research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of N-(tert-but­yl)-2-(phenyl­ethyn­yl)imidazo[1,2-a]pyridin-3-amine

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Bioorganique & Analytique, URAC 22 Université Hassan II Mohammedia-Casablanca, Faculté des Sciences et Techniques, BP 146, 28800 Mohammedia, Morocco, bOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Physics, 55139 Samsun, Turkey, cLaboratoire de Chimie Organique Hétérocyclique, Centre de Recherche des Sciences des Médicaments, Pôle de Compétence Pharmacochimie, Av Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, dLaboratoire de Chimie Organique et Analytique, Université Sultan Moulay Slimane, Faculté des Sciences et Techniques, BP 523, 23000 Beni-Mellal, Morocco, eOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Physics, 55139, Samsun, Turkey, and fDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: tber.zahira1@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 19 July 2019; accepted 13 September 2019; online 27 September 2019)

The bicyclic imidazo[1,2-a]pyridine core of the title compound, C19H19N3, is relatively planar with an r.m.s. deviation of 0.040 Å. The phenyl ring is inclined to the mean plane of the imidazo[1,2-a]pyridine unit by 18.2 (1)°. In the crystal, mol­ecules are linked by N—H⋯H hydrogen bonds, forming chains along the c-axis direction. The chains are linked by C—H⋯π inter­actions, forming slabs parallel to the ac plane. The Hirshfeld surface analysis and fingerprint plots reveal that the crystal structure is dominated by H⋯H (54%) and C⋯H/H⋯C (35.6%) contacts. The crystal studied was refined as an inversion twin

1. Chemical context

Compounds containing the imidazo[1,2-a]pyridine moiety have received considerable attention because of their inter­esting biological activities. For instance, it is found in several commercialized drugs such as the sedative Zolpidem, the anxiolytics Alpidem, Saridipem and Necopidem, the heart-failure drug Olprinone and the anti­ulcer drug Zolimidine (Baviskar et al., 2011[Baviskar, A., Madaan, C., Preet, R., Mohapatra, P., Jain, V., Agarwal, A., Guchhait, S. K., Kundu, C. N., Banerjee, U. C. & Bharatam, P. V. (2011). J. Med. Chem. 54, 5013-5030.]). As a continuation of our research on nitro­gen-bridgehead heterocycles (Tber et al., 2015[Tber, Z., Hiebel, M. A., El Hakmaoui, A., Akssira, M., Guillaumet, G. & Berteina-Raboin, S. (2015). J. Org. Chem. 80, 6564-6573.]), we report herein on the mol­ecular and crystal structures, along with the Hirshfeld surface analysis, of the title compound, N-(tert-but­yl)-2-(phenyl­ethyn­yl)imidazo[1,2-a]pyridin-3-amine.

[Scheme 1]

2. Structural commentary

In the title compound (Fig. 1[link]), the fused bicyclic imidazo[1,2-a]pyridine portion is slightly twisted with a dihedral angle of 3.6 (1)° between the mean planes of the five- and six-membered rings. The dihedral angle between the mean plane of the imidazo[1,2-a]pyridine moiety (r.m.s.deviation = 0.040 Å; N1/N2/C1–C7) and the phenyl ring (C10–C15) is 18.2 (1)°.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

In the crystal, mol­ecules are connected into chains along the c-axis direction by N3—H3A⋯N1i hydrogen bonds (Table 1[link] and Fig. 2[link]). These chains are linked by C2—H2⋯Cg4ii and C17—H17CCg3iii inter­actions, forming slabs parallel to the ac plane (Fig. 3[link] and Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 and Cg4 are the centroids of the C10–C15 and N1/N2/C1–C7 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯N1i 0.89 2.26 3.150 (2) 178
C2—H2⋯Cg4ii 0.93 2.98 3.890 (3) 167
C17—H17CCg3iii 0.96 2.95 3.896 (3) 170
Symmetry codes: (i) [-x+{\script{1\over 2}}, y, z-{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y, z]; (iii) x-1, y, z.
[Figure 2]
Figure 2
A partial view along the a axis of the crystal packing of the title compound, showing the N—H⋯N hydrogen-bonded chains (dashed lines; Table 1[link]). The C-bound H atoms have been omitted.
[Figure 3]
Figure 3
A view along the c axis of the crystal packing of the title compound. The C—H⋯π(ring) inter­actions and N—H⋯H hydrogen bonds (see Table 1[link]) are indicated by dashed lines. Only the H atoms (grey balls) involved in the various inter­molecular inter­actions have been included.

4. Hirshfeld surface analysis

The Hirshfield surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]; McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) was carried out using CrystalExplorer17.5 (Turner et al., 2017[Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer17.5. University of Western Australia, Perth, Australia.]). The Hirshfeld surfaces and their associated two-dimensional fingerprint plots were used to qu­antify the various inter­molecular inter­actions in the title compound. The mol­ecular Hirshfeld surfaces were generated using a standard (high) surface resolution with the three-dimensional dnorm surfaces mapped over a fixed colour scale of −0.379 (red) to 1.341 (blue). The red spots on the surface indicate the inter­molecular contacts involved in the hydrogen bonds. Fig. 4[link]a illustrates the inter­molecular N—H⋯N hydrogen bonding of the title compound with dnorm mapped on Hirshfeld surface, and the C—H⋯π(ring) contacts are visualized in Fig. 4[link]b. The fingerprint plots are given in Fig. 5[link]. They reveal that the principal inter­molecular inter­actions are H⋯H at 54.0% (Fig. 5[link]b) and C⋯H/H⋯C at 35.6% (Fig. 5[link]c), followed by N⋯H/H⋯N inter­actions at 10.2% (Fig. 5[link]d).

[Figure 4]
Figure 4
The Hirshfeld surface of the title compound mapped over dnorm, showing (a) N—H⋯N hydrogen bonds and (b) C—H⋯π(ring) inter­actions.
[Figure 5]
Figure 5
(a) The full two-dimensional fingerprint plot for the title compound and fingerprint plots delineated into (b) H⋯H, (c) C⋯H/H⋯C and (d) N⋯H/H⋯N contacts.

5. Database survey

A search of the Cambridge Structural Database (Version 5.40, last update May 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for an imidazol[1,2-a]pyridine unit substituted with a phenyl­ethynyl group, viz. 2-(phenyl­ethyn­yl)imidazo[1,2-a]pyridine, gave zero hits. A search for N-(tert-but­yl)imidazo[1,2-a]pyridin-3-amines gave six hits (see supporting information). As in the title compound, the (tert-butyl-amine group lies almost normal to the plane of the imidazol[1,2-a]pyridine unit, with the torsion angle (cf. C16—N3—C7—C6; Fig. 1[link]) varying from ca 75.0 to 90.7°, compared to −89.0 (2)° in the title compound.

6. Synthesis and crystallization

tert-Butyl­iso­nitrile (1.63 mmol, 1.05 equiv) was added to a mixture of 2-amino­pyridine (146 mg, 1.55 mmol), phenyl­propargyl aldehyde (1.63 mmol, 1.05 equiv) and perchloric acid (1 M solution in methanol, 0.07 mmol, 0.05 equiv) in a 50 ml flask at room temperature. The reaction mixture was stirred for 4 h at rt. The crude product was purified by flash chromatography on silica gel (2:8 ethyl acetate/petroleum ether). Colourless crystals were isolated when the solvent was allowed to evaporate (yield: 67%; m.p. 440–442 K).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The C-bound H atoms were placed in idealized positions and refined as riding: C—H = 0.93–0.96 Å with Uiso(H) = 1.5Ueq(C-meth­yl) and 1.2Ueq(C) for other C-bound H atoms. The NH H atom was located in a difference-Fourier map. Its parameters were adjusted to give N—H = 0.89 Å and it was then refined as riding with Uiso(H) = 1.2Ueq(N). The crystal studied was refined as an inversion twin, with a final BASF value of 0.3 (6).

Table 2
Experimental details

Crystal data
Chemical formula C19H19N3
Mr 289.37
Crystal system, space group Orthorhombic, Pca21
Temperature (K) 298
a, b, c (Å) 9.3492 (2), 16.3716 (3), 10.8030 (2)
V3) 1653.52 (6)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.54
Crystal size (mm) 0.28 × 0.18 × 0.07
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.86, 0.96
No. of measured, independent and observed [I > 2σ(I)] reflections 12219, 2789, 2610
Rint 0.034
(sin θ/λ)max−1) 0.618
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.094, 1.05
No. of reflections 2789
No. of parameters 204
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.12, −0.11
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), Mercury (Macrae, et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), SHELXL2018/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/1 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae, et al., 2008); software used to prepare material for publication: SHELXL2018/1 (Sheldrick, 2015b), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

N-(tert-butyl)-2-(phenylethynyl)imidazo[1,2-a]pyridin-3-\ amine top
Crystal data top
C19H19N3Dx = 1.162 Mg m3
Mr = 289.37Cu Kα radiation, λ = 1.54178 Å
Orthorhombic, Pca21Cell parameters from 9967 reflections
a = 9.3492 (2) Åθ = 2.7–72.4°
b = 16.3716 (3) ŵ = 0.54 mm1
c = 10.8030 (2) ÅT = 298 K
V = 1653.52 (6) Å3Plate, colourless
Z = 40.28 × 0.18 × 0.07 mm
F(000) = 616
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
2789 independent reflections
Radiation source: INCOATEC IµS micro-focus source2610 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.034
ω scansθmax = 72.4°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1110
Tmin = 0.86, Tmax = 0.96k = 1820
12219 measured reflectionsl = 1113
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.0557P)2 + 0.0961P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2789 reflectionsΔρmax = 0.12 e Å3
204 parametersΔρmin = 0.11 e Å3
1 restraintExtinction correction: (SHELXL-2018/1; Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0082 (9)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.93 - 0.96 Å) while that attached to nitrogen was placed in a location derived from a difference map and its parameters adjusted to give N—H = 0.89 Å. All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.20226 (17)0.18945 (10)0.67968 (18)0.0554 (4)
N20.02701 (15)0.12386 (9)0.57937 (16)0.0468 (4)
N30.04415 (16)0.17555 (10)0.37051 (16)0.0502 (4)
H3A0.1167670.1785160.3174330.060*
C10.0790 (2)0.06627 (13)0.5650 (3)0.0660 (6)
H10.1218880.0578900.4883450.079*
C20.1189 (3)0.02246 (16)0.6643 (4)0.0865 (9)
H20.1885320.0177260.6556770.104*
C30.0571 (3)0.03642 (18)0.7815 (3)0.0880 (9)
H30.0894640.0071130.8496850.106*
C40.0493 (3)0.09212 (17)0.7959 (3)0.0750 (7)
H40.0901290.1011020.8732220.090*
C50.0964 (2)0.13603 (12)0.6914 (2)0.0516 (4)
C60.19772 (17)0.21348 (11)0.55737 (18)0.0451 (4)
C70.08982 (17)0.17490 (10)0.49231 (18)0.0428 (4)
C80.29559 (19)0.27114 (12)0.5063 (2)0.0519 (4)
C90.3769 (2)0.31813 (12)0.4592 (2)0.0544 (5)
C100.47560 (19)0.37266 (12)0.4002 (2)0.0523 (5)
C110.4920 (3)0.37126 (14)0.2731 (3)0.0645 (6)
H110.4379750.3353220.2255490.077*
C120.5885 (3)0.42310 (16)0.2164 (3)0.0807 (8)
H120.5990340.4219390.1308350.097*
C130.6684 (3)0.47609 (16)0.2855 (4)0.0835 (9)
H130.7334810.5106870.2468090.100*
C140.6530 (3)0.47829 (15)0.4107 (4)0.0828 (8)
H140.7072570.5146650.4572380.099*
C150.5569 (2)0.42660 (13)0.4694 (3)0.0660 (6)
H150.5470370.4282090.5550240.079*
C160.0652 (2)0.23805 (15)0.3328 (2)0.0611 (5)
C170.1897 (3)0.2367 (2)0.4234 (3)0.0999 (11)
H17A0.1549720.2470210.5055590.150*
H17B0.2350990.1840990.4209590.150*
H17C0.2577080.2780580.4009600.150*
C180.1144 (4)0.2142 (3)0.2049 (3)0.1049 (11)
H18A0.1602620.1617410.2082430.157*
H18B0.0334390.2114090.1503950.157*
H18C0.1808830.2541330.1745530.157*
C190.0016 (3)0.32261 (16)0.3294 (3)0.0822 (8)
H19A0.0325180.3374700.4111270.123*
H19B0.0678470.3614350.3006970.123*
H19C0.0821900.3223490.2744330.123*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0528 (9)0.0651 (10)0.0483 (9)0.0013 (7)0.0038 (7)0.0078 (8)
N20.0442 (7)0.0412 (7)0.0549 (10)0.0007 (6)0.0074 (6)0.0037 (7)
N30.0454 (8)0.0635 (9)0.0418 (9)0.0071 (7)0.0053 (6)0.0064 (7)
C10.0603 (11)0.0552 (11)0.0826 (18)0.0148 (9)0.0118 (11)0.0021 (11)
C20.0792 (16)0.0627 (14)0.118 (3)0.0184 (12)0.0232 (16)0.0196 (16)
C30.0804 (16)0.0857 (18)0.098 (2)0.0008 (13)0.0196 (16)0.0453 (17)
C40.0718 (14)0.0842 (16)0.0690 (17)0.0079 (12)0.0108 (12)0.0342 (13)
C50.0512 (9)0.0544 (10)0.0493 (11)0.0076 (8)0.0024 (8)0.0110 (9)
C60.0438 (8)0.0480 (8)0.0435 (10)0.0012 (7)0.0002 (7)0.0028 (8)
C70.0409 (8)0.0443 (8)0.0433 (10)0.0013 (7)0.0053 (7)0.0016 (7)
C80.0472 (9)0.0575 (10)0.0509 (11)0.0078 (8)0.0058 (8)0.0028 (9)
C90.0471 (9)0.0565 (10)0.0596 (12)0.0067 (8)0.0050 (9)0.0053 (9)
C100.0427 (9)0.0475 (9)0.0668 (14)0.0015 (7)0.0020 (8)0.0078 (9)
C110.0659 (12)0.0624 (12)0.0653 (15)0.0104 (10)0.0010 (11)0.0067 (11)
C120.0838 (16)0.0754 (15)0.083 (2)0.0081 (14)0.0188 (14)0.0157 (14)
C130.0701 (14)0.0645 (14)0.116 (3)0.0156 (11)0.0163 (15)0.0214 (15)
C140.0692 (15)0.0616 (13)0.118 (3)0.0214 (11)0.0035 (16)0.0017 (15)
C150.0618 (12)0.0595 (11)0.0767 (16)0.0109 (10)0.0044 (11)0.0020 (12)
C160.0461 (9)0.0900 (14)0.0471 (11)0.0011 (10)0.0041 (8)0.0094 (11)
C170.0589 (13)0.153 (3)0.088 (2)0.0322 (16)0.0195 (12)0.039 (2)
C180.0932 (19)0.163 (3)0.0583 (16)0.032 (2)0.0257 (15)0.013 (2)
C190.0817 (15)0.0769 (15)0.088 (2)0.0111 (13)0.0097 (15)0.0147 (16)
Geometric parameters (Å, º) top
N1—C51.327 (3)C11—C121.381 (3)
N1—C61.379 (3)C11—H110.9300
N2—C11.377 (2)C12—C131.367 (4)
N2—C51.388 (3)C12—H120.9300
N2—C71.388 (2)C13—C141.361 (5)
N3—C71.383 (3)C13—H130.9300
N3—C161.503 (3)C14—C151.388 (3)
N3—H3A0.8900C14—H140.9300
C1—C21.344 (4)C15—H150.9300
C1—H10.9300C16—C181.508 (4)
C2—C31.410 (5)C16—C191.519 (4)
C2—H20.9300C16—C171.522 (3)
C3—C41.358 (4)C17—H17A0.9600
C3—H30.9300C17—H17B0.9600
C4—C51.409 (3)C17—H17C0.9600
C4—H40.9300C18—H18A0.9600
C6—C71.382 (2)C18—H18B0.9600
C6—C81.426 (2)C18—H18C0.9600
C8—C91.195 (3)C19—H19A0.9600
C9—C101.434 (3)C19—H19B0.9600
C10—C111.382 (3)C19—H19C0.9600
C10—C151.384 (3)
C5—N1—C6104.87 (17)C13—C12—C11120.4 (3)
C1—N2—C5122.23 (19)C13—C12—H12119.8
C1—N2—C7129.8 (2)C11—C12—H12119.8
C5—N2—C7107.87 (15)C14—C13—C12120.1 (2)
C7—N3—C16118.26 (16)C14—C13—H13120.0
C7—N3—H3A112.2C12—C13—H13120.0
C16—N3—H3A107.9C13—C14—C15120.4 (3)
C2—C1—N2118.4 (3)C13—C14—H14119.8
C2—C1—H1120.8C15—C14—H14119.8
N2—C1—H1120.8C10—C15—C14119.8 (3)
C1—C2—C3121.1 (2)C10—C15—H15120.1
C1—C2—H2119.5C14—C15—H15120.1
C3—C2—H2119.5N3—C16—C18106.2 (2)
C4—C3—C2120.8 (2)N3—C16—C19110.32 (16)
C4—C3—H3119.6C18—C16—C19109.9 (2)
C2—C3—H3119.6N3—C16—C17109.6 (2)
C3—C4—C5118.6 (3)C18—C16—C17110.6 (2)
C3—C4—H4120.7C19—C16—C17110.1 (3)
C5—C4—H4120.7C16—C17—H17A109.5
N1—C5—N2111.09 (18)C16—C17—H17B109.5
N1—C5—C4130.3 (2)H17A—C17—H17B109.5
N2—C5—C4118.65 (19)C16—C17—H17C109.5
N1—C6—C7112.28 (16)H17A—C17—H17C109.5
N1—C6—C8122.66 (17)H17B—C17—H17C109.5
C7—C6—C8125.06 (17)C16—C18—H18A109.5
C6—C7—N3134.86 (17)C16—C18—H18B109.5
C6—C7—N2103.85 (16)H18A—C18—H18B109.5
N3—C7—N2121.22 (16)C16—C18—H18C109.5
C9—C8—C6177.5 (2)H18A—C18—H18C109.5
C8—C9—C10178.3 (2)H18B—C18—H18C109.5
C11—C10—C15119.1 (2)C16—C19—H19A109.5
C11—C10—C9120.2 (2)C16—C19—H19B109.5
C15—C10—C9120.7 (2)H19A—C19—H19B109.5
C12—C11—C10120.2 (3)C16—C19—H19C109.5
C12—C11—H11119.9H19A—C19—H19C109.5
C10—C11—H11119.9H19B—C19—H19C109.5
C5—N2—C1—C22.1 (3)C8—C6—C7—N2178.52 (17)
C7—N2—C1—C2178.0 (2)C16—N3—C7—C689.0 (2)
N2—C1—C2—C31.8 (4)C16—N3—C7—N294.6 (2)
C1—C2—C3—C42.9 (5)C1—N2—C7—C6174.58 (19)
C2—C3—C4—C50.2 (4)C5—N2—C7—C61.78 (19)
C6—N1—C5—N21.5 (2)C1—N2—C7—N32.8 (3)
C6—N1—C5—C4179.3 (2)C5—N2—C7—N3179.13 (16)
C1—N2—C5—N1174.53 (18)C15—C10—C11—C120.1 (4)
C7—N2—C5—N12.2 (2)C9—C10—C11—C12179.2 (2)
C1—N2—C5—C44.8 (3)C10—C11—C12—C130.0 (4)
C7—N2—C5—C4178.52 (18)C11—C12—C13—C140.3 (4)
C3—C4—C5—N1175.7 (2)C12—C13—C14—C150.4 (4)
C3—C4—C5—N23.5 (3)C11—C10—C15—C140.1 (3)
C5—N1—C6—C70.4 (2)C9—C10—C15—C14179.3 (2)
C5—N1—C6—C8179.81 (17)C13—C14—C15—C100.3 (4)
N1—C6—C7—N3177.7 (2)C7—N3—C16—C18169.4 (2)
C8—C6—C7—N31.7 (3)C7—N3—C16—C1971.5 (2)
N1—C6—C7—N20.9 (2)C7—N3—C16—C1749.8 (3)
Hydrogen-bond geometry (Å, º) top
Cg3 and Cg4 are the centroids of the C10–C15 and N1/N2/C1–C7 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N3—H3A···N1i0.892.263.150 (2)178
C2—H2···Cg4ii0.932.983.890 (3)167
C17—H17C···Cg3iii0.962.953.896 (3)170
Symmetry codes: (i) x+1/2, y, z1/2; (ii) x1/2, y, z; (iii) x1, y, z.
 

Funding information

The support of NSF–MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

First citationBaviskar, A., Madaan, C., Preet, R., Mohapatra, P., Jain, V., Agarwal, A., Guchhait, S. K., Kundu, C. N., Banerjee, U. C. & Bharatam, P. V. (2011). J. Med. Chem. 54, 5013–5030.  CrossRef CAS PubMed Google Scholar
First citationBruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTber, Z., Hiebel, M. A., El Hakmaoui, A., Akssira, M., Guillaumet, G. & Berteina-Raboin, S. (2015). J. Org. Chem. 80, 6564–6573.  CrossRef CAS PubMed Google Scholar
First citationTurner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer17.5. University of Western Australia, Perth, Australia.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds