research communications
and Hirshfeld surface analysis of 2,2′′′,6,6′′′-tetramethoxy-3,2′:5′,3′′:6′′,3′′′-quaterpyridine
aDepartment of Food and Nutrition, Kyungnam College of Information and Technology, Busan 47011, Republic of Korea, bDivision of Science Education & Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea, and cResearch Institute of Natural Science, Gyeongsang National University, Jinju 52828, Republic of Korea
*Correspondence e-mail: kmpark@gnu.ac.kr, kangy@kangwon.ac.kr
In the title compound, C24H22N4O4, the four pyridine rings are tilted slightly with respect to each other. The dihedral angles between the inner and outer pyridine rings are 12.51 (8) and 9.67 (9)°, while that between inner pyridine rings is 20.10 (7)°. Within the molecule, intramolecular C—H⋯O and C—H⋯N contacts are observed. In the crystal, adjacent molecules are linked by π–π stacking interactions between pyridine rings and weak C—H⋯π interactions between a methyl H atom and the centroid of a pyridine ring, forming a two-dimensional layer structure extending parallel to the ac plane. Hirshfeld surface analysis and two-dimensional fingerprint plots indicate that the most important contributions to the crystal packing are from H⋯H (52.9%) and H⋯C/C⋯H (17.3%) contacts.
Keywords: crystal structure; quaterpyridine derivative; π–π interaction; C—H⋯π interaction; Hirshfeld surface analysis.
CCDC reference: 1953451
1. Chemical context
Polypyridines are considered to be strong and versatile chelating ligands for transition-metal ions (Adamski et al., 2014). This chelating nature provides complexes with diverse architectures possessing unique and useful photophysical properties (Zhong et al., 2013). Many structural studies of bi- and terpyridine-based metal complexes have been undertaken over the last decades (Kaes et al., 2000). When bi- or terpyridines are used as building blocks, sophisticated architectures such as helicates and cages can be obtained by self-assembly (Yeung et al., 2011; Glasson et al., 2008b). Although there are number of examples of bi- and terpyridine-based metal complexes with different geometries, structural reports of linear-type quaterpyridines are still scarce (Glasson et al., 2011b). Organic compounds bearing 2,3′-bipyridine have attracted much interest because of their unique properties such as proper coordination modes to late transition-metal ions and high triplet energy. As a result of these characteristics, they are widely used as ligands to develop blue phosphorescent materials (Zaen et al., 2019; Lee et al., 2018). However, no reports of a 2,3′-bipyridine-based quaterpyridine with a linear geometry have been published to date. Herein, we describe the molecular and crystal structures of the title compound, which can act as a potential multidentate ligand to various transition-metal ions. The molecular packing of the title compound was further examined with the aid of a Hirshfeld surface analysis.
2. Structural commentary
The molecular structure of the title compound is shown in Fig. 1. Within the molecule, short intramolecular C—H⋯O and C—H⋯N contacts (Table 1) enclose S(6) and S(5) rings, respectively, and may contribute to the planarity between outer and inner pyridine rings. The dihedral angles between the outer and inner pyridine rings are 12.51 (8)° (between rings N1/C1–C5 and N2/C6-C10) and 9.67 (9)° (between rings N3/C11–C15 and N4/C16–C20). However the two inner pyridine rings (N2/C6–C10 and N3/C11–C15) are slightly tilted by 20.10 (7)° with respect to each other. This may be due to the between atoms H8 and H11 and between H10 and H13.
3. Supramolecular features
In the crystal, adjacent molecules are linked by π–π stacking interactions between pyridine rings [Cg1⋯Cg3iii = 3.6600 (10) Å; Cg1⋯Cg4ii = 3.8249 (10) Å; Cg2⋯Cg4iii = 3.9270 (10) Å; Cg1, Cg2, Cg3, and Cg4 are the centroids of the N1/C1–C5, N2/C6–C10, N3/C11–C15, and N4/C16–C20 rings, respectively; symmetry codes: (ii) x + 1, −y + , z − , (iii) x, −y + , z − ], resulting in the formation of a two-dimensional layer structure extending parallel to the ac plane, as shown in Fig. 2. The layer is further stabilized by weak C—H⋯π interactions (Table 1, yellow dashed lines in Fig. 2) between (methyl)H22C⋯Cg3i [Cg3 is the centroid of the N3/C11–C15 ring; symmetry code as in Table 1]. No interactions between the layers are observed.
4. Hirshfeld surface analysis
Hirshfeld surface analysis was performed using CrystalExplorer (Turner et al., 2017) to quantify and visualize the various intermolecular close contacts in the molecular packing of the title compound. The Hirshfeld surface shown in Fig. 3 was calculated using a standard (high) surface resolution with the three-dimensional dnorm surface mapped over a fixed colour scale of −0.1883 (red) to 1.2065 (blue) a.u.. In Fig. 3, except for three light-red spots, the overall surface mapped over dnorm is covered by white and blue colours, indicating that the distances between the contact atoms in intermolecular contacts are nearly the same as the sum of their van der Waals radii or longer. The light-red spots on the surface indicate the closest intermolecular H⋯H and C⋯H contacts [H14⋯H18(−x + 1, y − , −z + ) = 2.19 Å, C6⋯H24C(x + 1, −y + , z − ) = 2.78 Å.
The overall two-dimensional fingerprint plot and those delineated into H⋯H, H⋯C/C⋯H, H⋯O/O⋯H, C⋯C, and C⋯N/N⋯C contacts are shown in Fig. 4a–f, respectively. The most widely scattered points in the fingerprint plot are related to H⋯H contacts, Fig. 4b, which make a 52.9% contribution to the Hirshfeld surface. The second largest contribution (17.3%) is by H⋯C/C⋯H contacts (Fig. 4c). The H⋯O/O⋯H (9.4%), C⋯C (6.4%), C⋯N/N⋯C (5.4%), H⋯N/N⋯H (5.0%), and C⋯O/O⋯C (2.2%) contacts also make significant contributions to the Hirshfeld surface while the N⋯O/O⋯N (0.7%), O⋯O (0.7%), and N⋯N (0.1%) contacts have a negligible influence on the molecular packing.
5. Database survey
Although a search of the Cambridge Structural Database (CSD Version 5.40, last update Feb 2019; Groom et al., 2016) for 3,2′:5′,3′′:6′′,3′′′-quaterpyridine, which is the title compound without the methoxy substituents, and 4,2′:5′,3′′:6′′,4′′′-quaterpyridine gave no hits, that for 2,2′:5′,3′′:6′′,2′′′-quaterpyridine gave ten hits. One (CIHJUB: Luis et al., 2018) is 2,2′:5′,3′′:6′′,2′′′-quaterpyridine and eight are AgI (GIWKAY: Baxter et al., 1999), CuI (WAHKOF: Baxter et al., 1993), RuII (TOMROD: Glasson et al., 2008a), or FeII [(OMAMEV: Glasson et al., 2011a; RIXYON, RIXZAA and RIXYUT: Glasson et al., 2008b) complexes involving the 2,2′:5′,3′′:6′′,2′′′-quaterpyridine ligand with methyl substituents. The remaining one (REHVAB: Baxter et al., 1997) is a CuI complex involving the ligand 2,2′:5′,3′′:6′′,2′′′-quaterpyridine with phenyl substituents.
6. Synthesis and crystallization
All experiments were performed under a dry N2 atmosphere using standard Schlenk techniques. All solvents were freshly distilled over appropriate drying reagents prior to use. All starting materials were purchased commercially and used without further purification. The 1H NMR spectrum was recorded on a JEOL 400 MHz spectrometer. The two starting materials, 5-bromo-2′,6′-dimethoxy-2,3′-bipyridine and 2′,6′-dimethoxy-5-(4,4,5,5,-tetramethyl-1,3,2-dioxaborolan-2-yl)-2,3′-bipyridine were synthesized according to a slight modification of the previous synthetic methodology reported by our group (Zaen et al., 2019). Details of the synthetic procedures and reagents are presented in Fig. 5.
To a 100 ml Schlenk flask were added 5-bromo-2′,6′-dimethoxy-2,3′-bipyridine (0.46 g, 1.55 mmol), 2′,6′-dimethoxy-5-(4,4,5,5,-tetramethyl-1,3,2-dioxaborolan-2-yl)-2,3′-bipyridine (0.64 g, 1.86 mmol), Pd(PPh3)4 (0.09 g, 0.08 mmol), and K3PO4 (2.13 g, 9.28 mmol). The flask was evacuated and back-filled with nitrogen and THF/H2O (12 ml/9.8 ml) was added under an N2 atmosphere, and the reaction mixture was stirred at 373 K under nitrogen for 24 h. After cooling to room temperature, the mixture was poured into 100 ml of water and extracted with ethyl acetate (50 ml × 3). The organic layers were combined and then dried with anhydrous MgSO4 and concentrated under reduced pressure. Purification by (ethylacetate:hexane 1:1, v/v) afford the desired product as a yellow solid (0.33 g, 50%). Pale-yellow crystals were obtained by slow evaporation of a dichloromethane/hexane solution of the title compound. 1H NMR (400 MHz, CDCl3) δ 8.91 (dd, J = 2.0 Hz, 2H), 8.32 (d, J = 8.4 Hz, 2H), 8.10 (d, J = 7.6 Hz, 2H), 7.93 (dd, J = 8.4, 2.4 Hz, 2H), 6.47 (d, J = 8.0 Hz, 2H), 6.47 (d, J = 8.0 Hz, 2H), 4.06 (s, 3H), 3.99 (s, 3H); 13C NMR(100 MHz, CDCl3) δ 163.3, 160.2, 153.8, 147.5, 142.2, 134.2, 130.9, 123.9, 113.8, 102.2, 53.8, 53.6. Analysis calculated for C24H22N4O4: C 66.97, H 5.15, N 13.02%; found: C 66.93, H 5.12, N 13.06%.
7. Refinement
Crystal data, data collection and structure . All H atoms were positioned geometrically and refined using a riding model: C—H = 0.94–0.97 Å with Uiso(H) = 1.5Ueq(C-methyl) and 1.2Ueq(C) for other H atoms.
details are summarized in Table 2Supporting information
CCDC reference: 1953451
https://doi.org/10.1107/S205698901901274X/su5516sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S205698901901274X/su5516Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S205698901901274X/su5516Isup3.cml
Data collection: APEX2 (Bruker, 2014); cell
SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).C24H22N4O4 | F(000) = 904 |
Mr = 430.45 | Dx = 1.402 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 7.9556 (6) Å | Cell parameters from 5328 reflections |
b = 14.8583 (11) Å | θ = 2.6–27.8° |
c = 17.3362 (12) Å | µ = 0.10 mm−1 |
β = 95.556 (4)° | T = 223 K |
V = 2039.6 (3) Å3 | Plate, yellow |
Z = 4 | 0.25 × 0.24 × 0.07 mm |
Bruker APEXII CCD diffractometer | 3739 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.030 |
Absorption correction: multi-scan (SADABS; Bruker, 2014) | θmax = 28.4°, θmin = 1.8° |
Tmin = 0.673, Tmax = 0.746 | h = −10→10 |
19298 measured reflections | k = −17→19 |
5090 independent reflections | l = −23→23 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.054 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.160 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0773P)2 + 0.5757P] where P = (Fo2 + 2Fc2)/3 |
5090 reflections | (Δ/σ)max < 0.001 |
289 parameters | Δρmax = 0.52 e Å−3 |
0 restraints | Δρmin = −0.24 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.95531 (17) | 0.30630 (8) | 0.18517 (7) | 0.0449 (3) | |
O2 | 1.11979 (18) | 0.05085 (9) | 0.06420 (7) | 0.0518 (3) | |
O3 | 0.3179 (2) | 0.49944 (9) | 0.92984 (8) | 0.0598 (4) | |
O4 | 0.34148 (15) | 0.25399 (7) | 0.77125 (7) | 0.0414 (3) | |
N1 | 1.03508 (18) | 0.17731 (10) | 0.12555 (8) | 0.0393 (3) | |
N2 | 0.8189 (2) | 0.15075 (10) | 0.37266 (9) | 0.0473 (4) | |
N3 | 0.5594 (2) | 0.41616 (10) | 0.60438 (8) | 0.0446 (4) | |
N4 | 0.33254 (18) | 0.37725 (10) | 0.84952 (8) | 0.0394 (3) | |
C1 | 0.9663 (2) | 0.21499 (11) | 0.18490 (9) | 0.0384 (4) | |
C2 | 1.0519 (2) | 0.08936 (12) | 0.12445 (10) | 0.0417 (4) | |
C3 | 1.0021 (2) | 0.03287 (13) | 0.18274 (11) | 0.0464 (4) | |
H3 | 1.0169 | −0.0299 | 0.1812 | 0.056* | |
C4 | 0.9309 (2) | 0.07415 (11) | 0.24195 (10) | 0.0391 (4) | |
H4 | 0.8953 | 0.0382 | 0.2819 | 0.047* | |
C5 | 0.9084 (2) | 0.16701 (12) | 0.24608 (9) | 0.0385 (4) | |
C6 | 0.8322 (2) | 0.20736 (12) | 0.31288 (9) | 0.0378 (4) | |
C7 | 0.7761 (2) | 0.29583 (12) | 0.31670 (10) | 0.0426 (4) | |
H7 | 0.7840 | 0.3347 | 0.2744 | 0.051* | |
C8 | 0.7093 (2) | 0.32678 (12) | 0.38209 (10) | 0.0416 (4) | |
H8 | 0.6730 | 0.3868 | 0.3845 | 0.050* | |
C9 | 0.6954 (2) | 0.26934 (11) | 0.44454 (9) | 0.0362 (4) | |
C10 | 0.7519 (2) | 0.18211 (13) | 0.43460 (10) | 0.0461 (4) | |
H10 | 0.7420 | 0.1415 | 0.4755 | 0.055* | |
C11 | 0.6163 (2) | 0.38702 (12) | 0.53909 (10) | 0.0454 (4) | |
H11 | 0.6530 | 0.4306 | 0.5052 | 0.055* | |
C12 | 0.6258 (2) | 0.29739 (11) | 0.51692 (9) | 0.0352 (3) | |
C13 | 0.5675 (2) | 0.23564 (12) | 0.56830 (10) | 0.0443 (4) | |
H13 | 0.5692 | 0.1739 | 0.5567 | 0.053* | |
C14 | 0.5075 (2) | 0.26401 (12) | 0.63572 (10) | 0.0441 (4) | |
H14 | 0.4672 | 0.2217 | 0.6698 | 0.053* | |
C15 | 0.5059 (2) | 0.35488 (11) | 0.65387 (9) | 0.0350 (3) | |
C16 | 0.4526 (2) | 0.39106 (11) | 0.72707 (9) | 0.0363 (4) | |
C17 | 0.4828 (3) | 0.48144 (12) | 0.74535 (11) | 0.0464 (4) | |
H17 | 0.5351 | 0.5179 | 0.7103 | 0.056* | |
C18 | 0.4387 (3) | 0.51856 (13) | 0.81250 (12) | 0.0564 (5) | |
H18 | 0.4592 | 0.5796 | 0.8241 | 0.068* | |
C19 | 0.3625 (2) | 0.46282 (12) | 0.86309 (10) | 0.0455 (4) | |
C20 | 0.3758 (2) | 0.34235 (11) | 0.78363 (9) | 0.0350 (4) | |
C21 | 1.0326 (3) | 0.35294 (14) | 0.12610 (11) | 0.0546 (5) | |
H21A | 1.0169 | 0.4172 | 0.1320 | 0.082* | |
H21B | 1.1524 | 0.3393 | 0.1304 | 0.082* | |
H21C | 0.9813 | 0.3340 | 0.0757 | 0.082* | |
C22 | 1.1533 (3) | 0.10987 (14) | 0.00148 (10) | 0.0497 (5) | |
H22A | 1.2017 | 0.0755 | −0.0385 | 0.075* | |
H22B | 1.0487 | 0.1375 | −0.0200 | 0.075* | |
H22C | 1.2321 | 0.1563 | 0.0208 | 0.075* | |
C23 | 0.2306 (3) | 0.44212 (15) | 0.97894 (12) | 0.0624 (6) | |
H23A | 0.2054 | 0.4753 | 1.0246 | 0.094* | |
H23B | 0.1261 | 0.4215 | 0.9510 | 0.094* | |
H23C | 0.3010 | 0.3907 | 0.9945 | 0.094* | |
C24 | 0.2705 (2) | 0.20561 (12) | 0.83165 (11) | 0.0444 (4) | |
H24A | 0.2518 | 0.1435 | 0.8159 | 0.067* | |
H24B | 0.3477 | 0.2077 | 0.8785 | 0.067* | |
H24C | 0.1638 | 0.2328 | 0.8415 | 0.067* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0596 (8) | 0.0332 (6) | 0.0437 (7) | −0.0006 (5) | 0.0152 (6) | 0.0045 (5) |
O2 | 0.0633 (9) | 0.0451 (7) | 0.0486 (7) | 0.0003 (6) | 0.0136 (6) | −0.0066 (6) |
O3 | 0.0871 (11) | 0.0448 (8) | 0.0512 (8) | −0.0013 (7) | 0.0261 (7) | −0.0053 (6) |
O4 | 0.0477 (7) | 0.0327 (6) | 0.0458 (7) | −0.0051 (5) | 0.0141 (5) | 0.0031 (5) |
N1 | 0.0379 (8) | 0.0435 (8) | 0.0362 (7) | 0.0006 (6) | 0.0031 (6) | −0.0048 (6) |
N2 | 0.0558 (10) | 0.0450 (9) | 0.0424 (8) | 0.0017 (7) | 0.0119 (7) | 0.0060 (6) |
N3 | 0.0571 (9) | 0.0351 (8) | 0.0430 (8) | −0.0065 (7) | 0.0125 (7) | 0.0027 (6) |
N4 | 0.0404 (8) | 0.0381 (8) | 0.0402 (7) | 0.0044 (6) | 0.0060 (6) | 0.0037 (6) |
C1 | 0.0378 (9) | 0.0381 (9) | 0.0388 (8) | −0.0010 (7) | 0.0008 (7) | 0.0019 (7) |
C2 | 0.0391 (9) | 0.0436 (10) | 0.0422 (9) | −0.0023 (7) | 0.0028 (7) | −0.0034 (7) |
C3 | 0.0482 (10) | 0.0397 (9) | 0.0516 (10) | 0.0002 (8) | 0.0056 (8) | −0.0033 (8) |
C4 | 0.0404 (9) | 0.0364 (9) | 0.0409 (9) | −0.0018 (7) | 0.0062 (7) | 0.0055 (7) |
C5 | 0.0361 (9) | 0.0390 (9) | 0.0399 (9) | −0.0020 (7) | 0.0016 (7) | 0.0026 (7) |
C6 | 0.0319 (8) | 0.0440 (9) | 0.0371 (8) | −0.0014 (7) | 0.0021 (6) | 0.0030 (7) |
C7 | 0.0449 (10) | 0.0464 (10) | 0.0374 (8) | −0.0006 (8) | 0.0084 (7) | 0.0101 (7) |
C8 | 0.0433 (10) | 0.0393 (9) | 0.0433 (9) | 0.0033 (7) | 0.0100 (7) | 0.0065 (7) |
C9 | 0.0310 (8) | 0.0426 (9) | 0.0352 (8) | −0.0032 (7) | 0.0036 (6) | 0.0041 (7) |
C10 | 0.0547 (11) | 0.0435 (10) | 0.0412 (9) | 0.0031 (8) | 0.0111 (8) | 0.0085 (7) |
C11 | 0.0563 (11) | 0.0381 (9) | 0.0437 (9) | −0.0079 (8) | 0.0140 (8) | 0.0069 (7) |
C12 | 0.0313 (8) | 0.0390 (9) | 0.0353 (8) | −0.0020 (6) | 0.0025 (6) | 0.0041 (6) |
C13 | 0.0553 (11) | 0.0335 (9) | 0.0464 (9) | −0.0007 (8) | 0.0159 (8) | 0.0032 (7) |
C14 | 0.0549 (11) | 0.0367 (9) | 0.0429 (9) | 0.0002 (8) | 0.0158 (8) | 0.0076 (7) |
C15 | 0.0322 (8) | 0.0363 (8) | 0.0364 (8) | −0.0005 (6) | 0.0029 (6) | 0.0043 (6) |
C16 | 0.0364 (8) | 0.0340 (8) | 0.0383 (8) | 0.0008 (7) | 0.0029 (7) | 0.0048 (6) |
C17 | 0.0615 (12) | 0.0349 (9) | 0.0445 (9) | −0.0049 (8) | 0.0138 (8) | 0.0045 (7) |
C18 | 0.0851 (15) | 0.0332 (9) | 0.0532 (11) | −0.0053 (9) | 0.0175 (10) | −0.0028 (8) |
C19 | 0.0563 (11) | 0.0398 (10) | 0.0416 (9) | 0.0041 (8) | 0.0103 (8) | 0.0008 (7) |
C20 | 0.0318 (8) | 0.0328 (8) | 0.0402 (8) | 0.0032 (6) | 0.0023 (6) | 0.0038 (6) |
C21 | 0.0740 (14) | 0.0475 (11) | 0.0449 (10) | −0.0004 (9) | 0.0183 (9) | 0.0089 (8) |
C22 | 0.0585 (12) | 0.0524 (11) | 0.0399 (9) | −0.0001 (9) | 0.0129 (8) | −0.0029 (8) |
C23 | 0.0874 (16) | 0.0519 (12) | 0.0522 (11) | 0.0038 (11) | 0.0292 (11) | 0.0029 (9) |
C24 | 0.0453 (10) | 0.0396 (9) | 0.0500 (10) | −0.0034 (8) | 0.0134 (8) | 0.0097 (7) |
O1—C1 | 1.359 (2) | C9—C12 | 1.480 (2) |
O1—C21 | 1.425 (2) | C10—H10 | 0.9400 |
O2—C2 | 1.349 (2) | C11—C12 | 1.390 (2) |
O2—C22 | 1.442 (2) | C11—H11 | 0.9400 |
O3—C19 | 1.357 (2) | C12—C13 | 1.389 (2) |
O3—C23 | 1.431 (2) | C13—C14 | 1.371 (2) |
O4—C20 | 1.3538 (19) | C13—H13 | 0.9400 |
O4—C24 | 1.4308 (19) | C14—C15 | 1.387 (2) |
N1—C2 | 1.314 (2) | C14—H14 | 0.9400 |
N1—C1 | 1.334 (2) | C15—C16 | 1.478 (2) |
N2—C10 | 1.328 (2) | C16—C17 | 1.395 (2) |
N2—C6 | 1.347 (2) | C16—C20 | 1.405 (2) |
N3—C11 | 1.331 (2) | C17—C18 | 1.364 (3) |
N3—C15 | 1.348 (2) | C17—H17 | 0.9400 |
N4—C19 | 1.311 (2) | C18—C19 | 1.388 (3) |
N4—C20 | 1.330 (2) | C18—H18 | 0.9400 |
C1—C5 | 1.393 (2) | C21—H21A | 0.9700 |
C2—C3 | 1.400 (3) | C21—H21B | 0.9700 |
C3—C4 | 1.365 (2) | C21—H21C | 0.9700 |
C3—H3 | 0.9400 | C22—H22A | 0.9700 |
C4—C5 | 1.394 (2) | C22—H22B | 0.9700 |
C4—H4 | 0.9400 | C22—H22C | 0.9700 |
C5—C6 | 1.485 (2) | C23—H23A | 0.9700 |
C6—C7 | 1.392 (3) | C23—H23B | 0.9700 |
C7—C8 | 1.377 (2) | C23—H23C | 0.9700 |
C7—H7 | 0.9400 | C24—H24A | 0.9700 |
C8—C9 | 1.391 (2) | C24—H24B | 0.9700 |
C8—H8 | 0.9400 | C24—H24C | 0.9700 |
C9—C10 | 1.388 (3) | ||
C1—O1—C21 | 116.78 (14) | C12—C13—H13 | 119.7 |
C2—O2—C22 | 116.31 (14) | C13—C14—C15 | 120.29 (16) |
C19—O3—C23 | 116.79 (15) | C13—C14—H14 | 119.9 |
C20—O4—C24 | 117.33 (13) | C15—C14—H14 | 119.9 |
C2—N1—C1 | 118.58 (15) | N3—C15—C14 | 120.19 (15) |
C10—N2—C6 | 118.06 (15) | N3—C15—C16 | 115.81 (14) |
C11—N3—C15 | 118.40 (15) | C14—C15—C16 | 123.97 (15) |
C19—N4—C20 | 118.35 (15) | C17—C16—C20 | 114.46 (15) |
N1—C1—O1 | 116.91 (15) | C17—C16—C15 | 119.20 (15) |
N1—C1—C5 | 124.26 (16) | C20—C16—C15 | 126.31 (15) |
O1—C1—C5 | 118.82 (15) | C18—C17—C16 | 122.02 (17) |
N1—C2—O2 | 118.82 (16) | C18—C17—H17 | 119.0 |
N1—C2—C3 | 123.33 (16) | C16—C17—H17 | 119.0 |
O2—C2—C3 | 117.84 (16) | C17—C18—C19 | 117.52 (17) |
C4—C3—C2 | 116.12 (16) | C17—C18—H18 | 121.2 |
C4—C3—H3 | 121.9 | C19—C18—H18 | 121.2 |
C2—C3—H3 | 121.9 | N4—C19—O3 | 118.96 (16) |
C3—C4—C5 | 123.24 (16) | N4—C19—C18 | 123.26 (17) |
C3—C4—H4 | 118.4 | O3—C19—C18 | 117.77 (17) |
C5—C4—H4 | 118.4 | N4—C20—O4 | 116.70 (14) |
C1—C5—C4 | 114.45 (15) | N4—C20—C16 | 124.38 (15) |
C1—C5—C6 | 125.27 (16) | O4—C20—C16 | 118.91 (14) |
C4—C5—C6 | 120.26 (15) | O1—C21—H21A | 109.5 |
N2—C6—C7 | 120.26 (16) | O1—C21—H21B | 109.5 |
N2—C6—C5 | 114.61 (15) | H21A—C21—H21B | 109.5 |
C7—C6—C5 | 125.12 (15) | O1—C21—H21C | 109.5 |
C8—C7—C6 | 120.37 (16) | H21A—C21—H21C | 109.5 |
C8—C7—H7 | 119.8 | H21B—C21—H21C | 109.5 |
C6—C7—H7 | 119.8 | O2—C22—H22A | 109.5 |
C7—C8—C9 | 120.13 (16) | O2—C22—H22B | 109.5 |
C7—C8—H8 | 119.9 | H22A—C22—H22B | 109.5 |
C9—C8—H8 | 119.9 | O2—C22—H22C | 109.5 |
C10—C9—C8 | 115.14 (15) | H22A—C22—H22C | 109.5 |
C10—C9—C12 | 121.38 (15) | H22B—C22—H22C | 109.5 |
C8—C9—C12 | 123.48 (15) | O3—C23—H23A | 109.5 |
N2—C10—C9 | 126.02 (16) | O3—C23—H23B | 109.5 |
N2—C10—H10 | 117.0 | H23A—C23—H23B | 109.5 |
C9—C10—H10 | 117.0 | O3—C23—H23C | 109.5 |
N3—C11—C12 | 125.36 (16) | H23A—C23—H23C | 109.5 |
N3—C11—H11 | 117.3 | H23B—C23—H23C | 109.5 |
C12—C11—H11 | 117.3 | O4—C24—H24A | 109.5 |
C13—C12—C11 | 115.14 (15) | O4—C24—H24B | 109.5 |
C13—C12—C9 | 122.22 (15) | H24A—C24—H24B | 109.5 |
C11—C12—C9 | 122.63 (15) | O4—C24—H24C | 109.5 |
C14—C13—C12 | 120.59 (16) | H24A—C24—H24C | 109.5 |
C14—C13—H13 | 119.7 | H24B—C24—H24C | 109.5 |
C2—N1—C1—O1 | 178.19 (15) | N3—C11—C12—C9 | −178.07 (17) |
C2—N1—C1—C5 | −0.8 (2) | C10—C9—C12—C13 | −19.2 (3) |
C21—O1—C1—N1 | −5.8 (2) | C8—C9—C12—C13 | 160.80 (17) |
C21—O1—C1—C5 | 173.33 (16) | C10—C9—C12—C11 | 159.83 (17) |
C1—N1—C2—O2 | 179.34 (15) | C8—C9—C12—C11 | −20.2 (3) |
C1—N1—C2—C3 | −0.4 (3) | C11—C12—C13—C14 | −0.6 (3) |
C22—O2—C2—N1 | −6.0 (2) | C9—C12—C13—C14 | 178.47 (17) |
C22—O2—C2—C3 | 173.76 (16) | C12—C13—C14—C15 | −0.7 (3) |
N1—C2—C3—C4 | 1.0 (3) | C11—N3—C15—C14 | −1.3 (3) |
O2—C2—C3—C4 | −178.75 (15) | C11—N3—C15—C16 | 176.97 (15) |
C2—C3—C4—C5 | −0.4 (3) | C13—C14—C15—N3 | 1.7 (3) |
N1—C1—C5—C4 | 1.3 (2) | C13—C14—C15—C16 | −176.46 (17) |
O1—C1—C5—C4 | −177.71 (15) | N3—C15—C16—C17 | −9.1 (2) |
N1—C1—C5—C6 | 179.71 (15) | C14—C15—C16—C17 | 169.13 (18) |
O1—C1—C5—C6 | 0.7 (2) | N3—C15—C16—C20 | 172.75 (15) |
C3—C4—C5—C1 | −0.6 (2) | C14—C15—C16—C20 | −9.0 (3) |
C3—C4—C5—C6 | −179.12 (16) | C20—C16—C17—C18 | −0.7 (3) |
C10—N2—C6—C7 | −0.3 (3) | C15—C16—C17—C18 | −179.08 (18) |
C10—N2—C6—C5 | 179.94 (16) | C16—C17—C18—C19 | 0.3 (3) |
C1—C5—C6—N2 | −166.43 (16) | C20—N4—C19—O3 | 179.54 (16) |
C4—C5—C6—N2 | 11.9 (2) | C20—N4—C19—C18 | −0.7 (3) |
C1—C5—C6—C7 | 13.8 (3) | C23—O3—C19—N4 | −3.8 (3) |
C4—C5—C6—C7 | −167.89 (17) | C23—O3—C19—C18 | 176.41 (19) |
N2—C6—C7—C8 | 1.1 (3) | C17—C18—C19—N4 | 0.4 (3) |
C5—C6—C7—C8 | −179.12 (16) | C17—C18—C19—O3 | −179.80 (19) |
C6—C7—C8—C9 | −0.8 (3) | C19—N4—C20—O4 | −179.38 (15) |
C7—C8—C9—C10 | −0.3 (2) | C19—N4—C20—C16 | 0.2 (2) |
C7—C8—C9—C12 | 179.71 (16) | C24—O4—C20—N4 | −3.2 (2) |
C6—N2—C10—C9 | −1.0 (3) | C24—O4—C20—C16 | 177.18 (15) |
C8—C9—C10—N2 | 1.2 (3) | C17—C16—C20—N4 | 0.5 (2) |
C12—C9—C10—N2 | −178.79 (17) | C15—C16—C20—N4 | 178.68 (15) |
C15—N3—C11—C12 | 0.0 (3) | C17—C16—C20—O4 | −179.93 (15) |
N3—C11—C12—C13 | 1.0 (3) | C15—C16—C20—O4 | −1.7 (2) |
Cg3 is the centroid of the N3/C11–C15 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C7—H7···O1 | 0.94 | 2.20 | 2.808 (2) | 122 |
C4—H4···N2 | 0.94 | 2.41 | 2.760 (2) | 102 |
C14—H14···O4 | 0.94 | 2.16 | 2.808 (2) | 125 |
C17—H17···N3 | 0.94 | 2.40 | 2.752 (2) | 102 |
C22—H22C···Cg3i | 0.97 | 2.78 | 3.579 (2) | 140 |
Symmetry code: (i) x+1, −y+1/2, z−1/2. |
Funding information
Funding for this research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2016R1D1A1B01012630 and 2018R1D1A3A03000716). This study was also supported by a 2018 Research Grant (PoINT) from Kangwon National University.
References
Adamski, A., Wałęsa-Chorab, M., Kubicki, M., Hnatejko, Z. & Patroniak, V. (2014). Polyhedron, 81, 188–195. CSD CrossRef CAS Google Scholar
Baxter, P., Lehn, J.-M., DeCian, A. & Fischer, J. (1993). Angew. Chem. Int. Ed. Engl. 32, 69–72. CSD CrossRef Google Scholar
Baxter, P. N. W., Lehn, J.-M., Baum, G. & Fenske, D. (1999). Chem. Eur. J. 5, 102–112. CrossRef CAS Google Scholar
Baxter, P. N. W., Lehn, J.-M. & Rissanen, K. (1997). Chem. Commun. pp. 1323–1324. CSD CrossRef Google Scholar
Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Glasson, C. R. K., Clegg, J. K., McMurtrie, J. C., Meehan, G. V., Lindoy, L. F., Motti, C. A., Moubaraki, B., Murray, K. S. & Cashion, J. D. (2011a). Chem. Sci. 2, 540–543. CSD CrossRef CAS Google Scholar
Glasson, C. R. K., Meehan, G. V., Clegg, J. K., Lindoy, L. F., Smith, J. A., Keene, F. R. & Motti, C. (2008a). Chem. Eur. J. 14, 10535–10538. CSD CrossRef PubMed CAS Google Scholar
Glasson, C. R. K., Meehan, G. V., Clegg, J. K., Lindoy, L. F., Turner, P., Duriska, M. B. & Willis, R. (2008b). Chem. Commun. pp. 1190–1192. CSD CrossRef Google Scholar
Glasson, C. R. K., Meehan, G. V., Motti, C. A., Clegg, J. K., Turner, P., Jensen, P. & Lindoy, L. F. (2011b). Dalton Trans. 40, 10481–10490. CSD CrossRef CAS PubMed Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Kaes, C., Katz, A. & Hosseini, M. W. (2000). Chem. Rev. 100, 3553–3590. Web of Science CrossRef PubMed CAS Google Scholar
Lee, C., Zaen, R., Park, K.-M., Lee, K. H., Lee, J. Y. & Kang, Y. (2018). Organometallics, 37, 4639–4647. CSD CrossRef CAS Google Scholar
Luis, E. T., Iranmanesh, H., Arachchige, K. S. A., Donald, W. A., Quach, G., Moore, E. G. & Beves, J. E. (2018). Inorg. Chem. 57, 8476–8486. CSD CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer17.5. University of Western Australia, Perth. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yeung, H.-L., Sham, K.-C., Wong, W.-Y., Wong, C.-Y. & Kwong, H.-L. (2011). Eur. J. Inorg. Chem. pp. 5112–5124. CSD CrossRef Google Scholar
Zaen, R., Kim, M., Park, K.-M., Lee, K. H., Lee, J. Y. & Kang, Y. (2019). Dalton Trans. 48, 9734–9743. CSD CrossRef CAS PubMed Google Scholar
Zhong, Y.-W., Yao, C.-J. & Nie, H.-J. (2013). Coord. Chem. Rev. 257, 1357–1372. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.