research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of 3-chloro-2-nitro­benzoic acid with quinoline derivatives: 3-chloro-2-nitro­benzoic acid–5-nitro­quinoline (1/1), 3-chloro-2-nitro­benzoic acid–6-nitro­quinoline (1/1) and 8-hy­dr­oxy­quinolinium 3-chloro-2-nitro­benzoate

aDepartment of Chemistry, Faculty of Science, Okayama University, Okayama 700-8530, Japan
*Correspondence e-mail: ishidah@cc.okayama-u.ac.jp

Edited by A. J. Lough, University of Toronto, Canada (Received 10 September 2019; accepted 14 September 2019; online 27 September 2019)

The structures of three compounds of 3-chloro-2-nitro­benzoic acid with 5-nitro­quinoline, (I), 6-nitro­quinoline, (II), and 8-hy­droxy­quinoline, (III), have been determined at 190 K. In each of the two isomeric compounds, (I) and (II), C7H4ClNO4·C9H6N2O2, the acid and base mol­ecules are held together by O—H⋯N and C—H⋯O hydrogen bonds. In compound (III), C9H8NO+·C7H3ClNO4, an acid–base inter­action involving H-atom transfer occurs and the H atom is located at the N site of the base mol­ecule. In the crystal of (I), the hydrogen-bonded acid–base units are linked by C—H⋯O hydrogen bonds, forming a tape structure along the b-axis direction. Adjacent tapes, which are related by a twofold rotation axis, are linked by a third C—H⋯O hydrogen bond, forming wide ribbons parallel to the ([\overline{1}]03) plane. These ribbons are stacked via ππ inter­actions between the quinoline ring systems [centroid–centroid distances = 3.4935 (5)–3.7721 (6) Å], forming layers parallel to the ab plane. In the crystal of (II), the hydrogen-bonded acid–base units are also linked into a tape structure along the b-axis direction via C—H⋯O hydrogen bonds. Inversion-related tapes are linked by further C—H⋯O hydrogen bonds to form wide ribbons parallel to the ([\overline{3}]08) plane. The ribbons are linked by weak ππ inter­actions [centroid–centroid distances = 3.8016 (8)–3.9247 (9) Å], forming a three-dimensional structure. In the crystal of (III), the cations and the anions are alternately linked via N—H⋯O and O—H⋯O hydrogen bonds, forming a 21 helix running along the b-axis direction. The cations and the anions are further stacked alternately in columns along the a-axis direction via ππ inter­actions [centroid–centroid distances = 3.8016 (8)–3.9247 (9) Å], and the mol­ecular chains are linked into layers parallel to the ab plane through these inter­actions.

1. Chemical context

The hydrogen bonds formed between organic acids and organic bases vary from an O—H⋯N type to an O⋯H—N+ type depending on the pKa values of the acids and bases as well as inter­molecular inter­actions in the crystals, and at an appropriate ΔpKa [pKa(base) − pKa(acid)] value, a short strong hydrogen bond with a broad single minimum potential energy curve for the H atom or a double-minimum potential is observed (Schmidtmann & Wilson, 2008[Schmidtmann, M. & Wilson, C. C. (2008). CrystEngComm, 10, 177-183.]; Gilli & Gilli, 2009[Gilli, G. & Gilli, P. (2009). The Nature of the Hydrogen Bond. Oxford University Press.]). For the system of quinoline–chloro- and nitro-substituted benzoic acids, we have shown that three compounds of quinoline with 3-chloro-2-nitro­benzoic acid, 4-chloro-2-nitro­benzoic acid and 5-chloro-2-nitro­benzoic acid, the ΔpKa values of which are 3.08, 2.93 and 3.04, respectively, have a short double-well O⋯H⋯N hydrogen bond between the carb­oxy O atom and the aromatic N atom (Gotoh & Ishida, 2009[Gotoh, K. & Ishida, H. (2009). Acta Cryst. C65, o534-o538.]). Similar O⋯H⋯N hydrogen bonds have been also observed in compounds of phthalazine with 3-chloro-2-nitro­benzoic acid and 4-chloro-2-nitro­benzoic acid with ΔpKa values of 1.65 and 1.50, respectively (Gotoh & Ishida, 2011[Gotoh, K. & Ishida, H. (2011). Acta Cryst. C67, o473-o478.]), and of iso­quinoline with 3-chloro-2-nitro­benzoic acid with ΔpKa = 3.58 (Gotoh & Ishida, 2015[Gotoh, K. & Ishida, H. (2015). Acta Cryst. E71, 31-34.]).

[Scheme 1]

We report here the crystal structures of the title compounds in order to extend our studies of short hydrogen bonding in pyridine derivative–chloro- and nitro-substituted benzoic acid systems. The ΔpKa values are 0.98 and 1.42 and 3.02 for 3-chloro-2-nitro­benzoic acid–5-nitro­quinoline (1/1), (I)[link], 3-chloro-2-nitro­benzoic acid–6-nitro­quinoline (1/1), (II)[link], and 8-hy­droxy­quinolium 3-chloro-2-nitro­benzoate, (III)[link], respectively.

2. Structural commentary

The mol­ecular structure of (I)[link] is shown in Fig. 1[link]. The acid and base mol­ecules are held together by an O—H⋯N hydrogen bond between the carb­oxy group and the N atom of the base. In addition, a weak C—H⋯O inter­action is formed between the acid and base mol­ecules (Table 1[link]). In the hydrogen-bonded acid–base unit, the quinoline ring system (N2/C8–C16), the carb­oxy group (O1/C7/O2) and the benzene ring (C1–C6) are almost coplanar with each other; the carb­oxy group makes dihedral angles of 9.95 (12) and 9.45 (12)°, respectively, with the quinoline ring system and the benzene ring, and the dihedral angle between the quinoline ring system and the benzene ring is 2.59 (4)°. On the other hand, the benzene ring and the nitro group (O3/N1/O4) in the acid mol­ecule is almost perpendicular, with a dihedral angle of 86.14 (13)°. The quinoline ring system and the attached nitro group (O5/N3/O6) are somewhat twisted with a dihedral angle of 31.67 (11)°.

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N2 0.88 (2) 1.80 (2) 2.6727 (12) 178 (2)
C8—H8⋯O2 0.95 2.48 3.1820 (13) 131
C5—H5⋯O2i 0.95 2.57 3.4860 (14) 163
C14—H14⋯O5i 0.95 2.56 3.4644 (14) 159
C13—H13⋯O6ii 0.95 2.32 3.1495 (14) 146
Symmetry codes: (i) x, y-1, z; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. The O—H⋯N and C—H⋯O hydrogen bonds are indicated by dashed lines (Table 1[link]).

The mol­ecular structure of (II)[link] is shown in Fig. 2[link]. Similar to (I)[link], the acid and base mol­ecules are held together by an O—H⋯N hydrogen bond and an additional C—H⋯O inter­action (Table 2[link]). In the acid–base unit, the quinoline ring system, the carb­oxy group and the benzene ring of the acid are slightly twisted to each other; the carb­oxy group makes dihedral angles of 12.08 (13) and 2.40 (13)°, respectively, with the quinoline ring system and the benzene ring, and the dihedral angle between the quinoline ring system and the benzene ring is 10.99 (4)°. In the acid mol­ecule, the benzene ring and the nitro group (O3/N1/O4) are almost perpendicular with a dihedral angle of 88.54 (13)°. On the other hand, in the base mol­ecule the quinoline ring system and the nitro group (O5/N3/O6) are almost coplanar with a dihedral angle of 5.58 (12)°.

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N2 0.87 (3) 1.76 (3) 2.6310 (14) 176 (3)
C8—H8⋯O2 0.95 2.53 3.2082 (16) 128
C8—H8⋯O6i 0.95 2.41 3.2387 (15) 145
C12—H12⋯O5ii 0.95 2.37 3.2526 (16) 155
C14—H14⋯O4iii 0.95 2.52 3.3226 (16) 142
Symmetry codes: (i) x, y+1, z; (ii) -x+2, -y, -z+1; (iii) x, y-1, z.
[Figure 2]
Figure 2
The mol­ecular structure of (II)[link], showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. The O—H⋯N and C—H⋯O hydrogen bonds are indicated by dashed lines (Table 2[link]).

The mol­ecular structure of (III)[link] is shown in Fig. 3[link]. An acid–base inter­action involving H-atom transfer occurs and the acid and base mol­ecules are linked by an N+—H⋯O hydrogen bond (Table 3[link]). In the hydrogen-bonded unit, the quinoline ring system makes dihedral angles of 34.96 (13) and 30.80 (14)°, respectively, with the carboxyl­ate group and the benzene ring of the acid. In the acid mol­ecule, the benzene ring makes dihedral angles of 4.71 (13) and 86.12 (11)°, respectively, with the carboxyl­ate and nitro groups.

Table 3
Hydrogen-bond geometry (Å, °) for (III)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1 0.880 (16) 1.776 (16) 2.6355 (12) 164.7 (14)
O5—H5O⋯O2i 0.872 (19) 1.756 (19) 2.6247 (12) 173.2 (19)
C4—H4⋯O3ii 0.95 2.49 3.1082 (12) 123
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x, y+1, z.
[Figure 3]
Figure 3
The mol­ecular structure of (III)[link], showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. The N—H⋯O hydrogen bond is indicated by a dashed line (Table 3[link]).

3. Supra­molecular features

In the crystal of (I)[link], the hydrogen-bonded acid–base units are linked by C—H⋯O hydrogen bonds (C5—H5⋯O2i and C14—H14⋯O5i; symmetry codes as in Table 1[link]), forming a tape structure along the b-axis direction. Adjacent tapes, which are related by a twofold rotation axis, are linked by a third C—H⋯O hydrogen bond (C13—H13⋯O6ii), forming wide ribbons parallel to the ([\overline{1}]03) plane (Fig. 4[link]). These ribbons are stacked via ππ inter­actions between the quinoline ring systems, forming layers parallel to the ab plane (Fig. 5[link]). The centroid–centroid distances are 3.4935 (5), 3.6761 (6) and 3.7721 (6) Å, respectively, for Cg4⋯Cg4iii, Cg2⋯Cg2iii and Cg2⋯Cg3iii, where Cg2, Cg3 and Cg4 are the centroids of the N2/C8–C11/C16, C11–C16 and N2/C8–C16 rings, respectively, of the base mol­ecule [symmetry code: (iii) −x + 1, y, −z + 2].

[Figure 4]
Figure 4
A packing diagram of (I)[link], showing the hydrogen-bonded tape structure along the b-axis direction. Adjacent tapes, related by a twofold rotation axis, are linked by further C—H⋯O hydrogen bonds, forming wide ribbons parallel to ([\overline{1}]03). The dashed lines indicate the O—H⋯N and C—H⋯O hydrogen bonds. [Symmetry codes: (i) x, y − 1, z; (ii) −x + [{3\over 2}], y − [{1\over 2}], −z + [{3\over 2}].]
[Figure 5]
Figure 5
A partial packing diagram of (I)[link], showing the ribbons linked by ππ stacking inter­actions (magenta dashed lines).

In the crystal of (II)[link], the hydrogen-bonded acid–base units are also linked into a tape structure along the b-axis direction via C—H⋯O hydrogen bonds (C8—H8⋯O6i and C14—H14⋯O4iii; symmetry codes as in Table 2[link]). Inversion-related tapes are linked by a further C—H⋯O hydrogen bond (C12—H12⋯O5ii; Table 2[link]), forming wide ribbons parallel to the ([\overline{3}]08) plane (Fig. 6[link]). The acid and base mol­ecules are further stacked in a column along [[\overline{1}]11] in an ⋯A⋯A⋯B⋯B⋯A⋯A⋯B⋯B⋯ manner (A: acid and B: base) via weak ππ inter­actions (Fig. 7[link]), so forming a three-dimensional structure. The centroid–centroid distances are 3.8016 (8), 3.8666 (8), 3.9247 (9) and 3.8225 (8) Å, respectively, for Cg1⋯Cg1iv, Cg1⋯Cg3v, Cg2⋯Cg2vi and Cg2⋯Cg4vi, where Cg1, Cg2, Cg3 and Cg4 are, respectively, the centroids of the C1–C6 ring of the acid mol­ecule, and the N2/C8–C11/C16, C11–C16 and N2/C8–C16 rings of the base mol­ecule [symmetry codes: (iv) −x, −y + 2, −z; (v) x − 1, y + 1, z; (vi) −x + 1, −y + 1, −z + 1]. A pair of short O⋯N contacts [O6⋯N3vii = 2.8453 (13) Å; symmetry code: (vii) −x + 1, −y, −x + 1] between the nitro groups of the base mol­ecule are alsso observed.

[Figure 6]
Figure 6
A packing diagram of (II)[link], showing the ribbon structure along the b-axis direction formed by O—H⋯N and C—H⋯O hydrogen bonds (dashed lines). H atoms not involved in the hydrogen bonds have been omitted. [Symmetry codes: (i) x, y + 1, z; (ii) −x + 2, −y, −z + 1; (iii) x, y − 1, z.]
[Figure 7]
Figure 7
A partial packing diagram of (II)[link], showing the column structure along [[\overline{1}]11] formed by weak ππ inter­actions (magenta dashed lines). The O—H⋯N and C—H⋯O hydrogen bonds in the hydrogen-bonded acid–base units are indicated by green dashed lines. The ππ inter­actions including the centroid of the ten-membered quinoline ring system (Cg4) are omitted for clarity.

In the crystal of compound (III)[link], the cations and the anions are alternately linked via N—H⋯O and O—H⋯O hydrogen bonds (N2—H2⋯O1 and O5—H5O⋯O2i; symmetry code as in Table 3[link]), forming a 21 helical chain running along the b-axis direction (Fig. 8[link]). In the chain, a C—H⋯O (C4—H4⋯O3ii; Table 3[link]) inter­action formed between the anions and a ππ inter­action between the C1–C6 ring and the C11–C16 ring are observed [Cg1⋯Cg3i = 3.5570 (6) Å]; Cg1 and Cg3 are, respectively, the centroids of the C1–C6 ring of the anion and the C11–C16 ring of the cation. In addition to the ππ inter­action (Cg1⋯Cg3i), other ππ inter­actions are observed; the centroid–centroid distances are 3.5469 (6), 3.8550 (6) and 3.5133 (6) Å, respectively, for Cg1⋯Cg2iii, Cg1⋯Cg3iii and Cg1⋯Cg4iii, where Cg2 and Cg4 are the centroids of the N2/C8–C11/C16 and N2/C8–C16 rings of the cation, respectively [symmetry code: (iii) −x + [{3\over 2}], y + [{1\over 2}], −z + [{1\over 2}]]. The cations and the anions are stacked alternately in columns along the a-axis direction via the ππ inter­actions (Fig. 9[link]), and the mol­ecular chains are linked into layers parallel to the ab plane through these inter­actions. A short Cl⋯O contact [Cl1⋯O3iv = 3.0669 (10) Å; symmetry code: (iv) −x + 2, −y + 1, −z + 1] is observed between the layers.

[Figure 8]
Figure 8
A partial packing diagram of (III)[link], showing the 21 helix running along the b-axis direction formed by O—H⋯O and N—H⋯O hydrogen bonds (black dashed lines). The C—H⋯O and ππ inter­actions observed in the chain are indicated by black and blue dashed lines, respectively. Cg1 and Cg3 are the centroids of the C1–C6 and C11–C16 rings, respectively. H atoms not involved in the hydrogen bonds have been omitted. [Symmetry codes: (i) −x + [{1\over 2}], y + [{1\over 2}], −z + [{1\over 2}]; (ii) x, y + 1, z.]
[Figure 9]
Figure 9
A partial packing diagram of (III)[link], showing the ππ inter­actions (magenta dashed lines). The N—H⋯O hydrogen bonds in the hydrogen-bonded acid–base units are indicated by green dashed lines. Cg1, Cg2 and Cg3 are the centroids of the C1–C6, N2/C8–C11/C16 and C11–C16 rings, respectively. The ππ inter­actions including the centroid of the ten-membered quinoline ring system (Cg4) are omitted for clarity. [Symmetry codes: (i) −x + [{1\over 2}], y + [{1\over 2}], −z + [{1\over 2}]; (ii) x, y + 1, z; (iii) −x + [{3\over 2}], y + [{1\over 2}], −z + [{1\over 2}].]

4. Database survey

A search of the Cambridge Structural Database (Version 5.40, last update May 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for organic co-crystals of 3-chloro-2-nitro­bonzoic acid with base mol­ecules gave six hits (five compounds), namely, 4-benzpyl­pyridine (1/1) (refcode UHAQUP; Sugiyama et al., 2002[Sugiyama, T., Meng, J. & Matsuura, T. (2002). J. Mol. Struct. 611, 53-64.]), quinolone (1/1) (AJIWOG; Gotoh & Ishida, 2009[Gotoh, K. & Ishida, H. (2009). Acta Cryst. C65, o534-o538.]), phthalazine (1/1) (CALJUW; Gotoh & Ishida, 2011[Gotoh, K. & Ishida, H. (2011). Acta Cryst. C67, o473-o478.]), iso­quinoline (1/1) (NOVLAN; Gotoh & Ishida, 2015[Gotoh, K. & Ishida, H. (2015). Acta Cryst. E71, 31-34.]) and 4,4′-bi­pyridine (2/1) (XICGUO and XICGUO01; Rawat et al., 2018[Rawat, H., Samanta, R., Bhattacharya, B., Deolka, S., Dutta, A., Dey, S., Raju, K. B. & Reddy, C. M. (2018). Cryst. Growth Des. 18, 2918-2923.]). The structure of 3-chloro-2-nitro­bonzoic acid itself (XICHAV) was also reported by Rawat et al. (2018[Rawat, H., Samanta, R., Bhattacharya, B., Deolka, S., Dutta, A., Dey, S., Raju, K. B. & Reddy, C. M. (2018). Cryst. Growth Des. 18, 2918-2923.]). There is no structure for a salt of 3-chloro-2-nitro­bonzoic acid with an organic base mol­ecule. In the acid mol­ecules of the above compounds, the dihedral angles between the benzene ring and the nitro group, and between the benzene ring and the carb­oxy group are in the ranges 79.1 (3)–89.9 (3)° and 1.4 (3)–14.2 (3)°, respectively, which agree with those in the three title compounds. The ΔpKa values for UHAQUP, AJIWOG, CALJUW, NOVLAN and XICGUO are 1.32, 3.08, 1.65, 3.58 and 3.27, respectively, and these compounds show short O⋯N distances in the O—H⋯N hydrogen bonds of 2.600 (3), 2.561 (1), 2.540 (2)–2.571 (2), 2.573 (1) and 2.613 (3) Å, respectively. Furthermore, in the short hydrogen bonds of AJIWOG, CALJUW and NOVLAN, the H atom is disordered over two positions. On the other hand, the compounds (I)[link], (II)[link] and (III)[link] with ΔpKa values of 0.98, 1.42 and 3.02, respectively, show longer O⋯N distances of 2.673 (1), 2.631 (1) and 2.636 (1) Å, which suggests that the ΔpKa value is not an effective measure of hydrogen-bond strength in the 3-chloro-2-nitro­benzoic acid–organic base system.

A search for organic co-crystals/salts of 5-nitro­quinoline showed six structures. Limiting the search to benzoic acid derivatives gave two hits, namely, 3-amino­benzoic acid–5-nitro­quinoline (1/1) (PANYIM; Lynch et al., 1997[Lynch, D. E., Smith, G., Byriel, K. A. & Kennard, C. H. L. (1997). Aust. J. Chem. 50, 977-986.]) and 4-animo­benzoic acid–5-nitro­quinoline (1/2) (PANZEJ; Lynch et al., 1997[Lynch, D. E., Smith, G., Byriel, K. A. & Kennard, C. H. L. (1997). Aust. J. Chem. 50, 977-986.]). No structure was found in the CSD for organic co-crystals/salts of 6-nitro­quinoline. A search for organic co-crystals/salts of 8-hy­droxy­quinoline gave 17 hits. Of these compounds, one related compound is 8-hy­droxy­quinolinium 2-chloro-4-nitro­benzoate (WOPDEM; Babu & Chandrasekaran, 2014[Babu, B. & Chandrasekaran, J. (2014). Private Communication (refcode WOPDEM). CCDC, Cambridge, England.]; ΔpKa = 2.80), in which the O⋯N distance of the N—H⋯O hydrogen bond is 2.644 (3) Å.

5. Synthesis and crystallization

Crystals of all three compounds, (I)–(III), were obtained by slow evaporation from aceto­nitrile solutions of 3-chloro-2-nitro­benzoic acid with quinoline derivatives in a 1:1 molar ratio at room temperature [100 ml aceto­nitrile solution of 3-chloro-2-nitro­benzoic acid (0.39 g) and 5-nitro­quinoline (0.34 g) for (I)[link], 150 ml aceto­nitrile solution of 3-chloro-2-nitro­benzoic acid (0.45 g) and 6-nitro­quinoline (0.39 g) for (II)[link], and 120 ml aceto­nitrile solution of 3-chloro-2-nitro­benzoic acid (0.55 g) and 8-hy­droxy­qunoline (0.40 mg) for (III)] .

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. All H atoms in compounds (I)–(III) were found in difference-Fourier maps. O- and N-bound H atoms in (I)–(III) were refined freely [refined distances: O1—H1 = 0.88 (2) Å in (I)[link], N1—H1 = 0.87 (3) Å in (II)[link], and N2—H2 = 0.880 (16) and O5—H5O = 0.872 (19) Å in (III)[link],]. Other H atoms were positioned geometrically (C—H = 0.95 Å) and treated as riding, with Uiso(H) = 1.2Ueq(C).

Table 4
Experimental details

  (I) (II) (III)
Crystal data
Chemical formula C7H4ClNO4·C9H6N2O2 C7H4ClNO4·C9H6N2O2 C7H3ClNO4·C9H8NO
Mr 375.72 375.72 346.73
Crystal system, space group Monoclinic, C2/c Triclinic, P[\overline{1}] Monoclinic, P21/n
Temperature (K) 190 190 190
a, b, c (Å) 20.5876 (4), 7.6889 (3), 20.4312 (4) 7.7282 (10), 10.2839 (14), 11.2828 (16) 7.3409 (5), 7.4689 (4), 27.0427 (14)
α, β, γ (°) 90, 104.5338 (7), 90 71.990 (4), 79.724 (4), 69.051 (3) 90, 95.7158 (19), 90
V3) 3130.70 (16) 794.08 (19) 1475.33 (15)
Z 8 2 4
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.29 0.28 0.29
Crystal size (mm) 0.45 × 0.40 × 0.30 0.38 × 0.35 × 0.30 0.45 × 0.30 × 0.26
 
Data collection
Diffractometer Rigaku R-AXIS RAPIDII Rigaku R-AXIS RAPIDII Rigaku R-AXIS RAPIDII
Absorption correction Numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.837, 0.918 0.887, 0.919 0.844, 0.927
No. of measured, independent and observed [I > 2σ(I)] reflections 30107, 4549, 4077 16549, 4622, 4029 29560, 4311, 3937
Rint 0.022 0.026 0.019
(sin θ/λ)max−1) 0.703 0.703 0.703
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.104, 1.05 0.039, 0.113, 1.07 0.033, 0.092, 1.06
No. of reflections 4549 4622 4311
No. of parameters 239 239 225
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.30, −0.35 0.50, −0.33 0.39, −0.30
Computer programs: RAPID-AUTO (Rigaku, 2006[Rigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]), CrystalStructure (Rigaku, 2018[Rigaku (2018). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]) and PLATON (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]).

Supporting information


Computing details top

For all structures, data collection: RAPID-AUTO (Rigaku, 2006); cell refinement: RAPID-AUTO (Rigaku, 2006); data reduction: RAPID-AUTO (Rigaku, 2006); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: CrystalStructure (Rigaku, 2018) and PLATON (Spek, 2015).

3-Chloro-2-nitrobenzoic acid–5-nitroquinoline (1/1) (I) top
Crystal data top
C7H4ClNO4·C9H6N2O2F(000) = 1536.00
Mr = 375.72Dx = 1.594 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71075 Å
a = 20.5876 (4) ÅCell parameters from 25710 reflections
b = 7.6889 (3) Åθ = 3.1–30.1°
c = 20.4312 (4) ŵ = 0.29 mm1
β = 104.5338 (7)°T = 190 K
V = 3130.70 (16) Å3Block, colorless
Z = 80.45 × 0.40 × 0.30 mm
Data collection top
Rigaku R-AXIS RAPIDII
diffractometer
4077 reflections with I > 2σ(I)
Detector resolution: 10.000 pixels mm-1Rint = 0.022
ω scansθmax = 30.0°, θmin = 3.1°
Absorption correction: numerical
(NUMABS; Higashi, 1999)
h = 2628
Tmin = 0.837, Tmax = 0.918k = 1010
30107 measured reflectionsl = 2828
4549 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: mixed
wR(F2) = 0.104H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0636P)2 + 1.2587P]
where P = (Fo2 + 2Fc2)/3
4549 reflections(Δ/σ)max = 0.001
239 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.35 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.03434 (2)0.24994 (4)0.50043 (2)0.03753 (9)
O10.34832 (4)0.34621 (10)0.61778 (4)0.03292 (17)
O20.27238 (4)0.55880 (10)0.60848 (5)0.03766 (19)
O30.14558 (5)0.57618 (11)0.50150 (4)0.0412 (2)
O40.12329 (5)0.55420 (11)0.59855 (5)0.0414 (2)
O50.64633 (4)0.97971 (11)0.75715 (4)0.03764 (19)
O60.72372 (4)0.82403 (14)0.73078 (5)0.0472 (2)
N10.14396 (4)0.49673 (11)0.55218 (5)0.02666 (17)
N20.43699 (4)0.60692 (11)0.64264 (4)0.02613 (17)
N30.66566 (4)0.84775 (12)0.73417 (4)0.02984 (18)
C10.23369 (5)0.26976 (12)0.58259 (5)0.02307 (18)
C20.16614 (4)0.31430 (12)0.55708 (5)0.02215 (17)
C30.11699 (5)0.18860 (13)0.53478 (5)0.02620 (19)
C40.13470 (5)0.01433 (14)0.53907 (6)0.0320 (2)
H40.1015470.0726330.5239660.038*
C50.20130 (6)0.03225 (14)0.56561 (6)0.0344 (2)
H50.2134410.1517180.5692820.041*
C60.25043 (5)0.09415 (13)0.58689 (6)0.0296 (2)
H60.2958280.0601860.6045240.035*
C70.28632 (5)0.40747 (12)0.60433 (5)0.02479 (18)
C80.41075 (5)0.76300 (13)0.63187 (5)0.0281 (2)
H80.3635280.7728620.6147700.034*
C90.44900 (5)0.91633 (13)0.64438 (5)0.0290 (2)
H90.4279111.0264480.6343820.035*
C100.51692 (5)0.90588 (12)0.67109 (5)0.02615 (19)
H100.5432431.0086300.6804540.031*
C110.54753 (5)0.74008 (11)0.68461 (5)0.02182 (17)
C120.61745 (5)0.70585 (13)0.71097 (5)0.02475 (18)
C130.64371 (5)0.54231 (14)0.71854 (6)0.0311 (2)
H130.6906810.5257410.7353250.037*
C140.60078 (6)0.39830 (14)0.70133 (6)0.0356 (2)
H140.6187480.2838730.7066700.043*
C150.53282 (6)0.42258 (13)0.67677 (6)0.0313 (2)
H150.5040640.3245620.6656990.038*
C160.50536 (5)0.59203 (12)0.66783 (5)0.02310 (18)
H10.3780 (11)0.430 (3)0.6264 (10)0.073 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.02113 (13)0.03817 (16)0.04799 (17)0.00501 (9)0.00126 (11)0.00276 (10)
O10.0197 (3)0.0265 (4)0.0495 (5)0.0024 (3)0.0029 (3)0.0014 (3)
O20.0245 (4)0.0230 (3)0.0615 (5)0.0035 (3)0.0033 (3)0.0040 (3)
O30.0537 (5)0.0289 (4)0.0359 (4)0.0016 (3)0.0018 (4)0.0084 (3)
O40.0421 (5)0.0322 (4)0.0559 (5)0.0007 (3)0.0237 (4)0.0094 (4)
O50.0346 (4)0.0320 (4)0.0431 (4)0.0071 (3)0.0037 (3)0.0078 (3)
O60.0214 (4)0.0566 (6)0.0631 (6)0.0097 (4)0.0097 (4)0.0088 (5)
N10.0211 (4)0.0221 (4)0.0344 (4)0.0018 (3)0.0025 (3)0.0014 (3)
N20.0195 (4)0.0268 (4)0.0299 (4)0.0039 (3)0.0020 (3)0.0007 (3)
N30.0221 (4)0.0337 (4)0.0314 (4)0.0067 (3)0.0022 (3)0.0007 (3)
C10.0209 (4)0.0210 (4)0.0265 (4)0.0031 (3)0.0044 (3)0.0008 (3)
C20.0215 (4)0.0196 (4)0.0248 (4)0.0018 (3)0.0047 (3)0.0002 (3)
C30.0216 (4)0.0260 (4)0.0294 (4)0.0046 (3)0.0036 (3)0.0019 (3)
C40.0300 (5)0.0237 (5)0.0405 (5)0.0075 (4)0.0057 (4)0.0040 (4)
C50.0341 (5)0.0196 (4)0.0477 (6)0.0026 (4)0.0068 (5)0.0018 (4)
C60.0259 (4)0.0221 (4)0.0391 (5)0.0000 (3)0.0050 (4)0.0001 (4)
C70.0200 (4)0.0239 (4)0.0290 (4)0.0032 (3)0.0035 (3)0.0002 (3)
C80.0197 (4)0.0304 (5)0.0321 (5)0.0014 (3)0.0025 (4)0.0042 (4)
C90.0245 (4)0.0241 (4)0.0369 (5)0.0014 (3)0.0053 (4)0.0051 (4)
C100.0230 (4)0.0216 (4)0.0332 (5)0.0019 (3)0.0059 (4)0.0017 (3)
C110.0186 (4)0.0219 (4)0.0243 (4)0.0020 (3)0.0042 (3)0.0004 (3)
C120.0187 (4)0.0275 (4)0.0267 (4)0.0030 (3)0.0032 (3)0.0015 (3)
C130.0223 (4)0.0319 (5)0.0368 (5)0.0049 (4)0.0032 (4)0.0004 (4)
C140.0325 (5)0.0246 (5)0.0470 (6)0.0061 (4)0.0047 (5)0.0010 (4)
C150.0287 (5)0.0218 (4)0.0409 (5)0.0016 (3)0.0038 (4)0.0022 (4)
C160.0203 (4)0.0220 (4)0.0259 (4)0.0027 (3)0.0037 (3)0.0007 (3)
Geometric parameters (Å, º) top
Cl1—C31.7352 (10)C5—C61.3913 (14)
O1—C71.3231 (12)C5—H50.9500
O1—H10.88 (2)C6—H60.9500
O2—C71.2065 (13)C8—C91.4051 (14)
O3—N11.2099 (12)C8—H80.9500
O4—N11.2150 (12)C9—C101.3699 (13)
O5—N31.2256 (13)C9—H90.9500
O6—N31.2282 (12)C10—C111.4182 (13)
N1—C21.4708 (12)C10—H100.9500
N2—C81.3118 (13)C11—C161.4205 (12)
N2—C161.3768 (12)C11—C121.4290 (13)
N3—C121.4711 (13)C12—C131.3621 (14)
C1—C61.3909 (13)C13—C141.4053 (16)
C1—C21.3997 (13)C13—H130.9500
C1—C71.5002 (13)C14—C151.3755 (16)
C2—C31.3909 (12)C14—H140.9500
C3—C41.3857 (14)C15—C161.4138 (13)
C4—C51.3889 (16)C15—H150.9500
C4—H40.9500
C7—O1—H1111.7 (14)O1—C7—C1113.43 (8)
O3—N1—O4125.03 (10)N2—C8—C9123.28 (9)
O3—N1—C2117.71 (9)N2—C8—H8118.4
O4—N1—C2117.21 (9)C9—C8—H8118.4
C8—N2—C16118.56 (8)C10—C9—C8119.51 (9)
O5—N3—O6123.97 (9)C10—C9—H9120.2
O5—N3—C12118.67 (8)C8—C9—H9120.2
O6—N3—C12117.33 (9)C9—C10—C11119.32 (9)
C6—C1—C2117.92 (8)C9—C10—H10120.3
C6—C1—C7121.16 (9)C11—C10—H10120.3
C2—C1—C7120.92 (8)C10—C11—C16117.28 (8)
C3—C2—C1121.68 (9)C10—C11—C12126.54 (8)
C3—C2—N1116.90 (8)C16—C11—C12116.12 (8)
C1—C2—N1121.41 (8)C13—C12—C11123.12 (9)
C4—C3—C2119.53 (9)C13—C12—N3115.57 (9)
C4—C3—Cl1120.28 (7)C11—C12—N3121.28 (9)
C2—C3—Cl1120.18 (8)C12—C13—C14119.48 (9)
C3—C4—C5119.50 (9)C12—C13—H13120.3
C3—C4—H4120.3C14—C13—H13120.3
C5—C4—H4120.3C15—C14—C13120.17 (10)
C4—C5—C6120.72 (10)C15—C14—H14119.9
C4—C5—H5119.6C13—C14—H14119.9
C6—C5—H5119.6C14—C15—C16120.63 (9)
C1—C6—C5120.61 (10)C14—C15—H15119.7
C1—C6—H6119.7C16—C15—H15119.7
C5—C6—H6119.7N2—C16—C15117.59 (8)
O2—C7—O1124.25 (9)N2—C16—C11121.96 (8)
O2—C7—C1122.32 (9)C15—C16—C11120.46 (9)
C6—C1—C2—C31.77 (14)C8—C9—C10—C111.01 (15)
C7—C1—C2—C3178.02 (9)C9—C10—C11—C161.49 (14)
C6—C1—C2—N1178.69 (9)C9—C10—C11—C12178.64 (9)
C7—C1—C2—N11.53 (14)C10—C11—C12—C13175.60 (10)
O3—N1—C2—C392.47 (11)C16—C11—C12—C131.57 (14)
O4—N1—C2—C385.14 (11)C10—C11—C12—N36.67 (15)
O3—N1—C2—C187.09 (12)C16—C11—C12—N3176.16 (8)
O4—N1—C2—C195.29 (11)O5—N3—C12—C13148.03 (10)
C1—C2—C3—C41.39 (15)O6—N3—C12—C1330.14 (14)
N1—C2—C3—C4179.05 (9)O5—N3—C12—C1129.86 (14)
C1—C2—C3—Cl1177.45 (7)O6—N3—C12—C11151.97 (10)
N1—C2—C3—Cl12.11 (12)C11—C12—C13—C141.45 (16)
C2—C3—C4—C50.03 (16)N3—C12—C13—C14176.40 (10)
Cl1—C3—C4—C5178.87 (9)C12—C13—C14—C150.27 (18)
C3—C4—C5—C61.02 (18)C13—C14—C15—C160.68 (18)
C2—C1—C6—C50.76 (16)C8—N2—C16—C15177.79 (10)
C7—C1—C6—C5179.03 (10)C8—N2—C16—C112.30 (14)
C4—C5—C6—C10.62 (18)C14—C15—C16—N2179.60 (10)
C6—C1—C7—O2171.24 (11)C14—C15—C16—C110.50 (16)
C2—C1—C7—O28.99 (15)C10—C11—C16—N23.23 (14)
C6—C1—C7—O19.12 (14)C12—C11—C16—N2179.32 (8)
C2—C1—C7—O1170.66 (9)C10—C11—C16—C15176.87 (9)
C16—N2—C8—C90.41 (16)C12—C11—C16—C150.58 (14)
N2—C8—C9—C102.09 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N20.88 (2)1.80 (2)2.6727 (12)178 (2)
C8—H8···O20.952.483.1820 (13)131
C5—H5···O2i0.952.573.4860 (14)163
C14—H14···O5i0.952.563.4644 (14)159
C13—H13···O6ii0.952.323.1495 (14)146
Symmetry codes: (i) x, y1, z; (ii) x+3/2, y1/2, z+3/2.
3-Chloro-2-nitrobenzoicacid–6-nitroquinoline (1/1) (II) top
Crystal data top
C7H4ClNO4·C9H6N2O2Z = 2
Mr = 375.72F(000) = 384.00
Triclinic, P1Dx = 1.571 Mg m3
a = 7.7282 (10) ÅMo Kα radiation, λ = 0.71075 Å
b = 10.2839 (14) ÅCell parameters from 14524 reflections
c = 11.2828 (16) Åθ = 3.1–30.1°
α = 71.990 (4)°µ = 0.28 mm1
β = 79.724 (4)°T = 190 K
γ = 69.051 (3)°Block, colorless
V = 794.08 (19) Å30.38 × 0.35 × 0.30 mm
Data collection top
Rigaku R-AXIS RAPIDII
diffractometer
4029 reflections with I > 2σ(I)
Detector resolution: 10.000 pixels mm-1Rint = 0.026
ω scansθmax = 30.0°, θmin = 3.1°
Absorption correction: numerical
(NUMABS; Higashi, 1999)
h = 1010
Tmin = 0.887, Tmax = 0.919k = 1414
16549 measured reflectionsl = 1515
4622 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: mixed
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.072P)2 + 0.0976P]
where P = (Fo2 + 2Fc2)/3
4622 reflections(Δ/σ)max = 0.001
239 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.33 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.21217 (4)1.44247 (3)0.00166 (3)0.04778 (11)
O10.17321 (12)0.77718 (8)0.24868 (9)0.03883 (19)
O20.30609 (12)0.94833 (9)0.20949 (10)0.0464 (2)
O30.23107 (11)1.23134 (10)0.01395 (9)0.0439 (2)
O40.12561 (13)1.25965 (10)0.19770 (10)0.0477 (2)
O50.83957 (13)0.07571 (9)0.45563 (10)0.0469 (2)
O60.58065 (12)0.04120 (8)0.38490 (8)0.03651 (18)
N10.12435 (12)1.22061 (9)0.10689 (9)0.03234 (19)
N20.50541 (13)0.60187 (9)0.31357 (9)0.03239 (19)
N30.69185 (13)0.00332 (9)0.41169 (8)0.03128 (18)
C10.00331 (13)1.01631 (10)0.15345 (9)0.02609 (18)
C20.02570 (12)1.16317 (10)0.10624 (9)0.02667 (18)
C30.18851 (13)1.26120 (10)0.05510 (10)0.0299 (2)
C40.33392 (14)1.21363 (12)0.04976 (10)0.0325 (2)
H40.4458731.2803970.0151460.039*
C50.31344 (14)1.06810 (12)0.09541 (10)0.0318 (2)
H50.4117931.0346960.0919860.038*
C60.14952 (13)0.97031 (11)0.14634 (9)0.02906 (19)
H60.1370310.8705690.1767560.035*
C70.17485 (14)0.91108 (10)0.20737 (10)0.0302 (2)
C80.62786 (17)0.65774 (11)0.32741 (12)0.0382 (2)
H80.5933730.7598630.3093650.046*
C90.80676 (17)0.57424 (13)0.36745 (13)0.0413 (3)
H90.8905180.6196630.3746990.050*
C100.85796 (16)0.42727 (12)0.39567 (12)0.0367 (2)
H100.9770470.3687700.4241930.044*
C110.73037 (14)0.36326 (10)0.38169 (9)0.02805 (19)
C120.77423 (14)0.21193 (10)0.40730 (10)0.02926 (19)
H120.8904520.1480540.4373930.035*
C130.64508 (14)0.16024 (10)0.38761 (9)0.02718 (19)
C140.47039 (14)0.24888 (11)0.34310 (10)0.0302 (2)
H140.3856360.2078830.3296220.036*
C150.42557 (14)0.39522 (11)0.31976 (10)0.0310 (2)
H150.3079260.4570140.2906740.037*
C160.55426 (13)0.45484 (10)0.33887 (9)0.02686 (18)
H10.285 (3)0.723 (3)0.270 (2)0.089 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.03623 (16)0.02349 (14)0.0773 (2)0.00733 (10)0.02054 (14)0.00154 (12)
O10.0321 (4)0.0222 (3)0.0574 (5)0.0076 (3)0.0081 (3)0.0028 (3)
O20.0339 (4)0.0274 (4)0.0765 (6)0.0091 (3)0.0234 (4)0.0020 (4)
O30.0315 (4)0.0410 (4)0.0603 (5)0.0196 (3)0.0013 (4)0.0068 (4)
O40.0429 (5)0.0451 (5)0.0664 (6)0.0136 (4)0.0170 (4)0.0240 (4)
O50.0430 (4)0.0235 (4)0.0679 (6)0.0034 (3)0.0177 (4)0.0047 (4)
O60.0471 (4)0.0304 (4)0.0395 (4)0.0196 (3)0.0002 (3)0.0132 (3)
N10.0246 (4)0.0221 (4)0.0508 (5)0.0070 (3)0.0109 (4)0.0065 (3)
N20.0329 (4)0.0204 (4)0.0417 (5)0.0051 (3)0.0079 (3)0.0066 (3)
N30.0368 (4)0.0225 (4)0.0340 (4)0.0100 (3)0.0023 (3)0.0066 (3)
C10.0231 (4)0.0236 (4)0.0311 (4)0.0078 (3)0.0029 (3)0.0060 (3)
C20.0217 (4)0.0244 (4)0.0349 (4)0.0085 (3)0.0041 (3)0.0071 (3)
C30.0250 (4)0.0238 (4)0.0389 (5)0.0071 (3)0.0065 (4)0.0042 (4)
C40.0220 (4)0.0342 (5)0.0401 (5)0.0080 (4)0.0063 (4)0.0075 (4)
C50.0255 (4)0.0365 (5)0.0374 (5)0.0152 (4)0.0011 (4)0.0099 (4)
C60.0273 (4)0.0282 (4)0.0335 (4)0.0132 (4)0.0008 (3)0.0075 (4)
C70.0287 (4)0.0229 (4)0.0370 (5)0.0068 (3)0.0050 (4)0.0054 (3)
C80.0433 (6)0.0228 (4)0.0506 (6)0.0102 (4)0.0097 (5)0.0097 (4)
C90.0420 (6)0.0310 (5)0.0588 (7)0.0157 (4)0.0144 (5)0.0122 (5)
C100.0328 (5)0.0294 (5)0.0518 (6)0.0100 (4)0.0144 (4)0.0099 (4)
C110.0282 (4)0.0229 (4)0.0343 (5)0.0078 (3)0.0074 (3)0.0071 (3)
C120.0269 (4)0.0218 (4)0.0373 (5)0.0048 (3)0.0091 (4)0.0054 (3)
C130.0303 (4)0.0204 (4)0.0307 (4)0.0082 (3)0.0044 (3)0.0055 (3)
C140.0298 (4)0.0270 (4)0.0359 (5)0.0115 (4)0.0083 (4)0.0055 (4)
C150.0270 (4)0.0258 (4)0.0385 (5)0.0068 (3)0.0103 (4)0.0041 (4)
C160.0275 (4)0.0210 (4)0.0309 (4)0.0064 (3)0.0054 (3)0.0053 (3)
Geometric parameters (Å, º) top
Cl1—C31.7257 (10)C5—C61.3921 (14)
O1—C71.3142 (12)C5—H50.9500
O1—H10.87 (3)C6—H60.9500
O2—C71.2117 (13)C8—C91.4096 (16)
O3—N11.2153 (13)C8—H80.9500
O4—N11.2132 (13)C9—C101.3646 (15)
O5—N31.2243 (12)C9—H90.9500
O6—N31.2244 (12)C10—C111.4193 (14)
N1—C21.4796 (12)C10—H100.9500
N2—C81.3218 (14)C11—C121.4142 (13)
N2—C161.3688 (12)C11—C161.4175 (13)
N3—C131.4682 (12)C12—C131.3637 (14)
C1—C21.3940 (13)C12—H120.9500
C1—C61.3947 (13)C13—C141.4088 (13)
C1—C71.5044 (13)C14—C151.3671 (14)
C2—C31.3873 (13)C14—H140.9500
C3—C41.3934 (13)C15—C161.4163 (14)
C4—C51.3832 (15)C15—H150.9500
C4—H40.9500
C7—O1—H1107.0 (16)O1—C7—C1113.28 (9)
O4—N1—O3125.19 (9)N2—C8—C9123.66 (10)
O4—N1—C2117.34 (9)N2—C8—H8118.2
O3—N1—C2117.37 (9)C9—C8—H8118.2
C8—N2—C16118.54 (9)C10—C9—C8119.08 (10)
O5—N3—O6123.52 (9)C10—C9—H9120.5
O5—N3—C13118.83 (9)C8—C9—H9120.5
O6—N3—C13117.64 (9)C9—C10—C11118.90 (10)
C2—C1—C6117.80 (9)C9—C10—H10120.5
C2—C1—C7120.79 (8)C11—C10—H10120.5
C6—C1—C7121.39 (8)C12—C11—C16119.20 (9)
C3—C2—C1121.41 (9)C12—C11—C10122.22 (9)
C3—C2—N1117.24 (8)C16—C11—C10118.57 (9)
C1—C2—N1121.35 (8)C13—C12—C11118.16 (9)
C2—C3—C4120.06 (9)C13—C12—H12120.9
C2—C3—Cl1120.21 (7)C11—C12—H12120.9
C4—C3—Cl1119.73 (8)C12—C13—C14123.80 (9)
C5—C4—C3119.26 (9)C12—C13—N3118.24 (9)
C5—C4—H4120.4C14—C13—N3117.95 (8)
C3—C4—H4120.4C15—C14—C13118.50 (9)
C4—C5—C6120.36 (9)C15—C14—H14120.8
C4—C5—H5119.8C13—C14—H14120.8
C6—C5—H5119.8C14—C15—C16120.10 (9)
C5—C6—C1121.10 (9)C14—C15—H15120.0
C5—C6—H6119.4C16—C15—H15119.9
C1—C6—H6119.4N2—C16—C15118.54 (9)
O2—C7—O1124.46 (9)N2—C16—C11121.22 (9)
O2—C7—C1122.25 (9)C15—C16—C11120.23 (9)
C6—C1—C2—C30.76 (15)N2—C8—C9—C101.0 (2)
C7—C1—C2—C3179.34 (9)C8—C9—C10—C111.07 (19)
C6—C1—C2—N1178.31 (9)C9—C10—C11—C12179.07 (11)
C7—C1—C2—N10.27 (15)C9—C10—C11—C160.01 (17)
O4—N1—C2—C390.22 (12)C16—C11—C12—C131.04 (15)
O3—N1—C2—C386.34 (12)C10—C11—C12—C13178.04 (10)
O4—N1—C2—C190.67 (12)C11—C12—C13—C140.05 (16)
O3—N1—C2—C192.76 (12)C11—C12—C13—N3178.77 (9)
C1—C2—C3—C40.19 (16)O5—N3—C13—C124.41 (15)
N1—C2—C3—C4178.92 (9)O6—N3—C13—C12174.69 (9)
C1—C2—C3—Cl1179.61 (8)O5—N3—C13—C14176.79 (10)
N1—C2—C3—Cl11.28 (14)O6—N3—C13—C144.11 (14)
C2—C3—C4—C50.26 (16)C12—C13—C14—C150.97 (16)
Cl1—C3—C4—C5179.94 (8)N3—C13—C14—C15179.70 (9)
C3—C4—C5—C60.12 (16)C13—C14—C15—C160.76 (15)
C4—C5—C6—C10.48 (15)C8—N2—C16—C15177.77 (10)
C2—C1—C6—C50.90 (14)C8—N2—C16—C111.38 (15)
C7—C1—C6—C5179.48 (9)C14—C15—C16—N2179.46 (9)
C2—C1—C7—O21.69 (16)C14—C15—C16—C110.30 (15)
C6—C1—C7—O2176.84 (11)C12—C11—C16—N2179.64 (9)
C2—C1—C7—O1179.50 (9)C10—C11—C16—N21.25 (15)
C6—C1—C7—O11.96 (14)C12—C11—C16—C151.22 (15)
C16—N2—C8—C90.26 (18)C10—C11—C16—C15177.89 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N20.87 (3)1.76 (3)2.6310 (14)176 (3)
C8—H8···O20.952.533.2082 (16)128
C8—H8···O6i0.952.413.2387 (15)145
C14—H14···O4ii0.952.523.3226 (16)142
C12—H12···O5iii0.952.373.2526 (16)155
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z; (iii) x+2, y, z+1.
8-Hydroxyquinoliniumb 3-chloro-2-nitrobenzoate (III) top
Crystal data top
C7H3ClNO4·C9H8NOF(000) = 712.00
Mr = 346.73Dx = 1.561 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71075 Å
a = 7.3409 (5) ÅCell parameters from 25520 reflections
b = 7.4689 (4) Åθ = 3.0–30.0°
c = 27.0427 (14) ŵ = 0.29 mm1
β = 95.7158 (19)°T = 190 K
V = 1475.33 (15) Å3Block, pale yellow
Z = 40.45 × 0.30 × 0.26 mm
Data collection top
Rigaku R-AXIS RAPIDII
diffractometer
3937 reflections with I > 2σ(I)
Detector resolution: 10.000 pixels mm-1Rint = 0.019
ω scansθmax = 30.0°, θmin = 3.0°
Absorption correction: numerical
(NUMABS; Higashi, 1999)
h = 1010
Tmin = 0.844, Tmax = 0.927k = 1010
29560 measured reflectionsl = 3737
4311 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: mixed
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0517P)2 + 0.422P]
where P = (Fo2 + 2Fc2)/3
4311 reflections(Δ/σ)max = 0.001
225 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.29 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.86076 (4)0.71237 (3)0.49827 (2)0.03111 (8)
O10.49893 (14)0.57049 (11)0.27915 (3)0.0388 (2)
O20.50879 (12)0.37292 (10)0.34157 (3)0.03253 (18)
O30.81650 (12)0.34758 (10)0.42238 (3)0.03453 (19)
O40.56116 (14)0.41075 (12)0.45203 (3)0.0406 (2)
O50.25608 (11)0.64218 (10)0.18109 (3)0.03011 (17)
N10.68835 (12)0.44696 (11)0.42827 (3)0.02456 (17)
N20.41002 (11)0.32651 (12)0.21056 (3)0.02279 (16)
C10.63355 (12)0.66248 (12)0.35750 (3)0.02025 (17)
C20.69708 (12)0.62802 (12)0.40684 (3)0.01940 (16)
C30.77981 (12)0.76019 (13)0.43755 (3)0.02089 (17)
C40.80144 (13)0.93180 (13)0.41926 (4)0.02407 (18)
H40.8574611.0227840.4401090.029*
C50.74011 (14)0.96853 (13)0.37014 (4)0.02617 (19)
H50.7547061.0852670.3571500.031*
C60.65741 (13)0.83530 (13)0.33982 (4)0.02399 (18)
H60.6161640.8626930.3062630.029*
C70.53938 (13)0.52246 (13)0.32319 (4)0.02389 (18)
C80.47845 (15)0.17222 (14)0.22785 (4)0.0276 (2)
H80.5307310.1648200.2613640.033*
C90.47520 (16)0.02008 (14)0.19773 (4)0.0314 (2)
H90.5203960.0912260.2107890.038*
C100.40556 (15)0.03461 (14)0.14900 (4)0.0292 (2)
H100.4045560.0673230.1279640.035*
C110.33516 (13)0.19899 (13)0.12955 (4)0.02402 (19)
C120.26151 (15)0.22187 (16)0.07953 (4)0.0303 (2)
H120.2602340.1247670.0568130.036*
C130.19225 (15)0.38479 (17)0.06420 (4)0.0317 (2)
H130.1452740.4001800.0304470.038*
C140.18881 (14)0.53056 (16)0.09724 (4)0.0287 (2)
H140.1384680.6417730.0855980.034*
C150.25798 (13)0.51294 (13)0.14634 (4)0.02325 (18)
C160.33572 (12)0.34640 (13)0.16246 (3)0.02087 (17)
H20.421 (2)0.417 (2)0.2315 (6)0.044 (4)*
H5O0.173 (3)0.722 (2)0.1717 (7)0.049 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.04386 (16)0.02719 (13)0.02051 (12)0.00200 (9)0.00565 (9)0.00222 (8)
O10.0621 (6)0.0278 (4)0.0233 (4)0.0053 (4)0.0116 (3)0.0018 (3)
O20.0403 (4)0.0219 (3)0.0328 (4)0.0084 (3)0.0092 (3)0.0002 (3)
O30.0389 (4)0.0186 (3)0.0436 (5)0.0042 (3)0.0082 (3)0.0010 (3)
O40.0546 (5)0.0327 (4)0.0368 (4)0.0104 (4)0.0154 (4)0.0047 (3)
O50.0389 (4)0.0219 (3)0.0282 (4)0.0071 (3)0.0033 (3)0.0022 (3)
N10.0342 (4)0.0172 (3)0.0211 (4)0.0033 (3)0.0036 (3)0.0004 (3)
N20.0267 (4)0.0202 (4)0.0214 (4)0.0002 (3)0.0019 (3)0.0013 (3)
C10.0217 (4)0.0178 (4)0.0206 (4)0.0009 (3)0.0011 (3)0.0016 (3)
C20.0219 (4)0.0152 (4)0.0208 (4)0.0006 (3)0.0008 (3)0.0002 (3)
C30.0228 (4)0.0187 (4)0.0206 (4)0.0012 (3)0.0007 (3)0.0023 (3)
C40.0256 (4)0.0165 (4)0.0292 (5)0.0006 (3)0.0022 (3)0.0030 (3)
C50.0300 (5)0.0161 (4)0.0315 (5)0.0002 (3)0.0013 (4)0.0023 (3)
C60.0277 (4)0.0194 (4)0.0240 (4)0.0016 (3)0.0016 (3)0.0025 (3)
C70.0263 (4)0.0205 (4)0.0236 (4)0.0007 (3)0.0040 (3)0.0032 (3)
C80.0318 (5)0.0250 (5)0.0259 (4)0.0026 (4)0.0025 (4)0.0029 (4)
C90.0361 (5)0.0219 (5)0.0368 (5)0.0044 (4)0.0066 (4)0.0014 (4)
C100.0321 (5)0.0219 (4)0.0348 (5)0.0013 (4)0.0090 (4)0.0065 (4)
C110.0228 (4)0.0249 (4)0.0249 (4)0.0035 (3)0.0053 (3)0.0040 (3)
C120.0300 (5)0.0367 (6)0.0246 (5)0.0062 (4)0.0042 (4)0.0083 (4)
C130.0289 (5)0.0450 (6)0.0207 (4)0.0029 (4)0.0002 (3)0.0003 (4)
C140.0272 (4)0.0335 (5)0.0251 (5)0.0015 (4)0.0012 (4)0.0054 (4)
C150.0232 (4)0.0229 (4)0.0237 (4)0.0004 (3)0.0024 (3)0.0006 (3)
C160.0202 (4)0.0212 (4)0.0214 (4)0.0019 (3)0.0030 (3)0.0010 (3)
Geometric parameters (Å, º) top
Cl1—C31.7268 (10)C5—C61.3898 (14)
O1—C71.2511 (12)C5—H50.9500
O2—C71.2519 (13)C6—H60.9500
O3—N11.2211 (12)C8—C91.3969 (15)
O4—N11.2154 (12)C8—H80.9500
O5—C151.3483 (12)C9—C101.3695 (16)
O5—H5O0.872 (19)C9—H90.9500
N1—C21.4751 (12)C10—C111.4132 (15)
N2—C81.3236 (13)C10—H100.9500
N2—C161.3676 (12)C11—C161.4154 (13)
N2—H20.880 (16)C11—C121.4161 (14)
C1—C21.3930 (12)C12—C131.3671 (17)
C1—C61.3935 (13)C12—H120.9500
C1—C71.5180 (13)C13—C141.4103 (16)
C2—C31.3902 (12)C13—H130.9500
C3—C41.3887 (13)C14—C151.3798 (14)
C4—C51.3870 (14)C14—H140.9500
C4—H40.9500C15—C161.4189 (13)
C15—O5—H5O109.9 (12)N2—C8—C9121.23 (10)
O4—N1—O3125.17 (9)N2—C8—H8119.4
O4—N1—C2118.51 (9)C9—C8—H8119.4
O3—N1—C2116.22 (9)C10—C9—C8118.66 (10)
C8—N2—C16122.14 (9)C10—C9—H9120.7
C8—N2—H2115.9 (11)C8—C9—H9120.7
C16—N2—H2121.9 (11)C9—C10—C11120.97 (9)
C2—C1—C6117.27 (8)C9—C10—H10119.5
C2—C1—C7123.14 (8)C11—C10—H10119.5
C6—C1—C7119.58 (8)C10—C11—C16117.63 (9)
C3—C2—C1121.72 (8)C10—C11—C12123.44 (9)
C3—C2—N1116.73 (8)C16—C11—C12118.92 (9)
C1—C2—N1121.48 (8)C13—C12—C11119.49 (10)
C4—C3—C2120.08 (9)C13—C12—H12120.3
C4—C3—Cl1119.26 (7)C11—C12—H12120.3
C2—C3—Cl1120.64 (7)C12—C13—C14121.63 (10)
C5—C4—C3119.08 (9)C12—C13—H13119.2
C5—C4—H4120.5C14—C13—H13119.2
C3—C4—H4120.5C15—C14—C13120.53 (10)
C4—C5—C6120.29 (9)C15—C14—H14119.7
C4—C5—H5119.9C13—C14—H14119.7
C6—C5—H5119.9O5—C15—C14125.04 (9)
C5—C6—C1121.56 (9)O5—C15—C16116.43 (8)
C5—C6—H6119.2C14—C15—C16118.52 (9)
C1—C6—H6119.2N2—C16—C11119.30 (9)
O1—C7—O2126.78 (9)N2—C16—C15119.84 (8)
O1—C7—C1115.77 (9)C11—C16—C15120.85 (9)
O2—C7—C1117.44 (8)
C6—C1—C2—C30.47 (14)C16—N2—C8—C91.11 (16)
C7—C1—C2—C3178.81 (9)N2—C8—C9—C102.40 (16)
C6—C1—C2—N1176.32 (8)C8—C9—C10—C111.12 (16)
C7—C1—C2—N14.41 (14)C9—C10—C11—C161.33 (15)
O4—N1—C2—C385.64 (11)C9—C10—C11—C12179.99 (10)
O3—N1—C2—C391.03 (11)C10—C11—C12—C13178.41 (10)
O4—N1—C2—C197.42 (11)C16—C11—C12—C130.23 (14)
O3—N1—C2—C185.91 (11)C11—C12—C13—C141.28 (16)
C1—C2—C3—C40.17 (14)C12—C13—C14—C150.76 (16)
N1—C2—C3—C4176.76 (8)C13—C14—C15—O5177.90 (10)
C1—C2—C3—Cl1178.87 (7)C13—C14—C15—C161.27 (15)
N1—C2—C3—Cl11.94 (12)C8—N2—C16—C111.46 (14)
C2—C3—C4—C50.23 (14)C8—N2—C16—C15177.62 (9)
Cl1—C3—C4—C5178.49 (8)C10—C11—C16—N22.62 (13)
C3—C4—C5—C60.32 (15)C12—C11—C16—N2178.66 (9)
C4—C5—C6—C10.01 (15)C10—C11—C16—C15176.45 (9)
C2—C1—C6—C50.38 (14)C12—C11—C16—C152.27 (14)
C7—C1—C6—C5178.92 (9)O5—C15—C16—N22.60 (13)
C2—C1—C7—O1176.23 (9)C14—C15—C16—N2178.16 (9)
C6—C1—C7—O14.51 (14)O5—C15—C16—C11176.47 (8)
C2—C1—C7—O24.37 (14)C14—C15—C16—C112.77 (14)
C6—C1—C7—O2174.89 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O10.880 (16)1.776 (16)2.6355 (12)164.7 (14)
O5—H5O···O2i0.872 (19)1.756 (19)2.6247 (12)173.2 (19)
C4—H4···O3ii0.952.493.1082 (12)123
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x, y+1, z.
 

References

First citationBabu, B. & Chandrasekaran, J. (2014). Private Communication (refcode WOPDEM). CCDC, Cambridge, England.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGilli, G. & Gilli, P. (2009). The Nature of the Hydrogen Bond. Oxford University Press.  Google Scholar
First citationGotoh, K. & Ishida, H. (2009). Acta Cryst. C65, o534–o538.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGotoh, K. & Ishida, H. (2011). Acta Cryst. C67, o473–o478.  CSD CrossRef IUCr Journals Google Scholar
First citationGotoh, K. & Ishida, H. (2015). Acta Cryst. E71, 31–34.  CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLynch, D. E., Smith, G., Byriel, K. A. & Kennard, C. H. L. (1997). Aust. J. Chem. 50, 977–986.  CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRawat, H., Samanta, R., Bhattacharya, B., Deolka, S., Dutta, A., Dey, S., Raju, K. B. & Reddy, C. M. (2018). Cryst. Growth Des. 18, 2918–2923.  CSD CrossRef CAS Google Scholar
First citationRigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2018). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSchmidtmann, M. & Wilson, C. C. (2008). CrystEngComm, 10, 177–183.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSugiyama, T., Meng, J. & Matsuura, T. (2002). J. Mol. Struct. 611, 53–64.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds