research communications
N-(tert-butyl)-2-(phenylethynyl)imidazo[1,2-a]pyridin-3-amine
and Hirshfeld surface analysis ofaLaboratoire de Chimie Bioorganique & Analytique, URAC 22 Université Hassan II Mohammedia-Casablanca, Faculté des Sciences et Techniques, BP 146, 28800 Mohammedia, Morocco, bOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Physics, 55139 Samsun, Turkey, cLaboratoire de Chimie Organique Hétérocyclique, Centre de Recherche des Sciences des Médicaments, Pôle de Compétence Pharmacochimie, Av Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, dLaboratoire de Chimie Organique et Analytique, Université Sultan Moulay Slimane, Faculté des Sciences et Techniques, BP 523, 23000 Beni-Mellal, Morocco, eOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Physics, 55139, Samsun, Turkey, and fDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: tber.zahira1@gmail.com
The bicyclic imidazo[1,2-a]pyridine core of the title compound, C19H19N3, is relatively planar with an r.m.s. deviation of 0.040 Å. The phenyl ring is inclined to the mean plane of the imidazo[1,2-a]pyridine unit by 18.2 (1)°. In the crystal, molecules are linked by N—H⋯H hydrogen bonds, forming chains along the c-axis direction. The chains are linked by C—H⋯π interactions, forming slabs parallel to the ac plane. The Hirshfeld surface analysis and fingerprint plots reveal that the is dominated by H⋯H (54%) and C⋯H/H⋯C (35.6%) contacts. The crystal studied was refined as an inversion twin
Keywords: crystal structure; alkyne; imidazo[1,2-a]pyridin; hydrogen bonding; C—H⋯π(ring) interaction; Hirshfeld surface.
CCDC reference: 1953481
1. Chemical context
Compounds containing the imidazo[1,2-a]pyridine moiety have received considerable attention because of their interesting biological activities. For instance, it is found in several commercialized drugs such as the sedative Zolpidem, the anxiolytics Alpidem, Saridipem and Necopidem, the heart-failure drug Olprinone and the antiulcer drug Zolimidine (Baviskar et al., 2011). As a continuation of our research on nitrogen-bridgehead heterocycles (Tber et al., 2015), we report herein on the molecular and crystal structures, along with the Hirshfeld surface analysis, of the title compound, N-(tert-butyl)-2-(phenylethynyl)imidazo[1,2-a]pyridin-3-amine.
2. Structural commentary
In the title compound (Fig. 1), the fused bicyclic imidazo[1,2-a]pyridine portion is slightly twisted with a dihedral angle of 3.6 (1)° between the mean planes of the five- and six-membered rings. The dihedral angle between the mean plane of the imidazo[1,2-a]pyridine moiety (r.m.s.deviation = 0.040 Å; N1/N2/C1–C7) and the phenyl ring (C10–C15) is 18.2 (1)°.
3. Supramolecular features
In the crystal, molecules are connected into chains along the c-axis direction by N3—H3A⋯N1i hydrogen bonds (Table 1 and Fig. 2). These chains are linked by C2—H2⋯Cg4ii and C17—H17C⋯Cg3iii interactions, forming slabs parallel to the ac plane (Fig. 3 and Table 1).
4. Hirshfeld surface analysis
The Hirshfield surface analysis (Spackman & Jayatilaka, 2009; McKinnon et al., 2007) was carried out using CrystalExplorer17.5 (Turner et al., 2017). The Hirshfeld surfaces and their associated two-dimensional fingerprint plots were used to quantify the various intermolecular interactions in the title compound. The molecular Hirshfeld surfaces were generated using a standard (high) surface resolution with the three-dimensional dnorm surfaces mapped over a fixed colour scale of −0.379 (red) to 1.341 (blue). The red spots on the surface indicate the intermolecular contacts involved in the hydrogen bonds. Fig. 4a illustrates the intermolecular N—H⋯N hydrogen bonding of the title compound with dnorm mapped on Hirshfeld surface, and the C—H⋯π(ring) contacts are visualized in Fig. 4b. The fingerprint plots are given in Fig. 5. They reveal that the principal intermolecular interactions are H⋯H at 54.0% (Fig. 5b) and C⋯H/H⋯C at 35.6% (Fig. 5c), followed by N⋯H/H⋯N interactions at 10.2% (Fig. 5d).
5. Database survey
A search of the Cambridge Structural Database (Version 5.40, last update May 2019; Groom et al., 2016) for an imidazol[1,2-a]pyridine unit substituted with a phenylethynyl group, viz. 2-(phenylethynyl)imidazo[1,2-a]pyridine, gave zero hits. A search for N-(tert-butyl)imidazo[1,2-a]pyridin-3-amines gave six hits (see supporting information). As in the title compound, the (tert-butyl-amine group lies almost normal to the plane of the imidazol[1,2-a]pyridine unit, with the torsion angle (cf. C16—N3—C7—C6; Fig. 1) varying from ca 75.0 to 90.7°, compared to −89.0 (2)° in the title compound.
6. Synthesis and crystallization
tert-Butylisonitrile (1.63 mmol, 1.05 equiv) was added to a mixture of 2-aminopyridine (146 mg, 1.55 mmol), phenylpropargyl aldehyde (1.63 mmol, 1.05 equiv) and perchloric acid (1 M solution in methanol, 0.07 mmol, 0.05 equiv) in a 50 ml flask at room temperature. The reaction mixture was stirred for 4 h at rt. The crude product was purified by flash on silica gel (2:8 ethyl acetate/petroleum ether). Colourless crystals were isolated when the solvent was allowed to evaporate (yield: 67%; m.p. 440–442 K).
7. Refinement
Crystal data, data collection and structure . The C-bound H atoms were placed in idealized positions and refined as riding: C—H = 0.93–0.96 Å with Uiso(H) = 1.5Ueq(C-methyl) and 1.2Ueq(C) for other C-bound H atoms. The NH H atom was located in a difference-Fourier map. Its parameters were adjusted to give N—H = 0.89 Å and it was then refined as riding with Uiso(H) = 1.2Ueq(N). The crystal studied was refined as an with a final BASF value of 0.3 (6).
details are summarized in Table 2Supporting information
CCDC reference: 1953481
https://doi.org/10.1107/S2056989019012751/su5507sup1.cif
contains datablocks global, I. DOI:Supporting information file. DOI: https://doi.org/10.1107/S2056989019012751/su5507Isup3.cdx
Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019012751/su5507Isup4.hkl
CSD search. DOI: https://doi.org/10.1107/S2056989019012751/su5507sup5.pdf
Data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/1 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae, et al., 2008); software used to prepare material for publication: SHELXL2018/1 (Sheldrick, 2015b), PLATON (Spek, 2009) and publCIF (Westrip, 2010).C19H19N3 | Dx = 1.162 Mg m−3 |
Mr = 289.37 | Cu Kα radiation, λ = 1.54178 Å |
Orthorhombic, Pca21 | Cell parameters from 9967 reflections |
a = 9.3492 (2) Å | θ = 2.7–72.4° |
b = 16.3716 (3) Å | µ = 0.54 mm−1 |
c = 10.8030 (2) Å | T = 298 K |
V = 1653.52 (6) Å3 | Plate, colourless |
Z = 4 | 0.28 × 0.18 × 0.07 mm |
F(000) = 616 |
Bruker D8 VENTURE PHOTON 100 CMOS diffractometer | 2789 independent reflections |
Radiation source: INCOATEC IµS micro-focus source | 2610 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.034 |
ω scans | θmax = 72.4°, θmin = 2.7° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −11→10 |
Tmin = 0.86, Tmax = 0.96 | k = −18→20 |
12219 measured reflections | l = −11→13 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.035 | H-atom parameters constrained |
wR(F2) = 0.094 | w = 1/[σ2(Fo2) + (0.0557P)2 + 0.0961P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max < 0.001 |
2789 reflections | Δρmax = 0.12 e Å−3 |
204 parameters | Δρmin = −0.11 e Å−3 |
1 restraint | Extinction correction: (SHELXL-2018/1; Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0082 (9) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.93 - 0.96 Å) while that attached to nitrogen was placed in a location derived from a difference map and its parameters adjusted to give N—H = 0.89 Å. All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. Refined as a 2-component inversion twin. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.20226 (17) | 0.18945 (10) | 0.67968 (18) | 0.0554 (4) | |
N2 | 0.02701 (15) | 0.12386 (9) | 0.57937 (16) | 0.0468 (4) | |
N3 | 0.04415 (16) | 0.17555 (10) | 0.37051 (16) | 0.0502 (4) | |
H3A | 0.116767 | 0.178516 | 0.317433 | 0.060* | |
C1 | −0.0790 (2) | 0.06627 (13) | 0.5650 (3) | 0.0660 (6) | |
H1 | −0.121888 | 0.057890 | 0.488345 | 0.079* | |
C2 | −0.1189 (3) | 0.02246 (16) | 0.6643 (4) | 0.0865 (9) | |
H2 | −0.188532 | −0.017726 | 0.655677 | 0.104* | |
C3 | −0.0571 (3) | 0.03642 (18) | 0.7815 (3) | 0.0880 (9) | |
H3 | −0.089464 | 0.007113 | 0.849685 | 0.106* | |
C4 | 0.0493 (3) | 0.09212 (17) | 0.7959 (3) | 0.0750 (7) | |
H4 | 0.090129 | 0.101102 | 0.873222 | 0.090* | |
C5 | 0.0964 (2) | 0.13603 (12) | 0.6914 (2) | 0.0516 (4) | |
C6 | 0.19772 (17) | 0.21348 (11) | 0.55737 (18) | 0.0451 (4) | |
C7 | 0.08982 (17) | 0.17490 (10) | 0.49231 (18) | 0.0428 (4) | |
C8 | 0.29559 (19) | 0.27114 (12) | 0.5063 (2) | 0.0519 (4) | |
C9 | 0.3769 (2) | 0.31813 (12) | 0.4592 (2) | 0.0544 (5) | |
C10 | 0.47560 (19) | 0.37266 (12) | 0.4002 (2) | 0.0523 (5) | |
C11 | 0.4920 (3) | 0.37126 (14) | 0.2731 (3) | 0.0645 (6) | |
H11 | 0.437975 | 0.335322 | 0.225549 | 0.077* | |
C12 | 0.5885 (3) | 0.42310 (16) | 0.2164 (3) | 0.0807 (8) | |
H12 | 0.599034 | 0.421939 | 0.130835 | 0.097* | |
C13 | 0.6684 (3) | 0.47609 (16) | 0.2855 (4) | 0.0835 (9) | |
H13 | 0.733481 | 0.510687 | 0.246809 | 0.100* | |
C14 | 0.6530 (3) | 0.47829 (15) | 0.4107 (4) | 0.0828 (8) | |
H14 | 0.707257 | 0.514665 | 0.457238 | 0.099* | |
C15 | 0.5569 (2) | 0.42660 (13) | 0.4694 (3) | 0.0660 (6) | |
H15 | 0.547037 | 0.428209 | 0.555024 | 0.079* | |
C16 | −0.0652 (2) | 0.23805 (15) | 0.3328 (2) | 0.0611 (5) | |
C17 | −0.1897 (3) | 0.2367 (2) | 0.4234 (3) | 0.0999 (11) | |
H17A | −0.154972 | 0.247021 | 0.505559 | 0.150* | |
H17B | −0.235099 | 0.184099 | 0.420959 | 0.150* | |
H17C | −0.257708 | 0.278058 | 0.400960 | 0.150* | |
C18 | −0.1144 (4) | 0.2142 (3) | 0.2049 (3) | 0.1049 (11) | |
H18A | −0.160262 | 0.161741 | 0.208243 | 0.157* | |
H18B | −0.033439 | 0.211409 | 0.150395 | 0.157* | |
H18C | −0.180883 | 0.254133 | 0.174553 | 0.157* | |
C19 | 0.0016 (3) | 0.32261 (16) | 0.3294 (3) | 0.0822 (8) | |
H19A | 0.032518 | 0.337470 | 0.411127 | 0.123* | |
H19B | −0.067847 | 0.361435 | 0.300697 | 0.123* | |
H19C | 0.082190 | 0.322349 | 0.274433 | 0.123* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0528 (9) | 0.0651 (10) | 0.0483 (9) | −0.0013 (7) | −0.0038 (7) | 0.0078 (8) |
N2 | 0.0442 (7) | 0.0412 (7) | 0.0549 (10) | −0.0007 (6) | 0.0074 (6) | 0.0037 (7) |
N3 | 0.0454 (8) | 0.0635 (9) | 0.0418 (9) | −0.0071 (7) | 0.0053 (6) | −0.0064 (7) |
C1 | 0.0603 (11) | 0.0552 (11) | 0.0826 (18) | −0.0148 (9) | 0.0118 (11) | −0.0021 (11) |
C2 | 0.0792 (16) | 0.0627 (14) | 0.118 (3) | −0.0184 (12) | 0.0232 (16) | 0.0196 (16) |
C3 | 0.0804 (16) | 0.0857 (18) | 0.098 (2) | 0.0008 (13) | 0.0196 (16) | 0.0453 (17) |
C4 | 0.0718 (14) | 0.0842 (16) | 0.0690 (17) | 0.0079 (12) | 0.0108 (12) | 0.0342 (13) |
C5 | 0.0512 (9) | 0.0544 (10) | 0.0493 (11) | 0.0076 (8) | 0.0024 (8) | 0.0110 (9) |
C6 | 0.0438 (8) | 0.0480 (8) | 0.0435 (10) | −0.0012 (7) | −0.0002 (7) | 0.0028 (8) |
C7 | 0.0409 (8) | 0.0443 (8) | 0.0433 (10) | −0.0013 (7) | 0.0053 (7) | 0.0016 (7) |
C8 | 0.0472 (9) | 0.0575 (10) | 0.0509 (11) | −0.0078 (8) | −0.0058 (8) | 0.0028 (9) |
C9 | 0.0471 (9) | 0.0565 (10) | 0.0596 (12) | −0.0067 (8) | −0.0050 (9) | 0.0053 (9) |
C10 | 0.0427 (9) | 0.0475 (9) | 0.0668 (14) | −0.0015 (7) | −0.0020 (8) | 0.0078 (9) |
C11 | 0.0659 (12) | 0.0624 (12) | 0.0653 (15) | −0.0104 (10) | −0.0010 (11) | 0.0067 (11) |
C12 | 0.0838 (16) | 0.0754 (15) | 0.083 (2) | −0.0081 (14) | 0.0188 (14) | 0.0157 (14) |
C13 | 0.0701 (14) | 0.0645 (14) | 0.116 (3) | −0.0156 (11) | 0.0163 (15) | 0.0214 (15) |
C14 | 0.0692 (15) | 0.0616 (13) | 0.118 (3) | −0.0214 (11) | −0.0035 (16) | 0.0017 (15) |
C15 | 0.0618 (12) | 0.0595 (11) | 0.0767 (16) | −0.0109 (10) | −0.0044 (11) | 0.0020 (12) |
C16 | 0.0461 (9) | 0.0900 (14) | 0.0471 (11) | −0.0011 (10) | −0.0041 (8) | 0.0094 (11) |
C17 | 0.0589 (13) | 0.153 (3) | 0.088 (2) | 0.0322 (16) | 0.0195 (12) | 0.039 (2) |
C18 | 0.0932 (19) | 0.163 (3) | 0.0583 (16) | −0.032 (2) | −0.0257 (15) | 0.013 (2) |
C19 | 0.0817 (15) | 0.0769 (15) | 0.088 (2) | 0.0111 (13) | −0.0097 (15) | 0.0147 (16) |
N1—C5 | 1.327 (3) | C11—C12 | 1.381 (3) |
N1—C6 | 1.379 (3) | C11—H11 | 0.9300 |
N2—C1 | 1.377 (2) | C12—C13 | 1.367 (4) |
N2—C5 | 1.388 (3) | C12—H12 | 0.9300 |
N2—C7 | 1.388 (2) | C13—C14 | 1.361 (5) |
N3—C7 | 1.383 (3) | C13—H13 | 0.9300 |
N3—C16 | 1.503 (3) | C14—C15 | 1.388 (3) |
N3—H3A | 0.8900 | C14—H14 | 0.9300 |
C1—C2 | 1.344 (4) | C15—H15 | 0.9300 |
C1—H1 | 0.9300 | C16—C18 | 1.508 (4) |
C2—C3 | 1.410 (5) | C16—C19 | 1.519 (4) |
C2—H2 | 0.9300 | C16—C17 | 1.522 (3) |
C3—C4 | 1.358 (4) | C17—H17A | 0.9600 |
C3—H3 | 0.9300 | C17—H17B | 0.9600 |
C4—C5 | 1.409 (3) | C17—H17C | 0.9600 |
C4—H4 | 0.9300 | C18—H18A | 0.9600 |
C6—C7 | 1.382 (2) | C18—H18B | 0.9600 |
C6—C8 | 1.426 (2) | C18—H18C | 0.9600 |
C8—C9 | 1.195 (3) | C19—H19A | 0.9600 |
C9—C10 | 1.434 (3) | C19—H19B | 0.9600 |
C10—C11 | 1.382 (3) | C19—H19C | 0.9600 |
C10—C15 | 1.384 (3) | ||
C5—N1—C6 | 104.87 (17) | C13—C12—C11 | 120.4 (3) |
C1—N2—C5 | 122.23 (19) | C13—C12—H12 | 119.8 |
C1—N2—C7 | 129.8 (2) | C11—C12—H12 | 119.8 |
C5—N2—C7 | 107.87 (15) | C14—C13—C12 | 120.1 (2) |
C7—N3—C16 | 118.26 (16) | C14—C13—H13 | 120.0 |
C7—N3—H3A | 112.2 | C12—C13—H13 | 120.0 |
C16—N3—H3A | 107.9 | C13—C14—C15 | 120.4 (3) |
C2—C1—N2 | 118.4 (3) | C13—C14—H14 | 119.8 |
C2—C1—H1 | 120.8 | C15—C14—H14 | 119.8 |
N2—C1—H1 | 120.8 | C10—C15—C14 | 119.8 (3) |
C1—C2—C3 | 121.1 (2) | C10—C15—H15 | 120.1 |
C1—C2—H2 | 119.5 | C14—C15—H15 | 120.1 |
C3—C2—H2 | 119.5 | N3—C16—C18 | 106.2 (2) |
C4—C3—C2 | 120.8 (2) | N3—C16—C19 | 110.32 (16) |
C4—C3—H3 | 119.6 | C18—C16—C19 | 109.9 (2) |
C2—C3—H3 | 119.6 | N3—C16—C17 | 109.6 (2) |
C3—C4—C5 | 118.6 (3) | C18—C16—C17 | 110.6 (2) |
C3—C4—H4 | 120.7 | C19—C16—C17 | 110.1 (3) |
C5—C4—H4 | 120.7 | C16—C17—H17A | 109.5 |
N1—C5—N2 | 111.09 (18) | C16—C17—H17B | 109.5 |
N1—C5—C4 | 130.3 (2) | H17A—C17—H17B | 109.5 |
N2—C5—C4 | 118.65 (19) | C16—C17—H17C | 109.5 |
N1—C6—C7 | 112.28 (16) | H17A—C17—H17C | 109.5 |
N1—C6—C8 | 122.66 (17) | H17B—C17—H17C | 109.5 |
C7—C6—C8 | 125.06 (17) | C16—C18—H18A | 109.5 |
C6—C7—N3 | 134.86 (17) | C16—C18—H18B | 109.5 |
C6—C7—N2 | 103.85 (16) | H18A—C18—H18B | 109.5 |
N3—C7—N2 | 121.22 (16) | C16—C18—H18C | 109.5 |
C9—C8—C6 | 177.5 (2) | H18A—C18—H18C | 109.5 |
C8—C9—C10 | 178.3 (2) | H18B—C18—H18C | 109.5 |
C11—C10—C15 | 119.1 (2) | C16—C19—H19A | 109.5 |
C11—C10—C9 | 120.2 (2) | C16—C19—H19B | 109.5 |
C15—C10—C9 | 120.7 (2) | H19A—C19—H19B | 109.5 |
C12—C11—C10 | 120.2 (3) | C16—C19—H19C | 109.5 |
C12—C11—H11 | 119.9 | H19A—C19—H19C | 109.5 |
C10—C11—H11 | 119.9 | H19B—C19—H19C | 109.5 |
C5—N2—C1—C2 | 2.1 (3) | C8—C6—C7—N2 | 178.52 (17) |
C7—N2—C1—C2 | 178.0 (2) | C16—N3—C7—C6 | −89.0 (2) |
N2—C1—C2—C3 | 1.8 (4) | C16—N3—C7—N2 | 94.6 (2) |
C1—C2—C3—C4 | −2.9 (5) | C1—N2—C7—C6 | −174.58 (19) |
C2—C3—C4—C5 | 0.2 (4) | C5—N2—C7—C6 | 1.78 (19) |
C6—N1—C5—N2 | 1.5 (2) | C1—N2—C7—N3 | 2.8 (3) |
C6—N1—C5—C4 | −179.3 (2) | C5—N2—C7—N3 | 179.13 (16) |
C1—N2—C5—N1 | 174.53 (18) | C15—C10—C11—C12 | 0.1 (4) |
C7—N2—C5—N1 | −2.2 (2) | C9—C10—C11—C12 | −179.2 (2) |
C1—N2—C5—C4 | −4.8 (3) | C10—C11—C12—C13 | 0.0 (4) |
C7—N2—C5—C4 | 178.52 (18) | C11—C12—C13—C14 | −0.3 (4) |
C3—C4—C5—N1 | −175.7 (2) | C12—C13—C14—C15 | 0.4 (4) |
C3—C4—C5—N2 | 3.5 (3) | C11—C10—C15—C14 | 0.1 (3) |
C5—N1—C6—C7 | −0.4 (2) | C9—C10—C15—C14 | 179.3 (2) |
C5—N1—C6—C8 | −179.81 (17) | C13—C14—C15—C10 | −0.3 (4) |
N1—C6—C7—N3 | −177.7 (2) | C7—N3—C16—C18 | −169.4 (2) |
C8—C6—C7—N3 | 1.7 (3) | C7—N3—C16—C19 | 71.5 (2) |
N1—C6—C7—N2 | −0.9 (2) | C7—N3—C16—C17 | −49.8 (3) |
Cg3 and Cg4 are the centroids of the C10–C15 and N1/N2/C1–C7 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3A···N1i | 0.89 | 2.26 | 3.150 (2) | 178 |
C2—H2···Cg4ii | 0.93 | 2.98 | 3.890 (3) | 167 |
C17—H17C···Cg3iii | 0.96 | 2.95 | 3.896 (3) | 170 |
Symmetry codes: (i) −x+1/2, y, z−1/2; (ii) x−1/2, −y, z; (iii) x−1, y, z. |
Funding information
The support of NSF–MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.
References
Baviskar, A., Madaan, C., Preet, R., Mohapatra, P., Jain, V., Agarwal, A., Guchhait, S. K., Kundu, C. N., Banerjee, U. C. & Bharatam, P. V. (2011). J. Med. Chem. 54, 5013–5030. CrossRef CAS PubMed Google Scholar
Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tber, Z., Hiebel, M. A., El Hakmaoui, A., Akssira, M., Guillaumet, G. & Berteina-Raboin, S. (2015). J. Org. Chem. 80, 6564–6573. CrossRef CAS PubMed Google Scholar
Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer17.5. University of Western Australia, Perth, Australia. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.