research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of poly[[di­aqua­tetra-μ2-cyanido-iron(II)platinum(II)] acetone disolvate]

aDepartment of General and Inorganic Chemistry, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Prosp. Peremogy 37, Kyiv 03056, Ukraine, bDepartment of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska St. 64, Kyiv 01601, Ukraine, cDepartment of Inorganic Polymers, "Petru Poni" Institute of Macromolecular Chemistry, Romanian Academy of Science, Aleea Grigore Ghica Voda 41-A, Iasi 700487, Romania, and dUkrOrgSyntez Ltd, Chervonotkatska St., 67, Kyiv 02094, Ukraine
*Correspondence e-mail: iryna.kuzevanova@univ.kiev.ua

Edited by B. Therrien, University of Neuchâtel, Switzerland (Received 28 August 2019; accepted 18 September 2019; online 27 September 2019)

In the title polymeric complex, {[FePt(CN)4(H2O)2]·2C3H6O}n, the FeII cation has an octa­hedral [FeN4O2] geometry being coordinated by two water mol­ecules and four cyanide anions. The Pt cation is located on an inversion centre and has a square-planar coordination environment formed by four cyanide groups. The tetra­cyano­platinate anions bridge the FeII cations to form infinite two-dimensional layers that propagate in the bc plane. Two guest mol­ecules of acetone per FeII are located between the layers. These guest acetone mol­ecules inter­act with the coordinated water mol­ecules by O—H⋯O hydrogen bonds.

1. Chemical context

Hofmann clathrates and their analogues form one the most famous families of compounds that are able to incorporate guest mol­ecules. The first clathrate was obtained by Hofmann and Küspert in 1897 (Hofmann & Küspert, 1897[Hofmann, K. A. & Küspert, F. (1897). Z. Anorg. Chem. 15, 204-207.]) and was of composition [Ni(NH3)2Ni(CN)4]·2C6H6. It was a 2D coord­in­ation compound formed by infinite cyano­metallic layers that propagate along the ab plane. The 2D system was supported by ammine axial ligands, and guest mol­ecules of benzene were trapped between the layers.

Later, by slight modifications of the chemical composition, several analogous compounds were obtained, leading to the creation of a new class of coordination materials. The first modification was the substitution of nickel with other transition metals, as well as the introduction of other small aromatic guest mol­ecules that resulted in the creation of compounds with the general formula [M(NH3)2M′(CN)4]·2G (where M = Mn, Fe, Co, Ni, Cu, Zn, Cd, M′ = Ni, Pd, Pt and G = benzene, pyrrole, thio­phene, aniline, biphenyl, etc.; Iwamoto, 1996[Iwamoto, T. (1996). J. Incl Phenom. Macrocycl Chem. 24, 61-132.]). The second modification of the Hofmann clathrate was the substitution of square-planar {M′(CN)4}2− anions with tetra­hedral ({M′(CN)4}2−, M′ = Cd, Hg; Arcís-Castillo et al., 2013[Arcís-Castillo, Z., Muñoz, M. C., Molnár, G., Bousseksou, A. & Real, J. A. (2013). Chem. Eur. J. 19, 6851-6861.]), linear ({M′(CN)2}, M′ = Cu, Ag, Au; Gural'skiy, Golub et al., 2016[Gural'skiy, I. A., Golub, B. O., Shylin, S. I., Ksenofontov, V., Shepherd, H. J., Raithby, P. R., Tremel, W. & Fritsky, I. O. (2016). Eur. J. Inorg. Chem. 2016, 3191-3195.]; Gural'skiy, Shylin et al., 2016[Gural'skiy, I. A., Shylin, S. I., Golub, B. O., Ksenofontov, V., Fritsky, I. O. & Tremel, W. (2016). New J. Chem. 40, 9012-9016.]), octa­hedral ({M′(CN)6}3−, M′ = Co, Cr; Dommann et al., 1990[Dommann, A., Vetsch, H. & Hulliger, F. (1990). Acta Cryst. C46, 1994-1996.]) and even dodeca­hedral ({M′(CN)8}4−, M′ = W, Nb; Ohkoshi et al., 2013[Ohkoshi, S., Takano, S., Imoto, K., Yoshikiyo, M., Namai, A. & Tokoro, H. (2013). Nat. Photonics. 8, 65-71.]) fragments. Additionally, a very important modification was made by the introduction of other organic ligands instead of ammonia. For example, by the introduction of pyridine, the first FeII-based clathrate [Fe(py)2{Pt(CN)4}] exhibiting spin-crossover (SCO) behaviour was obtained by Kitazawa et al. (1996[Kitazawa, T., Gomi, Y., Takahashi, M., Takeda, M., Enomoto, M., Miyazaki, A. & Enoki, T. (1996). J. Mater. Chem. 6, 119-121.]). At the same time, the introduction of various bidentate ligands such as pyrazine (Niel et al., 2001[Niel, V., Martinez-Agudo, J. M., Muñoz, M. C., Gaspar, A. B. & Real, J. A. (2001). Inorg. Chem. 40, 3838-3839.]; Gural'skiy, Shylin et al., 2016[Gural'skiy, I. A., Shylin, S. I., Golub, B. O., Ksenofontov, V., Fritsky, I. O. & Tremel, W. (2016). New J. Chem. 40, 9012-9016.]), pyrimidine (Agustí et al., 2008[Agustí, G., Thompson, A. L., Gaspar, A. B., Muñoz, M. C., Goeta, A. E., Rodríguez-Velamazán, J. A., Castro, M., Burriel, R. & Real, J. A. (2008). Dalton Trans. pp. 642-649.]), bis­(4-pyrid­yl)acetyl­ene (Agustí et al., 2008[Agustí, G., Thompson, A. L., Gaspar, A. B., Muñoz, M. C., Goeta, A. E., Rodríguez-Velamazán, J. A., Castro, M., Burriel, R. & Real, J. A. (2008). Dalton Trans. pp. 642-649.]) and others allowed the formation of 3D SCO networks.

Additionally, the characteristics of spin transition in coordination compounds are known to be extremely sensitive to any changes in the chemical environment. As Hofmann clathrate analogues are very easy to modulate, numerous SCO complexes with very different temperatures, abruptnesses and hystereses of SCO were obtained. Moreover, the ability of Hofmann clathrate analogues to incorporate guest mol­ecules provided SCO-based chemical sensors (Ohba et al., 2009[Ohba, M., Yoneda, K., Agustí, G., Muñoz, M. C., Gaspar, A. B., Real, J. A., Yamasaki, M., Ando, H., Nakao, Y., Sakaki, S. & Kitagawa, S. (2009). Angew. Chem. Int. Ed. 48, 4767-4771.]).

[Scheme 1]

Herein we present a new Fe–Pt Hofmann clathrate analogue [Fe(H2O)2{Pt(CN)4}]·2(CH3)2CO.

2. Structural commentary

The title compound crystallizes in the P4/mmm space group. The FeII cation has a [FeN4O2] coordination environment (Fig. 1[link]) comprising four CN anions in the equatorial positions [Fe1—N1 = 2.158 (5) Å] and two water mol­ecules in the axial positions [Fe1—O1 = 2.130 (6) Å]. The Fe—O bonds are slightly shorter than the Fe–N bonds, thus leading to a compressed octa­hedral geometry. Judging by the bond length, the FeII cation is in a high-spin state at the experimental temperature (180 K). This is corroborated by the presence of H2O mol­ecules in the coordination sphere of FeII. The cyanide anions connect the FeII and PtII cations into infinite two-dimensional layers. The PtII cation is located at a fourfold rotation axis and possesses a square-planar geometry [Pt1—C1 = 1.993 (6) Å, C1—Pt–C1 = 90°]. Thanks to the tetra­gonal symmetry of the crystalline compound, no deviation from an ideal octa­hedron is observed for FeII, Σ|90 – θ| = 0°, where θ is the N—Fe—N or O—Fe—N angles. Additionally, the compound incorporates two guest mol­ecules of acetone per FeII centers.

[Figure 1]
Figure 1
A fragment of the mol­ecular structure of the title compound showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level [symmetry codes: (i) x, −y, 1 − z; (ii) −x, −y, z; (iii) x, −y, z; (iv) −x, y, z; (v) −1 + x, −y, z; (vi) −1 + x, −y, −z; (vii) 1 − x, y, 1 + z; (viii) 1 − x, y, 1 − z].

3. Supra­molecular features

The crystalline structure is connected by bridging tetra­cyano­platinate moieties, which form a two-dimensional grid that propagates along the ab plane (Fig. 2[link]). As imposed by symmetry, no deviation from linearity for the Fe—N—C—Pt linkages is observed [Fe—N—C = 180°, N—C—Pt = 180°, C—Pt—C = 180°]. The distance between parallel cyano­metallic layers is 7.973 (6) Å. The guest acetone mol­ecules are located between the cyano­metallic layers. Each oxygen atom of the coordinated water mol­ecules inter­acts with acetone by O—H⋯O hydrogen bonds (Fig. 3[link], Table 1[link]), creating a three-dimensional supramolecular framewor. The size of the available voids between the cyano­metallic layers allows the acetone mol­ecules to rotate freely, thus leading to disorder of the acetone mol­ecules over four positions.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O2i 0.84 2.03 2.775 (11) 147
O1—H1A⋯O2ii 0.84 2.03 2.775 (11) 148
O1—H1B⋯O2iii 0.85 2.04 2.775 (11) 144
O1—H1B⋯O2iv 0.85 2.14 2.775 (11) 131
Symmetry codes: (i) -x+1, -y, z; (ii) -x+1, y, -z; (iii) -y, -x+1, -z; (iv) y, -x+1, z.
[Figure 2]
Figure 2
View of the crystal structure of the title compound in the bc plane showing the two-dimensional cyano­metallic layers. Hydrogen bonds are shown as dashed lines. Acetone H atoms are omitted for clarity.
[Figure 3]
Figure 3
View of the structure of the title compound in the ab plane showing the distortion of the acetone guest mol­ecules. Hydrogen bonds are shown as dashed lines. Acetone H atoms are omitted for clarity.

4. Database survey

A survey of the Cambridge Structural Database (Version 5.38; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) confirmed that the title compound has never been published before. It revealed 51 cyano­metallic structures of the general formula [TM(H2O)2{TM(CN)4}], where TM = any transition metal. There were also 19 hits for structures containing [Fe{Pt(CN)4}] fragments: refcodes: OVILEM, OVIRUI, OVIRUI01, OVIRUI02 and OVIRUI03 (Sciortino et al., 2017[Sciortino, N. F., Zenere, K. A., Corrigan, M. E., Halder, G. J., Chastanet, G., Létard, J.-F., Kepert, C. J. & Neville, S. M. (2017). Chem. Sci. 8, 701-707.]), AMIJOX (Kucheriv et al., 2016[Kucheriv, O. I., Shylin, S. I., Ksenofontov, V., Dechert, S., Haukka, M., Fritsky, I. O. & Gural'skiy, I. A. (2016). Inorg. Chem. 55, 4906-4914.]), BEDWEO and BEDWIS (Sciortino et al., 2012[Sciortino, N. F., Scherl-Gruenwald, K. R., Chastanet, G., Halder, G. J., Chapman, K. W., Létard, J.-F. & Kepert, C. J. (2012). Angew. Chem. Int. Ed. 51, 10154-10158.]), CEMYUQ (Mũnoz-Lara et al., 2013[Muñoz-Lara, F. J., Gaspar, A. B., Muñoz, M. C., Ksenofontov, V. & Real, J. A. (2013). Inorg. Chem. 52, 3-5.]), MUHMEI, MUHNAF, MUHNAF01, MUHNAF02, MUHPAH and MUHPAH01 (Martínez et al., 2009[Martínez, V., Gaspar, A. B., Muñoz, M. C., Bukin, G. V., Levchenko, G. & Real, J. A. (2009). Chem. Eur. J. 15, 10960-10971.]), QADDUX (Sakaida et al., 2016[Sakaida, S., Otsubo, K., Sakata, O., Song, C., Fujiwara, A., Takata, M. & Kitagawa, H. (2016). Nat. Chem. 8, 377-383.]), QOJWIW and QOJWIW01 (Cobo et al., 2008[Cobo, S., Ostrovskii, D., Bonhommeau, S., Vendier, L., Molnár, G., Salmon, L., Tanaka, K. & Bousseksou, A. (2008). J. Am. Chem. Soc. 130, 9019-9024.]) and TURXIP (Ohtani et al., 2013[Ohtani, R., Arai, M., Ohba, H., Hori, A., Takata, M., Kitagawa, S. & Ohba, M. (2013). Eur. J. Inorg. Chem. 2013, 738-744.]).

5. Synthesis and crystallization

Crystals of the title compound were obtained by slow diffusion (three layers) in a 3 ml tube. The first layer contained 19 mg (0.05 mmol) of K2[Pt(CN)4] in 0.5 ml of water. The middle layer contained 1.5 ml of a water:acetone (1:1) solution. The third layer contained 25 mg (0.05 mmol) of Fe(OTs)2·6H2O in 0.4 ml of acetone and 0.1 ml of water. The colourless crystals grew in the middle layer within three weeks and were kept in the mother solution prior to measurements.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All hydrogen atoms were fixed at calculated positions and refined as riding with C—H = 0.96 Å and O–H = 0.84 Å, Uiso(H) = 1.5Uiso(C,O). The OH group and the idealized methyl group were refined as rotating.

Table 2
Experimental details

Crystal data
Chemical formula [FePt(CN)4(H2O)2]·2C3H6O
Mr 507.21
Crystal system, space group Tetragonal, P4/mmm
Temperature (K) 180
a, c (Å) 7.4802 (4), 7.9725 (11)
V3) 446.09 (8)
Z 1
Radiation type Mo Kα
μ (mm−1) 8.66
Crystal size (mm) 0.05 × 0.05 × 0.02
 
Data collection
Diffractometer Rigaku Oxford Diffraction Xcalibur, Eos
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.699, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 1126, 361, 359
Rint 0.037
(sin θ/λ)max−1) 0.682
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.046, 1.04
No. of reflections 361
No. of parameters 34
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.25, −1.06
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: ShelXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Poly[[diaquatetra-µ2-cyanido-iron(II)platinum(II)] acetone disolvate] top
Crystal data top
[FePt(CN)4(H2O)2]·2C3H6ODx = 1.888 Mg m3
Mr = 507.21Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P4/mmmCell parameters from 664 reflections
a = 7.4802 (4) Åθ = 2.5–28.5°
c = 7.9725 (11) ŵ = 8.66 mm1
V = 446.09 (8) Å3T = 180 K
Z = 1Plate, clear colourless
F(000) = 2400.05 × 0.05 × 0.02 mm
Data collection top
Rigaku Oxford Diffraction Xcalibur, Eos
diffractometer
361 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source359 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
Detector resolution: 8.0797 pixels mm-1θmax = 29.0°, θmin = 2.6°
ω scansh = 510
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2015)
k = 105
Tmin = 0.699, Tmax = 1.000l = 105
1126 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.025H-atom parameters constrained
wR(F2) = 0.046 w = 1/[σ2(Fo2) + (0.0197P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
361 reflectionsΔρmax = 1.25 e Å3
34 parametersΔρmin = 1.06 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pt10.5000000.5000000.5000000.01400 (17)
Fe10.0000000.0000000.5000000.0104 (4)
O10.0000000.0000000.2329 (8)0.0276 (16)
H1A0.1053090.0004320.1968190.041*0.25
H1B0.0434250.0982160.1968390.041*0.125
C10.3116 (6)0.3116 (6)0.5000000.0186 (15)
N10.2040 (5)0.2040 (5)0.5000000.0210 (13)
C30.475 (9)0.036 (8)0.1546 (18)0.08 (2)0.25
H3A0.4733480.1628440.1754070.114*0.25
H3B0.5310960.0237090.2467700.114*0.25
H3C0.3540040.0059240.1429490.114*0.25
O20.7276 (18)0.043 (3)0.0000000.055 (5)0.25
C20.574 (2)0.0000000.0000000.055 (5)0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.00585 (17)0.00585 (17)0.0303 (3)0.0000.0000.000
Fe10.0068 (5)0.0068 (5)0.0177 (10)0.0000.0000.000
O10.030 (2)0.030 (2)0.023 (4)0.0000.0000.000
C10.0092 (18)0.0092 (18)0.037 (4)0.003 (2)0.0000.000
N10.0121 (16)0.0121 (16)0.039 (4)0.005 (2)0.0000.000
C30.04 (4)0.13 (5)0.056 (9)0.03 (2)0.013 (14)0.05 (2)
O20.019 (4)0.109 (15)0.036 (6)0.005 (10)0.0000.000
C20.019 (4)0.109 (15)0.036 (6)0.005 (10)0.0000.000
Geometric parameters (Å, º) top
Pt1—C1i1.993 (6)Fe1—N1v2.158 (5)
Pt1—C11.993 (6)Fe1—N1vi2.158 (5)
Pt1—C1ii1.993 (6)Fe1—N12.158 (5)
Pt1—C1iii1.993 (6)C1—N11.138 (8)
Fe1—O1iv2.130 (6)C3—C21.46 (4)
Fe1—O12.130 (6)O2—O2vii0.64 (5)
Fe1—N1iv2.158 (5)O2—C21.19 (2)
C1i—Pt1—C1ii90.0O1iv—Fe1—N1vi90.0
C1ii—Pt1—C190.0N1iv—Fe1—N1vi90.0
C1i—Pt1—C1180.0N1—Fe1—N1vi90.0
C1i—Pt1—C1iii90.0N1iv—Fe1—N1v90.0
C1iii—Pt1—C190.0N1—Fe1—N1iv180.0
C1ii—Pt1—C1iii180.0N1—Fe1—N1v90.0
O1—Fe1—O1iv180.0N1vi—Fe1—N1v180.0
O1—Fe1—N190.0N1—C1—Pt1180.0
O1—Fe1—N1vi90.0C1—N1—Fe1180.0
O1iv—Fe1—N1v90.0O2vii—O2—C274.4 (12)
O1iv—Fe1—N190.0O2vii—C2—C3123 (2)
O1—Fe1—N1v90.0O2—C2—C3116 (2)
O1—Fe1—N1iv90.0O2—C2—O2vii31 (2)
O1iv—Fe1—N1iv90.0
Symmetry codes: (i) x+1, y+1, z+1; (ii) y, x+1, z+1; (iii) y+1, x, z; (iv) x, y, z+1; (v) y, x, z; (vi) y, x, z+1; (vii) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O2viii0.842.032.775 (11)147
O1—H1A···O2ix0.842.032.775 (11)148
O1—H1B···O2x0.852.042.775 (11)144
O1—H1B···O2xi0.852.142.775 (11)131
Symmetry codes: (viii) x+1, y, z; (ix) x+1, y, z; (x) y, x+1, z; (xi) y, x+1, z.
 

Funding information

Funding for this research was provided by: Ministry of Education and Science of Ukraine (grant No. 19BF037-01M; grant No. 19BF037-01).

References

First citationAgustí, G., Thompson, A. L., Gaspar, A. B., Muñoz, M. C., Goeta, A. E., Rodríguez-Velamazán, J. A., Castro, M., Burriel, R. & Real, J. A. (2008). Dalton Trans. pp. 642–649.  Google Scholar
First citationArcís-Castillo, Z., Muñoz, M. C., Molnár, G., Bousseksou, A. & Real, J. A. (2013). Chem. Eur. J. 19, 6851–6861.  Web of Science PubMed Google Scholar
First citationCobo, S., Ostrovskii, D., Bonhommeau, S., Vendier, L., Molnár, G., Salmon, L., Tanaka, K. & Bousseksou, A. (2008). J. Am. Chem. Soc. 130, 9019–9024.  CSD CrossRef PubMed CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDommann, A., Vetsch, H. & Hulliger, F. (1990). Acta Cryst. C46, 1994–1996.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGural'skiy, I. A., Golub, B. O., Shylin, S. I., Ksenofontov, V., Shepherd, H. J., Raithby, P. R., Tremel, W. & Fritsky, I. O. (2016). Eur. J. Inorg. Chem. 2016, 3191–3195.  CAS Google Scholar
First citationGural'skiy, I. A., Shylin, S. I., Golub, B. O., Ksenofontov, V., Fritsky, I. O. & Tremel, W. (2016). New J. Chem. 40, 9012–9016.  CAS Google Scholar
First citationHofmann, K. A. & Küspert, F. (1897). Z. Anorg. Chem. 15, 204–207.  CrossRef CAS Google Scholar
First citationIwamoto, T. (1996). J. Incl Phenom. Macrocycl Chem. 24, 61–132.  CrossRef CAS Web of Science Google Scholar
First citationKitazawa, T., Gomi, Y., Takahashi, M., Takeda, M., Enomoto, M., Miyazaki, A. & Enoki, T. (1996). J. Mater. Chem. 6, 119–121.  CSD CrossRef CAS Web of Science Google Scholar
First citationKucheriv, O. I., Shylin, S. I., Ksenofontov, V., Dechert, S., Haukka, M., Fritsky, I. O. & Gural'skiy, I. A. (2016). Inorg. Chem. 55, 4906–4914.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMartínez, V., Gaspar, A. B., Muñoz, M. C., Bukin, G. V., Levchenko, G. & Real, J. A. (2009). Chem. Eur. J. 15, 10960–10971.  PubMed Google Scholar
First citationMuñoz-Lara, F. J., Gaspar, A. B., Muñoz, M. C., Ksenofontov, V. & Real, J. A. (2013). Inorg. Chem. 52, 3–5.  PubMed Google Scholar
First citationNiel, V., Martinez-Agudo, J. M., Muñoz, M. C., Gaspar, A. B. & Real, J. A. (2001). Inorg. Chem. 40, 3838–3839.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationOhba, M., Yoneda, K., Agustí, G., Muñoz, M. C., Gaspar, A. B., Real, J. A., Yamasaki, M., Ando, H., Nakao, Y., Sakaki, S. & Kitagawa, S. (2009). Angew. Chem. Int. Ed. 48, 4767–4771.  CSD CrossRef CAS Google Scholar
First citationOhkoshi, S., Takano, S., Imoto, K., Yoshikiyo, M., Namai, A. & Tokoro, H. (2013). Nat. Photonics. 8, 65–71.  CSD CrossRef Google Scholar
First citationOhtani, R., Arai, M., Ohba, H., Hori, A., Takata, M., Kitagawa, S. & Ohba, M. (2013). Eur. J. Inorg. Chem. 2013, 738–744.  CSD CrossRef CAS Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSakaida, S., Otsubo, K., Sakata, O., Song, C., Fujiwara, A., Takata, M. & Kitagawa, H. (2016). Nat. Chem. 8, 377–383.  CSD CrossRef CAS PubMed Google Scholar
First citationSciortino, N. F., Scherl-Gruenwald, K. R., Chastanet, G., Halder, G. J., Chapman, K. W., Létard, J.-F. & Kepert, C. J. (2012). Angew. Chem. Int. Ed. 51, 10154–10158.  CSD CrossRef CAS Google Scholar
First citationSciortino, N. F., Zenere, K. A., Corrigan, M. E., Halder, G. J., Chastanet, G., Létard, J.-F., Kepert, C. J. & Neville, S. M. (2017). Chem. Sci. 8, 701–707.  CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds