CrysAlis PRO (Rigaku OD, 2019); data reduction: CrysAlis PRO (Rigaku OD, 2019); program(s) used to solve structure: OSCAIL (McArdle et al., 2004), SHELXT (Sheldrick, 2015a); program(s) used to refine structure: OSCAIL (McArdle et al., 2004), ShelXle (Hübschle et al., 2011) SHELXL2017 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2006). Software used to prepare material for publication: OSCAIL (McArdle et al., 2004), SHELXL2017 (Sheldrick, 2015b) PLATON (Spek, 2009) for (I); OSCAIL (McArdle et al., 2004), SHELX2017/1 (Sheldrick, 2015b) PLATON (Spek, 2009) for (II).C20H18N2O6·0.5C2H6OS | F(000) = 1768 |
Mr = 421.43 | Dx = 1.454 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71075 Å |
a = 33.0258 (7) Å | Cell parameters from 13857 reflections |
b = 5.4412 (1) Å | θ = 2.0–31.6° |
c = 22.4342 (4) Å | µ = 0.16 mm−1 |
β = 107.203 (2)° | T = 100 K |
V = 3851.07 (13) Å3 | Block, yellow |
Z = 8 | 0.40 × 0.08 × 0.04 mm |
Rigaku FRE+ equipped with VHF Varimax confocal mirrors and an AFC12 goniometer and HyPix 6000 detector diffractometer | 4381 independent reflections |
Radiation source: Rotating Anode, Rigaku FRE+ | 3983 reflections with I > 2σ(I) |
Confocal mirrors, VHF Varimax monochromator | Rint = 0.016 |
Detector resolution: 10 pixels mm-1 | θmax = 27.5°, θmin = 2.6° |
profile data from ω–scans | h = −42→42 |
Absorption correction: gaussian (CrysAlisPro; Rigaku OD, 2019) | k = −6→7 |
Tmin = 0.837, Tmax = 1.000 | l = −26→29 |
22915 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.032 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.086 | w = 1/[σ2(Fo2) + (0.0456P)2 + 2.9167P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max = 0.001 |
4381 reflections | Δρmax = 0.31 e Å−3 |
298 parameters | Δρmin = −0.30 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
O1 | 0.40457 (2) | 0.68439 (13) | 0.52398 (3) | 0.01627 (16) | |
O2 | 0.46021 (2) | 0.81610 (14) | 0.59671 (4) | 0.02005 (17) | |
O31 | 0.53178 (2) | 0.20068 (14) | 0.57120 (3) | 0.01931 (17) | |
O343 | 0.72470 (2) | 0.31586 (14) | 0.80720 (3) | 0.01717 (16) | |
O344 | 0.73938 (2) | 0.64983 (14) | 0.89856 (3) | 0.01614 (16) | |
O345 | 0.67832 (2) | 0.95654 (15) | 0.90901 (3) | 0.02104 (17) | |
N32 | 0.53224 (3) | 0.55236 (18) | 0.62643 (4) | 0.01798 (19) | |
H32 | 0.5171 (5) | 0.679 (3) | 0.6305 (7) | 0.029 (4)* | |
N33 | 0.57200 (3) | 0.51012 (17) | 0.66718 (4) | 0.01668 (18) | |
C2 | 0.44611 (3) | 0.65614 (18) | 0.55853 (4) | 0.01415 (19) | |
C3 | 0.46844 (3) | 0.43809 (18) | 0.54634 (4) | 0.01325 (19) | |
C4 | 0.44791 (3) | 0.27552 (19) | 0.50194 (4) | 0.01369 (19) | |
H4 | 0.462640 | 0.135045 | 0.494099 | 0.016* | |
C5 | 0.38134 (3) | 0.14563 (19) | 0.42087 (5) | 0.0175 (2) | |
H5 | 0.394775 | 0.003909 | 0.410755 | 0.021* | |
C4A | 0.40442 (3) | 0.31084 (18) | 0.46651 (4) | 0.01345 (19) | |
C6 | 0.33896 (3) | 0.1903 (2) | 0.39072 (5) | 0.0204 (2) | |
H6 | 0.323245 | 0.077292 | 0.360352 | 0.024* | |
C7 | 0.31911 (3) | 0.4001 (2) | 0.40457 (5) | 0.0194 (2) | |
H7 | 0.289997 | 0.428309 | 0.383493 | 0.023* | |
C8 | 0.34135 (3) | 0.5677 (2) | 0.44868 (5) | 0.0173 (2) | |
H8 | 0.328020 | 0.711508 | 0.457860 | 0.021* | |
C8A | 0.38373 (3) | 0.51893 (18) | 0.47906 (4) | 0.01401 (19) | |
C31 | 0.51385 (3) | 0.38442 (19) | 0.58215 (4) | 0.0144 (2) | |
C34 | 0.58354 (3) | 0.6722 (2) | 0.70991 (5) | 0.0234 (2) | |
H34 | 0.565334 | 0.807515 | 0.709773 | 0.028* | |
C341 | 0.62400 (3) | 0.6560 (2) | 0.75915 (5) | 0.0182 (2) | |
C342 | 0.65468 (3) | 0.48341 (19) | 0.75655 (4) | 0.0154 (2) | |
H342 | 0.649709 | 0.371929 | 0.722555 | 0.018* | |
C343 | 0.69263 (3) | 0.47723 (18) | 0.80448 (4) | 0.01379 (19) | |
C344 | 0.70034 (3) | 0.64402 (19) | 0.85427 (4) | 0.0140 (2) | |
C345 | 0.66880 (3) | 0.80974 (19) | 0.85746 (5) | 0.0165 (2) | |
C346 | 0.63073 (3) | 0.8169 (2) | 0.80957 (5) | 0.0207 (2) | |
H346 | 0.609346 | 0.931306 | 0.811211 | 0.025* | |
C431 | 0.71732 (4) | 0.1389 (2) | 0.75813 (5) | 0.0207 (2) | |
H43A | 0.712251 | 0.223812 | 0.718061 | 0.031* | |
H43B | 0.692471 | 0.039486 | 0.757575 | 0.031* | |
H43C | 0.742175 | 0.032094 | 0.765084 | 0.031* | |
C441 | 0.74230 (3) | 0.4860 (2) | 0.94982 (5) | 0.0195 (2) | |
H41A | 0.736607 | 0.317514 | 0.934155 | 0.029* | |
H41B | 0.721429 | 0.533664 | 0.970960 | 0.029* | |
H41C | 0.770842 | 0.495051 | 0.979338 | 0.029* | |
C451 | 0.64624 (3) | 1.1251 (2) | 0.91407 (5) | 0.0196 (2) | |
H51A | 0.620280 | 1.034335 | 0.912316 | 0.029* | |
H51B | 0.640421 | 1.242953 | 0.879538 | 0.029* | |
H51C | 0.656046 | 1.213390 | 0.953827 | 0.029* | |
S1S | 0.50726 (2) | 1.12167 (9) | 0.72755 (2) | 0.01665 (11) | 0.5 |
O1S | 0.4985 (16) | 0.8678 (3) | 0.7444 (12) | 0.026 (2) | 0.5 |
C1S | 0.45886 (14) | 1.2893 (14) | 0.7013 (3) | 0.0207 (9) | 0.5 |
H1SA | 0.442339 | 1.228493 | 0.660195 | 0.031* | 0.5 |
H1SB | 0.465103 | 1.464184 | 0.698321 | 0.031* | 0.5 |
H1SC | 0.442536 | 1.267478 | 0.730985 | 0.031* | 0.5 |
C2S | 0.52800 (15) | 1.2784 (15) | 0.7996 (3) | 0.0300 (12) | 0.5 |
H2SA | 0.510606 | 1.241255 | 0.827053 | 0.045* | 0.5 |
H2SB | 0.527643 | 1.455833 | 0.791972 | 0.045* | 0.5 |
H2SC | 0.557203 | 1.224526 | 0.819443 | 0.045* | 0.5 |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0125 (3) | 0.0167 (4) | 0.0169 (3) | 0.0020 (3) | 0.0002 (3) | −0.0032 (3) |
O2 | 0.0179 (4) | 0.0181 (4) | 0.0202 (4) | 0.0021 (3) | −0.0004 (3) | −0.0066 (3) |
O31 | 0.0143 (3) | 0.0207 (4) | 0.0198 (4) | 0.0040 (3) | 0.0002 (3) | −0.0052 (3) |
O343 | 0.0150 (3) | 0.0195 (4) | 0.0151 (3) | 0.0036 (3) | 0.0015 (3) | −0.0017 (3) |
O344 | 0.0122 (3) | 0.0200 (4) | 0.0129 (3) | −0.0033 (3) | −0.0014 (3) | 0.0018 (3) |
O345 | 0.0171 (4) | 0.0253 (4) | 0.0179 (4) | 0.0004 (3) | 0.0008 (3) | −0.0105 (3) |
N32 | 0.0103 (4) | 0.0222 (5) | 0.0177 (4) | 0.0040 (3) | −0.0017 (3) | −0.0063 (3) |
N33 | 0.0104 (4) | 0.0231 (5) | 0.0144 (4) | 0.0001 (3) | 0.0003 (3) | −0.0022 (3) |
C2 | 0.0122 (4) | 0.0160 (5) | 0.0130 (4) | 0.0007 (4) | 0.0018 (3) | 0.0001 (4) |
C3 | 0.0115 (4) | 0.0149 (5) | 0.0124 (4) | 0.0008 (4) | 0.0022 (3) | 0.0002 (4) |
C4 | 0.0135 (4) | 0.0140 (5) | 0.0130 (4) | 0.0007 (4) | 0.0031 (4) | 0.0006 (4) |
C5 | 0.0183 (5) | 0.0165 (5) | 0.0156 (5) | −0.0020 (4) | 0.0018 (4) | −0.0006 (4) |
C4A | 0.0129 (4) | 0.0147 (5) | 0.0117 (4) | −0.0013 (4) | 0.0021 (3) | 0.0015 (3) |
C6 | 0.0189 (5) | 0.0223 (5) | 0.0155 (5) | −0.0060 (4) | −0.0020 (4) | −0.0002 (4) |
C7 | 0.0124 (5) | 0.0248 (6) | 0.0171 (5) | −0.0022 (4) | −0.0015 (4) | 0.0060 (4) |
C8 | 0.0139 (5) | 0.0186 (5) | 0.0183 (5) | 0.0016 (4) | 0.0031 (4) | 0.0042 (4) |
C8A | 0.0135 (4) | 0.0148 (5) | 0.0125 (4) | −0.0021 (4) | 0.0020 (4) | 0.0008 (4) |
C31 | 0.0119 (4) | 0.0179 (5) | 0.0123 (4) | 0.0003 (4) | 0.0019 (3) | −0.0009 (4) |
C34 | 0.0143 (5) | 0.0289 (6) | 0.0226 (5) | 0.0051 (4) | −0.0011 (4) | −0.0099 (4) |
C341 | 0.0131 (5) | 0.0229 (5) | 0.0163 (5) | −0.0007 (4) | 0.0008 (4) | −0.0050 (4) |
C342 | 0.0142 (4) | 0.0188 (5) | 0.0122 (4) | −0.0016 (4) | 0.0024 (4) | −0.0034 (4) |
C343 | 0.0132 (4) | 0.0151 (5) | 0.0136 (4) | −0.0005 (4) | 0.0047 (4) | 0.0014 (4) |
C344 | 0.0109 (4) | 0.0177 (5) | 0.0116 (4) | −0.0032 (4) | 0.0007 (3) | 0.0010 (4) |
C345 | 0.0157 (5) | 0.0191 (5) | 0.0137 (5) | −0.0032 (4) | 0.0031 (4) | −0.0049 (4) |
C346 | 0.0140 (5) | 0.0250 (6) | 0.0209 (5) | 0.0029 (4) | 0.0019 (4) | −0.0081 (4) |
C431 | 0.0224 (5) | 0.0185 (5) | 0.0203 (5) | 0.0032 (4) | 0.0051 (4) | −0.0037 (4) |
C441 | 0.0193 (5) | 0.0220 (5) | 0.0145 (5) | −0.0009 (4) | 0.0007 (4) | 0.0032 (4) |
C451 | 0.0180 (5) | 0.0209 (5) | 0.0205 (5) | −0.0021 (4) | 0.0064 (4) | −0.0075 (4) |
S1S | 0.0182 (2) | 0.0149 (2) | 0.0183 (2) | 0.00064 (18) | 0.00770 (19) | −0.00093 (19) |
O1S | 0.040 (5) | 0.0140 (6) | 0.030 (7) | 0.0000 (17) | 0.020 (7) | −0.0005 (12) |
C1S | 0.019 (2) | 0.0187 (14) | 0.0218 (14) | 0.003 (2) | 0.0018 (17) | 0.0027 (10) |
C2S | 0.033 (3) | 0.024 (2) | 0.0284 (17) | 0.006 (3) | 0.001 (2) | −0.0054 (13) |
O1—C2 | 1.3702 (12) | C34—C341 | 1.4629 (14) |
O1—C8A | 1.3747 (12) | C34—H34 | 0.9500 |
O2—C2 | 1.2133 (12) | C341—C342 | 1.3953 (14) |
O31—C31 | 1.2234 (13) | C341—C346 | 1.3955 (14) |
O343—C343 | 1.3631 (12) | C342—C343 | 1.3894 (13) |
O343—C431 | 1.4280 (12) | C342—H342 | 0.9500 |
O344—C344 | 1.3759 (11) | C343—C344 | 1.4028 (14) |
O344—C441 | 1.4356 (12) | C344—C345 | 1.3955 (14) |
O345—C345 | 1.3635 (12) | C345—C346 | 1.3921 (14) |
O345—C451 | 1.4309 (13) | C346—H346 | 0.9500 |
N32—C31 | 1.3543 (13) | C431—H43A | 0.9800 |
N32—N33 | 1.3793 (11) | C431—H43B | 0.9800 |
N32—H32 | 0.870 (16) | C431—H43C | 0.9800 |
N33—C34 | 1.2753 (14) | C441—H41A | 0.9800 |
C2—C3 | 1.4647 (13) | C441—H41B | 0.9800 |
C3—C4 | 1.3547 (14) | C441—H41C | 0.9800 |
C3—C31 | 1.5056 (13) | C451—H51A | 0.9800 |
C4—C4A | 1.4340 (13) | C451—H51B | 0.9800 |
C4—H4 | 0.9500 | C451—H51C | 0.9800 |
C5—C6 | 1.3840 (15) | S1S—O1S | 1.483 (16) |
C5—C4A | 1.4057 (14) | S1S—C2S | 1.775 (7) |
C5—H5 | 0.9500 | S1S—C1S | 1.782 (5) |
C4A—C8A | 1.3935 (14) | C1S—H1SA | 0.9800 |
C6—C7 | 1.3965 (16) | C1S—H1SB | 0.9800 |
C6—H6 | 0.9500 | C1S—H1SC | 0.9800 |
C7—C8 | 1.3856 (15) | C2S—H2SA | 0.9800 |
C7—H7 | 0.9500 | C2S—H2SB | 0.9800 |
C8—C8A | 1.3890 (13) | C2S—H2SC | 0.9800 |
C8—H8 | 0.9500 | ||
C2—O1—C8A | 122.80 (8) | C341—C342—H342 | 120.5 |
C343—O343—C431 | 116.52 (8) | O343—C343—C342 | 124.14 (9) |
C344—O344—C441 | 113.00 (8) | O343—C343—C344 | 115.17 (8) |
C345—O345—C451 | 116.90 (8) | C342—C343—C344 | 120.69 (9) |
C31—N32—N33 | 120.41 (9) | O344—C344—C345 | 120.16 (9) |
C31—N32—H32 | 117.6 (10) | O344—C344—C343 | 120.05 (9) |
N33—N32—H32 | 121.7 (10) | C345—C344—C343 | 119.76 (9) |
C34—N33—N32 | 113.41 (9) | O345—C345—C346 | 124.54 (9) |
O2—C2—O1 | 115.46 (9) | O345—C345—C344 | 115.71 (9) |
O2—C2—C3 | 127.12 (9) | C346—C345—C344 | 119.75 (9) |
O1—C2—C3 | 117.42 (8) | C345—C346—C341 | 119.92 (10) |
C4—C3—C2 | 119.74 (9) | C345—C346—H346 | 120.0 |
C4—C3—C31 | 117.95 (9) | C341—C346—H346 | 120.0 |
C2—C3—C31 | 122.31 (9) | O343—C431—H43A | 109.5 |
C3—C4—C4A | 121.44 (9) | O343—C431—H43B | 109.5 |
C3—C4—H4 | 119.3 | H43A—C431—H43B | 109.5 |
C4A—C4—H4 | 119.3 | O343—C431—H43C | 109.5 |
C6—C5—C4A | 119.72 (10) | H43A—C431—H43C | 109.5 |
C6—C5—H5 | 120.1 | H43B—C431—H43C | 109.5 |
C4A—C5—H5 | 120.1 | O344—C441—H41A | 109.5 |
C8A—C4A—C5 | 118.30 (9) | O344—C441—H41B | 109.5 |
C8A—C4A—C4 | 117.88 (9) | H41A—C441—H41B | 109.5 |
C5—C4A—C4 | 123.81 (9) | O344—C441—H41C | 109.5 |
C5—C6—C7 | 120.56 (10) | H41A—C441—H41C | 109.5 |
C5—C6—H6 | 119.7 | H41B—C441—H41C | 109.5 |
C7—C6—H6 | 119.7 | O345—C451—H51A | 109.5 |
C8—C7—C6 | 120.80 (9) | O345—C451—H51B | 109.5 |
C8—C7—H7 | 119.6 | H51A—C451—H51B | 109.5 |
C6—C7—H7 | 119.6 | O345—C451—H51C | 109.5 |
C7—C8—C8A | 117.99 (10) | H51A—C451—H51C | 109.5 |
C7—C8—H8 | 121.0 | H51B—C451—H51C | 109.5 |
C8A—C8—H8 | 121.0 | O1S—S1S—C2S | 105.5 (10) |
O1—C8A—C8 | 116.63 (9) | O1S—S1S—C1S | 109.8 (19) |
O1—C8A—C4A | 120.73 (9) | C2S—S1S—C1S | 96.99 (18) |
C8—C8A—C4A | 122.62 (9) | S1S—C1S—H1SA | 109.5 |
O31—C31—N32 | 124.05 (9) | S1S—C1S—H1SB | 109.5 |
O31—C31—C3 | 121.09 (9) | H1SA—C1S—H1SB | 109.5 |
N32—C31—C3 | 114.86 (9) | S1S—C1S—H1SC | 109.5 |
N33—C34—C341 | 121.94 (10) | H1SA—C1S—H1SC | 109.5 |
N33—C34—H34 | 119.0 | H1SB—C1S—H1SC | 109.5 |
C341—C34—H34 | 119.0 | S1S—C2S—H2SA | 109.5 |
C342—C341—C346 | 120.85 (9) | S1S—C2S—H2SB | 109.5 |
C342—C341—C34 | 121.44 (9) | H2SA—C2S—H2SB | 109.5 |
C346—C341—C34 | 117.71 (9) | S1S—C2S—H2SC | 109.5 |
C343—C342—C341 | 118.94 (9) | H2SA—C2S—H2SC | 109.5 |
C343—C342—H342 | 120.5 | H2SB—C2S—H2SC | 109.5 |
C31—N32—N33—C34 | −173.67 (10) | C4—C3—C31—N32 | −179.03 (9) |
C8A—O1—C2—O2 | −179.61 (9) | C2—C3—C31—N32 | 0.25 (14) |
C8A—O1—C2—C3 | −0.32 (13) | N32—N33—C34—C341 | 177.68 (10) |
O2—C2—C3—C4 | 179.69 (10) | N33—C34—C341—C342 | 9.81 (18) |
O1—C2—C3—C4 | 0.50 (14) | N33—C34—C341—C346 | −169.23 (11) |
O2—C2—C3—C31 | 0.42 (16) | C346—C341—C342—C343 | −1.33 (16) |
O1—C2—C3—C31 | −178.77 (8) | C34—C341—C342—C343 | 179.66 (10) |
C2—C3—C4—C4A | −0.40 (14) | C431—O343—C343—C342 | −2.19 (14) |
C31—C3—C4—C4A | 178.90 (9) | C431—O343—C343—C344 | 178.22 (9) |
C6—C5—C4A—C8A | −1.25 (15) | C341—C342—C343—O343 | 179.45 (9) |
C6—C5—C4A—C4 | 177.48 (9) | C341—C342—C343—C344 | −0.98 (15) |
C3—C4—C4A—C8A | 0.11 (14) | C441—O344—C344—C345 | 92.74 (11) |
C3—C4—C4A—C5 | −178.62 (9) | C441—O344—C344—C343 | −89.56 (11) |
C4A—C5—C6—C7 | 1.01 (16) | O343—C343—C344—O344 | 5.20 (13) |
C5—C6—C7—C8 | 0.00 (16) | C342—C343—C344—O344 | −174.41 (9) |
C6—C7—C8—C8A | −0.72 (15) | O343—C343—C344—C345 | −177.09 (9) |
C2—O1—C8A—C8 | 178.49 (9) | C342—C343—C344—C345 | 3.30 (15) |
C2—O1—C8A—C4A | 0.04 (14) | C451—O345—C345—C346 | 1.34 (15) |
C7—C8—C8A—O1 | −177.96 (9) | C451—O345—C345—C344 | −178.86 (9) |
C7—C8—C8A—C4A | 0.46 (15) | O344—C344—C345—O345 | −5.41 (14) |
C5—C4A—C8A—O1 | 178.88 (9) | C343—C344—C345—O345 | 176.88 (9) |
C4—C4A—C8A—O1 | 0.08 (14) | O344—C344—C345—C346 | 174.40 (9) |
C5—C4A—C8A—C8 | 0.52 (15) | C343—C344—C345—C346 | −3.31 (15) |
C4—C4A—C8A—C8 | −178.28 (9) | O345—C345—C346—C341 | −179.17 (10) |
N33—N32—C31—O31 | −7.04 (16) | C344—C345—C346—C341 | 1.03 (17) |
N33—N32—C31—C3 | 172.52 (8) | C342—C341—C346—C345 | 1.31 (17) |
C4—C3—C31—O31 | 0.54 (14) | C34—C341—C346—C345 | −179.64 (10) |
C2—C3—C31—O31 | 179.82 (9) |
Cg1, Cg2 and Cg3 are the centroids of the O1/C2–C4/C4A/C8A, C4A/C5–C8/C8A and C341–C346 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
N32—H32···O2 | 0.870 (16) | 1.955 (15) | 2.6878 (12) | 141.0 (14) |
C441—H41C···O345i | 0.98 | 2.58 | 3.4772 (12) | 152 |
C451—H51A···O1ii | 0.98 | 2.65 | 3.4463 (13) | 138 |
C34—H34···O1S | 0.95 | 2.57 | 3.30 (5) | 134 |
C34—H34···O1Sii | 0.95 | 2.63 | 3.34 (5) | 133 |
C34—H34···S1S | 0.95 | 2.69 | 3.6158 (12) | 166 |
C431—H43C···O343iii | 0.98 | 2.50 | 3.2505 (13) | 133 |
C2S—H2SA···N32iv | 0.98 | 2.61 | 3.3000 (6) | 127 |
C4—H4···O31 | 0.95 | 2.45 | 2.7761 (12) | 100 |
C4—H4···O31v | 0.95 | 2.38 | 3.2415 (12) | 150 |
C5—H5···O31v | 0.95 | 2.59 | 3.3931 (13) | 143 |
C431—H43B···Cg3vi | 0.98 | 2.73 | 3.5882 (13) | 147 |
C451—H51B···Cg3vi | 0.98 | 2.95 | 3.8562 (12) | 155 |
C451—H51C···Cg2vii | 0.98 | 2.83 | 3.6883 (13) | 147 |
C31—O31···Cg1vii | 0 | 0 | 3.3971 (6) | 90 (1) |
Symmetry codes: (i) −x+3/2, −y+3/2, −z+2; (ii) −x+1, y, −z+3/2; (iii) −x+3/2, y−1/2, −z+3/2; (iv) −x+1, y+1, −z+3/2; (v) −x+1, −y, −z+1; (vi) x, y−1, z; (vii) −x+1, −y+1, −z+1. |
C17H12N2O3 | Z = 2 |
Mr = 292.29 | F(000) = 304 |
Triclinic, P1 | Dx = 1.463 Mg m−3 |
a = 5.6715 (1) Å | Cu Kα radiation, λ = 1.54178 Å |
b = 7.4164 (1) Å | Cell parameters from 8290 reflections |
c = 15.9819 (3) Å | θ = 6.0–70.3° |
α = 88.369 (1)° | µ = 0.84 mm−1 |
β = 84.147 (1)° | T = 100 K |
γ = 82.961 (2)° | Plate, colourless |
V = 663.60 (2) Å3 | 0.22 × 0.12 × 0.05 mm |
Rigaku 007HF equipped with Varimax confocal mirrors and an AFC11 goniometer and HyPix 6000 detector diffractometer | 2352 independent reflections |
Radiation source: Rotating anode, Rigaku 007 HF | 2250 reflections with I > 2σ(I) |
Varimax focusing mirrors monochromator | Rint = 0.027 |
Detector resolution: 10 pixels mm-1 | θmax = 67.1°, θmin = 5.6° |
profile data from ω–scans | h = −6→6 |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2019) | k = −8→8 |
Tmin = 0.930, Tmax = 1.000 | l = −19→19 |
11641 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.033 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.104 | w = 1/[σ2(Fo2) + (0.0858P)2 + 0.127P] where P = (Fo2 + 2Fc2)/3 |
S = 0.88 | (Δ/σ)max = 0.001 |
2352 reflections | Δρmax = 0.23 e Å−3 |
203 parameters | Δρmin = −0.19 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.38486 (11) | 0.36429 (9) | 0.68964 (4) | 0.0233 (2) | |
H1 | 0.276 (3) | 0.3194 (18) | 0.4545 (9) | 0.043 (4)* | |
O2 | 0.19764 (11) | 0.41255 (9) | 0.57568 (4) | 0.0256 (2) | |
O31 | 0.77445 (12) | 0.11739 (10) | 0.43121 (4) | 0.0316 (2) | |
N32 | 0.40134 (15) | 0.26503 (11) | 0.42751 (5) | 0.0220 (2) | |
N33 | 0.40966 (14) | 0.23814 (10) | 0.34233 (5) | 0.0227 (2) | |
C2 | 0.37588 (16) | 0.34215 (12) | 0.60485 (6) | 0.0213 (2) | |
C3 | 0.58217 (17) | 0.23662 (12) | 0.55958 (6) | 0.0213 (2) | |
C4 | 0.76971 (17) | 0.16687 (12) | 0.60074 (6) | 0.0223 (2) | |
H4 | 0.9026 | 0.0993 | 0.5703 | 0.027* | |
C5 | 0.96435 (17) | 0.12171 (13) | 0.73471 (6) | 0.0240 (2) | |
H5 | 1.1005 | 0.0524 | 0.7070 | 0.029* | |
C4A | 0.77384 (17) | 0.19200 (12) | 0.68915 (6) | 0.0217 (2) | |
C6 | 0.95376 (17) | 0.15324 (13) | 0.81971 (6) | 0.0256 (2) | |
H6 | 1.0835 | 0.1068 | 0.8504 | 0.031* | |
C7 | 0.75272 (18) | 0.25331 (13) | 0.86075 (6) | 0.0264 (2) | |
H7 | 0.7472 | 0.2744 | 0.9193 | 0.032* | |
C8 | 0.56165 (18) | 0.32215 (13) | 0.81749 (6) | 0.0251 (2) | |
H8 | 0.4243 | 0.3888 | 0.8458 | 0.030* | |
C8A | 0.57482 (17) | 0.29175 (12) | 0.73184 (6) | 0.0219 (2) | |
C31 | 0.59517 (17) | 0.20132 (12) | 0.46715 (6) | 0.0232 (2) | |
C34 | 0.22002 (17) | 0.29462 (12) | 0.30817 (6) | 0.0216 (2) | |
H34 | 0.0821 | 0.3485 | 0.3413 | 0.026* | |
C341 | 0.21746 (16) | 0.27545 (12) | 0.21730 (6) | 0.0215 (2) | |
C342 | 0.41939 (17) | 0.19665 (13) | 0.16727 (6) | 0.0238 (2) | |
H342 | 0.5605 | 0.1523 | 0.1923 | 0.029* | |
C343 | 0.41260 (17) | 0.18368 (13) | 0.08144 (6) | 0.0274 (2) | |
H343 | 0.5495 | 0.1299 | 0.0478 | 0.033* | |
C344 | 0.20758 (19) | 0.24849 (14) | 0.04380 (6) | 0.0289 (2) | |
H344 | 0.2048 | 0.2399 | −0.0153 | 0.035* | |
C345 | 0.00689 (18) | 0.32579 (14) | 0.09316 (6) | 0.0280 (2) | |
H345 | −0.1337 | 0.3703 | 0.0678 | 0.034* | |
C346 | 0.01167 (17) | 0.33801 (13) | 0.17960 (6) | 0.0249 (2) | |
H346 | −0.1267 | 0.3895 | 0.2132 | 0.030* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0226 (4) | 0.0284 (4) | 0.0176 (4) | 0.0025 (3) | −0.0017 (3) | −0.0030 (3) |
O2 | 0.0214 (4) | 0.0315 (4) | 0.0223 (4) | 0.0050 (3) | −0.0029 (3) | −0.0030 (3) |
O31 | 0.0276 (4) | 0.0432 (4) | 0.0196 (4) | 0.0139 (3) | −0.0021 (3) | −0.0048 (3) |
N32 | 0.0215 (4) | 0.0275 (4) | 0.0155 (4) | 0.0034 (3) | −0.0008 (3) | −0.0034 (3) |
N33 | 0.0251 (4) | 0.0257 (4) | 0.0165 (4) | 0.0002 (3) | −0.0014 (3) | −0.0022 (3) |
C2 | 0.0229 (5) | 0.0227 (5) | 0.0181 (5) | −0.0016 (4) | −0.0014 (4) | −0.0013 (3) |
C3 | 0.0215 (5) | 0.0223 (5) | 0.0192 (5) | −0.0002 (4) | −0.0009 (4) | −0.0011 (4) |
C4 | 0.0226 (5) | 0.0231 (5) | 0.0201 (5) | −0.0001 (4) | 0.0005 (4) | −0.0017 (4) |
C5 | 0.0245 (5) | 0.0251 (5) | 0.0224 (5) | −0.0026 (4) | −0.0024 (4) | −0.0004 (4) |
C4A | 0.0236 (5) | 0.0218 (5) | 0.0199 (5) | −0.0032 (4) | −0.0023 (4) | −0.0002 (3) |
C6 | 0.0279 (5) | 0.0270 (5) | 0.0232 (5) | −0.0045 (4) | −0.0076 (4) | 0.0016 (4) |
C7 | 0.0348 (5) | 0.0279 (5) | 0.0175 (5) | −0.0066 (4) | −0.0037 (4) | −0.0015 (4) |
C8 | 0.0285 (5) | 0.0260 (5) | 0.0200 (5) | −0.0021 (4) | 0.0004 (4) | −0.0029 (4) |
C8A | 0.0238 (5) | 0.0221 (5) | 0.0201 (5) | −0.0031 (4) | −0.0031 (4) | −0.0001 (4) |
C31 | 0.0237 (5) | 0.0242 (5) | 0.0200 (5) | 0.0021 (4) | −0.0006 (4) | −0.0009 (4) |
C34 | 0.0204 (5) | 0.0227 (5) | 0.0208 (5) | 0.0009 (3) | −0.0008 (4) | −0.0013 (3) |
C341 | 0.0233 (5) | 0.0212 (5) | 0.0200 (5) | −0.0025 (4) | −0.0024 (4) | −0.0008 (4) |
C342 | 0.0218 (5) | 0.0270 (5) | 0.0222 (5) | −0.0007 (4) | −0.0033 (4) | −0.0009 (4) |
C343 | 0.0272 (5) | 0.0315 (5) | 0.0225 (5) | −0.0025 (4) | 0.0022 (4) | −0.0036 (4) |
C344 | 0.0360 (6) | 0.0336 (5) | 0.0178 (5) | −0.0057 (4) | −0.0040 (4) | −0.0014 (4) |
C345 | 0.0288 (5) | 0.0310 (5) | 0.0247 (5) | −0.0011 (4) | −0.0089 (4) | 0.0005 (4) |
C346 | 0.0236 (5) | 0.0262 (5) | 0.0239 (5) | 0.0013 (4) | −0.0028 (4) | −0.0015 (4) |
O1—C8A | 1.3749 (11) | C6—H6 | 0.9500 |
O1—C2 | 1.3765 (11) | C7—C8 | 1.3820 (14) |
O2—C2 | 1.2103 (11) | C7—H7 | 0.9500 |
O31—C31 | 1.2237 (12) | C8—C8A | 1.3867 (13) |
N32—C31 | 1.3530 (13) | C8—H8 | 0.9500 |
N32—N33 | 1.3768 (11) | C34—C341 | 1.4649 (13) |
N32—H1 | 0.857 (15) | C34—H34 | 0.9500 |
N33—C34 | 1.2753 (13) | C341—C346 | 1.3912 (13) |
C2—C3 | 1.4629 (13) | C341—C342 | 1.4030 (13) |
C3—C4 | 1.3492 (13) | C342—C343 | 1.3826 (13) |
C3—C31 | 1.5003 (13) | C342—H342 | 0.9500 |
C4—C4A | 1.4334 (13) | C343—C344 | 1.3908 (14) |
C4—H4 | 0.9500 | C343—H343 | 0.9500 |
C5—C6 | 1.3790 (13) | C344—C345 | 1.3890 (15) |
C5—C4A | 1.4036 (13) | C344—H344 | 0.9500 |
C5—H5 | 0.9500 | C345—C346 | 1.3903 (13) |
C4A—C8A | 1.3978 (14) | C345—H345 | 0.9500 |
C6—C7 | 1.3960 (14) | C346—H346 | 0.9500 |
C8A—O1—C2 | 123.10 (7) | C8A—C8—H8 | 120.7 |
C31—N32—N33 | 118.22 (8) | O1—C8A—C8 | 117.65 (8) |
C31—N32—H1 | 121.3 (9) | O1—C8A—C4A | 120.69 (8) |
N33—N32—H1 | 120.5 (9) | C8—C8A—C4A | 121.66 (9) |
C34—N33—N32 | 116.05 (8) | O31—C31—N32 | 123.05 (9) |
O2—C2—O1 | 116.32 (8) | O31—C31—C3 | 120.11 (9) |
O2—C2—C3 | 126.92 (8) | N32—C31—C3 | 116.83 (8) |
O1—C2—C3 | 116.76 (8) | N33—C34—C341 | 119.21 (8) |
C4—C3—C2 | 120.21 (9) | N33—C34—H34 | 120.4 |
C4—C3—C31 | 117.51 (8) | C341—C34—H34 | 120.4 |
C2—C3—C31 | 122.28 (8) | C346—C341—C342 | 119.23 (9) |
C3—C4—C4A | 121.77 (9) | C346—C341—C34 | 119.47 (8) |
C3—C4—H4 | 119.1 | C342—C341—C34 | 121.30 (9) |
C4A—C4—H4 | 119.1 | C343—C342—C341 | 119.88 (9) |
C6—C5—C4A | 119.97 (9) | C343—C342—H342 | 120.1 |
C6—C5—H5 | 120.0 | C341—C342—H342 | 120.1 |
C4A—C5—H5 | 120.0 | C342—C343—C344 | 120.75 (9) |
C5—C4A—C8A | 118.69 (9) | C342—C343—H343 | 119.6 |
C5—C4A—C4 | 123.84 (9) | C344—C343—H343 | 119.6 |
C8A—C4A—C4 | 117.47 (9) | C345—C344—C343 | 119.56 (9) |
C5—C6—C7 | 120.12 (9) | C345—C344—H344 | 120.2 |
C5—C6—H6 | 119.9 | C343—C344—H344 | 120.2 |
C7—C6—H6 | 119.9 | C344—C345—C346 | 120.04 (9) |
C8—C7—C6 | 121.01 (9) | C344—C345—H345 | 120.0 |
C8—C7—H7 | 119.5 | C346—C345—H345 | 120.0 |
C6—C7—H7 | 119.5 | C341—C346—C345 | 120.54 (9) |
C7—C8—C8A | 118.53 (9) | C341—C346—H346 | 119.7 |
C7—C8—H8 | 120.7 | C345—C346—H346 | 119.7 |
C31—N32—N33—C34 | 177.57 (7) | C4—C4A—C8A—O1 | −0.84 (14) |
C8A—O1—C2—O2 | 179.69 (7) | C5—C4A—C8A—C8 | −0.11 (14) |
C8A—O1—C2—C3 | −0.40 (13) | C4—C4A—C8A—C8 | 179.54 (8) |
O2—C2—C3—C4 | 179.63 (9) | N33—N32—C31—O31 | −1.83 (15) |
O1—C2—C3—C4 | −0.27 (13) | N33—N32—C31—C3 | 178.66 (7) |
O2—C2—C3—C31 | −0.41 (16) | C4—C3—C31—O31 | −2.44 (14) |
O1—C2—C3—C31 | 179.69 (7) | C2—C3—C31—O31 | 177.61 (9) |
C2—C3—C4—C4A | 0.36 (15) | C4—C3—C31—N32 | 177.08 (7) |
C31—C3—C4—C4A | −179.59 (7) | C2—C3—C31—N32 | −2.87 (14) |
C6—C5—C4A—C8A | −0.67 (14) | N32—N33—C34—C341 | 178.28 (7) |
C6—C5—C4A—C4 | 179.70 (8) | N33—C34—C341—C346 | −179.53 (8) |
C3—C4—C4A—C5 | 179.82 (8) | N33—C34—C341—C342 | −0.13 (14) |
C3—C4—C4A—C8A | 0.18 (15) | C346—C341—C342—C343 | 0.63 (14) |
C4A—C5—C6—C7 | 0.70 (14) | C34—C341—C342—C343 | −178.78 (8) |
C5—C6—C7—C8 | 0.06 (14) | C341—C342—C343—C344 | 0.20 (15) |
C6—C7—C8—C8A | −0.82 (14) | C342—C343—C344—C345 | −0.51 (15) |
C2—O1—C8A—C8 | −179.39 (7) | C343—C344—C345—C346 | −0.01 (15) |
C2—O1—C8A—C4A | 0.97 (14) | C342—C341—C346—C345 | −1.15 (14) |
C7—C8—C8A—O1 | −178.79 (7) | C34—C341—C346—C345 | 178.27 (8) |
C7—C8—C8A—C4A | 0.85 (15) | C344—C345—C346—C341 | 0.85 (15) |
C5—C4A—C8A—O1 | 179.51 (8) |
D—H···A | D—H | H···A | D···A | D—H···A |
N32—H1···O2 | 0.857 (15) | 2.062 (15) | 2.7238 (10) | 133.5 (12) |
C34—H34···O2i | 0.95 | 2.54 | 3.4417 (11) | 159 |
C4—H4···O31 | 0.95 | 2.40 | 2.7415 (11) | 101 |
C4—H4···O31ii | 0.95 | 2.28 | 3.1377 (12) | 149 |
C5—H5···O31ii | 0.95 | 2.57 | 3.3456 (12) | 139 |
C346—H346···O1i | 0.95 | 2.63 | 3.5195 (11) | 156 |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+2, −y, −z+1. |
Bond | [4: R = 3,4,5-MeO3C6H2·0.5DMSO] | (4: R = C6H5) |
C2—O2 | 1.2133 (12) | 1.2103 (11) |
C31—O31 | 1.2234 (13) | 1.2237 (12) |
C3—C31 | 1.5056 (13) | 1.5003 (13) |
C31—N32 | 1.3543 (13) | 1.3530 (13) |
N32—N33 | 1.3793 (11) | 1.3768 (11) |
N33—C34 | 1.2753 (14) | 1.2753 (13) |
C34—C341 | 1.4629 (14) | 1.4649 (13) |
Compound | [4: R = (3,4,5-MeO)3C6H2·0.5DMSO] | (4: R = C6H5) |
O···H/H···O | 20.2 | 28.4 |
O···N/N···O | 1.9 | – |
O···C/C···O | 6.0 | 2.4 |
O···O | – | 1.2 |
N···C/C···N | 3.3 | 2.3 |
N···H/H···N | 2.4 | 2.7 |
H···C/C···H | 17.9 | 23.7 |
C···C | 8.9 | 1.7 |
H···H | 39.2 | 37.1 |
Acknowledgements
The authors thank the staff at the National Crystallographic Service, University of Southampton (Coles & Gale, 2012) for the data collection, help and advice.
References
Angelova, V. T., Valcheva, V., Vassilev, N. G., Buyukliev, R., Momekov, G., Dimitrov, I., Saso, L., Djukic, M. & Shivachev, B. (2017). Bioorg. Med. Chem. Lett. 27, 223–227. Web of Science CSD CrossRef CAS PubMed Google Scholar
Borges, F., Gomes, L. R. & Low, J. N. (2014a). Private Communication (refcode DOLYEK). CCDC, Cambridge, England. Google Scholar
Borges, F., Gomes, L. R. & Low, J. N. (2014b). Private Communication (refcode DOLYOU). CCDC, Cambridge, England. Google Scholar
Borges, F., Gomes, L. R. & Low, J. N. (2016). Private Communication (refcode DOLYOU01). CCDC, Cambridge, England. Google Scholar
Cagide, F., Silva, T., Reis, J., Gaspar, A., Borges, F., Gomes, L. R. & Low, J. N. (2015). Chem. Commun. 51, 2832–2835. Web of Science CSD CrossRef CAS Google Scholar
Capelini, C., Câmara, V. R. F., Figueroa Villar, J. D., Barbosa, J. M. C., Salomão, K., de Castro, S. L., Sales Junior, P. A., Murta, S. M. F., Couto, T. B., Lourenço, M. C. S., Wardell, J. L., Low, J. N., da Silva, E. D. F. & Carvalho, S. A. (2019). Med. Chem. Submitted. Google Scholar
Cardoso, S. H., Barreto, M. B., Lourenço, M. C. S., Henriques, M. das G. M. de O., Candéa, A. L. P., Kaiser, C. R. & de Souza, M. V. N. (2011). Chem. Biol. Drug Des. 77, 489–493. Google Scholar
Coles, S. J. & Gale, P. A. (2012). Chem. Sci. 3, 683–689. Web of Science CSD CrossRef CAS Google Scholar
Fraga, C. A. M. & Barreiro, E. J. (2006). Curr. Med. Chem. 13, 167–198. Web of Science CrossRef PubMed CAS Google Scholar
Gavezzotti, A. (2003). J. Phys. Chem. B, 107, 2344–2353. Web of Science CrossRef CAS Google Scholar
Gavezzotti, A. (2008). Mol. Phys. 106, 1473–1485. Web of Science CrossRef CAS Google Scholar
Gomes, L. R., Low, J. N., Fonseca, A., Matos, M. J. & Borges, F. (2016a). Acta Cryst. E72, 926–932. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gomes, L. R., Low, J. N., Oliveira, C., Cagide, F. & Borges, F. (2016b). Acta Cryst. E72, 675–682. Web of Science CSD CrossRef IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Howie, R. A., da Silva Lima, C. H., Kaiser, C. R., de Souza, M. V. N., Wardell, J. L. & Wardell, S. M. S. V. (2010). Z. Kristallogr. 225, 158–166. Web of Science CSD CrossRef CAS Google Scholar
Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284. Web of Science CrossRef IUCr Journals Google Scholar
Low, J. N. & Wardell, J. (2019). Private Communication (CCDC 1914876). CCDC, Cambridge, England. doi: 10.5517/ccdc. csd. cc228l65. Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
McArdle, P., Gilligan, K., Cunningham, D., Dark, R. & Mahon, M. (2004). CrystEngComm. 6, 303–309. Web of Science CSD CrossRef CAS Google Scholar
Peralta, M. A., Souza, M. N. V. de, Wardell, S. M. S. V., Wardell, J. L., Low, J. N. & Glidewell, C. (2007). Acta Cryst. C63, o68–o72. Web of Science CSD CrossRef IUCr Journals Google Scholar
Rigaku OD (2019). CryAlis PRO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Singh, N., Ranjana, R., Kumari, M. & Kumar, B. (2016). Int. J. Pharm. Clin. Res. 8, 162-166. Google Scholar
Souza, S. P., Masteloto, H. G., da Silva, D. S., Azambuja, J. H., Braganhol, E., Ribeiro, J. S., Lund, R. G. & Cunico, W. (2017). Lett. Drug. Des. & Discov. 14, 678–685. Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392. Web of Science CrossRef CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wolff, S. K., Grimwood, D. I., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. The University of Western Australia. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.