research communications
Hirshfeld surface analysis and interaction energy and DFT studies of 2-chloroethyl 2-oxo-1-(prop-2-yn-1-yl)-1,2-dihydroquinoline-4-carboxylate
aLaboratoire de Chimie Organique Appliquée, Université Sidi Mohamed Ben Abdallah, Faculté des Sciences et Techniques, Route d'Immouzzer, BP 2202, Fez, Morocco, bDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, cDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, and dLaboratoire de Chimie Bioorganique Appliquée, Faculté des Sciences, Université Ibn Zohr, Agadir, Morocco
*Correspondence e-mail: soniahayani2018@gmail.com
The title compound, C15H12ClNO3, consists of a 1,2-dihydroquinoline-4-carboxylate unit with 2-chloroethyl and propynyl substituents, where the quinoline moiety is almost planar and the propynyl substituent is nearly perpendicular to its mean plane. In the crystal, the molecules form zigzag stacks along the a-axis direction through slightly offset π-stacking interactions between inversion-related quinoline moieties which are tied together by intermolecular C—HPrpnyl⋯OCarbx and C—HChlethy⋯OCarbx (Prpnyl = propynyl, Carbx = carboxylate and Chlethy = chloroethyl) hydrogen bonds. The Hirshfeld surface analysis of the indicates that the most important contributions for the crystal packing are from H⋯H (29.9%), H⋯O/O⋯H (21.4%), H⋯C/C⋯ H (19.4%), H⋯Cl/Cl⋯H (16.3%) and C⋯C (8.6%) interactions. Hydrogen bonding and van der Waals interactions are the dominant interactions in the crystal packing. Computational chemistry indicates that in the crystal, the C—HPrpnyl⋯OCarbx and C—HChlethy⋯OCarbx hydrogen bond energies are 67.1 and 61.7 kJ mol−1, respectively. Density functional theory (DFT) optimized structures at the B3LYP/ 6–311 G(d,p) level are compared with the experimentally determined molecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap.
Keywords: crystal structure; quinoline; alkyne; hydrogen bond; π-stacking; Hirshfeld surface.
CCDC reference: 1951439
1. Chemical context
The quinoline ring system is an important structural unit in naturally occurring quinoline et al., 2017a; Zhang et al., 2018), anti-tubercular (Fan et al., 2018a; Xu et al., 2017), anti-malarial (Fan et al., 2018b; Hu et al., 2017b), anti-HIV (Sekgota et al., 2017; Luo et al., 2010), anti-HCV (Mandroni et al., 2014; Cheng et al., 2016) and anti-cancer (Pommier et al., 2010; Shahin et al., 2018; Bisacchi & Hale, 2016) activities. Recently, substituted quinolines have also been reported to act as antagonists for endothelin (Cheng et al., 1996), 5HT3 (Anzini et al., 1995), NK-3 (Giardina et al., 1997) and leukotriene D4 (Gauthier et al., 1990) receptors. They are also used as inhibitors of gastric (H+/K+)-ATPase (Ife et al., 1992), dihydroorotate dehydrogenase (Chen et al., 1990) and 5-lipoxygenase (Musser et al., 1987). As a continuation of our research on the development of N-substituted quinoline derivatives and the assessments of their potential pharmacological activities (Filali Baba et al., 2016, 2017, 2019; Bouzian et al., 2018, 2019a), we have studied the condensation reaction of propargyl bromide with 2-chloroethyl 2-oxo-1,2-dihydroquinoline-4-carboxylate under conditions using tetra-n-butylammonium bromide (TBAB) as catalyst and potassium carbonate as base. We report herein on the synthesis and the molecular and crystal structures of the title compound along with the Hirshfeld surface analysis and the intermolecular interaction energies and the density functional theory (DFT) computational calculation carried out at the B3LYP/6–311 G(d,p) level.
therapeutics and synthetic analogues with interesting biological activities. Quinolone derivatives possess a variety of pharmacological properties such as anti-bacterial (Hu2. Structural commentary
The title molecule consists of a 1,2-dihydroquinoline-4-carboxylate unit with 2-chloroethyl and propynyl substituents (Fig. 1). The constituent rings, A (C1–C6) and B (N1/C1/C6–C9), of the dihydroquinoline unit are oriented at a dihedral angle of 2.69 (17)°. The mean plane through the dihydroquinoline unit is almost planar with a maximum deviation of 0.040 (3) Å for atom N1, and the propynyl substituent is nearly perpendicular to that plane, the C6—N1—C10—C11 torsion angle being −79.6 (4)°. The carboxyl group is twisted out of coplanarity with the dihydroquinoline unit by a dihedral angle of 47.13 (23)°; this is also indicated by the C1—C9—C13—O2 torsion angle of −44.2 (6)°.
3. Supramolecular features
In the crystal, the molecules form zigzag stacks along the a-axis direction through slightly offset π-stacking interactions between inversion-related quinoline moieties (Fig. 2). The stacks are tied together by a network of intermolecular C—HPrpnyl⋯OCarbx and C—HChlethy⋯OCarbx (Prpnyl = propynyl, Carbx = carboxylate and Chlethy = chloroethyl) hydrogen bonds, enclosing R22(16) and R44(8) ring motifs (Table 1 and Fig. 3). The π–π contacts between the constituent rings, A (C1–C6) and B (N1/C1/C6–C9), of the dihydroquinoline unit, Cg2⋯Cg1i, Cg2⋯Cg1ii and Cg1⋯Cg1i [centroid–centroid distance = 3.728 (2), 3.571 (2) and 3.761 (2) Å, respectively, where Cg1 and Cg2 are the centroids of the rings, A and B; symmetry codes: (i) 1 − x, 1 − y, 1 − z and (ii) −x, 1 − y, 1 − z], may further stabilize the structure.
4. Hirshfeld surface analysis
In order to visualize the intermolecular interactions in the crystal of the title compound, a Hirshfeld surface (HS) analysis (Hirshfeld, 1977; Spackman & Jayatilaka, 2009) was carried out by using CrystalExplorer17.5 (Turner et al., 2017). In the HS plotted over dnorm (Fig. 4), the white surface indicates contacts with distances equal to the sum of van der Waals radii, and the red and blue colours indicate distances shorter (in close contact) or longer (distinct contact) than the van der Waals radii, respectively (Venkatesan et al., 2016). The bright-red spots appearing near atoms O1, O2 and hydrogen atoms H10A, H10B, H15A and H15B indicate their roles as the respective donors and/or acceptors; they also appear as blue and red regions corresponding to positive and negative potentials on the HS mapped over electrostatic potential (Spackman et al., 2008; Jayatilaka et al., 2005) as shown in Fig. 5. The blue regions indicate the positive electrostatic potential (hydrogen-bond donors), while the red regions indicate the negative electrostatic potential (hydrogen-bond acceptors). The shape-index of the HS is a tool to visualize π–π stacking by the presence of adjacent red and blue triangles; if there are no adjacent red and/or blue triangles, then there are no π–π interactions. Fig. 6 clearly suggest that there are π–π interactions in (I).
The overall two-dimensional fingerprint plot, Fig. 7a, and those delineated into H ⋯ H, H⋯O/O⋯H, H⋯C/C⋯H, H⋯Cl/Cl⋯H, C⋯C, C⋯N/N ⋯ C and O⋯Cl/Cl⋯O contacts (McKinnon et al., 2007) are illustrated in Fig. 7 b–h, respectively, together with their relative contributions to the Hirshfeld surface. The most important interaction is H⋯H (Table 2), contributing 29.9% to the overall crystal packing, which is reflected in Fig. 7b as widely scattered points of high density due to the large hydrogen content of the molecule with the tip at de = di = 1.22 Å. The pair of characteristic wings in the fingerprint plot delineated into H⋯O/O⋯H contacts (21.4% contribution, Fig. 7c) are viewed as a pair of spikes with the tips at de + di = 2.28 Å. In the absence of C—H⋯π interactions, the pairs of characteristic wings in Fig. 7d arise from H⋯C/C⋯H contacts (19.4%) and are viewed as pairs of spikes with the tips at de + di = 2.65 Å and 2.70 Å for the thin and thick spikes, respectively. The scattered points in the pair of wings in the fingerprint plot delineated into H⋯Cl/Cl⋯H (16.3% contribution, Fig. 7e) have a symmetrical distribution with the edges at de + di = 2.60 Å. The C⋯C contacts, Fig. 7f, have an arrow-shaped distribution of points with the tip at de = di = 1.72 Å. Finally, the characteristic tip and wings in the fingerprint plots delineated into C⋯N/N⋯C and O⋯Cl/Cl⋯O contacts (1.6% and 1.1% contributions, respectively, Fig. 7g and 7h) have the tips at de = di = 1.73 and 3.70 Å, respectively.
The Hirshfeld surface representations with the function dnorm plotted onto the surface are shown for the H⋯H, H⋯O/O⋯H, H⋯C/C⋯H and H ⋯ Cl/Cl⋯H interactions in Fig. 8a–d, respectively.
The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯H, H⋯O/O⋯H, H ⋯ C/C⋯H and H⋯Cl/Cl⋯H interactions suggest that van der Waals interactions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015).
5. Interaction energy calculations
The intermolecular interaction energies were calculated using the CE–B3LYP/6–31G(d,p) energy model available in CrystalExplorer17.5 (Turner et al., 2017), where by default a cluster of molecules are generated by applying operations with respect to a selected central molecule within a radius of 3.8 Å (Turner et al., 2014). The total intermolecular energy (Etot) is the sum of electrostatic (Eele), polarization (Epol), dispersion (Edis) and exchange-repulsion (Erep) energies (Turner et al., 2015) with scale factors of 1.057, 0.740, 0.871 and 0.618, respectively (Mackenzie et al., 2017). Hydrogen-bonding interaction energies (in kJ mol−1) were calculated to be −25.2 (Eele), −2.1 (Epol), −85.4 (Edis), 57.5 (Erep) and −67.1 (Etot) for the C—HPrpnyl⋯OCarbx hydrogen bond and −26.5 (Eele), −4.7 (Epol), −73.2 (Edis), 54.3 (Erep) and −61.7 (Etot) for the C—HChlethy⋯OCarbx hydrogen bond.
6. DFT calculations
The optimized structure of the title compound in the gas phase was generated theoretically via density functional theory (DFT) using the standard B3LYP functional and 6–311 G(d,p) basis-set calculations (Becke, 1993) as implemented in GAUSSIAN 09 (Frisch et al., 2009). The theoretical and experimental results were in good agreement (Table 3). The highest-occupied molecular orbital (HOMO), acting as an and the lowest-unoccupied molecular orbital (LUMO), acting as an are very important parameters for quantum chemistry. When the energy gap is small, the molecule is highly polarizable and has high chemical reactivity. The DFT calculations provide some important information on the reactivity and site selectivity of the molecular framework. EHOMO and ELUMO clarify the inevitable charge-exchange collaboration inside the studied material, and are recorded in Table 4 along with the (χ), hardness (η), potential (μ), (ω) and softness (σ). The significance of η and σ is to evaluate both the reactivity and stability. The electron transition from the HOMO to the LUMO energy level is shown in Fig. 9. The HOMO and LUMO are localized in the plane extending from the whole 2-chloroethyl 2-oxo-1-(prop-2-yn-1-yl)-1,2-dihydroquinoline-4-carboxylate ring. The energy band gap [ΔE = ELUMO − EHOMO] of the molecule is 3.6984 eV, and the frontier molecular orbital energies, EHOMO and ELUMO are −6.3024 and −2.6040 eV, respectively.
|
|
7. Database survey
A non-alkylated analogue, namely quinoline and its derivatives, has been reported (Filali Baba et al., 2016, 2017), as well as three similar structures, see: Bouzian et al., 2018, 2019a,b; Filali Baba et al., 2019.
8. Synthesis and crystallization
To a solution of 2-chloroethyl 2-oxo-1,2-dihydroquinoline-4-carboxylate (0.50 g, 2.00 mmol) in DMF (10.00 ml) were added propargyl bromide (0.20 ml, 2.38 mmol), K2CO3 (0.82 g, 6.00 mmol) and TBAB (0.06 g, 0.20 mmol). The reaction mixture was stirred at room temperature for 6 h. After removal of the salts by filtration, the solvent was evaporated under reduced pressure and the resulting residue was dissolved in dichloromethane. The organic phase was dried with Na2SO4, and then concentrated under reduced pressure. The pure compound was obtained by using hexane/ethyl acetate (3/1) as The isolated solid was recrystallized from hexane/ethyl acetate (3:1) to afford colourless crystals (yield: 84%, m.p. 394.15 K).
9. Refinement
Crystal data, data collection and structure . Hydrogen atoms were positioned geometrically (C—H = 0.95 and 0.99 Å, for CH and CH2 H atoms, respectively) and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C). The largest peak and hole in the final difference map are +0.73 e Å−3 (1.00 Å away from Cl1) and −0.35 e Å−3 (0.64 Å away from C14), and are associated with the 2-chloroethylcarboxy group and may indicate a slight degree of disorder here but it was not considered serious enough to model.
details are summarized in Table 5
|
Supporting information
CCDC reference: 1951439
https://doi.org/10.1107/S2056989019012283/lh5918sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019012283/lh5918Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989019012283/lh5918Isup3.cdx
Supporting information file. DOI: https://doi.org/10.1107/S2056989019012283/lh5918Isup4.cml
Data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C15H12ClNO3 | F(000) = 600 |
Mr = 289.71 | Dx = 1.403 Mg m−3 |
Monoclinic, P21/n | Cu Kα radiation, λ = 1.54178 Å |
a = 7.1809 (2) Å | Cell parameters from 6719 reflections |
b = 21.4466 (5) Å | θ = 4.1–69.9° |
c = 8.9173 (2) Å | µ = 2.53 mm−1 |
β = 92.784 (2)° | T = 150 K |
V = 1371.70 (6) Å3 | Plate, colourless |
Z = 4 | 0.19 × 0.14 × 0.01 mm |
Bruker D8 VENTURE PHOTON 100 CMOS diffractometer | 2555 independent reflections |
Radiation source: INCOATEC IµS micro–focus source | 2170 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.047 |
Detector resolution: 10.4167 pixels mm-1 | θmax = 70.1°, θmin = 4.1° |
ω scans | h = −8→8 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −26→25 |
Tmin = 0.64, Tmax = 0.97 | l = −10→10 |
10119 measured reflections |
Refinement on F2 | Primary atom site location: dual space |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.078 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.178 | H-atom parameters constrained |
S = 1.13 | w = 1/[σ2(Fo2) + (0.0332P)2 + 4.0657P] where P = (Fo2 + 2Fc2)/3 |
2555 reflections | (Δ/σ)max < 0.001 |
181 parameters | Δρmax = 0.73 e Å−3 |
0 restraints | Δρmin = −0.35 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.99 Å) and included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. The largest peaks and holes in the final difference map are < +/-1 e--/%A-3 and are associated with the 2-chloroethylcarboxy group and may indicate a slight degree of disorder here but it was not considered serious enough to model. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.7800 (2) | 0.24965 (6) | 0.45136 (18) | 0.0683 (4) | |
O1 | 0.1693 (4) | 0.43876 (13) | 0.9233 (3) | 0.0390 (7) | |
O2 | 0.1917 (5) | 0.33835 (15) | 0.3272 (4) | 0.0569 (9) | |
O3 | 0.3893 (5) | 0.30409 (14) | 0.5116 (4) | 0.0505 (8) | |
N1 | 0.1864 (4) | 0.50421 (13) | 0.7226 (3) | 0.0269 (6) | |
C1 | 0.2615 (5) | 0.46384 (17) | 0.4782 (4) | 0.0282 (8) | |
C2 | 0.2997 (5) | 0.47567 (19) | 0.3269 (4) | 0.0345 (9) | |
H2 | 0.324683 | 0.441692 | 0.262595 | 0.041* | |
C3 | 0.3014 (5) | 0.5349 (2) | 0.2715 (4) | 0.0372 (9) | |
H3 | 0.326460 | 0.541915 | 0.169253 | 0.045* | |
C4 | 0.2661 (5) | 0.58513 (19) | 0.3654 (4) | 0.0363 (9) | |
H4 | 0.267501 | 0.626395 | 0.326807 | 0.044* | |
C5 | 0.2290 (5) | 0.57527 (18) | 0.5145 (4) | 0.0312 (8) | |
H5 | 0.205814 | 0.609762 | 0.577824 | 0.037* | |
C6 | 0.2256 (5) | 0.51487 (17) | 0.5719 (4) | 0.0266 (7) | |
C7 | 0.1967 (5) | 0.44600 (17) | 0.7888 (4) | 0.0296 (8) | |
C8 | 0.2365 (5) | 0.39456 (17) | 0.6907 (4) | 0.0326 (8) | |
H8 | 0.244434 | 0.353690 | 0.731581 | 0.039* | |
C9 | 0.2627 (5) | 0.40246 (17) | 0.5429 (4) | 0.0308 (8) | |
C10 | 0.1343 (5) | 0.55651 (17) | 0.8183 (4) | 0.0295 (8) | |
H10A | 0.047696 | 0.584337 | 0.760268 | 0.035* | |
H10B | 0.067963 | 0.540162 | 0.904796 | 0.035* | |
C11 | 0.2966 (6) | 0.59261 (18) | 0.8741 (4) | 0.0346 (9) | |
C12 | 0.4275 (7) | 0.6208 (2) | 0.9178 (5) | 0.0485 (11) | |
H12 | 0.533984 | 0.643689 | 0.953389 | 0.058* | |
C13 | 0.2778 (6) | 0.34610 (18) | 0.4461 (5) | 0.0385 (9) | |
C14 | 0.4018 (8) | 0.2450 (2) | 0.4316 (6) | 0.0595 (14) | |
H14A | 0.286502 | 0.220384 | 0.441323 | 0.071* | |
H14B | 0.419443 | 0.252540 | 0.323617 | 0.071* | |
C15 | 0.5603 (9) | 0.2122 (2) | 0.4990 (6) | 0.0629 (14) | |
H15A | 0.559154 | 0.168527 | 0.463120 | 0.076* | |
H15B | 0.551442 | 0.211642 | 0.609416 | 0.076* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0708 (9) | 0.0393 (6) | 0.0940 (11) | 0.0187 (6) | −0.0052 (7) | −0.0096 (6) |
O1 | 0.0464 (16) | 0.0416 (15) | 0.0301 (15) | 0.0056 (13) | 0.0132 (12) | 0.0061 (12) |
O2 | 0.074 (2) | 0.0488 (19) | 0.0469 (19) | 0.0006 (17) | −0.0037 (17) | −0.0143 (15) |
O3 | 0.057 (2) | 0.0357 (16) | 0.060 (2) | 0.0087 (14) | 0.0107 (16) | −0.0126 (14) |
N1 | 0.0262 (15) | 0.0270 (15) | 0.0282 (16) | 0.0024 (12) | 0.0081 (12) | −0.0009 (12) |
C1 | 0.0206 (16) | 0.0332 (19) | 0.0314 (19) | −0.0018 (14) | 0.0064 (14) | −0.0014 (15) |
C2 | 0.0276 (19) | 0.047 (2) | 0.030 (2) | −0.0039 (17) | 0.0062 (15) | −0.0071 (17) |
C3 | 0.033 (2) | 0.051 (2) | 0.028 (2) | −0.0076 (18) | 0.0037 (16) | 0.0055 (17) |
C4 | 0.033 (2) | 0.041 (2) | 0.035 (2) | −0.0045 (17) | −0.0001 (16) | 0.0091 (17) |
C5 | 0.0264 (18) | 0.0325 (19) | 0.035 (2) | −0.0008 (15) | 0.0035 (15) | 0.0018 (16) |
C6 | 0.0194 (16) | 0.0335 (19) | 0.0273 (18) | 0.0005 (14) | 0.0058 (13) | 0.0004 (15) |
C7 | 0.0252 (18) | 0.0302 (19) | 0.034 (2) | 0.0011 (14) | 0.0082 (15) | 0.0029 (15) |
C8 | 0.0317 (19) | 0.0285 (19) | 0.038 (2) | 0.0020 (15) | 0.0080 (16) | 0.0044 (16) |
C9 | 0.0249 (18) | 0.0323 (19) | 0.036 (2) | 0.0006 (14) | 0.0088 (15) | −0.0020 (16) |
C10 | 0.0287 (18) | 0.0307 (19) | 0.0297 (19) | 0.0034 (15) | 0.0076 (15) | −0.0025 (15) |
C11 | 0.043 (2) | 0.034 (2) | 0.028 (2) | 0.0003 (17) | 0.0101 (17) | −0.0039 (16) |
C12 | 0.047 (3) | 0.056 (3) | 0.043 (3) | −0.009 (2) | 0.006 (2) | −0.010 (2) |
C13 | 0.038 (2) | 0.030 (2) | 0.049 (3) | 0.0004 (17) | 0.0092 (19) | −0.0001 (18) |
C14 | 0.086 (4) | 0.029 (2) | 0.065 (3) | 0.012 (2) | 0.021 (3) | −0.005 (2) |
C15 | 0.091 (4) | 0.046 (3) | 0.051 (3) | 0.013 (3) | 0.007 (3) | 0.002 (2) |
Cl1—C15 | 1.838 (6) | C5—C6 | 1.393 (5) |
O1—C7 | 1.235 (5) | C5—H5 | 0.9500 |
O2—C13 | 1.213 (5) | C7—C8 | 1.445 (5) |
O3—C13 | 1.322 (5) | C8—C9 | 1.351 (5) |
O3—C14 | 1.459 (5) | C8—H8 | 0.9500 |
N1—C7 | 1.381 (5) | C9—C13 | 1.492 (5) |
N1—C6 | 1.405 (4) | C10—C11 | 1.465 (5) |
N1—C10 | 1.469 (4) | C10—H10A | 0.9900 |
C1—C6 | 1.409 (5) | C10—H10B | 0.9900 |
C1—C2 | 1.412 (5) | C11—C12 | 1.169 (6) |
C1—C9 | 1.437 (5) | C12—H12 | 0.9500 |
C2—C3 | 1.363 (6) | C14—C15 | 1.444 (8) |
C2—H2 | 0.9500 | C14—H14A | 0.9900 |
C3—C4 | 1.396 (6) | C14—H14B | 0.9900 |
C3—H3 | 0.9500 | C15—H15A | 0.9900 |
C4—C5 | 1.385 (5) | C15—H15B | 0.9900 |
C4—H4 | 0.9500 | ||
Cl1···O3 | 3.110 (3) | C1···C6viii | 3.534 (5) |
Cl1···C12i | 3.629 (5) | C2···C6ii | 3.489 (5) |
Cl1···H12i | 2.75 | C2···C10viii | 3.388 (5) |
Cl1···H5ii | 3.03 | C4···C7viii | 3.597 (5) |
Cl1···H8iii | 2.96 | C4···C9ii | 3.452 (5) |
O1···C10iv | 3.250 (5) | C5···C11 | 3.241 (5) |
O1···C12v | 3.409 (6) | C5···C9viii | 3.575 (5) |
O1···C15vi | 3.406 (5) | C6···C6viii | 3.485 (4) |
O2···C2 | 3.045 (5) | C2···H10Aviii | 2.88 |
O2···C15vii | 3.219 (6) | C5···H10A | 2.61 |
O3···Cl1 | 3.110 (3) | C10···H5 | 2.50 |
O1···H10B | 2.30 | C11···H3ix | 2.85 |
O1···H10Biv | 2.39 | C11···H5 | 2.72 |
O1···H15Avi | 2.46 | C12···H14Ax | 2.95 |
O2···H14B | 2.46 | C12···H2ii | 2.80 |
O2···H2 | 2.49 | C12···H3ix | 2.93 |
O2···H14A | 2.80 | C13···H2 | 2.65 |
O2···H15Bvii | 2.40 | H5···H10A | 2.10 |
O2···H10Aviii | 2.49 | H8···H15Avi | 2.55 |
O3···H8 | 2.50 | ||
C13—O3—C14 | 115.2 (4) | C7—C8—H8 | 118.8 |
C7—N1—C6 | 123.1 (3) | C8—C9—C1 | 120.5 (3) |
C7—N1—C10 | 116.9 (3) | C8—C9—C13 | 118.7 (3) |
C6—N1—C10 | 120.0 (3) | C1—C9—C13 | 120.6 (3) |
C6—C1—C2 | 118.5 (3) | C11—C10—N1 | 112.3 (3) |
C6—C1—C9 | 118.1 (3) | C11—C10—H10A | 109.1 |
C2—C1—C9 | 123.4 (3) | N1—C10—H10A | 109.1 |
C3—C2—C1 | 121.3 (4) | C11—C10—H10B | 109.1 |
C3—C2—H2 | 119.4 | N1—C10—H10B | 109.1 |
C1—C2—H2 | 119.4 | H10A—C10—H10B | 107.9 |
C2—C3—C4 | 119.8 (4) | C12—C11—C10 | 179.1 (5) |
C2—C3—H3 | 120.1 | C11—C12—H12 | 180.0 |
C4—C3—H3 | 120.1 | O2—C13—O3 | 124.4 (4) |
C5—C4—C3 | 120.5 (4) | O2—C13—C9 | 124.6 (4) |
C5—C4—H4 | 119.8 | O3—C13—C9 | 110.8 (4) |
C3—C4—H4 | 119.8 | C15—C14—O3 | 106.6 (5) |
C4—C5—C6 | 120.1 (4) | C15—C14—H14A | 110.4 |
C4—C5—H5 | 119.9 | O3—C14—H14A | 110.4 |
C6—C5—H5 | 119.9 | C15—C14—H14B | 110.4 |
C5—C6—N1 | 120.7 (3) | O3—C14—H14B | 110.4 |
C5—C6—C1 | 119.8 (3) | H14A—C14—H14B | 108.6 |
N1—C6—C1 | 119.5 (3) | C14—C15—Cl1 | 111.0 (4) |
O1—C7—N1 | 121.4 (3) | C14—C15—H15A | 109.4 |
O1—C7—C8 | 122.5 (3) | Cl1—C15—H15A | 109.4 |
N1—C7—C8 | 116.1 (3) | C14—C15—H15B | 109.4 |
C9—C8—C7 | 122.4 (3) | Cl1—C15—H15B | 109.4 |
C9—C8—H8 | 118.8 | H15A—C15—H15B | 108.0 |
C6—C1—C2—C3 | −0.3 (5) | O1—C7—C8—C9 | 178.7 (4) |
C9—C1—C2—C3 | −178.4 (4) | N1—C7—C8—C9 | 0.1 (5) |
C1—C2—C3—C4 | 0.4 (6) | C7—C8—C9—C1 | 3.3 (6) |
C2—C3—C4—C5 | −0.1 (6) | C7—C8—C9—C13 | −171.9 (3) |
C3—C4—C5—C6 | −0.4 (6) | C6—C1—C9—C8 | −2.3 (5) |
C4—C5—C6—N1 | −179.4 (3) | C2—C1—C9—C8 | 175.9 (4) |
C4—C5—C6—C1 | 0.5 (5) | C6—C1—C9—C13 | 172.9 (3) |
C7—N1—C6—C5 | −174.3 (3) | C2—C1—C9—C13 | −9.0 (5) |
C10—N1—C6—C5 | 4.7 (5) | C7—N1—C10—C11 | 99.5 (4) |
C7—N1—C6—C1 | 5.7 (5) | C6—N1—C10—C11 | −79.6 (4) |
C10—N1—C6—C1 | −175.2 (3) | C14—O3—C13—O2 | −0.9 (6) |
C2—C1—C6—C5 | −0.2 (5) | C14—O3—C13—C9 | 175.3 (4) |
C9—C1—C6—C5 | 178.0 (3) | C8—C9—C13—O2 | 131.0 (5) |
C2—C1—C6—N1 | 179.7 (3) | C1—C9—C13—O2 | −44.2 (6) |
C9—C1—C6—N1 | −2.1 (5) | C8—C9—C13—O3 | −45.2 (5) |
C6—N1—C7—O1 | 176.8 (3) | C1—C9—C13—O3 | 139.6 (4) |
C10—N1—C7—O1 | −2.3 (5) | C13—O3—C14—C15 | 166.2 (4) |
C6—N1—C7—C8 | −4.7 (5) | O3—C14—C15—Cl1 | −70.8 (5) |
C10—N1—C7—C8 | 176.2 (3) |
Symmetry codes: (i) −x+3/2, y−1/2, −z+3/2; (ii) −x+1, −y+1, −z+1; (iii) x+1/2, −y+1/2, z−1/2; (iv) −x, −y+1, −z+2; (v) −x+1, −y+1, −z+2; (vi) x−1/2, −y+1/2, z+1/2; (vii) x−1/2, −y+1/2, z−1/2; (viii) −x, −y+1, −z+1; (ix) x, y, z+1; (x) −x+1/2, y+1/2, −z+3/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C10—H10A···O2viii | 0.99 | 2.49 | 3.458 (5) | 167 |
C10—H10B···O1iv | 0.99 | 2.39 | 3.250 (4) | 145 |
C15—H15A···O1iii | 0.99 | 2.46 | 3.406 (6) | 159 |
C15—H15B···O2xi | 0.99 | 2.40 | 3.219 (6) | 140 |
Symmetry codes: (iii) x+1/2, −y+1/2, z−1/2; (iv) −x, −y+1, −z+2; (viii) −x, −y+1, −z+1; (xi) x+1/2, −y+1/2, z+1/2. |
Bonds/angles | X-ray | B3LYP/6-311G(d,p) |
Cl1—C15 | 1.838 (6) | 1.88121 |
O1—C7 | 1.235 (5) | 1.25852 |
O2—C13 | 1.213 (5) | 1.24099 |
O3—C13 | 1.322 (5) | 1.38771 |
O3—C14 | 1.459 (5) | 1.47976 |
N1—C7 | 1.381 (5) | 1.40545 |
N1—C6 | 1.405 (4) | 1.41686 |
N1—C10 | 1.469 (4) | 1.49984 |
C13—O3—C14 | 115.2 (4) | 116.83182 |
C7—N1—C6 | 123.1 (3) | 121.89630 |
C7—N1—C10 | 116.9 (3) | 117.96161 |
C6—N1—C10 | 120.0 (3) | 117.10486 |
N1—C6—C1 | 119.5 (3) | 120.53011 |
O1—C7—N1 | 121.4 (3) | 122.42582 |
O1—C7—C8 | 122.5 (3) | 121.61064 |
N1—C7—C8 | 116.1 (3) | 115.96268 |
Molecular Energy | |
Total Energy, TE | -35893.2971 |
EHOMO (eV) | -6.3024 |
ELUMO (eV) | -2.6040 |
Gap ΔE (eV) | 3.6984 |
Dipole moment, µ (Debye) | 3.8441 |
Ionization potential, I (eV) | 6.3024 |
Electron affinity, A | 2.6040 |
Electro negativity, χ | 4.4532 |
Hardness, η | 1.8492 |
Electrophilicity index, ω | 5.3620 |
Softness, σ | 0.5408 |
Fraction of electron transferred, ΔN | 0.6886 |
Funding information
The support of NSF–MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged. TH is grateful to Hacettepe University Scientific Research Project Unit (grant No. 013 D04 602 004).
References
Anzini, M., Cappelli, A., Vomero, S., Giorgi, G., Langer, T., Hamon, M., Merahi, N., Emerit, B. M., Cagnotto, A., Skorupska, M., Mennini, T. & Pinto, J. C. (1995). J. Med. Chem. 38, 2692–2704. CrossRef CAS PubMed Web of Science Google Scholar
Becke, A. D. (1993). J. Chem. Phys. 98, 5648–5652. CrossRef CAS Web of Science Google Scholar
Bisacchi, G. S. & Hale, M. R. (2016). Curr. Med. Chem. 23, 520–577. Web of Science CrossRef CAS PubMed Google Scholar
Bouzian, Y., Faizi, M. S. H., Mague, J. T., Otmani, B. E., Dege, N., Karrouchi, K. & Essassi, E. M. (2019a). Acta Cryst. E75, 980–983. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bouzian, Y., Hlimi, F., Sebbar, N. K., El Hafi, M., Hni, B., Essassi, E. M. & Mague, J. T. (2018). IUCrData, 3, x181438. Google Scholar
Bouzian, Y., Karrouchi, K., Anouar, E. H., Bouhfid, R., Arshad, S. & Essassi, E. M. (2019b). Acta Cryst. E75, 912–916. Web of Science CSD CrossRef IUCr Journals Google Scholar
Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA. Google Scholar
Chen, S. F., Papp, L. M., Ardecky, R. J., Rao, G. V., Hesson, D. P., Forbes, M. & Desxter, D. L. (1990). Biochem. Pharmacol. 40, 709–714. CAS PubMed Google Scholar
Cheng, X. M., Lee, C., Klutchko, S., Winters, T., Reynolds, E. E., Welch, K. M., Flynn, M. A. & Doherty, A. M. (1996). Bioorg. Med. Chem. Lett. 6, 2999–3002. CrossRef CAS Web of Science Google Scholar
Cheng, Y., Shen, J., Peng, R. Z., Wang, G. F., Zuo, J. P. & Long, Y. Q. (2016). Bioorg. Med. Chem. Lett. 26, 2900–2906. Web of Science CrossRef CAS PubMed Google Scholar
Fan, Y. L., Cheng, X. W., Wu, J. B., Liu, M., Zhang, F. Z., Xu, Z. & Feng, L. S. (2018b). Eur. J. Med. Chem. 146, 1–14. Web of Science CrossRef CAS PubMed Google Scholar
Fan, Y. L., Wu, J. B., Cheng, X. W., Zhang, F. Z. & Feng, L. S. (2018a). Eur. J. Med. Chem. 146, 554–563. Web of Science CrossRef CAS PubMed Google Scholar
Filali Baba, Y., Elmsellem, H., Kandri Rodi, Y., Steli, H. A. D. C., Ouzidan, Y., Ouazzani Chahdi, F., Sebbar, N. K., Essassi, E. M. & Hammouti, B. (2016). Pharma Chemica, 8, 159–169. Google Scholar
Filali Baba, Y., Kandri Rodi, Y., Ouzidan, Y., Mague, J. T., Ouazzani Chahdi, F. & Essassi, E. M. (2017). IUCrData, 2, x171038. Google Scholar
Filali Baba, Y., Sert, Y., Kandri Rodi, Y., Hayani, S., Mague, J. T., Prim, D., Marrot, J., Ouazzani Chahdi, F., Sebbar, N. K. & Essassi, E. M. (2019). J. Mol. Struct. 1188, 255–268. Web of Science CSD CrossRef CAS Google Scholar
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA. Google Scholar
Gauthier, J. Y., Jones, T., Champion, E., Charette, L., Dehaven, R., Ford-Hutchinson, A. W., Hoogsteen, K., Lord, A., Masson, P., Piechuta, H., Pong, S. S., Springer, J. P., Therien, M., Zamboni, R. & Young, R. N. (1990). J. Med. Chem. 33, 2841–2845. CSD CrossRef CAS PubMed Web of Science Google Scholar
Giardina, G. A. M., Sarau, H. M., Farina, C., Medhurst, A. D., Grugni, M., Raveglia, L. F., Schmidt, D. B., Rigolio, R., Luttmann, M., Vecchietti, V. & Hay, D. W. P. (1997). J. Med. Chem. 40, 1794–1807. CrossRef CAS PubMed Web of Science Google Scholar
Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138. CrossRef CAS Web of Science Google Scholar
Hu, Y. Q., Gao, C., Zhang, S., Xu, L., Xu, Z., Feng, L. S., Wu, X. & Zhao, F. (2017b). Eur. J. Med. Chem. 139, 22–47. Web of Science CrossRef CAS PubMed Google Scholar
Hu, Y. Q., Zhang, S., Xu, Z., Lv, Z. S., Liu, M. L. & Feng, L. S. (2017a). Eur. J. Med. Chem. 141, 335–345. Web of Science CrossRef CAS PubMed Google Scholar
Ife, K. J., Brown, T. H., Keeling, D. J., Leach, C. A., Meeson, M. L., Parsons, M. E., Reavill, D. R., Theobald, C. J. & Wiggall, K. (1992). J. Med. Chem. 35, 3413–3422. CrossRef PubMed CAS Web of Science Google Scholar
Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO – A System for Computational Chemistry. Available at: https://hirshfeldsurface.net/ Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Luo, Z. G., Tan, J. J., Zeng, Y., Wang, C. X. & Hu, L. M. (2010). Mini Rev. Med. Chem. 10, 1046–1057. CAS PubMed Google Scholar
Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575–587. Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
Manfroni, G., Cannalire, R., Barreca, M. L., Kaushik-Basu, N., Leyssen, P., Winquist, J., Iraci, N., Manvar, D., Paeshuyse, J., Guhamazumder, R., Basu, A., Sabatini, S., Tabarrini, O., Danielson, U. H., Neyts, J. & Cecchetti, V. (2014). J. Med. Chem. 57, 1952–1963. Web of Science CrossRef CAS PubMed Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Musser, J. H., Chakraborty, U. R., Sciortino, S., Gordon, R. J., Khandwala, A., Neiss, E. S., Pruss, T. P., Van Inwegen, R., Weinryb, I. & Coutts, S. M. (1987). J. Med. Chem. 30, 96–104. CrossRef CAS PubMed Web of Science Google Scholar
Pommier, Y., Leo, E., Zhang, H. L. & Marchand, C. (2010). Chem. Biol. 17, 421–433. Web of Science CrossRef CAS PubMed Google Scholar
Sekgota, K. C., Majumder, S., Isaacs, M., Mnkandhla, D., Hoppe, H. C., Khanye, S. D., Kriel, F. H., Coates, J. & Kaye, P. T. (2017). Bioorg. Chem. 75, 310–316. Web of Science CrossRef CAS PubMed Google Scholar
Shahin, M. I., Roy, J., Hanafi, M., Wang, D., Luesakul, U., Chai, Y., Muangsin, N., Lasheen, D. S., Ella, D. A. A. E., Abouzid, K. A. & Neamati, N. (2018). Eur. J. Med. Chem. 155, 516–530. Web of Science CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388. CAS Google Scholar
Turner, M. J., Grabowsky, S., Jayatilaka, D. & Spackman, M. A. (2014). J. Phys. Chem. Lett. 5, 4249–4255. Web of Science CrossRef CAS PubMed Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia. Google Scholar
Turner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735–3738. Web of Science CrossRef CAS Google Scholar
Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A, 153, 625–636. Web of Science CSD CrossRef CAS Google Scholar
Xu, Z., Song, X. F., Hu, Y. Q., Qiang, M. & Lv, Z. S. (2017). Eur. J. Med. Chem. 138, 66–71. Web of Science CrossRef CAS PubMed Google Scholar
Zhang, G. F., Liu, X. F., Zhang, S., Pan, B. F. & Liu, M. L. (2018). Eur. J. Med. Chem. 146, 599–612. Web of Science CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.