research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 2,2′′′,6,6′′′-tetra­meth­­oxy-3,2′:5′,3′′:6′′,3′′′-quaterpyridine

aDepartment of Food and Nutrition, Kyungnam College of Information and Technology, Busan 47011, Republic of Korea, bDivision of Science Education & Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea, and cResearch Institute of Natural Science, Gyeongsang National University, Jinju 52828, Republic of Korea
*Correspondence e-mail: kmpark@gnu.ac.kr, kangy@kangwon.ac.kr

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 2 September 2019; accepted 13 September 2019; online 20 September 2019)

In the title compound, C24H22N4O4, the four pyridine rings are tilted slightly with respect to each other. The dihedral angles between the inner and outer pyridine rings are 12.51 (8) and 9.67 (9)°, while that between inner pyridine rings is 20.10 (7)°. Within the mol­ecule, intra­molecular C—H⋯O and C—H⋯N contacts are observed. In the crystal, adjacent mol­ecules are linked by ππ stacking inter­actions between pyridine rings and weak C—H⋯π inter­actions between a methyl H atom and the centroid of a pyridine ring, forming a two-dimensional layer structure extending parallel to the ac plane. Hirshfeld surface analysis and two-dimensional fingerprint plots indicate that the most important contributions to the crystal packing are from H⋯H (52.9%) and H⋯C/C⋯H (17.3%) contacts.

1. Chemical context

Polypyridines are considered to be strong and versatile chelating ligands for transition-metal ions (Adamski et al., 2014[Adamski, A., Wałęsa-Chorab, M., Kubicki, M., Hnatejko, Z. & Patroniak, V. (2014). Polyhedron, 81, 188-195.]). This chelating nature provides complexes with diverse architectures possessing unique and useful photophysical properties (Zhong et al., 2013[Zhong, Y.-W., Yao, C.-J. & Nie, H.-J. (2013). Coord. Chem. Rev. 257, 1357-1372.]). Many structural studies of bi- and terpyridine-based metal complexes have been undertaken over the last decades (Kaes et al., 2000[Kaes, C., Katz, A. & Hosseini, M. W. (2000). Chem. Rev. 100, 3553-3590.]). When bi- or terpyridines are used as building blocks, sophisticated architectures such as helicates and cages can be obtained by self-assembly (Yeung et al., 2011[Yeung, H.-L., Sham, K.-C., Wong, W.-Y., Wong, C.-Y. & Kwong, H.-L. (2011). Eur. J. Inorg. Chem. pp. 5112-5124.]; Glasson et al., 2008b[Glasson, C. R. K., Meehan, G. V., Clegg, J. K., Lindoy, L. F., Turner, P., Duriska, M. B. & Willis, R. (2008b). Chem. Commun. pp. 1190-1192.]). Although there are number of examples of bi- and terpyridine-based metal complexes with different geometries, structural reports of linear-type quaterpyridines are still scarce (Glasson et al., 2011b[Glasson, C. R. K., Meehan, G. V., Motti, C. A., Clegg, J. K., Turner, P., Jensen, P. & Lindoy, L. F. (2011b). Dalton Trans. 40, 10481-10490.]). Organic compounds bearing 2,3′-bi­pyridine have attracted much inter­est because of their unique properties such as proper coordination modes to late transition-metal ions and high triplet energy. As a result of these characteristics, they are widely used as ligands to develop blue phospho­rescent materials (Zaen et al., 2019[Zaen, R., Kim, M., Park, K.-M., Lee, K. H., Lee, J. Y. & Kang, Y. (2019). Dalton Trans. 48, 9734-9743.]; Lee et al., 2018[Lee, C., Zaen, R., Park, K.-M., Lee, K. H., Lee, J. Y. & Kang, Y. (2018). Organometallics, 37, 4639-4647.]). However, no reports of a 2,3′-bi­pyridine-based quaterpyridine with a linear geometry have been published to date. Herein, we describe the mol­ecular and crystal structures of the title compound, which can act as a potential multidentate ligand to various transition-metal ions. The mol­ecular packing of the title compound was further examined with the aid of a Hirshfeld surface analysis.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound is shown in Fig. 1[link]. Within the mol­ecule, short intra­molecular C—H⋯O and C—H⋯N contacts (Table 1[link]) enclose S(6) and S(5) rings, respectively, and may contribute to the planarity between outer and inner pyridine rings. The dihedral angles between the outer and inner pyridine rings are 12.51 (8)° (between rings N1/C1–C5 and N2/C6-C10) and 9.67 (9)° (between rings N3/C11–C15 and N4/C16–C20). However the two inner pyridine rings (N2/C6–C10 and N3/C11–C15) are slightly tilted by 20.10 (7)° with respect to each other. This may be due to the steric hindrance between atoms H8 and H11 and between H10 and H13.

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the N3/C11–C15 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O1 0.94 2.20 2.808 (2) 122
C4—H4⋯N2 0.94 2.41 2.760 (2) 102
C14—H14⋯O4 0.94 2.16 2.808 (2) 125
C17—H17⋯N3 0.94 2.40 2.752 (2) 102
C22—H22CCg3i 0.97 2.78 3.579 (2) 140
Symmetry code: (i) [x+1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 1]
Figure 1
A view of the mol­ecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. The intra­molecular C—H⋯O/N contacts are shown as yellow dashed lines.

3. Supra­molecular features

In the crystal, adjacent mol­ecules are linked by ππ stacking inter­actions between pyridine rings [Cg1⋯Cg3iii = 3.6600 (10) Å; Cg1⋯Cg4ii = 3.8249 (10) Å; Cg2⋯Cg4iii = 3.9270 (10) Å; Cg1, Cg2, Cg3, and Cg4 are the centroids of the N1/C1–C5, N2/C6–C10, N3/C11–C15, and N4/C16–C20 rings, respectively; symmetry codes: (ii) x + 1, −y + [{1\over 2}], z − [{1\over 2}], (iii) x, −y + [{1\over 2}], z − [{1\over 2}]], resulting in the formation of a two-dimensional layer structure extending parallel to the ac plane, as shown in Fig. 2[link]. The layer is further stabilized by weak C—H⋯π inter­actions (Table 1[link], yellow dashed lines in Fig. 2[link]) between (meth­yl)H22CCg3i [Cg3 is the centroid of the N3/C11–C15 ring; symmetry code as in Table 1[link]]. No inter­actions between the layers are observed.

[Figure 2]
Figure 2
The two-dimensional supra­molecular network formed through ππ stacking inter­actions (black dashed lines) and inter­molecular C—H⋯π inter­actions (yellow dashed lines). For clarity, H atoms not involved in the inter­molecular inter­actions have been omitted.

4. Hirshfeld surface analysis

Hirshfeld surface analysis was performed using CrystalExplorer (Turner et al., 2017[Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer17.5. University of Western Australia, Perth.]) to qu­antify and visualize the various inter­molecular close contacts in the mol­ecular packing of the title compound. The Hirshfeld surface shown in Fig. 3[link] was calculated using a standard (high) surface resolution with the three-dimensional dnorm surface mapped over a fixed colour scale of −0.1883 (red) to 1.2065 (blue) a.u.. In Fig. 3[link], except for three light-red spots, the overall surface mapped over dnorm is covered by white and blue colours, indicating that the distances between the contact atoms in inter­molecular contacts are nearly the same as the sum of their van der Waals radii or longer. The light-red spots on the surface indicate the closest inter­molecular H⋯H and C⋯H contacts [H14⋯H18(−x + 1, y − [{1\over 2}], −z + [{3\over 2}]) = 2.19 Å, C6⋯H24C(x + 1, −y + [{1\over 2}], z − [{1\over 2}]) = 2.78 Å.

[Figure 3]
Figure 3
A view of the Hirshfeld surfaced of the title compound mapped over dnorm showing inter­molecular H⋯H and C⋯H contacts using a fixed colour scale of −0.1883 (red) to 1.2065 (blue) a.u. [Symmetry codes: (i) −x + 1, y − [{1\over 2}], −z + [{3\over 2}]; (ii) −x + 1, y + [{1\over 2}], −z + [{3\over 2}]; (iii) x + 1, −y + [{1\over 2}], z − [{1\over 2}].]

The overall two-dimensional fingerprint plot and those delineated into H⋯H, H⋯C/C⋯H, H⋯O/O⋯H, C⋯C, and C⋯N/N⋯C contacts are shown in Fig. 4[link]af, respectively. The most widely scattered points in the fingerprint plot are related to H⋯H contacts, Fig. 4[link]b, which make a 52.9% contribution to the Hirshfeld surface. The second largest contribution (17.3%) is by H⋯C/C⋯H contacts (Fig. 4[link]c). The H⋯O/O⋯H (9.4%), C⋯C (6.4%), C⋯N/N⋯C (5.4%), H⋯N/N⋯H (5.0%), and C⋯O/O⋯C (2.2%) contacts also make significant contributions to the Hirshfeld surface while the N⋯O/O⋯N (0.7%), O⋯O (0.7%), and N⋯N (0.1%) contacts have a negligible influence on the mol­ecular packing.

[Figure 4]
Figure 4
(a) The full two-dimensional fingerprint plot for the title compound and those delineated into (b) H⋯H, (c) H⋯C/C⋯H, (d) H···O/O⋯H, (e) C⋯C, and (f) C⋯N/N⋯C contacts. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface contacts.

5. Database survey

Although a search of the Cambridge Structural Database (CSD Version 5.40, last update Feb 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for 3,2′:5′,3′′:6′′,3′′′-quaterpyridine, which is the title compound without the meth­oxy substituents, and 4,2′:5′,3′′:6′′,4′′′-quaterpyridine gave no hits, that for 2,2′:5′,3′′:6′′,2′′′-quaterpyridine gave ten hits. One (CIHJUB: Luis et al., 2018[Luis, E. T., Iranmanesh, H., Arachchige, K. S. A., Donald, W. A., Quach, G., Moore, E. G. & Beves, J. E. (2018). Inorg. Chem. 57, 8476-8486.]) is 2,2′:5′,3′′:6′′,2′′′-quaterpyridine and eight are AgI (GIWKAY: Baxter et al., 1999[Baxter, P. N. W., Lehn, J.-M., Baum, G. & Fenske, D. (1999). Chem. Eur. J. 5, 102-112.]), CuI (WAHKOF: Baxter et al., 1993[Baxter, P., Lehn, J.-M., DeCian, A. & Fischer, J. (1993). Angew. Chem. Int. Ed. Engl. 32, 69-72.]), RuII (TOMROD: Glasson et al., 2008a[Glasson, C. R. K., Meehan, G. V., Clegg, J. K., Lindoy, L. F., Smith, J. A., Keene, F. R. & Motti, C. (2008a). Chem. Eur. J. 14, 10535-10538.]), or FeII [(OMAMEV: Glasson et al., 2011a[Glasson, C. R. K., Clegg, J. K., McMurtrie, J. C., Meehan, G. V., Lindoy, L. F., Motti, C. A., Moubaraki, B., Murray, K. S. & Cashion, J. D. (2011a). Chem. Sci. 2, 540-543.]; RIXYON, RIXZAA and RIXYUT: Glasson et al., 2008b[Glasson, C. R. K., Meehan, G. V., Clegg, J. K., Lindoy, L. F., Turner, P., Duriska, M. B. & Willis, R. (2008b). Chem. Commun. pp. 1190-1192.]) complexes involving the 2,2′:5′,3′′:6′′,2′′′-quaterpyridine ligand with methyl substituents. The remaining one (REHVAB: Baxter et al., 1997[Baxter, P. N. W., Lehn, J.-M. & Rissanen, K. (1997). Chem. Commun. pp. 1323-1324.]) is a CuI complex involving the ligand 2,2′:5′,3′′:6′′,2′′′-quaterpyridine with phenyl substituents.

6. Synthesis and crystallization

All experiments were performed under a dry N2 atmosphere using standard Schlenk techniques. All solvents were freshly distilled over appropriate drying reagents prior to use. All starting materials were purchased commercially and used without further purification. The 1H NMR spectrum was recorded on a JEOL 400 MHz spectrometer. The two starting materials, 5-bromo-2′,6′-dimeth­oxy-2,3′-bi­pyridine and 2′,6′-dimeth­oxy-5-(4,4,5,5,-tetra­methyl-1,3,2-dioxaborolan-2-yl)-2,3′-bi­pyridine were synthesized according to a slight modification of the previous synthetic methodology reported by our group (Zaen et al., 2019[Zaen, R., Kim, M., Park, K.-M., Lee, K. H., Lee, J. Y. & Kang, Y. (2019). Dalton Trans. 48, 9734-9743.]). Details of the synthetic procedures and reagents are presented in Fig. 5[link].

[Figure 5]
Figure 5
Synthetic routes and reagents to obtain the title compound: (i) Pd(PPh3)4 (5 mol%), K3PO4 (6 eq), THF/H2O, 373 K, 24 h.

To a 100 ml Schlenk flask were added 5-bromo-2′,6′-dimeth­oxy-2,3′-bi­pyridine (0.46 g, 1.55 mmol), 2′,6′-dimeth­oxy-5-(4,4,5,5,-tetra­methyl-1,3,2-dioxaborolan-2-yl)-2,3′-bi­pyridine (0.64 g, 1.86 mmol), Pd(PPh3)4 (0.09 g, 0.08 mmol), and K3PO4 (2.13 g, 9.28 mmol). The flask was evacuated and back-filled with nitro­gen and THF/H2O (12 ml/9.8 ml) was added under an N2 atmosphere, and the reaction mixture was stirred at 373 K under nitro­gen for 24 h. After cooling to room temperature, the mixture was poured into 100 ml of water and extracted with ethyl acetate (50 ml × 3). The organic layers were combined and then dried with anhydrous MgSO4 and concentrated under reduced pressure. Purification by column chromatography (ethyl­acetate:hexane 1:1, v/v) afford the desired product as a yellow solid (0.33 g, 50%). Pale-yellow crystals were obtained by slow evaporation of a di­chloro­methane/hexane solution of the title compound. 1H NMR (400 MHz, CDCl3) δ 8.91 (dd, J = 2.0 Hz, 2H), 8.32 (d, J = 8.4 Hz, 2H), 8.10 (d, J = 7.6 Hz, 2H), 7.93 (dd, J = 8.4, 2.4 Hz, 2H), 6.47 (d, J = 8.0 Hz, 2H), 6.47 (d, J = 8.0 Hz, 2H), 4.06 (s, 3H), 3.99 (s, 3H); 13C NMR(100 MHz, CDCl3) δ 163.3, 160.2, 153.8, 147.5, 142.2, 134.2, 130.9, 123.9, 113.8, 102.2, 53.8, 53.6. Analysis calculated for C24H22N4O4: C 66.97, H 5.15, N 13.02%; found: C 66.93, H 5.12, N 13.06%.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were positioned geometrically and refined using a riding model: C—H = 0.94–0.97 Å with Uiso(H) = 1.5Ueq(C-meth­yl) and 1.2Ueq(C) for other H atoms.

Table 2
Experimental details

Crystal data
Chemical formula C24H22N4O4
Mr 430.45
Crystal system, space group Monoclinic, P21/c
Temperature (K) 223
a, b, c (Å) 7.9556 (6), 14.8583 (11), 17.3362 (12)
β (°) 95.556 (4)
V3) 2039.6 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.25 × 0.24 × 0.07
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.673, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 19298, 5090, 3739
Rint 0.030
(sin θ/λ)max−1) 0.668
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.160, 1.04
No. of reflections 5090
No. of parameters 289
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.52, −0.24
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

2,2''',6,6'''-Tetramethoxy-3,2':5',3'':6'',3'''-quaterpyridine top
Crystal data top
C24H22N4O4F(000) = 904
Mr = 430.45Dx = 1.402 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.9556 (6) ÅCell parameters from 5328 reflections
b = 14.8583 (11) Åθ = 2.6–27.8°
c = 17.3362 (12) ŵ = 0.10 mm1
β = 95.556 (4)°T = 223 K
V = 2039.6 (3) Å3Plate, yellow
Z = 40.25 × 0.24 × 0.07 mm
Data collection top
Bruker APEXII CCD
diffractometer
3739 reflections with I > 2σ(I)
φ and ω scansRint = 0.030
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
θmax = 28.4°, θmin = 1.8°
Tmin = 0.673, Tmax = 0.746h = 1010
19298 measured reflectionsk = 1719
5090 independent reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.160H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0773P)2 + 0.5757P]
where P = (Fo2 + 2Fc2)/3
5090 reflections(Δ/σ)max < 0.001
289 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.24 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.95531 (17)0.30630 (8)0.18517 (7)0.0449 (3)
O21.11979 (18)0.05085 (9)0.06420 (7)0.0518 (3)
O30.3179 (2)0.49944 (9)0.92984 (8)0.0598 (4)
O40.34148 (15)0.25399 (7)0.77125 (7)0.0414 (3)
N11.03508 (18)0.17731 (10)0.12555 (8)0.0393 (3)
N20.8189 (2)0.15075 (10)0.37266 (9)0.0473 (4)
N30.5594 (2)0.41616 (10)0.60438 (8)0.0446 (4)
N40.33254 (18)0.37725 (10)0.84952 (8)0.0394 (3)
C10.9663 (2)0.21499 (11)0.18490 (9)0.0384 (4)
C21.0519 (2)0.08936 (12)0.12445 (10)0.0417 (4)
C31.0021 (2)0.03287 (13)0.18274 (11)0.0464 (4)
H31.01690.02990.18120.056*
C40.9309 (2)0.07415 (11)0.24195 (10)0.0391 (4)
H40.89530.03820.28190.047*
C50.9084 (2)0.16701 (12)0.24608 (9)0.0385 (4)
C60.8322 (2)0.20736 (12)0.31288 (9)0.0378 (4)
C70.7761 (2)0.29583 (12)0.31670 (10)0.0426 (4)
H70.78400.33470.27440.051*
C80.7093 (2)0.32678 (12)0.38209 (10)0.0416 (4)
H80.67300.38680.38450.050*
C90.6954 (2)0.26934 (11)0.44454 (9)0.0362 (4)
C100.7519 (2)0.18211 (13)0.43460 (10)0.0461 (4)
H100.74200.14150.47550.055*
C110.6163 (2)0.38702 (12)0.53909 (10)0.0454 (4)
H110.65300.43060.50520.055*
C120.6258 (2)0.29739 (11)0.51692 (9)0.0352 (3)
C130.5675 (2)0.23564 (12)0.56830 (10)0.0443 (4)
H130.56920.17390.55670.053*
C140.5075 (2)0.26401 (12)0.63572 (10)0.0441 (4)
H140.46720.22170.66980.053*
C150.5059 (2)0.35488 (11)0.65387 (9)0.0350 (3)
C160.4526 (2)0.39106 (11)0.72707 (9)0.0363 (4)
C170.4828 (3)0.48144 (12)0.74535 (11)0.0464 (4)
H170.53510.51790.71030.056*
C180.4387 (3)0.51856 (13)0.81250 (12)0.0564 (5)
H180.45920.57960.82410.068*
C190.3625 (2)0.46282 (12)0.86309 (10)0.0455 (4)
C200.3758 (2)0.34235 (11)0.78363 (9)0.0350 (4)
C211.0326 (3)0.35294 (14)0.12610 (11)0.0546 (5)
H21A1.01690.41720.13200.082*
H21B1.15240.33930.13040.082*
H21C0.98130.33400.07570.082*
C221.1533 (3)0.10987 (14)0.00148 (10)0.0497 (5)
H22A1.20170.07550.03850.075*
H22B1.04870.13750.02000.075*
H22C1.23210.15630.02080.075*
C230.2306 (3)0.44212 (15)0.97894 (12)0.0624 (6)
H23A0.20540.47531.02460.094*
H23B0.12610.42150.95100.094*
H23C0.30100.39070.99450.094*
C240.2705 (2)0.20561 (12)0.83165 (11)0.0444 (4)
H24A0.25180.14350.81590.067*
H24B0.34770.20770.87850.067*
H24C0.16380.23280.84150.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0596 (8)0.0332 (6)0.0437 (7)0.0006 (5)0.0152 (6)0.0045 (5)
O20.0633 (9)0.0451 (7)0.0486 (7)0.0003 (6)0.0136 (6)0.0066 (6)
O30.0871 (11)0.0448 (8)0.0512 (8)0.0013 (7)0.0261 (7)0.0053 (6)
O40.0477 (7)0.0327 (6)0.0458 (7)0.0051 (5)0.0141 (5)0.0031 (5)
N10.0379 (8)0.0435 (8)0.0362 (7)0.0006 (6)0.0031 (6)0.0048 (6)
N20.0558 (10)0.0450 (9)0.0424 (8)0.0017 (7)0.0119 (7)0.0060 (6)
N30.0571 (9)0.0351 (8)0.0430 (8)0.0065 (7)0.0125 (7)0.0027 (6)
N40.0404 (8)0.0381 (8)0.0402 (7)0.0044 (6)0.0060 (6)0.0037 (6)
C10.0378 (9)0.0381 (9)0.0388 (8)0.0010 (7)0.0008 (7)0.0019 (7)
C20.0391 (9)0.0436 (10)0.0422 (9)0.0023 (7)0.0028 (7)0.0034 (7)
C30.0482 (10)0.0397 (9)0.0516 (10)0.0002 (8)0.0056 (8)0.0033 (8)
C40.0404 (9)0.0364 (9)0.0409 (9)0.0018 (7)0.0062 (7)0.0055 (7)
C50.0361 (9)0.0390 (9)0.0399 (9)0.0020 (7)0.0016 (7)0.0026 (7)
C60.0319 (8)0.0440 (9)0.0371 (8)0.0014 (7)0.0021 (6)0.0030 (7)
C70.0449 (10)0.0464 (10)0.0374 (8)0.0006 (8)0.0084 (7)0.0101 (7)
C80.0433 (10)0.0393 (9)0.0433 (9)0.0033 (7)0.0100 (7)0.0065 (7)
C90.0310 (8)0.0426 (9)0.0352 (8)0.0032 (7)0.0036 (6)0.0041 (7)
C100.0547 (11)0.0435 (10)0.0412 (9)0.0031 (8)0.0111 (8)0.0085 (7)
C110.0563 (11)0.0381 (9)0.0437 (9)0.0079 (8)0.0140 (8)0.0069 (7)
C120.0313 (8)0.0390 (9)0.0353 (8)0.0020 (6)0.0025 (6)0.0041 (6)
C130.0553 (11)0.0335 (9)0.0464 (9)0.0007 (8)0.0159 (8)0.0032 (7)
C140.0549 (11)0.0367 (9)0.0429 (9)0.0002 (8)0.0158 (8)0.0076 (7)
C150.0322 (8)0.0363 (8)0.0364 (8)0.0005 (6)0.0029 (6)0.0043 (6)
C160.0364 (8)0.0340 (8)0.0383 (8)0.0008 (7)0.0029 (7)0.0048 (6)
C170.0615 (12)0.0349 (9)0.0445 (9)0.0049 (8)0.0138 (8)0.0045 (7)
C180.0851 (15)0.0332 (9)0.0532 (11)0.0053 (9)0.0175 (10)0.0028 (8)
C190.0563 (11)0.0398 (10)0.0416 (9)0.0041 (8)0.0103 (8)0.0008 (7)
C200.0318 (8)0.0328 (8)0.0402 (8)0.0032 (6)0.0023 (6)0.0038 (6)
C210.0740 (14)0.0475 (11)0.0449 (10)0.0004 (9)0.0183 (9)0.0089 (8)
C220.0585 (12)0.0524 (11)0.0399 (9)0.0001 (9)0.0129 (8)0.0029 (8)
C230.0874 (16)0.0519 (12)0.0522 (11)0.0038 (11)0.0292 (11)0.0029 (9)
C240.0453 (10)0.0396 (9)0.0500 (10)0.0034 (8)0.0134 (8)0.0097 (7)
Geometric parameters (Å, º) top
O1—C11.359 (2)C9—C121.480 (2)
O1—C211.425 (2)C10—H100.9400
O2—C21.349 (2)C11—C121.390 (2)
O2—C221.442 (2)C11—H110.9400
O3—C191.357 (2)C12—C131.389 (2)
O3—C231.431 (2)C13—C141.371 (2)
O4—C201.3538 (19)C13—H130.9400
O4—C241.4308 (19)C14—C151.387 (2)
N1—C21.314 (2)C14—H140.9400
N1—C11.334 (2)C15—C161.478 (2)
N2—C101.328 (2)C16—C171.395 (2)
N2—C61.347 (2)C16—C201.405 (2)
N3—C111.331 (2)C17—C181.364 (3)
N3—C151.348 (2)C17—H170.9400
N4—C191.311 (2)C18—C191.388 (3)
N4—C201.330 (2)C18—H180.9400
C1—C51.393 (2)C21—H21A0.9700
C2—C31.400 (3)C21—H21B0.9700
C3—C41.365 (2)C21—H21C0.9700
C3—H30.9400C22—H22A0.9700
C4—C51.394 (2)C22—H22B0.9700
C4—H40.9400C22—H22C0.9700
C5—C61.485 (2)C23—H23A0.9700
C6—C71.392 (3)C23—H23B0.9700
C7—C81.377 (2)C23—H23C0.9700
C7—H70.9400C24—H24A0.9700
C8—C91.391 (2)C24—H24B0.9700
C8—H80.9400C24—H24C0.9700
C9—C101.388 (3)
C1—O1—C21116.78 (14)C12—C13—H13119.7
C2—O2—C22116.31 (14)C13—C14—C15120.29 (16)
C19—O3—C23116.79 (15)C13—C14—H14119.9
C20—O4—C24117.33 (13)C15—C14—H14119.9
C2—N1—C1118.58 (15)N3—C15—C14120.19 (15)
C10—N2—C6118.06 (15)N3—C15—C16115.81 (14)
C11—N3—C15118.40 (15)C14—C15—C16123.97 (15)
C19—N4—C20118.35 (15)C17—C16—C20114.46 (15)
N1—C1—O1116.91 (15)C17—C16—C15119.20 (15)
N1—C1—C5124.26 (16)C20—C16—C15126.31 (15)
O1—C1—C5118.82 (15)C18—C17—C16122.02 (17)
N1—C2—O2118.82 (16)C18—C17—H17119.0
N1—C2—C3123.33 (16)C16—C17—H17119.0
O2—C2—C3117.84 (16)C17—C18—C19117.52 (17)
C4—C3—C2116.12 (16)C17—C18—H18121.2
C4—C3—H3121.9C19—C18—H18121.2
C2—C3—H3121.9N4—C19—O3118.96 (16)
C3—C4—C5123.24 (16)N4—C19—C18123.26 (17)
C3—C4—H4118.4O3—C19—C18117.77 (17)
C5—C4—H4118.4N4—C20—O4116.70 (14)
C1—C5—C4114.45 (15)N4—C20—C16124.38 (15)
C1—C5—C6125.27 (16)O4—C20—C16118.91 (14)
C4—C5—C6120.26 (15)O1—C21—H21A109.5
N2—C6—C7120.26 (16)O1—C21—H21B109.5
N2—C6—C5114.61 (15)H21A—C21—H21B109.5
C7—C6—C5125.12 (15)O1—C21—H21C109.5
C8—C7—C6120.37 (16)H21A—C21—H21C109.5
C8—C7—H7119.8H21B—C21—H21C109.5
C6—C7—H7119.8O2—C22—H22A109.5
C7—C8—C9120.13 (16)O2—C22—H22B109.5
C7—C8—H8119.9H22A—C22—H22B109.5
C9—C8—H8119.9O2—C22—H22C109.5
C10—C9—C8115.14 (15)H22A—C22—H22C109.5
C10—C9—C12121.38 (15)H22B—C22—H22C109.5
C8—C9—C12123.48 (15)O3—C23—H23A109.5
N2—C10—C9126.02 (16)O3—C23—H23B109.5
N2—C10—H10117.0H23A—C23—H23B109.5
C9—C10—H10117.0O3—C23—H23C109.5
N3—C11—C12125.36 (16)H23A—C23—H23C109.5
N3—C11—H11117.3H23B—C23—H23C109.5
C12—C11—H11117.3O4—C24—H24A109.5
C13—C12—C11115.14 (15)O4—C24—H24B109.5
C13—C12—C9122.22 (15)H24A—C24—H24B109.5
C11—C12—C9122.63 (15)O4—C24—H24C109.5
C14—C13—C12120.59 (16)H24A—C24—H24C109.5
C14—C13—H13119.7H24B—C24—H24C109.5
C2—N1—C1—O1178.19 (15)N3—C11—C12—C9178.07 (17)
C2—N1—C1—C50.8 (2)C10—C9—C12—C1319.2 (3)
C21—O1—C1—N15.8 (2)C8—C9—C12—C13160.80 (17)
C21—O1—C1—C5173.33 (16)C10—C9—C12—C11159.83 (17)
C1—N1—C2—O2179.34 (15)C8—C9—C12—C1120.2 (3)
C1—N1—C2—C30.4 (3)C11—C12—C13—C140.6 (3)
C22—O2—C2—N16.0 (2)C9—C12—C13—C14178.47 (17)
C22—O2—C2—C3173.76 (16)C12—C13—C14—C150.7 (3)
N1—C2—C3—C41.0 (3)C11—N3—C15—C141.3 (3)
O2—C2—C3—C4178.75 (15)C11—N3—C15—C16176.97 (15)
C2—C3—C4—C50.4 (3)C13—C14—C15—N31.7 (3)
N1—C1—C5—C41.3 (2)C13—C14—C15—C16176.46 (17)
O1—C1—C5—C4177.71 (15)N3—C15—C16—C179.1 (2)
N1—C1—C5—C6179.71 (15)C14—C15—C16—C17169.13 (18)
O1—C1—C5—C60.7 (2)N3—C15—C16—C20172.75 (15)
C3—C4—C5—C10.6 (2)C14—C15—C16—C209.0 (3)
C3—C4—C5—C6179.12 (16)C20—C16—C17—C180.7 (3)
C10—N2—C6—C70.3 (3)C15—C16—C17—C18179.08 (18)
C10—N2—C6—C5179.94 (16)C16—C17—C18—C190.3 (3)
C1—C5—C6—N2166.43 (16)C20—N4—C19—O3179.54 (16)
C4—C5—C6—N211.9 (2)C20—N4—C19—C180.7 (3)
C1—C5—C6—C713.8 (3)C23—O3—C19—N43.8 (3)
C4—C5—C6—C7167.89 (17)C23—O3—C19—C18176.41 (19)
N2—C6—C7—C81.1 (3)C17—C18—C19—N40.4 (3)
C5—C6—C7—C8179.12 (16)C17—C18—C19—O3179.80 (19)
C6—C7—C8—C90.8 (3)C19—N4—C20—O4179.38 (15)
C7—C8—C9—C100.3 (2)C19—N4—C20—C160.2 (2)
C7—C8—C9—C12179.71 (16)C24—O4—C20—N43.2 (2)
C6—N2—C10—C91.0 (3)C24—O4—C20—C16177.18 (15)
C8—C9—C10—N21.2 (3)C17—C16—C20—N40.5 (2)
C12—C9—C10—N2178.79 (17)C15—C16—C20—N4178.68 (15)
C15—N3—C11—C120.0 (3)C17—C16—C20—O4179.93 (15)
N3—C11—C12—C131.0 (3)C15—C16—C20—O41.7 (2)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the N3/C11–C15 ring.
D—H···AD—HH···AD···AD—H···A
C7—H7···O10.942.202.808 (2)122
C4—H4···N20.942.412.760 (2)102
C14—H14···O40.942.162.808 (2)125
C17—H17···N30.942.402.752 (2)102
C22—H22C···Cg3i0.972.783.579 (2)140
Symmetry code: (i) x+1, y+1/2, z1/2.
 

Funding information

Funding for this research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2016R1D1A1B01012630 and 2018R1D1A3A03000716). This study was also supported by a 2018 Research Grant (PoINT) from Kangwon National University.

References

First citationAdamski, A., Wałęsa-Chorab, M., Kubicki, M., Hnatejko, Z. & Patroniak, V. (2014). Polyhedron, 81, 188–195.  CSD CrossRef CAS Google Scholar
First citationBaxter, P., Lehn, J.-M., DeCian, A. & Fischer, J. (1993). Angew. Chem. Int. Ed. Engl. 32, 69–72.  CSD CrossRef Google Scholar
First citationBaxter, P. N. W., Lehn, J.-M., Baum, G. & Fenske, D. (1999). Chem. Eur. J. 5, 102–112.  CrossRef CAS Google Scholar
First citationBaxter, P. N. W., Lehn, J.-M. & Rissanen, K. (1997). Chem. Commun. pp. 1323–1324.  CSD CrossRef Google Scholar
First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGlasson, C. R. K., Clegg, J. K., McMurtrie, J. C., Meehan, G. V., Lindoy, L. F., Motti, C. A., Moubaraki, B., Murray, K. S. & Cashion, J. D. (2011a). Chem. Sci. 2, 540–543.  CSD CrossRef CAS Google Scholar
First citationGlasson, C. R. K., Meehan, G. V., Clegg, J. K., Lindoy, L. F., Smith, J. A., Keene, F. R. & Motti, C. (2008a). Chem. Eur. J. 14, 10535–10538.  CSD CrossRef PubMed CAS Google Scholar
First citationGlasson, C. R. K., Meehan, G. V., Clegg, J. K., Lindoy, L. F., Turner, P., Duriska, M. B. & Willis, R. (2008b). Chem. Commun. pp. 1190–1192.  CSD CrossRef Google Scholar
First citationGlasson, C. R. K., Meehan, G. V., Motti, C. A., Clegg, J. K., Turner, P., Jensen, P. & Lindoy, L. F. (2011b). Dalton Trans. 40, 10481–10490.  CSD CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKaes, C., Katz, A. & Hosseini, M. W. (2000). Chem. Rev. 100, 3553–3590.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLee, C., Zaen, R., Park, K.-M., Lee, K. H., Lee, J. Y. & Kang, Y. (2018). Organometallics, 37, 4639–4647.  CSD CrossRef CAS Google Scholar
First citationLuis, E. T., Iranmanesh, H., Arachchige, K. S. A., Donald, W. A., Quach, G., Moore, E. G. & Beves, J. E. (2018). Inorg. Chem. 57, 8476–8486.  CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer17.5. University of Western Australia, Perth.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYeung, H.-L., Sham, K.-C., Wong, W.-Y., Wong, C.-Y. & Kwong, H.-L. (2011). Eur. J. Inorg. Chem. pp. 5112–5124.  CSD CrossRef Google Scholar
First citationZaen, R., Kim, M., Park, K.-M., Lee, K. H., Lee, J. Y. & Kang, Y. (2019). Dalton Trans. 48, 9734–9743.  CSD CrossRef CAS PubMed Google Scholar
First citationZhong, Y.-W., Yao, C.-J. & Nie, H.-J. (2013). Coord. Chem. Rev. 257, 1357–1372.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds