research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure, Hirshfeld surface analysis and inter­action energy and DFT studies of 2-chloro­ethyl 2-oxo-1-(prop-2-yn-1-yl)-1,2-di­hydro­quinoline-4-carboxyl­ate

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Organique Appliquée, Université Sidi Mohamed Ben Abdallah, Faculté des Sciences et Techniques, Route d'Immouzzer, BP 2202, Fez, Morocco, bDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, cDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, and dLaboratoire de Chimie Bioorganique Appliquée, Faculté des Sciences, Université Ibn Zohr, Agadir, Morocco
*Correspondence e-mail: soniahayani2018@gmail.com

Edited by A. J. Lough, University of Toronto, Canada (Received 27 August 2019; accepted 3 September 2019; online 6 September 2019)

The title compound, C15H12ClNO3, consists of a 1,2-di­hydro­quinoline-4-carb­oxyl­ate unit with 2-chloro­ethyl and propynyl substituents, where the quinoline moiety is almost planar and the propynyl substituent is nearly perpendicular to its mean plane. In the crystal, the mol­ecules form zigzag stacks along the a-axis direction through slightly offset π-stacking inter­actions between inversion-related quinoline moieties which are tied together by inter­molecular C—HPrpn­yl⋯OCarbx and C—HChlethy⋯OCarbx (Prpnyl = propynyl, Carbx = carboxyl­ate and Chlethy = chloro­eth­yl) hydrogen bonds. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (29.9%), H⋯O/O⋯H (21.4%), H⋯C/C⋯ H (19.4%), H⋯Cl/Cl⋯H (16.3%) and C⋯C (8.6%) inter­actions. Hydrogen bonding and van der Waals inter­actions are the dominant inter­actions in the crystal packing. Computational chemistry indicates that in the crystal, the C—HPrpn­yl⋯OCarbx and C—HChlethy⋯OCarbx hydrogen bond energies are 67.1 and 61.7 kJ mol−1, respectively. Density functional theory (DFT) optimized structures at the B3LYP/ 6–311 G(d,p) level are compared with the experimentally determined mol­ecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap.

1. Chemical context

The quinoline ring system is an important structural unit in naturally occurring quinoline alkaloids, therapeutics and synthetic analogues with inter­esting biological activities. Quinolone derivatives possess a variety of pharmacological properties such as anti-bacterial (Hu et al., 2017a[Hu, Y. Q., Zhang, S., Xu, Z., Lv, Z. S., Liu, M. L. & Feng, L. S. (2017a). Eur. J. Med. Chem. 141, 335-345.]; Zhang et al., 2018[Zhang, G. F., Liu, X. F., Zhang, S., Pan, B. F. & Liu, M. L. (2018). Eur. J. Med. Chem. 146, 599-612.]), anti-tubercular (Fan et al., 2018a[Fan, Y. L., Wu, J. B., Cheng, X. W., Zhang, F. Z. & Feng, L. S. (2018a). Eur. J. Med. Chem. 146, 554-563.]; Xu et al., 2017[Xu, Z., Song, X. F., Hu, Y. Q., Qiang, M. & Lv, Z. S. (2017). Eur. J. Med. Chem. 138, 66-71.]), anti-malarial (Fan et al., 2018b[Fan, Y. L., Cheng, X. W., Wu, J. B., Liu, M., Zhang, F. Z., Xu, Z. & Feng, L. S. (2018b). Eur. J. Med. Chem. 146, 1-14.]; Hu et al., 2017b[Hu, Y. Q., Gao, C., Zhang, S., Xu, L., Xu, Z., Feng, L. S., Wu, X. & Zhao, F. (2017b). Eur. J. Med. Chem. 139, 22-47.]), anti-HIV (Sekgota et al., 2017[Sekgota, K. C., Majumder, S., Isaacs, M., Mnkandhla, D., Hoppe, H. C., Khanye, S. D., Kriel, F. H., Coates, J. & Kaye, P. T. (2017). Bioorg. Chem. 75, 310-316.]; Luo et al., 2010[Luo, Z. G., Tan, J. J., Zeng, Y., Wang, C. X. & Hu, L. M. (2010). Mini Rev. Med. Chem. 10, 1046-1057.]), anti-HCV (Mandroni et al., 2014[Manfroni, G., Cannalire, R., Barreca, M. L., Kaushik-Basu, N., Leyssen, P., Winquist, J., Iraci, N., Manvar, D., Paeshuyse, J., Guhamazumder, R., Basu, A., Sabatini, S., Tabarrini, O., Danielson, U. H., Neyts, J. & Cecchetti, V. (2014). J. Med. Chem. 57, 1952-1963.]; Cheng et al., 2016[Cheng, Y., Shen, J., Peng, R. Z., Wang, G. F., Zuo, J. P. & Long, Y. Q. (2016). Bioorg. Med. Chem. Lett. 26, 2900-2906.]) and anti-cancer (Pommier et al., 2010[Pommier, Y., Leo, E., Zhang, H. L. & Marchand, C. (2010). Chem. Biol. 17, 421-433.]; Shahin et al., 2018[Shahin, M. I., Roy, J., Hanafi, M., Wang, D., Luesakul, U., Chai, Y., Muangsin, N., Lasheen, D. S., Ella, D. A. A. E., Abouzid, K. A. & Neamati, N. (2018). Eur. J. Med. Chem. 155, 516-530.]; Bisacchi & Hale, 2016[Bisacchi, G. S. & Hale, M. R. (2016). Curr. Med. Chem. 23, 520-577.]) activities. Recently, substituted quinolines have also been reported to act as antagonists for endothelin (Cheng et al., 1996[Cheng, X. M., Lee, C., Klutchko, S., Winters, T., Reynolds, E. E., Welch, K. M., Flynn, M. A. & Doherty, A. M. (1996). Bioorg. Med. Chem. Lett. 6, 2999-3002.]), 5HT3 (Anzini et al., 1995[Anzini, M., Cappelli, A., Vomero, S., Giorgi, G., Langer, T., Hamon, M., Merahi, N., Emerit, B. M., Cagnotto, A., Skorupska, M., Mennini, T. & Pinto, J. C. (1995). J. Med. Chem. 38, 2692-2704.]), NK-3 (Giardina et al., 1997[Giardina, G. A. M., Sarau, H. M., Farina, C., Medhurst, A. D., Grugni, M., Raveglia, L. F., Schmidt, D. B., Rigolio, R., Luttmann, M., Vecchietti, V. & Hay, D. W. P. (1997). J. Med. Chem. 40, 1794-1807.]) and leukotriene D4 (Gauthier et al., 1990[Gauthier, J. Y., Jones, T., Champion, E., Charette, L., Dehaven, R., Ford-Hutchinson, A. W., Hoogsteen, K., Lord, A., Masson, P., Piechuta, H., Pong, S. S., Springer, J. P., Therien, M., Zamboni, R. & Young, R. N. (1990). J. Med. Chem. 33, 2841-2845.]) receptors. They are also used as inhibitors of gastric (H+/K+)-ATPase (Ife et al., 1992[Ife, K. J., Brown, T. H., Keeling, D. J., Leach, C. A., Meeson, M. L., Parsons, M. E., Reavill, D. R., Theobald, C. J. & Wiggall, K. (1992). J. Med. Chem. 35, 3413-3422.]), di­hydro­orotate de­hydrogenase (Chen et al., 1990[Chen, S. F., Papp, L. M., Ardecky, R. J., Rao, G. V., Hesson, D. P., Forbes, M. & Desxter, D. L. (1990). Biochem. Pharmacol. 40, 709-714.]) and 5-lipoxygenase (Musser et al., 1987[Musser, J. H., Chakraborty, U. R., Sciortino, S., Gordon, R. J., Khandwala, A., Neiss, E. S., Pruss, T. P., Van Inwegen, R., Weinryb, I. & Coutts, S. M. (1987). J. Med. Chem. 30, 96-104.]). As a continuation of our research on the development of N-substituted quinoline derivatives and the assessments of their potential pharmacological activities (Filali Baba et al., 2016[Filali Baba, Y., Elmsellem, H., Kandri Rodi, Y., Steli, H. A. D. C., Ouzidan, Y., Ouazzani Chahdi, F., Sebbar, N. K., Essassi, E. M. & Hammouti, B. (2016). Pharma Chemica, 8, 159-169.], 2017[Filali Baba, Y., Kandri Rodi, Y., Ouzidan, Y., Mague, J. T., Ouazzani Chahdi, F. & Essassi, E. M. (2017). IUCrData, 2, x171038.], 2019[Filali Baba, Y., Sert, Y., Kandri Rodi, Y., Hayani, S., Mague, J. T., Prim, D., Marrot, J., Ouazzani Chahdi, F., Sebbar, N. K. & Essassi, E. M. (2019). J. Mol. Struct. 1188, 255-268.]; Bouzian et al., 2018[Bouzian, Y., Hlimi, F., Sebbar, N. K., El Hafi, M., Hni, B., Essassi, E. M. & Mague, J. T. (2018). IUCrData, 3, x181438.], 2019a[Bouzian, Y., Faizi, M. S. H., Mague, J. T., Otmani, B. E., Dege, N., Karrouchi, K. & Essassi, E. M. (2019a). Acta Cryst. E75, 980-983.]), we have studied the condensation reaction of propargyl bromide with 2-chloro­ethyl 2-oxo-1,2-di­hydro­quinoline-4-carboxyl­ate under phase-transfer catalysis conditions using tetra-n-butyl­ammonium bromide (TBAB) as catalyst and potassium carbonate as base. We report herein on the synthesis and the mol­ecular and crystal structures of the title compound along with the Hirshfeld surface analysis and the inter­molecular inter­action energies and the density functional theory (DFT) computational calculation carried out at the B3LYP/6–311 G(d,p) level.

[Scheme 1]

2. Structural commentary

The title mol­ecule consists of a 1,2-di­hydro­quinoline-4-carboxyl­ate unit with 2-chloro­ethyl and propynyl substituents (Fig. 1[link]). The constituent rings, A (C1–C6) and B (N1/C1/C6–C9), of the di­hydro­quinoline unit are oriented at a dihedral angle of 2.69 (17)°. The mean plane through the di­hydro­quinoline unit is almost planar with a maximum deviation of 0.040 (3) Å for atom N1, and the propynyl substituent is nearly perpendicular to that plane, the C6—N1—C10—C11 torsion angle being −79.6 (4)°. The carboxyl group is twisted out of coplanarity with the di­hydro­quinoline unit by a dihedral angle of 47.13 (23)°; this is also indicated by the C1—C9—C13—O2 torsion angle of −44.2 (6)°.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

In the crystal, the mol­ecules form zigzag stacks along the a-axis direction through slightly offset π-stacking inter­actions between inversion-related quinoline moieties (Fig. 2[link]). The stacks are tied together by a network of inter­molecular C—HPrpn­yl⋯OCarbx and C—HChlethy⋯OCarbx (Prpnyl = propynyl, Carbx = carboxyl­ate and Chlethy = chloro­eth­yl) hydrogen bonds, enclosing R22(16) and R44(8) ring motifs (Table 1[link] and Fig. 3[link]). The ππ contacts between the constituent rings, A (C1–C6) and B (N1/C1/C6–C9), of the di­hydro­quinoline unit, Cg2Cg1i, Cg2⋯Cg1ii and Cg1⋯Cg1i [centroid–centroid distance = 3.728 (2), 3.571 (2) and 3.761 (2) Å, respectively, where Cg1 and Cg2 are the centroids of the rings, A and B; symmetry codes: (i) 1 − x, 1 − y, 1 − z and (ii) −x, 1 − y, 1 − z], may further stabilize the structure.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10A⋯O2viii 0.99 2.49 3.458 (5) 167
C10—H10B⋯O1iv 0.99 2.39 3.250 (4) 145
C15—H15A⋯O1iii 0.99 2.46 3.406 (6) 159
C15—H15B⋯O2xi 0.99 2.40 3.219 (6) 140
Symmetry codes: (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) -x, -y+1, -z+2; (viii) -x, -y+1, -z+1; (xi) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
A partial packing diagram viewed along the c-axis direction with the π-stacking inter­actions shown as dashed lines.
[Figure 3]
Figure 3
A partial packing diagram viewed along the a-axis direction with the C—HPrpn­yl⋯OCarbx and C—HChlethy⋯OCarbx (Prpnyl = propynyl, Carbx = carboxyl­ate and Chlethy = chloro­eth­yl) hydrogen bonds and π-stacking inter­actions shown, respectively, as black and orange dashed lines.

4. Hirshfeld surface analysis

In order to visualize the inter­molecular inter­actions in the crystal of the title compound, a Hirshfeld surface (HS) analysis (Hirshfeld, 1977[Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129-138.]; Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) was carried out by using CrystalExplorer17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.]). In the HS plotted over dnorm (Fig. 4[link]), the white surface indicates contacts with distances equal to the sum of van der Waals radii, and the red and blue colours indicate distances shorter (in close contact) or longer (distinct contact) than the van der Waals radii, respectively (Venkatesan et al., 2016[Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A, 153, 625-636.]). The bright-red spots appearing near atoms O1, O2 and hydrogen atoms H10A, H10B, H15A and H15B indicate their roles as the respective donors and/or acceptors; they also appear as blue and red regions corresponding to positive and negative potentials on the HS mapped over electrostatic potential (Spackman et al., 2008[Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377-388.]; Jayatilaka et al., 2005[Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO - A System for Computational Chemistry. Available at: https://hirshfeldsurface.net/]) as shown in Fig. 5[link]. The blue regions indicate the positive electrostatic potential (hydrogen-bond donors), while the red regions indicate the negative electrostatic potential (hydrogen-bond acceptors). The shape-index of the HS is a tool to visualize ππ stacking by the presence of adjacent red and blue triangles; if there are no adjacent red and/or blue triangles, then there are no ππ inter­actions. Fig. 6[link] clearly suggest that there are ππ inter­actions in (I)[link].

[Figure 4]
Figure 4
View of the three-dimensional Hirshfeld surface of the title compound plotted over dnorm in the range −0.2177 to 1.3626 a.u.
[Figure 5]
Figure 5
View of the three-dimensional Hirshfeld surface of the title compound plotted over electrostatic potential energy in the range −0.0500 to 0.0500 a.u. using the STO-3 G basis set at the Hartree–Fock level of theory. Hydrogen-bond donors and acceptors are shown as blue and red regions around the atoms, corresponding to positive and negative potentials, respectively.
[Figure 6]
Figure 6
Hirshfeld surface of the title compound plotted over shape-index.

The overall two-dimensional fingerprint plot, Fig. 7[link]a, and those delineated into H ⋯ H, H⋯O/O⋯H, H⋯C/C⋯H, H⋯Cl/Cl⋯H, C⋯C, C⋯N/N ⋯ C and O⋯Cl/Cl⋯O contacts (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) are illustrated in Fig. 7[link] bh, respectively, together with their relative contributions to the Hirshfeld surface. The most important inter­action is H⋯H (Table 2[link]), contributing 29.9% to the overall crystal packing, which is reflected in Fig. 7[link]b as widely scattered points of high density due to the large hydrogen content of the mol­ecule with the tip at de = di = 1.22 Å. The pair of characteristic wings in the fingerprint plot delineated into H⋯O/O⋯H contacts (21.4% contribution, Fig. 7[link]c) are viewed as a pair of spikes with the tips at de + di = 2.28 Å. In the absence of C—H⋯π inter­actions, the pairs of characteristic wings in Fig. 7[link]d arise from H⋯C/C⋯H contacts (19.4%) and are viewed as pairs of spikes with the tips at de + di = 2.65 Å and 2.70 Å for the thin and thick spikes, respectively. The scattered points in the pair of wings in the fingerprint plot delineated into H⋯Cl/Cl⋯H (16.3% contribution, Fig. 7[link]e) have a symmetrical distribution with the edges at de + di = 2.60 Å. The C⋯C contacts, Fig. 7[link]f, have an arrow-shaped distribution of points with the tip at de = di = 1.72 Å. Finally, the characteristic tip and wings in the fingerprint plots delineated into C⋯N/N⋯C and O⋯Cl/Cl⋯O contacts (1.6% and 1.1% contributions, respectively, Fig. 7[link]g and 7h) have the tips at de = di = 1.73 and 3.70 Å, respectively.

Table 2
Selected interatomic distances (Å)

Cl1⋯O3 3.110 (3) C1⋯C6viii 3.534 (5)
Cl1⋯C12i 3.629 (5) C2⋯C6ii 3.489 (5)
Cl1⋯H12i 2.75 C2⋯C10viii 3.388 (5)
Cl1⋯H5ii 3.03 C4⋯C7viii 3.597 (5)
Cl1⋯H8iii 2.96 C4⋯C9ii 3.452 (5)
O1⋯C10iv 3.250 (5) C5⋯C11 3.241 (5)
O1⋯C12v 3.409 (6) C5⋯C9viii 3.575 (5)
O1⋯C15vi 3.406 (5) C6⋯C6viii 3.485 (4)
O2⋯C2 3.045 (5) C2⋯H10Aviii 2.88
O2⋯C15vii 3.219 (6) C5⋯H10A 2.61
O3⋯Cl1 3.110 (3) C10⋯H5 2.50
O1⋯H10B 2.30 C11⋯H3ix 2.85
O1⋯H10Biv 2.39 C11⋯H5 2.72
O1⋯H15Avi 2.46 C12⋯H14Ax 2.95
O2⋯H14B 2.46 C12⋯H2ii 2.80
O2⋯H2 2.49 C12⋯H3ix 2.93
O2⋯H14A 2.80 C13⋯H2 2.65
O2⋯H15Bvii 2.40 H5⋯H10A 2.10
O2⋯H10Aviii 2.49 H8⋯H15Avi 2.55
O3⋯H8 2.50    
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) -x+1, -y+1, -z+1; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) -x, -y+1, -z+2; (v) -x+1, -y+1, -z+2; (vi) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (vii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (viii) -x, -y+1, -z+1; (ix) x, y, z+1; (x) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 7]
Figure 7
The full two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) H⋯O/O⋯H, (d) H⋯C/C⋯H, (e) H⋯Cl/Cl⋯H, (f) C⋯C, (g) C⋯N/N⋯C and (h) O⋯Cl/Cl⋯O inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface contacts.

The Hirshfeld surface representations with the function dnorm plotted onto the surface are shown for the H⋯H, H⋯O/O⋯H, H⋯C/C⋯H and H ⋯ Cl/Cl⋯H inter­actions in Fig. 8[link]ad, respectively.

[Figure 8]
Figure 8
The Hirshfeld surface representations with the function dnorm plotted onto the surface for (a) H⋯H, (b) H⋯O/O⋯H, (c) H⋯C/C⋯H and (d) H⋯Cl/Cl⋯H inter­actions.

The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯H, H⋯O/O⋯H, H ⋯ C/C⋯H and H⋯Cl/Cl⋯H inter­actions suggest that van der Waals inter­actions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015[Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563-574.]).

5. Inter­action energy calculations

The inter­molecular inter­action energies were calculated using the CE–B3LYP/6–31G(d,p) energy model available in CrystalExplorer17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.]), where by default a cluster of mol­ecules are generated by applying crystallographic symmetry operations with respect to a selected central mol­ecule within a radius of 3.8 Å (Turner et al., 2014[Turner, M. J., Grabowsky, S., Jayatilaka, D. & Spackman, M. A. (2014). J. Phys. Chem. Lett. 5, 4249-4255.]). The total inter­molecular energy (Etot) is the sum of electrostatic (Eele), polarization (Epol), dispersion (Edis) and exchange-repulsion (Erep) energies (Turner et al., 2015[Turner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735-3738.]) with scale factors of 1.057, 0.740, 0.871 and 0.618, respectively (Mackenzie et al., 2017[Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575-587.]). Hydrogen-bonding inter­action energies (in kJ mol−1) were calculated to be −25.2 (Eele), −2.1 (Epol), −85.4 (Edis), 57.5 (Erep) and −67.1 (Etot) for the C—HPrpn­yl⋯OCarbx hydrogen bond and −26.5 (Eele), −4.7 (Epol), −73.2 (Edis), 54.3 (Erep) and −61.7 (Etot) for the C—HChlethy⋯OCarbx hydrogen bond.

6. DFT calculations

The optimized structure of the title compound in the gas phase was generated theoretically via density functional theory (DFT) using the standard B3LYP functional and 6–311 G(d,p) basis-set calculations (Becke, 1993[Becke, A. D. (1993). J. Chem. Phys. 98, 5648-5652.]) as implemented in GAUSSIAN 09 (Frisch et al., 2009[Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.]). The theoretical and experimental results were in good agreement (Table 3[link]). The highest-occupied mol­ecular orbital (HOMO), acting as an electron donor, and the lowest-unoccupied mol­ecular orbital (LUMO), acting as an electron acceptor, are very important parameters for quantum chemistry. When the energy gap is small, the mol­ecule is highly polarizable and has high chemical reactivity. The DFT calculations provide some important information on the reactivity and site selectivity of the mol­ecular framework. EHOMO and ELUMO clarify the inevitable charge-exchange collaboration inside the studied material, and are recorded in Table 4[link] along with the electronegativity (χ), hardness (η), potential (μ), electrophilicity (ω) and softness (σ). The significance of η and σ is to evaluate both the reactivity and stability. The electron transition from the HOMO to the LUMO energy level is shown in Fig. 9[link]. The HOMO and LUMO are localized in the plane extending from the whole 2-chloro­ethyl 2-oxo-1-(prop-2-yn-1-yl)-1,2-di­hydro­quinoline-4-carboxyl­ate ring. The energy band gap [ΔE = ELUMO − EHOMO] of the mol­ecule is 3.6984 eV, and the frontier mol­ecular orbital energies, EHOMO and ELUMO are −6.3024 and −2.6040 eV, respectively.

Table 3
Comparison of selected (X-ray and DFT) geometric data (Å, °)

Bonds/angles X-ray B3LYP/6–311G(d,p)
Cl1—C15 1.838 (6) 1.88121
O1—C7 1.235 (5) 1.25852
O2—C13 1.213 (5) 1.24099
O3—C13 1.322 (5) 1.38771
O3—C14 1.459 (5) 1.47976
N1—C7 1.381 (5) 1.40545
N1—C6 1.405 (4) 1.41686
N1—C10 1.469 (4) 1.49984
C13—O3—C14 115.2 (4) 116.83182
C7—N1—C6 123.1 (3) 121.89630
C7—N1—C10 116.9 (3) 117.96161
C6—N1—C10 120.0 (3) 117.10486
N1—C6—C1 119.5 (3) 120.53011
O1—C7—N1 121.4 (3) 122.42582
O1—C7—C8 122.5 (3) 121.61064
N1—C7—C8 116.1 (3) 115.96268

Table 4
Calculated energies

Mol­ecular Energy  
Total Energy, TE −35893.2971
EHOMO (eV) −6.3024
ELUMO (eV) −2.6040
Gap ΔE (eV) 3.6984
Dipole moment, μ (Debye) 3.8441
Ionization potential, I (eV) 6.3024
Electron affinity, A 2.6040
Electro negativity, χ 4.4532
Hardness, η 1.8492
Electrophilicity index, ω 5.3620
Softness, σ 0.5408
Fraction of electron transferred, ΔN 0.6886
[Figure 9]
Figure 9
The energy band gap of the title compound.

7. Database survey

A non-alkyl­ated analogue, namely quinoline and its derivatives, has been reported (Filali Baba et al., 2016[Filali Baba, Y., Elmsellem, H., Kandri Rodi, Y., Steli, H. A. D. C., Ouzidan, Y., Ouazzani Chahdi, F., Sebbar, N. K., Essassi, E. M. & Hammouti, B. (2016). Pharma Chemica, 8, 159-169.], 2017[Filali Baba, Y., Kandri Rodi, Y., Ouzidan, Y., Mague, J. T., Ouazzani Chahdi, F. & Essassi, E. M. (2017). IUCrData, 2, x171038.]), as well as three similar structures, see: Bouzian et al., 2018[Bouzian, Y., Hlimi, F., Sebbar, N. K., El Hafi, M., Hni, B., Essassi, E. M. & Mague, J. T. (2018). IUCrData, 3, x181438.], 2019a[Bouzian, Y., Faizi, M. S. H., Mague, J. T., Otmani, B. E., Dege, N., Karrouchi, K. & Essassi, E. M. (2019a). Acta Cryst. E75, 980-983.],b[Bouzian, Y., Karrouchi, K., Anouar, E. H., Bouhfid, R., Arshad, S. & Essassi, E. M. (2019b). Acta Cryst. E75, 912-916.]; Filali Baba et al., 2019[Filali Baba, Y., Sert, Y., Kandri Rodi, Y., Hayani, S., Mague, J. T., Prim, D., Marrot, J., Ouazzani Chahdi, F., Sebbar, N. K. & Essassi, E. M. (2019). J. Mol. Struct. 1188, 255-268.].

8. Synthesis and crystallization

To a solution of 2-chloro­ethyl 2-oxo-1,2-di­hydro­quinoline-4-carboxyl­ate (0.50 g, 2.00 mmol) in DMF (10.00 ml) were added propargyl bromide (0.20 ml, 2.38 mmol), K2CO3 (0.82 g, 6.00 mmol) and TBAB (0.06 g, 0.20 mmol). The reaction mixture was stirred at room temperature for 6 h. After removal of the salts by filtration, the solvent was evaporated under reduced pressure and the resulting residue was dissolved in di­chloro­methane. The organic phase was dried with Na2SO4, and then concentrated under reduced pressure. The pure compound was obtained by column chromatography using hexa­ne/ethyl acetate (3/1) as eluent. The isolated solid was recrystallized from hexa­ne/ethyl acetate (3:1) to afford colourless crystals (yield: 84%, m.p. 394.15 K).

9. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. Hydrogen atoms were positioned geometrically (C—H = 0.95 and 0.99 Å, for CH and CH2 H atoms, respectively) and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C). The largest peak and hole in the final difference map are +0.73 e Å−3 (1.00 Å away from Cl1) and −0.35 e Å−3 (0.64 Å away from C14), and are associated with the 2-chloro­ethyl­carb­oxy group and may indicate a slight degree of disorder here but it was not considered serious enough to model.

Table 5
Experimental details

Crystal data
Chemical formula C15H12ClNO3
Mr 289.71
Crystal system, space group Monoclinic, P21/n
Temperature (K) 150
a, b, c (Å) 7.1809 (2), 21.4466 (5), 8.9173 (2)
β (°) 92.784 (2)
V3) 1371.70 (6)
Z 4
Radiation type Cu Kα
μ (mm−1) 2.53
Crystal size (mm) 0.19 × 0.14 × 0.01
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.64, 0.97
No. of measured, independent and observed [I > 2σ(I)] reflections 10119, 2555, 2170
Rint 0.047
(sin θ/λ)max−1) 0.610
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.078, 0.178, 1.13
No. of reflections 2555
No. of parameters 181
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.73, −0.35
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

2-Chloroethyl 2-oxo-1-(prop-2-yn-1-yl)-1,2-dihydroquinoline-4-carboxylate top
Crystal data top
C15H12ClNO3F(000) = 600
Mr = 289.71Dx = 1.403 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54178 Å
a = 7.1809 (2) ÅCell parameters from 6719 reflections
b = 21.4466 (5) Åθ = 4.1–69.9°
c = 8.9173 (2) ŵ = 2.53 mm1
β = 92.784 (2)°T = 150 K
V = 1371.70 (6) Å3Plate, colourless
Z = 40.19 × 0.14 × 0.01 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
2555 independent reflections
Radiation source: INCOATEC IµS micro–focus source2170 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.047
Detector resolution: 10.4167 pixels mm-1θmax = 70.1°, θmin = 4.1°
ω scansh = 88
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 2625
Tmin = 0.64, Tmax = 0.97l = 1010
10119 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual space
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.078Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.178H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0332P)2 + 4.0657P]
where P = (Fo2 + 2Fc2)/3
2555 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 0.73 e Å3
0 restraintsΔρmin = 0.35 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.99 Å) and included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. The largest peaks and holes in the final difference map are < +/-1 e--/%A-3 and are associated with the 2-chloroethylcarboxy group and may indicate a slight degree of disorder here but it was not considered serious enough to model.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.7800 (2)0.24965 (6)0.45136 (18)0.0683 (4)
O10.1693 (4)0.43876 (13)0.9233 (3)0.0390 (7)
O20.1917 (5)0.33835 (15)0.3272 (4)0.0569 (9)
O30.3893 (5)0.30409 (14)0.5116 (4)0.0505 (8)
N10.1864 (4)0.50421 (13)0.7226 (3)0.0269 (6)
C10.2615 (5)0.46384 (17)0.4782 (4)0.0282 (8)
C20.2997 (5)0.47567 (19)0.3269 (4)0.0345 (9)
H20.3246830.4416920.2625950.041*
C30.3014 (5)0.5349 (2)0.2715 (4)0.0372 (9)
H30.3264600.5419150.1692530.045*
C40.2661 (5)0.58513 (19)0.3654 (4)0.0363 (9)
H40.2675010.6263950.3268070.044*
C50.2290 (5)0.57527 (18)0.5145 (4)0.0312 (8)
H50.2058140.6097620.5778240.037*
C60.2256 (5)0.51487 (17)0.5719 (4)0.0266 (7)
C70.1967 (5)0.44600 (17)0.7888 (4)0.0296 (8)
C80.2365 (5)0.39456 (17)0.6907 (4)0.0326 (8)
H80.2444340.3536900.7315810.039*
C90.2627 (5)0.40246 (17)0.5429 (4)0.0308 (8)
C100.1343 (5)0.55651 (17)0.8183 (4)0.0295 (8)
H10A0.0476960.5843370.7602680.035*
H10B0.0679630.5401620.9047960.035*
C110.2966 (6)0.59261 (18)0.8741 (4)0.0346 (9)
C120.4275 (7)0.6208 (2)0.9178 (5)0.0485 (11)
H120.5339840.6436890.9533890.058*
C130.2778 (6)0.34610 (18)0.4461 (5)0.0385 (9)
C140.4018 (8)0.2450 (2)0.4316 (6)0.0595 (14)
H14A0.2865020.2203840.4413230.071*
H14B0.4194430.2525400.3236170.071*
C150.5603 (9)0.2122 (2)0.4990 (6)0.0629 (14)
H15A0.5591540.1685270.4631200.076*
H15B0.5514420.2116420.6094160.076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0708 (9)0.0393 (6)0.0940 (11)0.0187 (6)0.0052 (7)0.0096 (6)
O10.0464 (16)0.0416 (15)0.0301 (15)0.0056 (13)0.0132 (12)0.0061 (12)
O20.074 (2)0.0488 (19)0.0469 (19)0.0006 (17)0.0037 (17)0.0143 (15)
O30.057 (2)0.0357 (16)0.060 (2)0.0087 (14)0.0107 (16)0.0126 (14)
N10.0262 (15)0.0270 (15)0.0282 (16)0.0024 (12)0.0081 (12)0.0009 (12)
C10.0206 (16)0.0332 (19)0.0314 (19)0.0018 (14)0.0064 (14)0.0014 (15)
C20.0276 (19)0.047 (2)0.030 (2)0.0039 (17)0.0062 (15)0.0071 (17)
C30.033 (2)0.051 (2)0.028 (2)0.0076 (18)0.0037 (16)0.0055 (17)
C40.033 (2)0.041 (2)0.035 (2)0.0045 (17)0.0001 (16)0.0091 (17)
C50.0264 (18)0.0325 (19)0.035 (2)0.0008 (15)0.0035 (15)0.0018 (16)
C60.0194 (16)0.0335 (19)0.0273 (18)0.0005 (14)0.0058 (13)0.0004 (15)
C70.0252 (18)0.0302 (19)0.034 (2)0.0011 (14)0.0082 (15)0.0029 (15)
C80.0317 (19)0.0285 (19)0.038 (2)0.0020 (15)0.0080 (16)0.0044 (16)
C90.0249 (18)0.0323 (19)0.036 (2)0.0006 (14)0.0088 (15)0.0020 (16)
C100.0287 (18)0.0307 (19)0.0297 (19)0.0034 (15)0.0076 (15)0.0025 (15)
C110.043 (2)0.034 (2)0.028 (2)0.0003 (17)0.0101 (17)0.0039 (16)
C120.047 (3)0.056 (3)0.043 (3)0.009 (2)0.006 (2)0.010 (2)
C130.038 (2)0.030 (2)0.049 (3)0.0004 (17)0.0092 (19)0.0001 (18)
C140.086 (4)0.029 (2)0.065 (3)0.012 (2)0.021 (3)0.005 (2)
C150.091 (4)0.046 (3)0.051 (3)0.013 (3)0.007 (3)0.002 (2)
Geometric parameters (Å, º) top
Cl1—C151.838 (6)C5—C61.393 (5)
O1—C71.235 (5)C5—H50.9500
O2—C131.213 (5)C7—C81.445 (5)
O3—C131.322 (5)C8—C91.351 (5)
O3—C141.459 (5)C8—H80.9500
N1—C71.381 (5)C9—C131.492 (5)
N1—C61.405 (4)C10—C111.465 (5)
N1—C101.469 (4)C10—H10A0.9900
C1—C61.409 (5)C10—H10B0.9900
C1—C21.412 (5)C11—C121.169 (6)
C1—C91.437 (5)C12—H120.9500
C2—C31.363 (6)C14—C151.444 (8)
C2—H20.9500C14—H14A0.9900
C3—C41.396 (6)C14—H14B0.9900
C3—H30.9500C15—H15A0.9900
C4—C51.385 (5)C15—H15B0.9900
C4—H40.9500
Cl1···O33.110 (3)C1···C6viii3.534 (5)
Cl1···C12i3.629 (5)C2···C6ii3.489 (5)
Cl1···H12i2.75C2···C10viii3.388 (5)
Cl1···H5ii3.03C4···C7viii3.597 (5)
Cl1···H8iii2.96C4···C9ii3.452 (5)
O1···C10iv3.250 (5)C5···C113.241 (5)
O1···C12v3.409 (6)C5···C9viii3.575 (5)
O1···C15vi3.406 (5)C6···C6viii3.485 (4)
O2···C23.045 (5)C2···H10Aviii2.88
O2···C15vii3.219 (6)C5···H10A2.61
O3···Cl13.110 (3)C10···H52.50
O1···H10B2.30C11···H3ix2.85
O1···H10Biv2.39C11···H52.72
O1···H15Avi2.46C12···H14Ax2.95
O2···H14B2.46C12···H2ii2.80
O2···H22.49C12···H3ix2.93
O2···H14A2.80C13···H22.65
O2···H15Bvii2.40H5···H10A2.10
O2···H10Aviii2.49H8···H15Avi2.55
O3···H82.50
C13—O3—C14115.2 (4)C7—C8—H8118.8
C7—N1—C6123.1 (3)C8—C9—C1120.5 (3)
C7—N1—C10116.9 (3)C8—C9—C13118.7 (3)
C6—N1—C10120.0 (3)C1—C9—C13120.6 (3)
C6—C1—C2118.5 (3)C11—C10—N1112.3 (3)
C6—C1—C9118.1 (3)C11—C10—H10A109.1
C2—C1—C9123.4 (3)N1—C10—H10A109.1
C3—C2—C1121.3 (4)C11—C10—H10B109.1
C3—C2—H2119.4N1—C10—H10B109.1
C1—C2—H2119.4H10A—C10—H10B107.9
C2—C3—C4119.8 (4)C12—C11—C10179.1 (5)
C2—C3—H3120.1C11—C12—H12180.0
C4—C3—H3120.1O2—C13—O3124.4 (4)
C5—C4—C3120.5 (4)O2—C13—C9124.6 (4)
C5—C4—H4119.8O3—C13—C9110.8 (4)
C3—C4—H4119.8C15—C14—O3106.6 (5)
C4—C5—C6120.1 (4)C15—C14—H14A110.4
C4—C5—H5119.9O3—C14—H14A110.4
C6—C5—H5119.9C15—C14—H14B110.4
C5—C6—N1120.7 (3)O3—C14—H14B110.4
C5—C6—C1119.8 (3)H14A—C14—H14B108.6
N1—C6—C1119.5 (3)C14—C15—Cl1111.0 (4)
O1—C7—N1121.4 (3)C14—C15—H15A109.4
O1—C7—C8122.5 (3)Cl1—C15—H15A109.4
N1—C7—C8116.1 (3)C14—C15—H15B109.4
C9—C8—C7122.4 (3)Cl1—C15—H15B109.4
C9—C8—H8118.8H15A—C15—H15B108.0
C6—C1—C2—C30.3 (5)O1—C7—C8—C9178.7 (4)
C9—C1—C2—C3178.4 (4)N1—C7—C8—C90.1 (5)
C1—C2—C3—C40.4 (6)C7—C8—C9—C13.3 (6)
C2—C3—C4—C50.1 (6)C7—C8—C9—C13171.9 (3)
C3—C4—C5—C60.4 (6)C6—C1—C9—C82.3 (5)
C4—C5—C6—N1179.4 (3)C2—C1—C9—C8175.9 (4)
C4—C5—C6—C10.5 (5)C6—C1—C9—C13172.9 (3)
C7—N1—C6—C5174.3 (3)C2—C1—C9—C139.0 (5)
C10—N1—C6—C54.7 (5)C7—N1—C10—C1199.5 (4)
C7—N1—C6—C15.7 (5)C6—N1—C10—C1179.6 (4)
C10—N1—C6—C1175.2 (3)C14—O3—C13—O20.9 (6)
C2—C1—C6—C50.2 (5)C14—O3—C13—C9175.3 (4)
C9—C1—C6—C5178.0 (3)C8—C9—C13—O2131.0 (5)
C2—C1—C6—N1179.7 (3)C1—C9—C13—O244.2 (6)
C9—C1—C6—N12.1 (5)C8—C9—C13—O345.2 (5)
C6—N1—C7—O1176.8 (3)C1—C9—C13—O3139.6 (4)
C10—N1—C7—O12.3 (5)C13—O3—C14—C15166.2 (4)
C6—N1—C7—C84.7 (5)O3—C14—C15—Cl170.8 (5)
C10—N1—C7—C8176.2 (3)
Symmetry codes: (i) x+3/2, y1/2, z+3/2; (ii) x+1, y+1, z+1; (iii) x+1/2, y+1/2, z1/2; (iv) x, y+1, z+2; (v) x+1, y+1, z+2; (vi) x1/2, y+1/2, z+1/2; (vii) x1/2, y+1/2, z1/2; (viii) x, y+1, z+1; (ix) x, y, z+1; (x) x+1/2, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10A···O2viii0.992.493.458 (5)167
C10—H10B···O1iv0.992.393.250 (4)145
C15—H15A···O1iii0.992.463.406 (6)159
C15—H15B···O2xi0.992.403.219 (6)140
Symmetry codes: (iii) x+1/2, y+1/2, z1/2; (iv) x, y+1, z+2; (viii) x, y+1, z+1; (xi) x+1/2, y+1/2, z+1/2.
Comparison of selected (X-ray and DFT) geometric data (Å, °) top
Bonds/anglesX-rayB3LYP/6-311G(d,p)
Cl1—C151.838 (6)1.88121
O1—C71.235 (5)1.25852
O2—C131.213 (5)1.24099
O3—C131.322 (5)1.38771
O3—C141.459 (5)1.47976
N1—C71.381 (5)1.40545
N1—C61.405 (4)1.41686
N1—C101.469 (4)1.49984
C13—O3—C14115.2 (4)116.83182
C7—N1—C6123.1 (3)121.89630
C7—N1—C10116.9 (3)117.96161
C6—N1—C10120.0 (3)117.10486
N1—C6—C1119.5 (3)120.53011
O1—C7—N1121.4 (3)122.42582
O1—C7—C8122.5 (3)121.61064
N1—C7—C8116.1 (3)115.96268
Calculated energies top
Molecular Energy
Total Energy, TE-35893.2971
EHOMO (eV)-6.3024
ELUMO (eV)-2.6040
Gap ΔE (eV)3.6984
Dipole moment, µ (Debye)3.8441
Ionization potential, I (eV)6.3024
Electron affinity, A2.6040
Electro negativity, χ4.4532
Hardness, η1.8492
Electrophilicity index, ω5.3620
Softness, σ0.5408
Fraction of electron transferred, ΔN0.6886
 

Funding information

The support of NSF–MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged. TH is grateful to Hacettepe University Scientific Research Project Unit (grant No. 013 D04 602 004).

References

First citationAnzini, M., Cappelli, A., Vomero, S., Giorgi, G., Langer, T., Hamon, M., Merahi, N., Emerit, B. M., Cagnotto, A., Skorupska, M., Mennini, T. & Pinto, J. C. (1995). J. Med. Chem. 38, 2692–2704.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBecke, A. D. (1993). J. Chem. Phys. 98, 5648–5652.  CrossRef CAS Web of Science Google Scholar
First citationBisacchi, G. S. & Hale, M. R. (2016). Curr. Med. Chem. 23, 520–577.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBouzian, Y., Faizi, M. S. H., Mague, J. T., Otmani, B. E., Dege, N., Karrouchi, K. & Essassi, E. M. (2019a). Acta Cryst. E75, 980–983.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBouzian, Y., Hlimi, F., Sebbar, N. K., El Hafi, M., Hni, B., Essassi, E. M. & Mague, J. T. (2018). IUCrData, 3, x181438.  Google Scholar
First citationBouzian, Y., Karrouchi, K., Anouar, E. H., Bouhfid, R., Arshad, S. & Essassi, E. M. (2019b). Acta Cryst. E75, 912–916.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, S. F., Papp, L. M., Ardecky, R. J., Rao, G. V., Hesson, D. P., Forbes, M. & Desxter, D. L. (1990). Biochem. Pharmacol. 40, 709–714.  CAS PubMed Google Scholar
First citationCheng, X. M., Lee, C., Klutchko, S., Winters, T., Reynolds, E. E., Welch, K. M., Flynn, M. A. & Doherty, A. M. (1996). Bioorg. Med. Chem. Lett. 6, 2999–3002.  CrossRef CAS Web of Science Google Scholar
First citationCheng, Y., Shen, J., Peng, R. Z., Wang, G. F., Zuo, J. P. & Long, Y. Q. (2016). Bioorg. Med. Chem. Lett. 26, 2900–2906.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFan, Y. L., Cheng, X. W., Wu, J. B., Liu, M., Zhang, F. Z., Xu, Z. & Feng, L. S. (2018b). Eur. J. Med. Chem. 146, 1–14.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFan, Y. L., Wu, J. B., Cheng, X. W., Zhang, F. Z. & Feng, L. S. (2018a). Eur. J. Med. Chem. 146, 554–563.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFilali Baba, Y., Elmsellem, H., Kandri Rodi, Y., Steli, H. A. D. C., Ouzidan, Y., Ouazzani Chahdi, F., Sebbar, N. K., Essassi, E. M. & Hammouti, B. (2016). Pharma Chemica, 8, 159–169.  Google Scholar
First citationFilali Baba, Y., Kandri Rodi, Y., Ouzidan, Y., Mague, J. T., Ouazzani Chahdi, F. & Essassi, E. M. (2017). IUCrData, 2, x171038.  Google Scholar
First citationFilali Baba, Y., Sert, Y., Kandri Rodi, Y., Hayani, S., Mague, J. T., Prim, D., Marrot, J., Ouazzani Chahdi, F., Sebbar, N. K. & Essassi, E. M. (2019). J. Mol. Struct. 1188, 255–268.  Web of Science CSD CrossRef CAS Google Scholar
First citationFrisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.  Google Scholar
First citationGauthier, J. Y., Jones, T., Champion, E., Charette, L., Dehaven, R., Ford-Hutchinson, A. W., Hoogsteen, K., Lord, A., Masson, P., Piechuta, H., Pong, S. S., Springer, J. P., Therien, M., Zamboni, R. & Young, R. N. (1990). J. Med. Chem. 33, 2841–2845.  CSD CrossRef CAS PubMed Web of Science Google Scholar
First citationGiardina, G. A. M., Sarau, H. M., Farina, C., Medhurst, A. D., Grugni, M., Raveglia, L. F., Schmidt, D. B., Rigolio, R., Luttmann, M., Vecchietti, V. & Hay, D. W. P. (1997). J. Med. Chem. 40, 1794–1807.  CrossRef CAS PubMed Web of Science Google Scholar
First citationHathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationHirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138.  CrossRef CAS Web of Science Google Scholar
First citationHu, Y. Q., Gao, C., Zhang, S., Xu, L., Xu, Z., Feng, L. S., Wu, X. & Zhao, F. (2017b). Eur. J. Med. Chem. 139, 22–47.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHu, Y. Q., Zhang, S., Xu, Z., Lv, Z. S., Liu, M. L. & Feng, L. S. (2017a). Eur. J. Med. Chem. 141, 335–345.  Web of Science CrossRef CAS PubMed Google Scholar
First citationIfe, K. J., Brown, T. H., Keeling, D. J., Leach, C. A., Meeson, M. L., Parsons, M. E., Reavill, D. R., Theobald, C. J. & Wiggall, K. (1992). J. Med. Chem. 35, 3413–3422.  CrossRef PubMed CAS Web of Science Google Scholar
First citationJayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO – A System for Computational Chemistry. Available at: https://hirshfeldsurface.net/  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLuo, Z. G., Tan, J. J., Zeng, Y., Wang, C. X. & Hu, L. M. (2010). Mini Rev. Med. Chem. 10, 1046–1057.  CAS PubMed Google Scholar
First citationMackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575–587.  Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
First citationManfroni, G., Cannalire, R., Barreca, M. L., Kaushik-Basu, N., Leyssen, P., Winquist, J., Iraci, N., Manvar, D., Paeshuyse, J., Guhamazumder, R., Basu, A., Sabatini, S., Tabarrini, O., Danielson, U. H., Neyts, J. & Cecchetti, V. (2014). J. Med. Chem. 57, 1952–1963.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMusser, J. H., Chakraborty, U. R., Sciortino, S., Gordon, R. J., Khandwala, A., Neiss, E. S., Pruss, T. P., Van Inwegen, R., Weinryb, I. & Coutts, S. M. (1987). J. Med. Chem. 30, 96–104.  CrossRef CAS PubMed Web of Science Google Scholar
First citationPommier, Y., Leo, E., Zhang, H. L. & Marchand, C. (2010). Chem. Biol. 17, 421–433.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSekgota, K. C., Majumder, S., Isaacs, M., Mnkandhla, D., Hoppe, H. C., Khanye, S. D., Kriel, F. H., Coates, J. & Kaye, P. T. (2017). Bioorg. Chem. 75, 310–316.  Web of Science CrossRef CAS PubMed Google Scholar
First citationShahin, M. I., Roy, J., Hanafi, M., Wang, D., Luesakul, U., Chai, Y., Muangsin, N., Lasheen, D. S., Ella, D. A. A. E., Abouzid, K. A. & Neamati, N. (2018). Eur. J. Med. Chem. 155, 516–530.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388.  CAS Google Scholar
First citationTurner, M. J., Grabowsky, S., Jayatilaka, D. & Spackman, M. A. (2014). J. Phys. Chem. Lett. 5, 4249–4255.  Web of Science CrossRef CAS PubMed Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.  Google Scholar
First citationTurner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735–3738.  Web of Science CrossRef CAS Google Scholar
First citationVenkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A, 153, 625–636.  Web of Science CSD CrossRef CAS Google Scholar
First citationXu, Z., Song, X. F., Hu, Y. Q., Qiang, M. & Lv, Z. S. (2017). Eur. J. Med. Chem. 138, 66–71.  Web of Science CrossRef CAS PubMed Google Scholar
First citationZhang, G. F., Liu, X. F., Zhang, S., Pan, B. F. & Liu, M. L. (2018). Eur. J. Med. Chem. 146, 599–612.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds