research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 2-[(1,3-benzoxazol-2-yl)sulfan­yl]-N-(2-meth­­oxy­phen­yl)acetamide

aDepartment of Mathematics and Science Education, Faculty of Education, Kastamonu University, 37200 Kastamonu, Turkey, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, cDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, Izmir Katip Celebi University, 35620 Izmir, Turkey, and dDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, Ege University, 35100 Izmir, Turkey
*Correspondence e-mail: aaydin@kastamonu.edu.tr

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy (Received 4 September 2019; accepted 18 September 2019; online 27 September 2019)

In the title compound, C16H14N2O3S, the 1,3-benzoxazole ring system is essentially planar (r.m.s deviation = 0.004 Å) and makes a dihedral angle of 66.16 (17)° with the benzene ring of the meth­oxy­phenyl group. Two intra­molecular N—H⋯O and N—H⋯N hydrogen bonds occur, forming S(5) and S(7) ring motifs, respectively. In the crystal, pairs of C—H⋯O hydrogen bonds link the mol­ecules into inversion dimers with R22(14) ring motifs, stacked along the b-axis direction. The inversion dimers are linked by C—H⋯π and ππ-stacking inter­actions [centroid-to-centroid distances = 3.631 (2) and 3.631 (2) Å], forming a three-dimensional network. Two-dimensional fingerprint plots associated with the Hirshfeld surface show that the largest contributions to the crystal packing come from H⋯H (39.3%), C⋯H/H⋯C (18.0%), O⋯H/H⋯O (15.6) and S⋯H/H⋯S (10.2%) inter­actions.

1. Chemical context

As a part of our ongoing research on synthesis and screening of pharmacological activities of compounds with a benzoxazole ring, which is known to produce a wide range of biological activities (Aggarwal et al., 2017[Aggarwal, N., Kaur, A., Anand, K., Kumar, H. & Wakode, S. R. (2017). Int. J. Pharm. Sci. Res. 2, 1-5.]; Gautam et al., 2012[Gautam, M. K., Sonal-Sharma, N. K. & Priyanka-Jha, K. K. (2012). Int. J. ChemTech Res. 4, 640-650.]), we have focused on the synthesis of 3-substituted benzoxazolone-2-thione and S-substituted benzoxazole-2-thiol derivatives. It is well known that alkyl­ation of benzoxazolone-2-thione leads to the S-alkyl­ated derivatives instead of N-alkyl­ated ones (Xiang et al., 2012[Xiang, P., Zhou, T., Wang, L., Sun, C.-Y., Hu, J., Zhao, Y.-L. & Yang, L. (2012). Molecules, 17, 873-883.]; Rakse et al., 2013[Rakse, M., Karthikeyan, C., Deora, G. S., Moorthy, N. S. H. N., Rathore, V., Rawat, A. K., Srivastava, A. K. & Trivedi, P. (2013). Eur. J. Med. Chem. 70, 469-476.]; Yurttaş et al., 2015[Yurttaş, L., Tay, F. & Demirayak, S. (2015). J. Enzyme Inhib. Med. Chem. 30, 458-465.]). In this manner, the title compound was synthesized as a member of the target S-substituted benzoxazole-2-thiol series. The title compound is listed in the literature with registry number CASRN 331966-95-1 but corresponding scientific reference data are not available.

[Scheme 1]

2. Structural commentary

In the mol­ecular structure of the title compound (Fig. 1[link]), the 1,3-benzoxazole ring system (N1/O1/C1–C7) is essentially planar (r.m.s deviation = 0.004 Å) and makes a dihedral angle of 66.16 (17)° with the benzene ring (C10–C15) of the meth­oxy­phenyl group. Atoms O3 and C16 deviate from the benzene ring by −0.008 (3) and 0.099 (6) Å, respectively. The torsion angle C7—S1—C8—C9 = −87.7 (3)°, S1—C8—C9— N2 = 91.6 (4)° and C8—C9—N2—C10 = −178.8 (3)°. The C7—S1 [1.740 (4) Å] and C8—S1 [1.812 (4) Å] bond lengths are comparable with those reported for three similar structures, viz. 2-[(4,6-di­amino­pyrimidin-2-yl)sulfan­yl]-N-(2-meth­yl­phen­yl)acetamide (1.763 and 1.805 Å, respectively; Subasri et al., 2014[Subasri, S., Kumar, T. A., Sinha, B. N., Jayaprakash, V. & Velmurugan, D. (2014). Acta Cryst. E70, o850.]), 2-[(4,6-di­amino­pyrimidin-2-yl)sulfan­yl]-N-(2,4-di­methyl­phen­yl)acetamide [1.7650 (14) and 1.8053 (16) Å, respectively; Choudhury et al., 2017[Choudhury, M., Viswanathan, V., Timiri, A. K., Sinha, B. N., Jayaprakash, V. & Velmurugan, D. (2017). Acta Cryst. E73, 996-1000.]] and 2-[(4,6-di­amino­pyrimidin-2-yl)sulfan­yl]-N-(3-meth­oxy­phen­yl) acetamide [1.7721 (17) and 1.8126 (18) Å, respectively; Choudhury et al., 2017[Choudhury, M., Viswanathan, V., Timiri, A. K., Sinha, B. N., Jayaprakash, V. & Velmurugan, D. (2017). Acta Cryst. E73, 996-1000.]]. The two intra­molecular hydrogen bonds, N2—HN2⋯O3 and N2—HN2⋯N1, form S(5) and S(7) ring motifs, respectively (Table 1[link], Fig. 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C10–C15 benzene ring of the meth­oxy phenyl group.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—HN2⋯O3 0.86 2.22 2.608 (4) 107
N2—HN2⋯N1 0.86 2.39 3.075 (4) 136
C8—H8A⋯N1 0.97 2.48 2.914 (5) 107
C11—H11⋯O2 0.93 2.28 2.869 (5) 121
C12—H12⋯O2i 0.93 2.52 3.378 (6) 153
C13—H13⋯Cg3ii 0.93 2.89 3.634 (5) 138
Symmetry codes: (i) -x, -y+2, -z+1; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labelling and displacement ellipsoids drawn at the 30% probability level. Intra­molecular hydrogen bonds are shown as dashed lines.

3. Supra­molecular features

In the crystal, pairs of C—H⋯O hydrogen bonds link the mol­ecules into inversion dimers with [R_{2}^{2}](14) ring motifs, stacking along the b-axis direction. These dimers are linked by C—H⋯π (Table 1[link], Fig. 2[link]) and ππ-stacking inter­actions [Fig. 2[link]; distances of 3.631 (2) and 3.631 (2) Å between the centroids of the five- and opposite six-membered rings of the 1,3-benzoxazole ring system of adjacent mol­ecules], forming a three-dimensional network (Fig. 3[link]).

[Figure 2]
Figure 2
A packing diagram of the title compound, showing the intra- and inter­molecular N—H⋯N and N—H⋯O, C—H⋯O hydrogen bonds, C—H⋯π inter­actions and ππ-stacking inter­actions (dashed lines). Symmetry code: (a) − x, 2 − y, 1 − z.
[Figure 3]
Figure 3
Packing diagram of the title compound viewed down the b axis.

4. Hirshfeld surface analysis

In order to explore the role of weak inter­molecular inter­actions in the crystal packing, Hirshfeld surfaces (dnorm) and the related two-dimensional fingerprint plots were generated using CrystalExplorer17.5 (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]; Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). CrystalExplorer3.1. University of Western Australia.]). The three-dimensional mol­ecular Hirshfeld surfaces were generated using a high standard surface resolution over a colour scale of −0.1599 to 1.2011 a.u. for dnorm (Fig. 4[link]). The red spots in the Hirshfeld surface represent short N⋯H/H⋯N and O⋯H/H⋯O contacts. On the shape-index surface (Fig. 5[link]), convex blue regions represent hydrogen-donor groups and concave red regions represent hydrogen-acceptor groups. In addition, concave red regions represent C—H⋯π and ππ inter­actions.

[Figure 4]
Figure 4
Hirshfeld surface mapped over dnorm, showing the weak inter­molecular C—H⋯O and C—H⋯C contacts.
[Figure 5]
Figure 5
View of the three-dimensional Hirshfeld surface of the title compound plotted over electrostatic potential energy in the range −0.0500 to 0.0500 a.u. using the STO-3 G basis set at the Hartree–Fock level of theory. Hydrogen- bond donors and acceptors are shown as blue and red regions around the atoms corresponding to positive and negative potentials, respectively.

The bright-red spots indicate their roles as the respective donors and/or acceptors; they also appear as blue and red regions corresponding to positive and negative potentials on the Hirshfeld surface mapped over electrostatic potential (Spackman et al., 2008[Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377-388.]) shown in Fig. 6[link]. The blue regions indicate the positive electrostatic potential (hydrogen-bond donors), while the red regions indicate the negative electrostatic potential (hydrogen-bond acceptors).

[Figure 6]
Figure 6
Hirshfeld surfaces for the title compound, mapped with shape-index.

The two-dimensional fingerprint plots (Fig. 7[link]) qu­antify the contributions of each type of inter­molecular inter­action to the Hirshfeld surface (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814.]). The largest contribution (39.3% of the surface) is from H⋯H contacts (Table 2[link]), which represent van der Waals inter­actions, followed by C⋯H/H⋯C contacts involved in C—H⋯π inter­actions (18.0%). Finally, the O⋯H/H⋯O (15.6%), S⋯H/H⋯S (10.2%) and C⋯C (4.5%) contacts correspond to hydrogen bonds and ππ inter­actions, respectively. The percentage contributions to the Hirshfeld surface of the various inter­atomic contacts are given in Table 3[link].

Table 2
Summary of selected short inter­atomic contacts (Å) in the title compound

Contact Distance Symmetry operation
H5⋯O3 2.72 1 − x, 1 − y, 1 − z
S1⋯H2 3.10 x, [{1\over 2}] − y, [{1\over 2}] + z
C5⋯C1 3.38 1 − x, −y, 1 − z
H8B⋯C11 3.06 x, 1 − y, 1 − z
H12⋯O2 2.52 x, 2 − y, 1 − z
O2⋯H16A 2.74 x, [{3\over 2}] − y, [{1\over 2}] + z
C10⋯H13 3.04 x, −[{1\over 2}] + y, [{1\over 2}] − z
C12⋯H8A 2.82 x, 1 + y, z

Table 3
Percentage contributions of inter­atomic contacts to the Hirshfeld surface of the title compound

Contact Percentage contribution
H⋯H 39.3
H⋯C/C⋯H 18.0
O⋯H/H⋯O 15.6
S⋯H/H⋯S 10.2
C⋯O/O⋯C 6.0
C⋯C 4.5
N⋯H/H⋯N 4.1
C⋯N/N⋯C 1.4
C⋯S/S⋯C 0.6
N⋯O/O⋯N 0.1
[Figure 7]
Figure 7
Hirshfeld surfaces and two-dimensional fingerprints for the compound, showing (a) all inter­actions and those delineated into (b) H⋯H, (c) C⋯H/H⋯C, (d) O⋯H/H⋯O, (e) S⋯H/H⋯S and (f) C⋯O/O⋯C contacts.

5. Database survey

Related compounds to the title compound include 2-[(4,6-di­amino­pyrimidin-2-yl)sulfan­yl]-N-(naphthalen-1-yl)acetamide (refcode JARPOK; Subasri et al., 2017[Subasri, S., Kumar, T. A., Sinha, B. N., Jayaprakash, V., Viswanathan, V. & Velmurugan, D. (2017). Acta Cryst. E73, 306-309.]), 2-[(4,6-di­amino­pyrimidin-2-yl)sulfan­yl]-N-(4-fluoro­phen­yl)acetamide (JAR­PUQ; Subasri et al., 2017[Subasri, S., Kumar, T. A., Sinha, B. N., Jayaprakash, V., Viswanathan, V. & Velmurugan, D. (2017). Acta Cryst. E73, 306-309.]), 2-[(4,6-di­amino­pyrimidin-2-yl)sulf­an­yl]-N-(2-methyl­phen­yl)acetamide (GOKWIO; Subasri et al., 2014[Subasri, S., Kumar, T. A., Sinha, B. N., Jayaprakash, V. & Velmurugan, D. (2014). Acta Cryst. E70, o850.]), 2-[(4,6-di­amino­pyrimidin-2-yl)sulfan­yl]-N-(2,4-di­methyl­phen­yl)acetamide (JAXFIA; Choudhury et al., 2017[Choudhury, M., Viswanathan, V., Timiri, A. K., Sinha, B. N., Jayaprakash, V. & Velmurugan, D. (2017). Acta Cryst. E73, 996-1000.]), 2-[(4,6-di­amino­pyrimidin-2-yl)sulfan­yl]-N-(3-meth­oxy­phen­yl) acetamide (refcode: JAXFOG; Choudhury et al., 2017[Choudhury, M., Viswanathan, V., Timiri, A. K., Sinha, B. N., Jayaprakash, V. & Velmurugan, D. (2017). Acta Cryst. E73, 996-1000.]) and 2-[(2-amino­phen­yl)sulfan­yl]-N-(4-meth­oxy­phen­yl)acetamide (PAXTEP; Murtaza et al., 2012[Murtaza, S., Tahir, M. N., Tariq, J., Abbas, A. & Kausar, N. (2012). Acta Cryst. E68, o1968.]).

In the crystals of JARPOK and JARPUQ, mol­ecules are linked by pairs of N—H⋯N hydrogen bonds, forming inversion dimers with [R_{2}^{2}](8) ring motifs. In the crystal of JARPOK, the dimers are linked by bifurcated N—H⋯(O,O) and C—H⋯O hydrogen bonds, forming layers parallel to (100). In the crystal of JARPUQ, the dimers are linked by N—H⋯O hydrogen bonds, also forming layers parallel to (100). The layers are linked by C—H⋯F hydrogen bonds, forming a three-dimensional architecture.

In the crystal of GOKWIO, mol­ecules are linked via pairs of N—H⋯N hydrogen bonds, forming inversion dimers with an [R_{2}^{2}](8) ring motif. The dimers are linked by N—H⋯O and C—H⋯O hydrogen bonds, forming sheets parallel to (100).

In the crystals of JAXFIA and JAXFOG, a pair of N—H⋯N hydrogen bonds links the mol­ecules, forming inversion dimers with [R_{2}^{2}](8) ring motifs. In JAXFIA, the dimers are linked by N—H⋯O and C—H⋯O hydrogen bonds, enclosing R12(14), R12(11) and R12(7) ring motifs, forming layers parallel to the (100) plane. There is also an N—H⋯π inter­action present within the layer. In JAXFOG, the inversion dimers are linked by N—H⋯O hydrogen bonds enclosing an R44(18) ring motif. The presence of N—H⋯O and C—H⋯O hydrogen bonds generate an R12(6) ring motif. The combination of these various hydrogen bonds results in the formation of layers parallel to the (1[\overline{1}]1) plane.

In the crystal of PAXTEP, mol­ecules are consolidated in the form of polymeric chains along [010] as a result of N—H⋯O hydrogen bonds, which generate R23(18) and R34(22) loops. The polymeric chains are inter­linked through C—H⋯O inter­action and complete [R_{2}^{2}](8) ring motifs.

6. Synthesis and crystallization

The starting materials, 2-mercaptobenzoxazole and α-chloro-N-(o-meth­oxy­phen­yl)acetamide, were synthesized according to literature methods (Maske et al., 2012[Maske, P. P., Lokapure, S. G., Nimbalkar, D. & Disouza, J. I. (2012). Pharma Chemica, 4, 1283-1287.]; Ren et al., 2015[Ren, J. L., Zhang, X. Y., Yu, B., Wang, X. X., Shao, K. P., Zhu, X. G. & Liu, H. M. (2015). Eur. J. Med. Chem. 93, 321-329.]). For the synthesis of the title compound, 2-mercaptobenzoxazole (1 eq) and α-chloro-N-(o-meth­oxy­phen­yl) acetamide (1 eq) were heated in acetone under reflux for 1.5 h in the presence of K2CO3 (1 eq). The reaction mixture was then cooled to room temperature and cold water was added until precipitation was complete. The precipitate was filtered, washed with cold water and dried. The crude product was crystallized from methanol (yield 31%); m.p. 370 K.

1H NMR (DMSO-d6, 400 MHz) δ 3.82 (3H, s, OCH3), δ 4.42 (2H, s, CH2), δ 6.89 (1H, m, Ar-H), δ 7.03–7.10 (2H, m, Ar-H), δ 7.31–7.38 (2H, m, Ar-H), δ 7.62–7.68 (2H, m, Ar-H), δ 7.97 (1H, d, J = 8.4 Hz, Ar-H), δ 9.65 (1H, s, NH) p.p.m. IR vmax cm−1: 3295 (NH), 1675 (amide I), 1534 (amide II); MS (ESI) m/z (intensity %): 315.32 (26) [M+H]+ 192.27 (100).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. All H atoms were positioned with idealized geometry and refined as riding: N—H = 0.86 Å, C—H = 0.93–0.97 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and Uiso(H) = 1.2Ueq(C, N) for all other H atoms. Thirty one outliers (13 1 3), ([\overline{14}] 1 1), (8 3 12), ([\overline{7}] 5 15), (0 3 18), (5 0 14), (14 2 5), ([\overline{12}] 0 14), ([\overline{2}] 4 17), (14 3 1), ([\overline{16}] 3 5), (1 8 4), (1 4 15), (10 5 2), ([\overline{5}] 7 8), ([\overline{16}] 0 10), (14 2 1), ([\overline{15}] 1 1), ([\overline{14}] 3 12), ([\overline{15}] 2 7), (4 1 17), (11 0 10), (15 1 2), (3 4 14), (10 2 6), ([\overline{5}] 0 18), ([\overline{5}] 3 18), ([\overline{1}] 6 11), ([\overline{11}] 5 2), (10 1 9), ([\overline{1}]4 1 2) were omitted in the final cycles of refinement.

Table 4
Experimental details

Crystal data
Chemical formula C16H14N2O3S
Mr 314.35
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 13.6670 (13), 6.8704 (6), 16.7220 (16)
β (°) 108.020 (4)
V3) 1493.1 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.23
Crystal size (mm) 0.10 × 0.07 × 0.06
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.654, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 23464, 3019, 2241
Rint 0.092
(sin θ/λ)max−1) 0.627
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.092, 0.169, 1.10
No. of reflections 3019
No. of parameters 200
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.25, −0.31
Computer programs: APEX2 and SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/1 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and WinGX (Farrugia, 2012).

2-[(1,3-Benzoxazol-2-yl)sulfanyl]-N-(2-methoxyphenyl)acetamide top
Crystal data top
C16H14N2O3SF(000) = 656
Mr = 314.35Dx = 1.398 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 13.6670 (13) ÅCell parameters from 6692 reflections
b = 6.8704 (6) Åθ = 3.2–26.3°
c = 16.7220 (16) ŵ = 0.23 mm1
β = 108.020 (4)°T = 296 K
V = 1493.1 (2) Å3Block, colourless
Z = 40.10 × 0.07 × 0.06 mm
Data collection top
Bruker APEXII CCD
diffractometer
2241 reflections with I > 2σ(I)
φ and ω scansRint = 0.092
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
θmax = 26.5°, θmin = 3.1°
Tmin = 0.654, Tmax = 0.745h = 1717
23464 measured reflectionsk = 88
3019 independent reflectionsl = 2020
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.092H-atom parameters constrained
wR(F2) = 0.169 w = 1/[σ2(Fo2) + (0.0406P)2 + 3.9251P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
3019 reflectionsΔρmax = 0.25 e Å3
200 parametersΔρmin = 0.31 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4055 (3)0.2452 (5)0.4388 (2)0.0301 (9)
C20.4121 (3)0.1973 (6)0.3599 (3)0.0437 (11)
H20.3535780.1867940.3133500.052*
C30.5089 (4)0.1660 (7)0.3535 (3)0.0507 (12)
H30.5156640.1345450.3013490.061*
C40.5962 (4)0.1801 (6)0.4223 (3)0.0515 (13)
H40.6601820.1581270.4152810.062*
C50.5910 (3)0.2258 (6)0.5012 (3)0.0460 (11)
H50.6493540.2347240.5479610.055*
C60.4940 (3)0.2573 (5)0.5059 (3)0.0330 (9)
C70.3608 (3)0.3093 (5)0.5452 (2)0.0304 (9)
C80.1670 (3)0.3513 (7)0.5515 (3)0.0401 (10)
H8A0.1606680.2587150.5064320.048*
H8B0.1222570.3089190.5832440.048*
C90.1330 (3)0.5503 (6)0.5143 (2)0.0368 (10)
C100.1249 (3)0.7568 (6)0.3915 (2)0.0272 (8)
C110.0683 (3)0.9111 (6)0.4077 (2)0.0364 (10)
H110.0440480.9061290.4538180.044*
C120.0479 (3)1.0720 (7)0.3557 (3)0.0438 (11)
H120.0089781.1738970.3665200.053*
C130.0844 (3)1.0826 (7)0.2882 (3)0.0443 (11)
H130.0709461.1919800.2537730.053*
C140.1411 (3)0.9312 (7)0.2714 (2)0.0380 (10)
H140.1658370.9389780.2255600.046*
C150.1615 (3)0.7687 (6)0.3217 (2)0.0290 (9)
C160.2621 (5)0.6219 (9)0.2449 (3)0.078 (2)
H16A0.2091730.6345670.1917950.118*
H16B0.3012140.5059560.2447190.118*
H16C0.3067390.7331120.2538720.118*
N10.3202 (2)0.2815 (5)0.46627 (18)0.0309 (7)
N20.1476 (2)0.5848 (5)0.43945 (19)0.0302 (7)
HN20.1736300.4910510.4186150.036*
O10.4653 (2)0.3005 (4)0.57658 (16)0.0363 (7)
O20.0961 (3)0.6653 (6)0.55175 (19)0.0687 (11)
O30.2163 (2)0.6103 (4)0.31065 (17)0.0467 (8)
S10.29895 (9)0.35394 (17)0.62002 (6)0.0420 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.036 (2)0.0217 (18)0.032 (2)0.0038 (16)0.0093 (17)0.0053 (16)
C20.047 (3)0.045 (3)0.039 (2)0.002 (2)0.013 (2)0.000 (2)
C30.059 (3)0.046 (3)0.058 (3)0.006 (2)0.033 (3)0.001 (2)
C40.044 (3)0.036 (2)0.085 (4)0.005 (2)0.035 (3)0.009 (2)
C50.032 (2)0.035 (2)0.066 (3)0.0031 (19)0.007 (2)0.009 (2)
C60.038 (2)0.0217 (19)0.039 (2)0.0024 (17)0.0112 (18)0.0046 (17)
C70.036 (2)0.024 (2)0.029 (2)0.0016 (16)0.0067 (17)0.0061 (16)
C80.041 (2)0.052 (3)0.034 (2)0.009 (2)0.0208 (19)0.000 (2)
C90.036 (2)0.053 (3)0.026 (2)0.001 (2)0.0156 (18)0.0053 (19)
C100.0190 (18)0.040 (2)0.0195 (18)0.0011 (16)0.0007 (15)0.0058 (16)
C110.027 (2)0.050 (3)0.030 (2)0.0069 (19)0.0060 (17)0.0084 (19)
C120.035 (2)0.049 (3)0.040 (3)0.017 (2)0.002 (2)0.010 (2)
C130.043 (3)0.044 (3)0.038 (2)0.012 (2)0.000 (2)0.005 (2)
C140.034 (2)0.055 (3)0.022 (2)0.004 (2)0.0055 (17)0.0048 (19)
C150.0247 (19)0.040 (2)0.0224 (18)0.0045 (17)0.0067 (15)0.0009 (17)
C160.117 (5)0.081 (4)0.066 (4)0.054 (4)0.071 (4)0.027 (3)
N10.0325 (18)0.0342 (18)0.0236 (17)0.0008 (14)0.0055 (14)0.0010 (14)
N20.0334 (18)0.0369 (18)0.0261 (16)0.0024 (14)0.0177 (14)0.0058 (14)
O10.0348 (16)0.0358 (15)0.0311 (15)0.0026 (13)0.0002 (12)0.0042 (12)
O20.101 (3)0.082 (3)0.0401 (19)0.035 (2)0.046 (2)0.0056 (18)
O30.062 (2)0.0517 (19)0.0380 (17)0.0240 (16)0.0333 (15)0.0094 (14)
S10.0516 (7)0.0517 (7)0.0226 (5)0.0004 (6)0.0114 (5)0.0050 (5)
Geometric parameters (Å, º) top
C1—C61.375 (6)C9—O21.211 (5)
C1—C21.389 (5)C9—N21.348 (5)
C1—N11.401 (5)C10—C111.388 (5)
C2—C31.377 (6)C10—C151.406 (5)
C2—H20.9300C10—N21.408 (5)
C3—C41.382 (7)C11—C121.381 (6)
C3—H30.9300C11—H110.9300
C4—C51.379 (7)C12—C131.370 (6)
C4—H40.9300C12—H120.9300
C5—C61.370 (6)C13—C141.377 (6)
C5—H50.9300C13—H130.9300
C6—O11.388 (5)C14—C151.374 (6)
C7—N11.278 (5)C14—H140.9300
C7—O11.362 (5)C15—O31.366 (4)
C7—S11.740 (4)C16—O31.426 (5)
C8—C91.514 (6)C16—H16A0.9600
C8—S11.812 (4)C16—H16B0.9600
C8—H8A0.9700C16—H16C0.9600
C8—H8B0.9700N2—HN20.8600
C6—C1—C2119.4 (4)C11—C10—N2124.6 (3)
C6—C1—N1109.4 (3)C15—C10—N2116.7 (3)
C2—C1—N1131.2 (4)C12—C11—C10120.4 (4)
C3—C2—C1117.2 (4)C12—C11—H11119.8
C3—C2—H2121.4C10—C11—H11119.8
C1—C2—H2121.4C13—C12—C11120.4 (4)
C2—C3—C4121.8 (4)C13—C12—H12119.8
C2—C3—H3119.1C11—C12—H12119.8
C4—C3—H3119.1C12—C13—C14120.0 (4)
C5—C4—C3121.8 (4)C12—C13—H13120.0
C5—C4—H4119.1C14—C13—H13120.0
C3—C4—H4119.1C15—C14—C13120.6 (4)
C6—C5—C4115.3 (4)C15—C14—H14119.7
C6—C5—H5122.3C13—C14—H14119.7
C4—C5—H5122.3O3—C15—C14125.4 (3)
C5—C6—C1124.5 (4)O3—C15—C10114.6 (3)
C5—C6—O1128.0 (4)C14—C15—C10120.0 (4)
C1—C6—O1107.4 (3)O3—C16—H16A109.5
N1—C7—O1117.4 (3)O3—C16—H16B109.5
N1—C7—S1128.1 (3)H16A—C16—H16B109.5
O1—C7—S1114.5 (3)O3—C16—H16C109.5
C9—C8—S1111.7 (3)H16A—C16—H16C109.5
C9—C8—H8A109.3H16B—C16—H16C109.5
S1—C8—H8A109.3C7—N1—C1103.1 (3)
C9—C8—H8B109.3C9—N2—C10127.4 (3)
S1—C8—H8B109.3C9—N2—HN2116.3
H8A—C8—H8B107.9C10—N2—HN2116.3
O2—C9—N2124.7 (4)C7—O1—C6102.7 (3)
O2—C9—C8120.1 (4)C15—O3—C16116.7 (3)
N2—C9—C8115.2 (3)C7—S1—C898.82 (18)
C11—C10—C15118.7 (4)
C6—C1—C2—C30.6 (6)N2—C10—C15—O31.0 (5)
N1—C1—C2—C3178.6 (4)C11—C10—C15—C140.2 (5)
C1—C2—C3—C40.4 (7)N2—C10—C15—C14179.1 (3)
C2—C3—C4—C50.1 (7)O1—C7—N1—C11.2 (4)
C3—C4—C5—C60.5 (6)S1—C7—N1—C1177.6 (3)
C4—C5—C6—C10.3 (6)C6—C1—N1—C70.9 (4)
C4—C5—C6—O1178.3 (4)C2—C1—N1—C7177.2 (4)
C2—C1—C6—C50.3 (6)O2—C9—N2—C100.9 (7)
N1—C1—C6—C5178.7 (4)C8—C9—N2—C10178.8 (3)
C2—C1—C6—O1178.1 (3)C11—C10—N2—C910.6 (6)
N1—C1—C6—O10.3 (4)C15—C10—N2—C9170.5 (4)
S1—C8—C9—O288.1 (5)N1—C7—O1—C61.1 (4)
S1—C8—C9—N291.6 (4)S1—C7—O1—C6177.9 (2)
C15—C10—C11—C120.5 (6)C5—C6—O1—C7177.9 (4)
N2—C10—C11—C12178.3 (4)C1—C6—O1—C70.4 (4)
C10—C11—C12—C131.0 (6)C14—C15—O3—C164.8 (6)
C11—C12—C13—C140.7 (7)C10—C15—O3—C16175.1 (4)
C12—C13—C14—C150.1 (6)N1—C7—S1—C80.8 (4)
C13—C14—C15—O3179.7 (4)O1—C7—S1—C8179.7 (3)
C13—C14—C15—C100.5 (6)C9—C8—S1—C787.7 (3)
C11—C10—C15—O3180.0 (3)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C10–C15 benzene ring of the methoxy phenyl group.
D—H···AD—HH···AD···AD—H···A
N2—HN2···O30.862.222.608 (4)107
N2—HN2···N10.862.393.075 (4)136
C8—H8A···N10.972.482.914 (5)107
C11—H11···O20.932.282.869 (5)121
C12—H12···O2i0.932.523.378 (6)153
C13—H13···Cg3ii0.932.893.634 (5)138
Symmetry codes: (i) x, y+2, z+1; (ii) x, y+1/2, z+1/2.
Summary of selected short interatomic contacts (Å) in the title compound top
ContactDistanceSymmetry operation
H5···O32.721 - x, 1 - y, 1 - z
S1···H23.10x, 1/2 - y, 1/2 + z
C5···C13.381 - x, -y, 1 - z
H8B···C113.06-x, 1 - y, 1 - z
H12···O22.52-x, 2 - y, 1 - z
O2···H16A2.74x, 3/2 - y, 1/2 + z
C10···H133.04-x, -1/2 + y, 1/2 - z
C12···H8A2.82x, 1 + y, z
Percentage contributions of interatomic contacts to the Hirshfeld surface of the title compound top
ContactPercentage contribution
H···H39.3
H···C/C···H18.0
O···H/H···O15.6
S···H/H···S10.2
C···O/O···C6.0
C···C4.5
N···H/H···N4.1
C···N/N···C1.4
C···S/S···C0.6
N···O/O···N0.1
 

Acknowledgements

The authors acknowledge the Scientific and Technological Research Application and Research Centre, Sinop University, Turkey, for the use of the Bruker D8 QUEST diffractometer.

References

First citationAggarwal, N., Kaur, A., Anand, K., Kumar, H. & Wakode, S. R. (2017). Int. J. Pharm. Sci. Res. 2, 1–5.  Google Scholar
First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoudhury, M., Viswanathan, V., Timiri, A. K., Sinha, B. N., Jayaprakash, V. & Velmurugan, D. (2017). Acta Cryst. E73, 996–1000.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGautam, M. K., Sonal-Sharma, N. K. & Priyanka-Jha, K. K. (2012). Int. J. ChemTech Res. 4, 640–650.  CAS Google Scholar
First citationMaske, P. P., Lokapure, S. G., Nimbalkar, D. & Disouza, J. I. (2012). Pharma Chemica, 4, 1283–1287.  CAS Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814.  Google Scholar
First citationMurtaza, S., Tahir, M. N., Tariq, J., Abbas, A. & Kausar, N. (2012). Acta Cryst. E68, o1968.  CSD CrossRef IUCr Journals Google Scholar
First citationRakse, M., Karthikeyan, C., Deora, G. S., Moorthy, N. S. H. N., Rathore, V., Rawat, A. K., Srivastava, A. K. & Trivedi, P. (2013). Eur. J. Med. Chem. 70, 469–476.  CrossRef CAS PubMed Google Scholar
First citationRen, J. L., Zhang, X. Y., Yu, B., Wang, X. X., Shao, K. P., Zhu, X. G. & Liu, H. M. (2015). Eur. J. Med. Chem. 93, 321–329.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388.  CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSubasri, S., Kumar, T. A., Sinha, B. N., Jayaprakash, V. & Velmurugan, D. (2014). Acta Cryst. E70, o850.  CSD CrossRef IUCr Journals Google Scholar
First citationSubasri, S., Kumar, T. A., Sinha, B. N., Jayaprakash, V., Viswanathan, V. & Velmurugan, D. (2017). Acta Cryst. E73, 306–309.  CSD CrossRef IUCr Journals Google Scholar
First citationWolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). CrystalExplorer3.1. University of Western Australia.  Google Scholar
First citationXiang, P., Zhou, T., Wang, L., Sun, C.-Y., Hu, J., Zhao, Y.-L. & Yang, L. (2012). Molecules, 17, 873–883.  CrossRef CAS PubMed Google Scholar
First citationYurttaş, L., Tay, F. & Demirayak, S. (2015). J. Enzyme Inhib. Med. Chem. 30, 458–465.  PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds