research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 3-(cyclo­propyl­meth­­oxy)-4-(di­fluoro­meth­­oxy)-N-(pyridin-2-ylmeth­yl)benzamide

aCAS in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: mahes1287@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 26 August 2019; accepted 17 September 2019; online 20 September 2019)

The title compound, C18H18F2N2O3, crystallizes with two independent mol­ecules (A and B) in the asymmetric unit. They differ essentially in the orientation of the pyridine ring with respect to the benzene ring; these two rings are inclined to each other by 53.3 (2)° in mol­ecule A and by 72.9 (2)° in mol­ecule B. The 3-(cyclo­propyl­meth­oxy) side chain has an extended conformation in both mol­ecules. The two mol­ecules are linked by a pair of C—H⋯O hydrogen bonds and two C—H⋯π inter­actions, forming an AB unit. In the crystal, this unit is linked by N—H⋯O hydrogen bonds, forming a zigzag –ABAB– chain along [001]. The chains are linked by C—H⋯N and C—H⋯F hydrogen bonds to form layers parallel to the ac plane. Finally, the layers are linked by a third C—H⋯π inter­action, forming a three-dimensional structure. The major contributions to the Hirshfeld surface are those due to H⋯H contacts (39.7%), followed by F⋯H/H⋯F contacts (19.2%).

1. Chemical context

Amides containing tri­fluoro­methyl substituents are important in both agrochemical research and pharmaceutical chemistry (Jeschke et al., 2007[Jeschke, P., Baston, E. & Leroux, F. R. (2007). Mini Rev. Med. Chem. 7, 1027-1034.]; Jeschke, 2004[Jeschke, P. (2004). ChemBioChem, 5, 570-589.]; Leroux et al., 2005[Leroux, F., Jeschke, P. & Schlosser, M. (2005). Chem. Rev. 105, 827-856.]). Amides show a broad spectrum of pharmacological properties, including anti­bacterial (Manojkumar et al. 2013a[Manojkumar, K. E., Sreenivasa, S., Mohan, N. R., Madhuchakrapani Rao, T. & Harikrishna, T. (2013a). J. Appl. Chem, 2, 730-737.]), anti-inflammatory, anti­oxidant, analgesic and anti­viral activity (Manojkumar et al., 2013b[Manojkumar, K. E., Sreenivasa, S., Shivaraja, G. & Rao, T. M. C. (2013b). Molbank, M803 doi: 10.3390/M803.]). They also act as fungicides (Liu et al., 2004a[Liu, C. L., Li, Z. M. & Zhong, B. (2004a). J. Fluor. Chem. 125, 1287-1290.]), agaricides (Shiga et al., 2003[Shiga, Y., Okada, I. & Fukuchi, T. (2003). J. Pestic. Sci. 28, 310-312.]) and insecticides (Liu et al., 2004b[Liu, C. L., Li, L. & Li, Z. M. (2004b). Bioorg. Med. Chem. 12, 2825-2830.]). Following our inter­est in such compounds, we report herein on the synthesis, crystal structure and Hirshfeld surface analysis of the title compound, 3-(cyclo­propyl­meth­oxy)-4-(di­fluoro­meth­oxy)-N-(pyridin-2-ylmeth­yl)benzamide.

[Scheme 1]

2. Structural commentary

The asymmetric unit of the title compound contains two crystallographically independent mol­ecules (A and B; Fig. 1[link]). The overall conformation of the A and B mol­ecules differs in the orientation of the pyridine ring with respect to the benzene ring, as shown in the mol­ecular overlap figure [Fig. 2[link]; inverted mol­ecule B (black) on mol­ecule A (red), with an r.m.s. deviation of 0.641 Å]. The dihedral angle between the benzamide ring and the pyridine ring is 53.3 (2)° in mol­ecule A and 72.9 (2)° in mol­ecule B. The cyclo­propane ring makes a dihedral angle of 57.7 (5)° with the benzene ring in mol­ecule A and 58.7 (4)° in mol­ecule B. The sum of the bond angles around atom N1 (359.9°) is in accordance with sp2 hybridization in both mol­ecules. The bond lengths and bond angles in both mol­ecules are comparable with those reported for a similar compound, 3-(cyclo­propyl­meth­oxy)-N-(3,5-di­chloro­pyridin-4-yl)-4-(di­fluoro­meth­oxy) benzamide (Viertelhaus et al., 2013[Viertelhaus, M., Holst, H. C., Volz, J. & Hummel, R. P. (2013). J. Mol. Struct. 1031, 254-262.]), that crystallizes with three independent mol­ecules in the asymmetric unit.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atomic labelling and the displacement ellipsoids drawn at 30% probability level. Hydrogen bonds (Table 1[link]) are shown as dashed lines.
[Figure 2]
Figure 2
Structural overlay of inverted mol­ecule B (black) on mol­ecule A (red). Hydrogen atoms have been omitted for clarity.

3. Supra­molecular features

In the crystal, the A and B mol­ecules are linked by C—H⋯O and C—H⋯π inter­actions (Table 1[link] and Fig. 1[link]), forming A-B units, which are in turn linked by N—H⋯O hydrogen bonds, forming chains propagating along the c-axis direction (Table 1[link] and Fig. 3[link]). The chains are linked by C—H⋯O, C—H⋯N and C—H⋯F hydrogen bonds, forming layers lying parallel to the ac plane (Table 1[link] and Fig. 4[link]). A third C—H⋯π inter­action links the layers to form a supra­molecular three-dimensional structure (Fig. 5[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg2, Cg3 and Cg6 are the centroids of the N2A/C14A–C18A, C5A–C10A and C5B–C10B rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C11A—H11A⋯O3B 0.98 2.44 3.136 (5) 128
C11B—H11B⋯O3A 0.98 2.47 3.210 (5) 132
C4B—H4B1⋯Cg3 0.97 2.87 3.689 (4) 143
C4A—H4A2⋯Cg6 0.97 2.90 3.717 (5) 143
N1A—H1A⋯O3Bi 0.84 (4) 2.08 (4) 2.895 (4) 163 (4)
N1B—H1B⋯O3Aii 0.75 (4) 2.21 (4) 2.939 (4) 164 (4)
C13A—H13C⋯N2Biii 0.97 2.55 3.347 (5) 140
C13A—H13D⋯F1Ai 0.97 2.52 3.294 (6) 136
C13B—H13BCg2iv 0.97 2.73 3.748 (4) 137
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z]; (iii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z]; (iv) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].
[Figure 3]
Figure 3
A partial view along the b axis of the crystal packing of the title compound (colour code: mol­ecule A blue, mol­ecule B red). The N—H⋯O and C—H⋯O hydrogen bonds (Table 1[link]) are shown as dashed lines and, for clarity, only the H atoms involved in these inter­actions have been included.
[Figure 4]
Figure 4
The crystal packing of the title compound, viewed along the b axis. The hydrogen bonds (Table 1[link]) are shown as dashed lines. For clarity, only the H atoms involved in the inter­molecular inter­actions have been included.
[Figure 5]
Figure 5
The crystal packing of the title compound, viewed along the c axis. The hydrogen bonds are shown as dashed lines (Table 1[link]). For clarity, only the H atoms involved in the inter­molecular inter­actions have been included.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 4.0, last update May 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the (cyclo­propyl­meth­oxy)benzene skeleton gave twelve hits for nine structures. Only three mol­ecules resemble the title compound. The most similar is 3-(cyclo­propyl­meth­oxy)-N-(3,5-di­chloro­pyridin-4-yl)-4-(di­fluoro­meth­oxy) benzamide (CSD refcode PEDWOM; Viertelhaus et al., 2013[Viertelhaus, M., Holst, H. C., Volz, J. & Hummel, R. P. (2013). J. Mol. Struct. 1031, 254-262.]). It is known as Roflumilast (trade names Daxas, Daliresp), a drug that has anti-inflammatory properties and is used in the treatment of chronic obstructive pulmonary disease (Hohlfeld et al., 2008[Hohlfeld, J. M., Schoenfeld, K., Lavae-Mokhtari, M., Schaumann, F., Mueller, M., Bredenbroeker, D., Krug, N. & Hermann, R. (2008). Pulm. Pharmacol. Ther. 21, 616-623.]). The authors (Viertelhaus et al., 2013[Viertelhaus, M., Holst, H. C., Volz, J. & Hummel, R. P. (2013). J. Mol. Struct. 1031, 254-262.]) have made a variable temperature study of this compound (CSD entries PEDWOM at 100 K, PEDWOM01 at 343 K, PEDWOM02/PEDWOM03 at 298 K) in relation to a reversible single-crystal to single-crystal phase transition at 323 K. The compound crystallizes in the monoclinic P21/n space group with three independent mol­ecules in the asymmetric unit. The high temperature phase at 343 K also crystallizes in space group P21/n but with only one mol­ecule in the asymmetric unit, the length of the b axis being reduced by around a third. Here, the compound has a disordered di­fluoro­meth­oxy group. The overall conformations of the mol­ecules in all four entries (PEDWOM at 100 K, PEDWOM01 at 343 K, PEDWOM02/PEDWOM03 at 298 K) are very similar. Considering the low-temperature phase PEDWOM only, in each mol­ecule the benzene and pyridine rings are positioned almost perpendicular to each other, with dihedral angles of 88.38 (14), 89.34 (14) and 84.72 (14)°, compared to 53.3 (2) and 72.9 (2)° for mol­ecules A and B, respectively, in the title compound. In PEDWOM the cyclo­propane ring makes dihedral angles of 55.43 (3), 49.6 (3) and 50.9 (3)° with the corresponding benzene ring. These dihedral angles are very similar to those observed in the title structure [57.7 (5)° in mol­ecule A and 58.7 (4)° in mol­ecule B]. In the second compound, methyl 3-(cyclo­propyl­meth­oxy)-4-hy­droxy­benzoate (DUSXOF; Hou et al., 2010[Hou, J.-J., Cheng, X.-C., Wang, R.-L. & Wang, S.-Q. (2010). Acta Cryst. E66, o2004.]), the cyclo­propane ring is inclined to the benzene ring by 63.34 (10)°, while in the third compound, methyl 3,4-bis­(cyclo­propyl­meth­oxy)benzo­ate (URAWEQ; Cheng et al., 2011[Cheng, X.-C., Hou, J.-J., Xie, C.-Z., Wang, R.-L. & Xu, W.-R. (2011). Acta Cryst. E67, o1130.]), this dihedral angle is smaller at 45.49 (11)°.

5. Hirshfeld surface analysis

The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) were performed with CrystalExplorer17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. http://hirshfeldsurface.net]). The Hirshfeld surface mapped over dnorm in the colour range of −0.4869 to 1.4157 arbitrary units, and the inter­molecular contacts are illustrated in Fig. 6[link]. The red spots on the surface indicate the inter­molecular contacts involved in hydrogen bonding (Table 1[link]). The two-dimensional fingerprint plots are given in Fig. 7[link]. They reveal that the principal inter­molecular contacts are H⋯H at 39.7% (Fig. 7[link]b), followed by F⋯H/ H⋯F at 19.2% (Fig. 7[link]c), C⋯H/H⋯C at 16.6% (Fig. 7[link]d), O⋯H/ H⋯O at 14.0% (Fig. 7[link]e), N⋯H/H⋯N at 6.8% (Fig. 7[link]f). Hence, the H⋯H and F⋯H/H⋯F inter­molecular contacts are the most abundant in the crystal packing, and make the most significant contributions to the total Hirshfeld surfaces.

[Figure 6]
Figure 6
A view of the Hirshfeld surface of the title compound mapped over dnorm, showing the various inter­molecular contacts in the crystal.
[Figure 7]
Figure 7
(a) The full two-dimensional fingerprint plot for the title compound, and fingerprint plots delineated into (b) H⋯H, (c) F⋯H/H⋯F, (d) C⋯H/H⋯C, (e) O⋯H/H⋯O and (f) N⋯H/H⋯N contacts.

6. Synthesis and crystallization

A mixture of 4-(di­fluoro­meth­yl)-3-hy­droxy­benzoic acid (2 mmol), (chloro­meth­yl)cyclo­propane (2 mmol) and 2-picolyl­amine (3 mmol) with PPh3 (0.2 mmol) in methanol were heated first to 393 K for 2 h in the presence of the inexpensive ionic liquid tetra­butyl­ammonium bromide (TBAB). The reaction was monitored by TLC, and on completion the reaction mixture was allowed to cool to room temperature, then filtered to remove the insoluble solids. The filtered solid was then washed with di­chloro­methane. Excess solvents were removed under reduced pressure and the obtained crude product was purified by crystallization using 1:1 ratio of chloro­form and methanol. Colourless block-like crystals were obtained after two days.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The NH H atoms were located in difference-Fourier maps and refined freely. The C-bound H atoms were positioned geometrically (C—H = 0.93—0.98 Å) and allowed to ride on their parent atoms, with Uiso(H) =1.5Ueq(C-meth­yl) and 1.2Ueq(C) for other H atoms. The absolute structure of the mol­ecules in the crystal are unknown; the Flack parameter refined to 0.6 (3).

Table 2
Experimental details

Crystal data
Chemical formula C18H18F2N2O3
Mr 348.34
Crystal system, space group Orthorhombic, P212121
Temperature (K) 293
a, b, c (Å) 13.4775 (12), 28.026 (3), 9.1085 (9)
V3) 3440.5 (6)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.11
Crystal size (mm) 0.30 × 0.25 × 0.20
 
Data collection
Diffractometer Bruker SMART APEXII area-detector diffractometer
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.642, 0.785
No. of measured, independent and observed [I > 2σ(I)] reflections 33263, 8521, 5868
Rint 0.037
(sin θ/λ)max−1) 0.668
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.167, 1.02
No. of reflections 8521
No. of parameters 459
Δρmax, Δρmin (e Å−3) 0.67, −0.24
Computer programs: APEX2 and SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2013/1 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS2013/1 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2018/3 (Sheldrick, 2015) and PLATON (Spek, 2009).

3-(cyclopropylmethoxy)-4-(difluoromethoxy)-N-(pyridin-2-ylmethyl)\ benzamide top
Crystal data top
C18H18F2N2O3Dx = 1.345 Mg m3
Mr = 348.34Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 8521 reflections
a = 13.4775 (12) Åθ = 1.5–28.4°
b = 28.026 (3) ŵ = 0.11 mm1
c = 9.1085 (9) ÅT = 293 K
V = 3440.5 (6) Å3BLOCK, colourless
Z = 80.30 × 0.25 × 0.20 mm
F(000) = 1456
Data collection top
Bruker SMART APEXII area-detector
diffractometer
5868 reflections with I > 2σ(I)
ω and φ scansRint = 0.037
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
θmax = 28.4°, θmin = 1.5°
Tmin = 0.642, Tmax = 0.785h = 1617
33263 measured reflectionsk = 3737
8521 independent reflectionsl = 1012
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: mixed
wR(F2) = 0.167H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0901P)2 + 0.6343P]
where P = (Fo2 + 2Fc2)/3
8521 reflections(Δ/σ)max < 0.001
459 parametersΔρmax = 0.67 e Å3
0 restraintsΔρmin = 0.24 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C3A0.6926 (5)0.85621 (17)0.0399 (6)0.0849 (15)
H3A0.7605130.8680250.0521060.102*
C3B0.8930 (3)0.64609 (14)0.4443 (5)0.0594 (10)
H3B0.8246970.6346830.4326380.071*
C1B0.9416 (4)0.63426 (16)0.5869 (5)0.0770 (14)
H1B10.9884340.6571120.6269910.092*
H1B20.9029040.6170750.6594640.092*
C1A0.6470 (6)0.8684 (2)0.0992 (6)0.0997 (19)
H1A10.6862260.8861350.1697940.120*
H1A20.6002450.8458920.1413890.120*
C2A0.6200 (6)0.8918 (2)0.0358 (7)0.111 (2)
H2A10.6413590.9245360.0492620.134*
H2A20.5555800.8843870.0776000.134*
C2B0.9698 (4)0.60887 (18)0.4527 (6)0.0821 (14)
H2B10.9487200.5759240.4428550.098*
H2B21.0341680.6159220.4104130.098*
C4B0.9158 (3)0.69265 (12)0.3746 (4)0.0533 (9)
H4B10.8717940.7171730.4120540.064*
H4B20.9836710.7019070.3957700.064*
C4A0.6728 (4)0.80972 (14)0.1111 (4)0.0599 (10)
H4A10.6053440.7996070.0908660.072*
H4A20.7178180.7856850.0732200.072*
C5A0.6758 (3)0.77698 (11)0.3535 (4)0.0421 (7)
C5B0.9153 (3)0.72633 (11)0.1320 (4)0.0418 (7)
C10A0.6486 (3)0.73121 (12)0.3097 (4)0.0423 (7)
H10A0.6369840.7250730.2108530.051*
C10B0.9444 (3)0.77079 (12)0.1793 (4)0.0425 (7)
H10B0.9561990.7758290.2786680.051*
C9A0.6385 (2)0.69462 (11)0.4113 (3)0.0398 (7)
C9B0.9564 (2)0.80857 (11)0.0804 (3)0.0393 (7)
C8B0.9374 (3)0.80117 (12)0.0676 (4)0.0443 (7)
H8B0.9449750.8259940.1344140.053*
C8A0.6566 (3)0.70345 (12)0.5597 (4)0.0450 (8)
H8A0.6498670.6790500.6282030.054*
C7A0.6847 (3)0.74862 (12)0.6046 (4)0.0467 (8)
H7A0.6969010.7546770.7033540.056*
C7B0.9069 (3)0.75644 (12)0.1152 (4)0.0471 (8)
H7B0.8940400.7513320.2142800.057*
C6A0.6947 (3)0.78472 (11)0.5024 (4)0.0428 (7)
C6B0.8957 (3)0.71980 (11)0.0171 (4)0.0441 (8)
C11B0.7764 (3)0.65960 (13)0.0361 (4)0.0556 (9)
H11B0.7705490.6539600.0697710.067*
C11A0.8125 (3)0.84507 (12)0.5158 (4)0.0523 (9)
H11A0.8208050.8460150.4089940.063*
C12A0.6111 (3)0.64577 (11)0.3570 (3)0.0399 (7)
C12B0.9851 (3)0.85610 (11)0.1403 (3)0.0394 (7)
C13B1.0486 (3)0.93630 (12)0.0893 (4)0.0527 (9)
H13A1.1124220.9449080.0478120.063*
H13B1.0537160.9384970.1953490.063*
C13A0.5474 (3)0.56661 (11)0.4218 (4)0.0504 (9)
H13C0.5589900.5605550.3183660.060*
H13D0.4772370.5618210.4405820.060*
C14A0.6056 (3)0.53127 (11)0.5106 (4)0.0468 (8)
C14B0.9714 (3)0.97029 (12)0.0361 (5)0.0574 (10)
C15A0.6971 (3)0.54131 (14)0.5656 (5)0.0604 (10)
H15A0.7265930.5709130.5504490.072*
C15B0.8969 (5)0.9869 (2)0.1237 (8)0.0966 (18)
H15B0.8936750.9777740.2217160.116*
C16A0.7455 (4)0.50557 (19)0.6458 (7)0.0808 (14)
H16A0.8083250.5111360.6843330.097*
C16B0.8265 (6)1.0173 (3)0.0664 (11)0.128 (3)
H16B0.7749801.0290110.1240560.154*
C17A0.7010 (5)0.46329 (18)0.6668 (7)0.0911 (17)
H17A0.7322840.4393710.7203850.109*
C17B0.8351 (6)1.0297 (2)0.0794 (11)0.122 (3)
H17B0.7875921.0489700.1240010.146*
C18A0.6109 (5)0.45618 (16)0.6094 (7)0.0910 (17)
H18A0.5807640.4267490.6247390.109*
C18B0.9148 (6)1.0132 (2)0.1574 (7)0.108 (2)
H18B0.9222441.0233750.2539960.130*
N1A0.5726 (3)0.61610 (10)0.4539 (3)0.0465 (7)
N1B1.0244 (3)0.88763 (10)0.0482 (4)0.0473 (7)
N2B0.9813 (4)0.98388 (15)0.1035 (4)0.0834 (13)
N2A0.5614 (3)0.48899 (12)0.5308 (5)0.0714 (10)
O1B0.9022 (2)0.68714 (8)0.2187 (3)0.0538 (6)
O1A0.6868 (2)0.81526 (8)0.2653 (3)0.0573 (7)
O2A0.7199 (2)0.83023 (8)0.5524 (3)0.0547 (7)
O2B0.8688 (2)0.67504 (9)0.0719 (3)0.0547 (7)
O3A0.6272 (2)0.63485 (8)0.2278 (3)0.0527 (6)
O3B0.9710 (2)0.86563 (9)0.2718 (3)0.0555 (7)
F2B0.7076 (2)0.69107 (10)0.0828 (3)0.0810 (8)
F1A0.8220 (3)0.88794 (10)0.5731 (5)0.1111 (12)
F2A0.8810 (2)0.81731 (11)0.5780 (4)0.0885 (9)
F1B0.7623 (3)0.61959 (10)0.1115 (4)0.0974 (10)
H1A0.552 (3)0.6261 (14)0.535 (5)0.053 (11)*
H1B1.040 (3)0.8804 (13)0.028 (4)0.039 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C3A0.108 (4)0.075 (3)0.072 (3)0.002 (3)0.004 (3)0.018 (2)
C3B0.059 (2)0.059 (2)0.060 (2)0.0020 (18)0.0005 (19)0.0089 (18)
C1B0.107 (4)0.073 (3)0.051 (3)0.007 (2)0.003 (2)0.016 (2)
C1A0.146 (6)0.095 (4)0.059 (3)0.009 (4)0.003 (3)0.021 (3)
C2A0.140 (6)0.097 (4)0.097 (5)0.029 (4)0.011 (4)0.001 (3)
C2B0.088 (4)0.071 (3)0.087 (4)0.017 (2)0.003 (3)0.019 (3)
C4B0.064 (2)0.0516 (18)0.044 (2)0.0016 (17)0.0037 (17)0.0031 (16)
C4A0.074 (3)0.058 (2)0.047 (2)0.0015 (19)0.0061 (19)0.0088 (17)
C5A0.0406 (19)0.0444 (16)0.0414 (18)0.0031 (13)0.0003 (14)0.0035 (13)
C5B0.0406 (18)0.0454 (15)0.0395 (18)0.0010 (13)0.0013 (13)0.0041 (13)
C10A0.0437 (19)0.0486 (16)0.0346 (17)0.0018 (14)0.0049 (13)0.0002 (13)
C10B0.045 (2)0.0489 (16)0.0334 (17)0.0004 (14)0.0027 (13)0.0028 (13)
C9A0.0374 (17)0.0476 (15)0.0344 (16)0.0033 (13)0.0024 (13)0.0009 (13)
C9B0.0331 (16)0.0482 (16)0.0365 (17)0.0019 (12)0.0008 (12)0.0013 (13)
C8B0.0449 (18)0.0546 (17)0.0334 (17)0.0044 (14)0.0005 (13)0.0037 (14)
C8A0.0497 (19)0.0513 (17)0.0341 (18)0.0008 (14)0.0002 (14)0.0031 (14)
C7A0.049 (2)0.0578 (19)0.0330 (17)0.0058 (16)0.0019 (14)0.0040 (15)
C7B0.047 (2)0.0619 (19)0.0323 (17)0.0067 (16)0.0003 (14)0.0025 (15)
C6A0.0392 (19)0.0469 (16)0.0425 (19)0.0003 (13)0.0027 (14)0.0071 (14)
C6B0.0366 (18)0.0520 (17)0.0437 (19)0.0042 (14)0.0038 (14)0.0079 (14)
C11B0.062 (3)0.060 (2)0.045 (2)0.0165 (18)0.0007 (17)0.0005 (17)
C11A0.052 (2)0.0510 (18)0.054 (2)0.0069 (16)0.0001 (17)0.0023 (16)
C12A0.0417 (18)0.0445 (15)0.0337 (16)0.0048 (13)0.0034 (13)0.0018 (13)
C12B0.0420 (18)0.0430 (15)0.0330 (16)0.0010 (13)0.0020 (13)0.0020 (13)
C13B0.068 (3)0.0457 (17)0.044 (2)0.0066 (16)0.0037 (18)0.0005 (15)
C13A0.062 (2)0.0428 (16)0.047 (2)0.0025 (15)0.0055 (17)0.0020 (14)
C14A0.056 (2)0.0431 (16)0.0416 (19)0.0038 (15)0.0052 (15)0.0040 (14)
C14B0.071 (3)0.0446 (17)0.057 (2)0.0013 (17)0.001 (2)0.0065 (16)
C15A0.052 (2)0.065 (2)0.065 (3)0.0005 (18)0.0015 (19)0.0017 (19)
C15B0.097 (4)0.093 (3)0.100 (4)0.018 (3)0.032 (4)0.019 (3)
C16A0.060 (3)0.092 (3)0.090 (4)0.016 (2)0.011 (3)0.004 (3)
C16B0.105 (5)0.116 (5)0.163 (8)0.044 (4)0.028 (5)0.004 (5)
C17A0.116 (5)0.067 (3)0.091 (4)0.027 (3)0.020 (3)0.013 (3)
C17B0.129 (6)0.094 (4)0.142 (7)0.048 (4)0.048 (5)0.014 (4)
C18A0.121 (5)0.053 (2)0.099 (4)0.005 (3)0.022 (4)0.018 (2)
C18B0.153 (7)0.098 (4)0.073 (4)0.053 (4)0.029 (4)0.003 (3)
N1A0.0626 (19)0.0413 (13)0.0355 (16)0.0002 (13)0.0056 (13)0.0034 (12)
N1B0.063 (2)0.0443 (14)0.0343 (16)0.0007 (13)0.0049 (14)0.0010 (13)
N2B0.115 (4)0.083 (2)0.052 (2)0.035 (2)0.007 (2)0.002 (2)
N2A0.086 (3)0.0524 (17)0.076 (3)0.0080 (17)0.015 (2)0.0087 (17)
O1B0.0715 (19)0.0454 (12)0.0445 (14)0.0040 (12)0.0072 (12)0.0056 (10)
O1A0.075 (2)0.0483 (13)0.0487 (15)0.0047 (12)0.0070 (13)0.0062 (11)
O2A0.0512 (16)0.0537 (13)0.0593 (16)0.0064 (11)0.0102 (12)0.0142 (12)
O2B0.0600 (17)0.0553 (13)0.0488 (15)0.0113 (11)0.0107 (12)0.0133 (11)
O3A0.0662 (17)0.0570 (13)0.0349 (13)0.0037 (12)0.0031 (11)0.0057 (10)
O3B0.0734 (19)0.0597 (14)0.0336 (13)0.0128 (13)0.0001 (12)0.0025 (11)
F2B0.0607 (16)0.0891 (17)0.093 (2)0.0114 (13)0.0134 (14)0.0211 (15)
F1A0.095 (2)0.0660 (15)0.172 (4)0.0286 (15)0.019 (2)0.0379 (19)
F2A0.0591 (16)0.1027 (19)0.104 (2)0.0103 (14)0.0187 (15)0.0355 (17)
F1B0.110 (2)0.0744 (16)0.108 (2)0.0407 (16)0.0166 (19)0.0294 (16)
Geometric parameters (Å, º) top
C3A—C2A1.397 (9)C7B—H7B0.9300
C3A—C1A1.449 (8)C6A—O2A1.396 (4)
C3A—C4A1.479 (6)C6B—O2B1.398 (4)
C3A—H3A0.9800C11B—F1B1.329 (4)
C3B—C2B1.471 (6)C11B—F2B1.348 (5)
C3B—C4B1.484 (5)C11B—O2B1.359 (5)
C3B—C1B1.492 (6)C11B—H11B0.9800
C3B—H3B0.9800C11A—F1A1.316 (4)
C1B—C2B1.465 (7)C11A—F2A1.334 (5)
C1B—H1B10.9700C11A—O2A1.357 (5)
C1B—H1B20.9700C11A—H11A0.9800
C1A—C2A1.441 (8)C12A—O3A1.235 (4)
C1A—H1A10.9700C12A—N1A1.319 (4)
C1A—H1A20.9700C12B—O3B1.242 (4)
C2A—H2A10.9700C12B—N1B1.328 (4)
C2A—H2A20.9700C13B—N1B1.452 (4)
C2B—H2B10.9700C13B—C14B1.492 (6)
C2B—H2B20.9700C13B—H13A0.9700
C4B—O1B1.440 (4)C13B—H13B0.9700
C4B—H4B10.9700C13A—N1A1.458 (4)
C4B—H4B20.9700C13A—C14A1.500 (5)
C4A—O1A1.426 (5)C13A—H13C0.9700
C4A—H4A10.9700C13A—H13D0.9700
C4A—H4A20.9700C14A—N2A1.339 (5)
C5A—O1A1.349 (4)C14A—C15A1.361 (6)
C5A—C10A1.392 (5)C14B—N2B1.333 (6)
C5A—C6A1.397 (5)C14B—C15B1.365 (7)
C5B—O1B1.365 (4)C15A—C16A1.400 (6)
C5B—C10B1.375 (5)C15A—H15A0.9300
C5B—C6B1.395 (5)C15B—C16B1.378 (10)
C10A—C9A1.388 (5)C15B—H15B0.9300
C10A—H10A0.9300C16A—C17A1.342 (8)
C10B—C9B1.399 (4)C16A—H16A0.9300
C10B—H10B0.9300C16B—C17B1.378 (11)
C9A—C8A1.396 (5)C16B—H16B0.9300
C9A—C12A1.501 (4)C17A—C18A1.337 (9)
C9B—C8B1.388 (5)C17A—H17A0.9300
C9B—C12B1.490 (4)C17B—C18B1.369 (11)
C8B—C7B1.389 (5)C17B—H17B0.9300
C8B—H8B0.9300C18A—N2A1.343 (6)
C8A—C7A1.383 (5)C18A—H18A0.9300
C8A—H8A0.9300C18B—N2B1.312 (7)
C7A—C6A1.381 (5)C18B—H18B0.9300
C7A—H7A0.9300N1A—H1A0.83 (4)
C7B—C6B1.370 (5)N1B—H1B0.75 (4)
C2A—C3A—C1A60.8 (4)C7A—C6A—O2A118.2 (3)
C2A—C3A—C4A120.9 (6)C7A—C6A—C5A121.5 (3)
C1A—C3A—C4A120.9 (5)O2A—C6A—C5A120.2 (3)
C2A—C3A—H3A114.6C7B—C6B—C5B121.1 (3)
C1A—C3A—H3A114.6C7B—C6B—O2B117.9 (3)
C4A—C3A—H3A114.6C5B—C6B—O2B121.0 (3)
C2B—C3B—C4B120.0 (4)F1B—C11B—F2B106.9 (3)
C2B—C3B—C1B59.2 (3)F1B—C11B—O2B106.0 (3)
C4B—C3B—C1B118.5 (4)F2B—C11B—O2B110.3 (3)
C2B—C3B—H3B115.8F1B—C11B—H11B111.2
C4B—C3B—H3B115.8F2B—C11B—H11B111.2
C1B—C3B—H3B115.8O2B—C11B—H11B111.2
C2B—C1B—C3B59.7 (3)F1A—C11A—F2A107.2 (4)
C2B—C1B—H1B1117.8F1A—C11A—O2A105.8 (3)
C3B—C1B—H1B1117.8F2A—C11A—O2A110.7 (3)
C2B—C1B—H1B2117.8F1A—C11A—H11A111.0
C3B—C1B—H1B2117.8F2A—C11A—H11A111.0
H1B1—C1B—H1B2114.9O2A—C11A—H11A111.0
C2A—C1A—C3A57.8 (4)O3A—C12A—N1A123.4 (3)
C2A—C1A—H1A1118.0O3A—C12A—C9A119.8 (3)
C3A—C1A—H1A1118.0N1A—C12A—C9A116.8 (3)
C2A—C1A—H1A2118.0O3B—C12B—N1B121.8 (3)
C3A—C1A—H1A2118.0O3B—C12B—C9B120.3 (3)
H1A1—C1A—H1A2115.2N1B—C12B—C9B117.8 (3)
C3A—C2A—C1A61.3 (4)N1B—C13B—C14B111.1 (3)
C3A—C2A—H2A1117.6N1B—C13B—H13A109.4
C1A—C2A—H2A1117.6C14B—C13B—H13A109.4
C3A—C2A—H2A2117.6N1B—C13B—H13B109.4
C1A—C2A—H2A2117.6C14B—C13B—H13B109.4
H2A1—C2A—H2A2114.7H13A—C13B—H13B108.0
C1B—C2B—C3B61.1 (3)N1A—C13A—C14A113.4 (3)
C1B—C2B—H2B1117.7N1A—C13A—H13C108.9
C3B—C2B—H2B1117.7C14A—C13A—H13C108.9
C1B—C2B—H2B2117.7N1A—C13A—H13D108.9
C3B—C2B—H2B2117.7C14A—C13A—H13D108.9
H2B1—C2B—H2B2114.8H13C—C13A—H13D107.7
O1B—C4B—C3B107.5 (3)N2A—C14A—C15A122.4 (4)
O1B—C4B—H4B1110.2N2A—C14A—C13A115.2 (4)
C3B—C4B—H4B1110.2C15A—C14A—C13A122.4 (3)
O1B—C4B—H4B2110.2N2B—C14B—C15B122.2 (5)
C3B—C4B—H4B2110.2N2B—C14B—C13B115.0 (4)
H4B1—C4B—H4B2108.5C15B—C14B—C13B122.8 (4)
O1A—C4A—C3A108.2 (4)C14A—C15A—C16A117.8 (4)
O1A—C4A—H4A1110.1C14A—C15A—H15A121.1
C3A—C4A—H4A1110.1C16A—C15A—H15A121.1
O1A—C4A—H4A2110.1C14B—C15B—C16B119.8 (6)
C3A—C4A—H4A2110.1C14B—C15B—H15B120.1
H4A1—C4A—H4A2108.4C16B—C15B—H15B120.1
O1A—C5A—C10A126.2 (3)C17A—C16A—C15A119.9 (5)
O1A—C5A—C6A115.8 (3)C17A—C16A—H16A120.1
C10A—C5A—C6A118.0 (3)C15A—C16A—H16A120.1
O1B—C5B—C10B125.8 (3)C17B—C16B—C15B117.6 (7)
O1B—C5B—C6B115.7 (3)C17B—C16B—H16B121.2
C10B—C5B—C6B118.5 (3)C15B—C16B—H16B121.2
C9A—C10A—C5A121.0 (3)C18A—C17A—C16A118.8 (5)
C9A—C10A—H10A119.5C18A—C17A—H17A120.6
C5A—C10A—H10A119.5C16A—C17A—H17A120.6
C5B—C10B—C9B121.1 (3)C18B—C17B—C16B118.7 (6)
C5B—C10B—H10B119.4C18B—C17B—H17B120.6
C9B—C10B—H10B119.4C16B—C17B—H17B120.6
C10A—C9A—C8A119.8 (3)C17A—C18A—N2A123.9 (5)
C10A—C9A—C12A118.6 (3)C17A—C18A—H18A118.0
C8A—C9A—C12A121.6 (3)N2A—C18A—H18A118.0
C8B—C9B—C10B119.4 (3)N2B—C18B—C17B123.6 (6)
C8B—C9B—C12B122.5 (3)N2B—C18B—H18B118.2
C10B—C9B—C12B118.1 (3)C17B—C18B—H18B118.2
C9B—C8B—C7B119.5 (3)C12A—N1A—C13A123.9 (3)
C9B—C8B—H8B120.2C12A—N1A—H1A121 (3)
C7B—C8B—H8B120.2C13A—N1A—H1A115 (3)
C7A—C8A—C9A119.8 (3)C12B—N1B—C13B123.5 (3)
C7A—C8A—H8A120.1C12B—N1B—H1B121 (3)
C9A—C8A—H8A120.1C13B—N1B—H1B115 (3)
C6A—C7A—C8A119.9 (3)C18B—N2B—C14B117.9 (5)
C6A—C7A—H7A120.1C14A—N2A—C18A117.2 (4)
C8A—C7A—H7A120.1C5B—O1B—C4B117.9 (3)
C6B—C7B—C8B120.4 (3)C5A—O1A—C4A119.1 (3)
C6B—C7B—H7B119.8C11A—O2A—C6A115.0 (3)
C8B—C7B—H7B119.8C11B—O2B—C6B116.0 (3)
C4B—C3B—C1B—C2B109.8 (5)C10B—C9B—C12B—N1B160.6 (3)
C4A—C3A—C1A—C2A110.6 (7)N1A—C13A—C14A—N2A154.4 (4)
C4A—C3A—C2A—C1A110.6 (7)N1A—C13A—C14A—C15A26.1 (5)
C4B—C3B—C2B—C1B107.3 (5)N1B—C13B—C14B—N2B82.7 (4)
C2B—C3B—C4B—O1B84.0 (5)N1B—C13B—C14B—C15B98.2 (5)
C1B—C3B—C4B—O1B153.0 (4)N2A—C14A—C15A—C16A0.1 (6)
C2A—C3A—C4A—O1A81.6 (7)C13A—C14A—C15A—C16A179.4 (4)
C1A—C3A—C4A—O1A153.9 (5)N2B—C14B—C15B—C16B2.7 (10)
O1A—C5A—C10A—C9A179.3 (3)C13B—C14B—C15B—C16B178.3 (6)
C6A—C5A—C10A—C9A1.3 (5)C14A—C15A—C16A—C17A0.5 (8)
O1B—C5B—C10B—C9B179.4 (3)C14B—C15B—C16B—C17B0.1 (12)
C6B—C5B—C10B—C9B1.4 (5)C15A—C16A—C17A—C18A0.4 (9)
C5A—C10A—C9A—C8A0.6 (5)C15B—C16B—C17B—C18B3.0 (13)
C5A—C10A—C9A—C12A178.7 (3)C16A—C17A—C18A—N2A0.1 (10)
C5B—C10B—C9B—C8B0.9 (5)C16B—C17B—C18B—N2B3.9 (12)
C5B—C10B—C9B—C12B178.2 (3)O3A—C12A—N1A—C13A2.1 (6)
C10B—C9B—C8B—C7B0.1 (5)C9A—C12A—N1A—C13A176.3 (3)
C12B—C9B—C8B—C7B177.3 (3)C14A—C13A—N1A—C12A117.2 (4)
C10A—C9A—C8A—C7A0.1 (5)O3B—C12B—N1B—C13B3.8 (6)
C12A—C9A—C8A—C7A177.9 (3)C9B—C12B—N1B—C13B175.2 (3)
C9A—C8A—C7A—C6A0.0 (5)C14B—C13B—N1B—C12B101.4 (4)
C9B—C8B—C7B—C6B0.0 (5)C17B—C18B—N2B—C14B1.5 (11)
C8A—C7A—C6A—O2A177.8 (3)C15B—C14B—N2B—C18B1.9 (8)
C8A—C7A—C6A—C5A0.8 (5)C13B—C14B—N2B—C18B179.0 (5)
O1A—C5A—C6A—C7A179.1 (3)C15A—C14A—N2A—C18A0.3 (7)
C10A—C5A—C6A—C7A1.5 (5)C13A—C14A—N2A—C18A179.8 (5)
O1A—C5A—C6A—O2A2.1 (5)C17A—C18A—N2A—C14A0.4 (9)
C10A—C5A—C6A—O2A178.4 (3)C10B—C5B—O1B—C4B2.7 (5)
C8B—C7B—C6B—C5B0.5 (5)C6B—C5B—O1B—C4B176.5 (3)
C8B—C7B—C6B—O2B177.4 (3)C3B—C4B—O1B—C5B177.4 (3)
O1B—C5B—C6B—C7B179.5 (3)C10A—C5A—O1A—C4A2.0 (6)
C10B—C5B—C6B—C7B1.2 (5)C6A—C5A—O1A—C4A177.5 (3)
O1B—C5B—C6B—O2B2.7 (5)C3A—C4A—O1A—C5A178.0 (4)
C10B—C5B—C6B—O2B178.1 (3)F1A—C11A—O2A—C6A179.5 (3)
C10A—C9A—C12A—O3A21.9 (5)F2A—C11A—O2A—C6A63.7 (4)
C8A—C9A—C12A—O3A156.1 (3)C7A—C6A—O2A—C11A110.5 (4)
C10A—C9A—C12A—N1A159.6 (3)C5A—C6A—O2A—C11A72.5 (4)
C8A—C9A—C12A—N1A22.4 (5)F1B—C11B—O2B—C6B173.3 (3)
C8B—C9B—C12B—O3B156.8 (3)F2B—C11B—O2B—C6B58.0 (4)
C10B—C9B—C12B—O3B20.3 (5)C7B—C6B—O2B—C11B111.5 (4)
C8B—C9B—C12B—N1B22.2 (5)C5B—C6B—O2B—C11B71.5 (4)
Hydrogen-bond geometry (Å, º) top
Cg2, Cg3 and Cg6 are the centroids of the N2A/C14A–C18A, C5A–C10A and C5B–C10B rings, respectively.
D—H···AD—HH···AD···AD—H···A
C11A—H11A···O3B0.982.443.136 (5)128
C11B—H11B···O3A0.982.473.210 (5)132
C4B—H4B1···Cg30.972.873.689 (4)143
C4A—H4A2···Cg60.972.903.717 (5)143
N1A—H1A···O3Bi0.84 (4)2.08 (4)2.895 (4)163 (4)
N1B—H1B···O3Aii0.75 (4)2.21 (4)2.939 (4)164 (4)
C13A—H13C···N2Biii0.972.553.347 (5)140
C13A—H13D···F1Ai0.972.523.294 (6)136
C13B—H13B···Cg2iv0.972.733.748 (4)137
Symmetry codes: (i) x1/2, y+3/2, z+1; (ii) x+1/2, y+3/2, z; (iii) x1/2, y+3/2, z; (iv) x+1/2, y+3/2, z+1.
 

Acknowledgements

The authors thank the TBI Consultancy, CAS in Crystallography & Biophysics, University of Madras, India, for the data collection.

References

First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCheng, X.-C., Hou, J.-J., Xie, C.-Z., Wang, R.-L. & Xu, W.-R. (2011). Acta Cryst. E67, o1130.  CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHohlfeld, J. M., Schoenfeld, K., Lavae-Mokhtari, M., Schaumann, F., Mueller, M., Bredenbroeker, D., Krug, N. & Hermann, R. (2008). Pulm. Pharmacol. Ther. 21, 616–623.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHou, J.-J., Cheng, X.-C., Wang, R.-L. & Wang, S.-Q. (2010). Acta Cryst. E66, o2004.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJeschke, P. (2004). ChemBioChem, 5, 570–589.  CrossRef CAS Google Scholar
First citationJeschke, P., Baston, E. & Leroux, F. R. (2007). Mini Rev. Med. Chem. 7, 1027–1034.  CrossRef PubMed CAS Google Scholar
First citationLeroux, F., Jeschke, P. & Schlosser, M. (2005). Chem. Rev. 105, 827–856.  CrossRef PubMed CAS Google Scholar
First citationLiu, C. L., Li, L. & Li, Z. M. (2004b). Bioorg. Med. Chem. 12, 2825–2830.  CrossRef PubMed CAS Google Scholar
First citationLiu, C. L., Li, Z. M. & Zhong, B. (2004a). J. Fluor. Chem. 125, 1287–1290.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationManojkumar, K. E., Sreenivasa, S., Mohan, N. R., Madhuchakrapani Rao, T. & Harikrishna, T. (2013a). J. Appl. Chem, 2, 730–737.  CAS Google Scholar
First citationManojkumar, K. E., Sreenivasa, S., Shivaraja, G. & Rao, T. M. C. (2013b). Molbank, M803 doi: 10.3390/M803.  Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShiga, Y., Okada, I. & Fukuchi, T. (2003). J. Pestic. Sci. 28, 310–312.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. http://hirshfeldsurface.net  Google Scholar
First citationViertelhaus, M., Holst, H. C., Volz, J. & Hummel, R. P. (2013). J. Mol. Struct. 1031, 254–262.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds