research communications
The structure and Hirshfeld surface analysis of the salt 3-methacrylamido-N,N,N-trimethylpropan-1-aminium 2-acrylamido-2-methylpropane-1-sulfonate
aDepartment of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand
*Correspondence e-mail: jsimpson@alkali.otago.ac.nz
The title salt, C10H21N2O+·C7H12NO4S−, comprises a 3-methacrylamido-N,N,N-trimethylpropan-1-aminium cation and a 2-acrylamido-2-methylpropane-1-sulfonate anion. The salt crystallizes with two unique cation–anion pairs in the of the orthorhombic The crystal studied was an with a 0.52 (4):0.48 (4) domain ratio. In the crystal, the cations and anions stack along the b-axis direction and are linked by an extensive series of N—H⋯O and C—H⋯O hydrogen bonds, forming a three-dimensional network. Hirshfeld surface analysis was carried out on both the and the two individual salts. The contribution of interatomic contacts to the surfaces of the individual cations and anions are also compared.
Keywords: crystal structure; 3-methacrylamido-N,N,N-trimethylpropan-1-aminium; 2-acrylamido-2-methylpropane-1-sulfonate; hydrogen bonding; Hirshfeld surface analysis.
CCDC reference: 1950279
1. Chemical context
We are currently interested in tough hydrogels with a built-in capacity for self-healing, as a means of improving their performance in practical applications (Goswami et al., 2017; Pushparajan et al., 2018). One approach involves the polymerization of ion-pair comonomers (IPC) typically based on sulfonate anions and quaternary ammonium cations (McAdam et al., 2019). The covalent cross-linking of mixed cationic and anionic monomers generates polyampholytes (Zurick & Bernards, 2014) with additional toughness and self-healing ability due to electrostatic interactions between the oppositely charged functional groups present (Ihsan et al., 2016; Haag & Bernards, 2017). The title IPC salt was first reported in 1978 at the emergence of this field (Salamone et al., 1978). The original synthesis utilized (Salamone et al., 1980) but this preparative methodology has been superseded by the argentometric mixing approach (Li et al., 2010).
2. Structural commentary
The title compound (1) is a salt consisting of a 3-methacrylamido-N,N,N-trimethylpropan-1-aminium cation and a 2-acrylamido-2-methylpropane-1-sulfonate anion. The contains two unique pairs of cations and anions and the individual cation/anion pairs are shown in Figs. 1 and 2. In the numbering scheme the two salts are distinguished by leading 1 and 2 characters. A feature of both cation/anion pairs is the substantial number of intermolecular contacts, N—H⋯O, C—H⋯O and weaker C—H⋯N hydrogen bonds, Table 1, linking the cations to the anions, with the O12 and O22 atoms acting as bifurcated acceptors enclosing R21(6) ring motifs in each case.
In the . The unique cation and anions pairs in (1) are reasonably similar to one another. Examination of selected bond distances, Table 2, confirms this similarity. Furthermore, the individual cations and anions overlay with r.m.s. deviations of only 0.0561 Å for the two cations and 0.0228 Å for the anions (Macrae et al., 2008). For the cations the most significant variations occur around the amide unit and for one of the methyl groups of the trimethylamine substituent, Fig. 4. The anions are even more closely comparable with only small variations around the amide N atoms and the vinyl groups, Fig. 5.
the cations and anions are interconnected by further N—H⋯O, C—H⋯O and C—H⋯N hydrogen bonds with O12 and O22 acting as trifurcated and bifurcated acceptors, respectively, Fig. 3
|
While the cations both adopt stretched arrangements, aided by the central propyl units, the anions are U-shaped with the acrylamide and sulfonate residues on opposite vertices of the U. The relative conformations of the C=O and vinyl double bonds within the C115 and C215 acrylamide substituents of the anions are s-cis, as found in similar compounds (Goswami et al., 2017). The two methacrylamide residues of the cations are similarly arranged.
3. Supramolecular features
In the crystal, a series of N—H⋯O and C—H⋯O hydrogen bonds, Table 1, form double chains of cations and anions along the a axis with adjacent double chains forming sheets in the ac plane, Fig. 6. These sheets are stacked along the b-axis direction by additional C—H⋯O hydrogen bonds, Fig. 7.
4. Hirshfeld Analysis
Further details of the intermolecular architecture of this salt are available using Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) with surfaces and two-dimensional fingerprint plots generated by CrystalExplorer (Turner et al., 2017). Hirshfeld surfaces of the of the structure which comprises salts 1 and 2, viewed for opposite faces are shown in Fig. 8(a) and 8(b). The red circles on the Hirshfeld surfaces correspond to the N—H⋯O and some of the numerous C—H⋯O contacts that play a significant role in stabilizing the packing in this structure. Fingerprint plots of the contacts on the Hirshfeld surface of the of (1) are shown in Fig. 9. These comprise H⋯H, H⋯C/C⋯H, and H⋯O/O⋯H and the much weaker and less significant H⋯N/N⋯H contributions. All contacts are detailed in Table 3.
|
The surfaces of the two discrete salt components of the structure can also be examined individually. Fig. 10(a) and 10(b) for salt 1 and Fig. 11(a) and 11(b) for salt 2 show the Hirshfeld surfaces of the individual salts 1 and 2, for opposite faces in each case. An immediate observation, strongly supported by the surface area data found in the fingerprint plots, vide infra, is that the surface contacts in the two discrete salts are reasonably similar to one another. Such similarities are also signalled by the closely comparable metrical data for the two salts and the results of the overlay experiments on the pairs of cations and anions discussed earlier.
It is also instructive to investigate the differences in contacts for the discrete cation and anion components of both salts by recording fingerprint plots for the two salts together with those of the discrete cations and anions. All of the surface contributions for the individual salts and their component cations and anions are shown in Table 4, with fingerprint plots for these contacts displayed in Fig. 12 for salt 1 and Fig. 13 for salt 2. The fingerprint plots for the two salts are closely analogous as indeed are the percentage contribution figures in Table 4, further highlighting their similarities. The most notable differences between the values for the salt and its components are that the H⋯H van der Waals interactions are significantly greater for the cations in comparison to the anions, while the anion shows considerable increases in the H⋯O/O⋯H contacts reflecting the prominent role of the sulfonate O atoms in hydrogen bond formation. The H⋯N/N⋯H contributions to all of the surfaces are very weak but are included for completeness.
|
5. Database survey
The Cambridge Structural Database (version 5.40 Nov 2018 with update of May 2019; Groom et al. 2016) contains structures of 66 acrylamide and 41 methacrylamide derivatives including acrylamide itself (ARCLAM01; Zhou et al. 2007) and both the s-cis (WANSAG) and s-trans (WANSAG01) conformations of methacrylamide (Guo et al. 2005). However, these results show that both components of this salt are unusual with no hits for any structures of related methylacrylamido cations nor acrylamidosulfonate anions. Indeed, the only structure showing even a moderately close relationship to either of the molecules reported here is N,N,N′,N′-tetramethyl-N′′-[3-(trimethylazaniumyl)propyl]guanidinium bis(tetraphenylborate) acetone solvate (Tiritiris, 2013) that contains the Me3N+(CH2)3NH- fragment.
6. Synthesis and crystallization
The title compound was prepared via an argentometric mixing approach (Li et al., 2010) from the silver salt of 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) and 3-(methacryloylamino)propyl-trimethylammonium chloride (MPT Cl). After filtration of the AgCl precipitate, the solution was freeze-dried and the ion-pair comonomers recrystallized from dioxane.
1H NMR (400 MHz, DMSO-d6): δ 8.36 (br s, 1H, AMPS amide H), 8.06 (br s, 1H, MPT amide H), 6.09–5.89 (m, 2H, AMPS =CH2), 5.69 (m, 1H, MPT=CH), 5.48 (m, 1H, AMPS =CH), 5.32 (m, 1H MPT=CH), 3.31–3.22 (m, 2H, MPT CH2), 3.15 (m, 2H, MPT CH2), 3.02 (s, 9H, MPT CH3), 2.72 (s, 2H, AMPS CH2), 1.91–1.79 (m, 2H, MPT CH2), 1.79 (s, 3H, MPT=CCH3), 1.41 (s, 6H, AMPS CH3).
7. Refinement
Crystal data, data collection and structure . N—H hydrogen atoms were located in a difference-Fourier map and their coordinates were refined with Uiso(H) = 1.2Ueq(N). All H atoms bound to carbon were refined using a riding model with d(C—H) = 0.95 Å and Uiso(H) = 1.2Ueq(C) for aromatic and vinyl H atoms, d(C—H) = 0.99 Å and Uiso(H) = 1.2Ueq(C) for methylene and d(C—H) = 0.98 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms. The crystal studied was refined as a two-component with a 0.58 (4):0.42 (4) domain ratio. Two reflections with Fo >>> Fc were omitted from the final cycles.
details are summarized in Table 5
|
Supporting information
CCDC reference: 1950279
https://doi.org/10.1107/S2056989019012003/vm2221sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019012003/vm2221Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989019012003/vm2221Isup3.cml
Data collection: CrysAlis PRO (Rigaku OD, 2018); cell
CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b) and TITAN (Hunter & Simpson, 1999); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2018 (Sheldrick, 2015b), enCIFer (Allen et al., 2004), PLATON (Spek, 2009), publCIF (Westrip 2010) and WinGX (Farrugia, 2012).C10H21N2O+·C7H12NO4S− | Dx = 1.255 Mg m−3 |
Mr = 391.52 | Cu Kα radiation, λ = 1.54184 Å |
Orthorhombic, Pca21 | Cell parameters from 4725 reflections |
a = 17.5093 (7) Å | θ = 5.2–72.8° |
b = 7.8052 (3) Å | µ = 1.65 mm−1 |
c = 30.3155 (13) Å | T = 100 K |
V = 4143.0 (3) Å3 | Plate, colourless |
Z = 8 | 0.46 × 0.27 × 0.11 mm |
F(000) = 1696 |
Rigaku Oxford Diffraction SuperNova, Dual, Cu at zero, Atlas diffractometer | 5961 independent reflections |
Radiation source: SuperNova (Cu) X-ray Source | 5040 reflections with I > 2σ(I) |
Detector resolution: 5.1725 pixels mm-1 | Rint = 0.054 |
ω scans | θmax = 72.8°, θmin = 5.1° |
Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2018) | h = −21→15 |
Tmin = 0.589, Tmax = 1.000 | k = −9→6 |
10436 measured reflections | l = −36→36 |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.060 | w = 1/[σ2(Fo2) + (0.1018P)2 + 1.0621P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.173 | (Δ/σ)max < 0.001 |
S = 1.03 | Δρmax = 0.64 e Å−3 |
5961 reflections | Δρmin = −0.32 e Å−3 |
494 parameters | Absolute structure: Refined as an inversion twin. |
31 restraints | Absolute structure parameter: 0.47 (4) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a 2-component inversion twin. Two reflections with Fo >>> Fc were omitted from the final refinement cycles. |
x | y | z | Uiso*/Ueq | ||
C18 | 0.6830 (4) | 0.9831 (8) | 0.5183 (3) | 0.0247 (16) | |
H18A | 0.690198 | 0.878168 | 0.535604 | 0.037* | |
H18B | 0.693085 | 1.083025 | 0.537028 | 0.037* | |
H18C | 0.718325 | 0.983217 | 0.493281 | 0.037* | |
C19 | 0.5921 (5) | 1.1545 (9) | 0.4766 (3) | 0.0349 (17) | |
H19A | 0.595183 | 1.252064 | 0.496889 | 0.052* | |
H19B | 0.541887 | 1.153142 | 0.462385 | 0.052* | |
H19C | 0.631985 | 1.165139 | 0.454063 | 0.052* | |
C110 | 0.5495 (5) | 0.9882 (10) | 0.5403 (3) | 0.037 (2) | |
H11A | 0.560070 | 1.086234 | 0.559514 | 0.055* | |
H11B | 0.556169 | 0.881640 | 0.556894 | 0.055* | |
H11C | 0.496835 | 0.995378 | 0.529420 | 0.055* | |
N11 | 0.6035 (4) | 0.9905 (6) | 0.5019 (2) | 0.0258 (14) | |
C11 | 0.5863 (4) | 0.8365 (8) | 0.4734 (2) | 0.0247 (14) | |
H11D | 0.530261 | 0.826601 | 0.470045 | 0.030* | |
H11E | 0.604392 | 0.732378 | 0.488861 | 0.030* | |
C12 | 0.6220 (3) | 0.8411 (7) | 0.4280 (2) | 0.0250 (12) | |
H12A | 0.677882 | 0.857686 | 0.430586 | 0.030* | |
H12B | 0.600668 | 0.937774 | 0.410867 | 0.030* | |
C13 | 0.6053 (3) | 0.6730 (7) | 0.4046 (2) | 0.0249 (12) | |
H13A | 0.637844 | 0.581781 | 0.417331 | 0.030* | |
H13B | 0.551289 | 0.640957 | 0.409807 | 0.030* | |
N12 | 0.6191 (3) | 0.6838 (6) | 0.35712 (17) | 0.0224 (10) | |
H12N | 0.578 (4) | 0.693 (9) | 0.343 (3) | 0.027* | |
C14 | 0.6881 (3) | 0.6571 (7) | 0.3401 (2) | 0.0198 (11) | |
O11 | 0.7443 (2) | 0.6223 (6) | 0.36331 (15) | 0.0272 (9) | |
C15 | 0.6946 (4) | 0.6717 (8) | 0.2908 (2) | 0.0261 (13) | |
C16 | 0.7639 (4) | 0.6354 (9) | 0.2722 (2) | 0.0358 (15) | |
H16A | 0.770611 | 0.644668 | 0.241236 | 0.043* | |
H16B | 0.805393 | 0.600812 | 0.290379 | 0.043* | |
C17 | 0.6299 (4) | 0.7244 (13) | 0.2650 (3) | 0.047 (2) | |
H17A | 0.644894 | 0.733716 | 0.233933 | 0.071* | |
H17B | 0.611814 | 0.835987 | 0.275506 | 0.071* | |
H17C | 0.588996 | 0.639623 | 0.267955 | 0.071* | |
O12 | 0.4219 (3) | 0.8164 (6) | 0.42637 (18) | 0.0348 (11) | |
O13 | 0.4113 (5) | 1.1199 (7) | 0.4319 (2) | 0.067 (2) | |
O14 | 0.3005 (3) | 0.9400 (12) | 0.4408 (2) | 0.070 (2) | |
S1 | 0.37335 (9) | 0.9620 (2) | 0.41979 (5) | 0.0265 (4) | |
C111 | 0.3578 (4) | 0.9838 (7) | 0.3621 (3) | 0.0221 (15) | |
H11F | 0.330598 | 1.093499 | 0.357282 | 0.026* | |
H11G | 0.408354 | 0.994452 | 0.347790 | 0.026* | |
C112 | 0.3129 (3) | 0.8423 (7) | 0.33741 (19) | 0.0195 (11) | |
C113 | 0.2292 (3) | 0.8345 (8) | 0.3513 (2) | 0.0302 (14) | |
H11H | 0.203429 | 0.742638 | 0.335013 | 0.045* | |
H11I | 0.204478 | 0.944182 | 0.344692 | 0.045* | |
H11J | 0.225960 | 0.811578 | 0.382995 | 0.045* | |
C114 | 0.3169 (4) | 0.8832 (9) | 0.2880 (2) | 0.0285 (13) | |
H11K | 0.370443 | 0.891877 | 0.278843 | 0.043* | |
H11L | 0.290935 | 0.992159 | 0.282197 | 0.043* | |
H11M | 0.291816 | 0.791602 | 0.271238 | 0.043* | |
N13 | 0.3453 (3) | 0.6713 (6) | 0.34566 (17) | 0.0204 (10) | |
H13N | 0.309 (4) | 0.600 (9) | 0.354 (2) | 0.025* | |
C115 | 0.4176 (3) | 0.6236 (7) | 0.33943 (19) | 0.0198 (11) | |
O15 | 0.4681 (2) | 0.7184 (5) | 0.32397 (14) | 0.0233 (8) | |
C116 | 0.4340 (3) | 0.4425 (8) | 0.3526 (2) | 0.0238 (12) | |
H116 | 0.396813 | 0.383181 | 0.369559 | 0.029* | |
C117 | 0.4965 (4) | 0.3618 (8) | 0.3420 (3) | 0.0337 (15) | |
H11N | 0.534618 | 0.418056 | 0.324986 | 0.040* | |
H11O | 0.504003 | 0.246658 | 0.351177 | 0.040* | |
C28 | 0.4323 (4) | 0.4759 (9) | 0.4825 (3) | 0.0251 (16) | |
H28A | 0.438522 | 0.577869 | 0.464020 | 0.038* | |
H28B | 0.440159 | 0.372881 | 0.464636 | 0.038* | |
H28C | 0.469854 | 0.478512 | 0.506503 | 0.038* | |
C29 | 0.3427 (5) | 0.3137 (9) | 0.5288 (3) | 0.0353 (17) | |
H29A | 0.381784 | 0.309600 | 0.551935 | 0.053* | |
H29B | 0.347640 | 0.212808 | 0.509783 | 0.053* | |
H29C | 0.291909 | 0.314495 | 0.542420 | 0.053* | |
C210 | 0.2971 (4) | 0.4666 (10) | 0.4641 (3) | 0.0319 (16) | |
H21A | 0.245390 | 0.450262 | 0.475731 | 0.048* | |
H21B | 0.310127 | 0.370769 | 0.444590 | 0.048* | |
H21C | 0.299313 | 0.574064 | 0.447434 | 0.048* | |
N21 | 0.3530 (3) | 0.4736 (6) | 0.5017 (2) | 0.0192 (11) | |
C21 | 0.3369 (4) | 0.6330 (8) | 0.5277 (2) | 0.0246 (14) | |
H21D | 0.280949 | 0.644582 | 0.531300 | 0.030* | |
H21E | 0.355032 | 0.733184 | 0.510638 | 0.030* | |
C22 | 0.3744 (3) | 0.6368 (8) | 0.5736 (2) | 0.0264 (12) | |
H22A | 0.353621 | 0.543142 | 0.592074 | 0.032* | |
H22B | 0.430212 | 0.620149 | 0.570793 | 0.032* | |
C23 | 0.3579 (3) | 0.8094 (8) | 0.59519 (19) | 0.0257 (13) | |
H23A | 0.390392 | 0.898458 | 0.581496 | 0.031* | |
H23B | 0.303840 | 0.840767 | 0.589997 | 0.031* | |
N22 | 0.3725 (3) | 0.8040 (6) | 0.64248 (17) | 0.0223 (10) | |
H22N | 0.332 (4) | 0.785 (9) | 0.662 (2) | 0.027* | |
C24 | 0.4405 (3) | 0.8420 (7) | 0.6600 (2) | 0.0214 (11) | |
O21 | 0.4954 (2) | 0.8854 (5) | 0.63690 (15) | 0.0255 (9) | |
C25 | 0.4467 (3) | 0.8314 (8) | 0.7094 (2) | 0.0242 (12) | |
C26 | 0.5143 (4) | 0.8731 (9) | 0.7281 (2) | 0.0354 (15) | |
H26A | 0.520137 | 0.868026 | 0.759239 | 0.042* | |
H26B | 0.555964 | 0.907559 | 0.710104 | 0.042* | |
C27 | 0.3810 (4) | 0.7778 (11) | 0.7356 (2) | 0.0415 (17) | |
H27A | 0.395103 | 0.775397 | 0.766843 | 0.062* | |
H27B | 0.364896 | 0.663109 | 0.726266 | 0.062* | |
H27C | 0.338970 | 0.858807 | 0.731144 | 0.062* | |
O22 | 0.1734 (3) | 0.6760 (6) | 0.57622 (17) | 0.0310 (10) | |
O23 | 0.1667 (4) | 0.3726 (7) | 0.5717 (2) | 0.0591 (18) | |
O24 | 0.0536 (3) | 0.5449 (11) | 0.5619 (2) | 0.0624 (19) | |
S2 | 0.12650 (9) | 0.52727 (18) | 0.58283 (5) | 0.0240 (4) | |
C211 | 0.1106 (5) | 0.5078 (7) | 0.6408 (3) | 0.0217 (15) | |
H21F | 0.083063 | 0.398716 | 0.645875 | 0.026* | |
H21G | 0.161104 | 0.496867 | 0.655210 | 0.026* | |
C212 | 0.0661 (3) | 0.6508 (7) | 0.6651 (2) | 0.0215 (11) | |
C213 | −0.0178 (3) | 0.6588 (8) | 0.6509 (2) | 0.0304 (14) | |
H21H | −0.043509 | 0.751535 | 0.666856 | 0.046* | |
H21I | −0.042740 | 0.549617 | 0.657698 | 0.046* | |
H21J | −0.020728 | 0.680539 | 0.619112 | 0.046* | |
C214 | 0.0700 (4) | 0.6112 (8) | 0.7144 (2) | 0.0274 (13) | |
H21K | 0.123502 | 0.609082 | 0.723913 | 0.041* | |
H21L | 0.046610 | 0.499244 | 0.720077 | 0.041* | |
H21M | 0.042408 | 0.699737 | 0.730856 | 0.041* | |
N23 | 0.0982 (3) | 0.8228 (6) | 0.65627 (16) | 0.0205 (10) | |
H23N | 0.071 (4) | 0.904 (10) | 0.649 (2) | 0.025* | |
C215 | 0.1711 (3) | 0.8691 (8) | 0.6618 (2) | 0.0215 (12) | |
O25 | 0.2210 (2) | 0.7750 (5) | 0.67734 (14) | 0.0240 (9) | |
C216 | 0.1867 (3) | 1.0492 (8) | 0.6480 (2) | 0.0234 (12) | |
H216 | 0.148817 | 1.107951 | 0.631384 | 0.028* | |
C217 | 0.2507 (3) | 1.1311 (8) | 0.6577 (3) | 0.0346 (16) | |
H21N | 0.289415 | 1.075050 | 0.674228 | 0.041* | |
H21O | 0.257890 | 1.245841 | 0.648134 | 0.041* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C18 | 0.025 (4) | 0.027 (3) | 0.022 (4) | −0.002 (2) | 0.001 (3) | −0.002 (2) |
C19 | 0.054 (5) | 0.028 (3) | 0.022 (4) | 0.017 (3) | −0.003 (3) | 0.001 (3) |
C110 | 0.026 (4) | 0.055 (5) | 0.028 (4) | −0.002 (3) | 0.013 (3) | −0.010 (3) |
N11 | 0.031 (3) | 0.027 (3) | 0.019 (3) | 0.003 (2) | 0.004 (3) | −0.0038 (19) |
C11 | 0.024 (3) | 0.031 (3) | 0.019 (3) | −0.008 (2) | 0.003 (3) | −0.005 (2) |
C12 | 0.023 (3) | 0.030 (3) | 0.022 (3) | −0.001 (2) | 0.001 (2) | −0.005 (2) |
C13 | 0.024 (3) | 0.026 (3) | 0.025 (3) | −0.002 (2) | −0.001 (2) | −0.004 (2) |
N12 | 0.020 (2) | 0.027 (2) | 0.021 (2) | 0.0001 (19) | −0.004 (2) | −0.0041 (19) |
C14 | 0.017 (2) | 0.015 (2) | 0.027 (3) | −0.002 (2) | 0.000 (2) | −0.004 (2) |
O11 | 0.0191 (19) | 0.035 (2) | 0.028 (2) | 0.0022 (16) | −0.0012 (17) | −0.0033 (19) |
C15 | 0.031 (3) | 0.023 (3) | 0.024 (3) | −0.004 (2) | 0.004 (2) | −0.001 (2) |
C16 | 0.031 (3) | 0.047 (4) | 0.029 (3) | 0.012 (3) | 0.005 (3) | 0.009 (3) |
C17 | 0.023 (3) | 0.087 (6) | 0.032 (4) | 0.009 (4) | 0.003 (3) | 0.018 (4) |
O12 | 0.046 (2) | 0.030 (2) | 0.028 (3) | 0.0111 (19) | −0.012 (2) | −0.002 (2) |
O13 | 0.128 (6) | 0.029 (3) | 0.044 (4) | −0.008 (3) | −0.038 (4) | −0.004 (3) |
O14 | 0.031 (3) | 0.154 (6) | 0.024 (3) | 0.020 (4) | 0.002 (2) | 0.006 (4) |
S1 | 0.0313 (9) | 0.0304 (8) | 0.0177 (8) | 0.0080 (6) | −0.0038 (7) | −0.0061 (7) |
C111 | 0.021 (3) | 0.021 (3) | 0.024 (5) | −0.002 (2) | −0.002 (3) | −0.002 (2) |
C112 | 0.019 (3) | 0.015 (2) | 0.025 (3) | 0.003 (2) | −0.002 (2) | −0.007 (2) |
C113 | 0.020 (3) | 0.028 (3) | 0.042 (4) | 0.005 (2) | 0.005 (3) | −0.003 (3) |
C114 | 0.031 (3) | 0.032 (3) | 0.022 (3) | 0.009 (3) | −0.004 (3) | −0.004 (2) |
N13 | 0.017 (2) | 0.021 (2) | 0.023 (2) | −0.0006 (18) | 0.0009 (19) | −0.0006 (19) |
C115 | 0.019 (3) | 0.024 (3) | 0.016 (3) | −0.003 (2) | 0.000 (2) | −0.006 (2) |
O15 | 0.0176 (18) | 0.029 (2) | 0.024 (2) | −0.0012 (16) | 0.0026 (16) | −0.0008 (17) |
C116 | 0.022 (3) | 0.021 (3) | 0.029 (3) | 0.003 (2) | −0.002 (2) | 0.001 (3) |
C117 | 0.029 (3) | 0.023 (3) | 0.049 (4) | 0.000 (2) | 0.002 (3) | −0.012 (3) |
C28 | 0.017 (3) | 0.035 (3) | 0.024 (4) | 0.000 (2) | 0.003 (3) | −0.005 (3) |
C29 | 0.051 (5) | 0.024 (3) | 0.031 (4) | −0.009 (3) | 0.006 (3) | 0.002 (3) |
C210 | 0.022 (4) | 0.049 (4) | 0.025 (4) | 0.000 (3) | −0.002 (3) | −0.011 (3) |
N21 | 0.013 (2) | 0.025 (2) | 0.020 (3) | −0.0014 (18) | 0.000 (2) | −0.003 (2) |
C21 | 0.023 (3) | 0.029 (3) | 0.022 (3) | 0.002 (2) | −0.003 (3) | −0.007 (3) |
C22 | 0.025 (3) | 0.034 (3) | 0.021 (3) | 0.005 (2) | 0.000 (2) | −0.004 (2) |
C23 | 0.024 (3) | 0.034 (3) | 0.019 (3) | −0.001 (2) | −0.005 (2) | 0.001 (2) |
N22 | 0.016 (2) | 0.031 (2) | 0.020 (2) | −0.0014 (19) | 0.0027 (19) | −0.002 (2) |
C24 | 0.023 (3) | 0.020 (3) | 0.021 (3) | −0.003 (2) | 0.000 (2) | −0.002 (2) |
O21 | 0.0214 (19) | 0.030 (2) | 0.025 (2) | −0.0029 (17) | 0.0025 (17) | −0.0014 (18) |
C25 | 0.026 (3) | 0.024 (3) | 0.023 (3) | 0.002 (2) | 0.003 (2) | −0.002 (2) |
C26 | 0.038 (3) | 0.043 (4) | 0.026 (3) | −0.012 (3) | −0.006 (3) | 0.012 (3) |
C27 | 0.028 (3) | 0.072 (5) | 0.024 (3) | −0.007 (3) | 0.000 (3) | 0.007 (3) |
O22 | 0.038 (2) | 0.031 (2) | 0.024 (2) | −0.0106 (18) | 0.0061 (19) | −0.0002 (19) |
O23 | 0.116 (5) | 0.030 (3) | 0.032 (3) | 0.013 (3) | 0.034 (3) | −0.006 (2) |
O24 | 0.034 (3) | 0.130 (5) | 0.023 (3) | −0.025 (3) | −0.003 (2) | 0.006 (4) |
S2 | 0.0250 (8) | 0.0296 (8) | 0.0173 (8) | −0.0039 (6) | 0.0017 (6) | −0.0010 (7) |
C211 | 0.034 (4) | 0.017 (3) | 0.014 (4) | 0.005 (2) | 0.000 (3) | −0.0022 (19) |
C212 | 0.019 (2) | 0.020 (3) | 0.026 (3) | −0.004 (2) | 0.003 (2) | −0.002 (2) |
C213 | 0.026 (3) | 0.032 (3) | 0.033 (4) | 0.000 (2) | −0.001 (3) | −0.002 (3) |
C214 | 0.028 (3) | 0.033 (3) | 0.022 (3) | −0.004 (2) | 0.005 (2) | −0.003 (3) |
N23 | 0.022 (2) | 0.019 (2) | 0.021 (2) | 0.0039 (18) | −0.0001 (19) | 0.0009 (19) |
C215 | 0.020 (3) | 0.025 (3) | 0.019 (3) | 0.000 (2) | 0.001 (2) | −0.007 (2) |
O25 | 0.0188 (19) | 0.029 (2) | 0.024 (2) | 0.0009 (16) | −0.0004 (16) | 0.0006 (18) |
C216 | 0.022 (3) | 0.023 (3) | 0.025 (3) | 0.004 (2) | −0.003 (2) | −0.003 (3) |
C217 | 0.025 (3) | 0.025 (3) | 0.053 (4) | −0.003 (2) | 0.001 (3) | −0.004 (3) |
C18—N11 | 1.479 (10) | C28—N21 | 1.504 (9) |
C18—H18A | 0.9800 | C28—H28A | 0.9800 |
C18—H18B | 0.9800 | C28—H28B | 0.9800 |
C18—H18C | 0.9800 | C28—H28C | 0.9800 |
C19—N11 | 1.506 (9) | C29—N21 | 1.506 (9) |
C19—H19A | 0.9800 | C29—H29A | 0.9800 |
C19—H19B | 0.9800 | C29—H29B | 0.9800 |
C19—H19C | 0.9800 | C29—H29C | 0.9800 |
C110—N11 | 1.498 (11) | C210—N21 | 1.504 (10) |
C110—H11A | 0.9800 | C210—H21A | 0.9800 |
C110—H11B | 0.9800 | C210—H21B | 0.9800 |
C110—H11C | 0.9800 | C210—H21C | 0.9800 |
N11—C11 | 1.511 (8) | N21—C21 | 1.500 (8) |
C11—C12 | 1.511 (9) | C21—C22 | 1.539 (9) |
C11—H11D | 0.9900 | C21—H21D | 0.9900 |
C11—H11E | 0.9900 | C21—H21E | 0.9900 |
C12—C13 | 1.520 (8) | C22—C23 | 1.525 (8) |
C12—H12A | 0.9900 | C22—H22A | 0.9900 |
C12—H12B | 0.9900 | C22—H22B | 0.9900 |
C13—N12 | 1.463 (7) | C23—N22 | 1.457 (7) |
C13—H13A | 0.9900 | C23—H23A | 0.9900 |
C13—H13B | 0.9900 | C23—H23B | 0.9900 |
N12—C14 | 1.330 (7) | N22—C24 | 1.338 (7) |
N12—H12N | 0.84 (7) | N22—H22N | 0.93 (7) |
C14—O11 | 1.239 (7) | C24—O21 | 1.236 (7) |
C14—C15 | 1.505 (8) | C24—C25 | 1.505 (8) |
C15—C16 | 1.367 (9) | C25—C26 | 1.352 (9) |
C15—C17 | 1.436 (9) | C25—C27 | 1.457 (9) |
C16—H16A | 0.9500 | C26—H26A | 0.9500 |
C16—H16B | 0.9500 | C26—H26B | 0.9500 |
C17—H17A | 0.9800 | C27—H27A | 0.9800 |
C17—H17B | 0.9800 | C27—H27B | 0.9800 |
C17—H17C | 0.9800 | C27—H27C | 0.9800 |
O12—S1 | 1.434 (5) | O22—S2 | 1.436 (4) |
O13—S1 | 1.447 (6) | O23—S2 | 1.437 (6) |
O14—S1 | 1.436 (7) | O24—S2 | 1.432 (7) |
S1—C111 | 1.778 (8) | S2—C211 | 1.786 (8) |
C111—C112 | 1.548 (8) | C211—C212 | 1.547 (8) |
C111—H11F | 0.9900 | C211—H21F | 0.9900 |
C111—H11G | 0.9900 | C211—H21G | 0.9900 |
C112—N13 | 1.472 (7) | C212—N23 | 1.479 (7) |
C112—C113 | 1.526 (7) | C212—C214 | 1.529 (8) |
C112—C114 | 1.534 (8) | C212—C213 | 1.532 (8) |
C113—H11H | 0.9800 | C213—H21H | 0.9800 |
C113—H11I | 0.9800 | C213—H21I | 0.9800 |
C113—H11J | 0.9800 | C213—H21J | 0.9800 |
C114—H11K | 0.9800 | C214—H21K | 0.9800 |
C114—H11L | 0.9800 | C214—H21L | 0.9800 |
C114—H11M | 0.9800 | C214—H21M | 0.9800 |
N13—C115 | 1.333 (7) | N23—C215 | 1.338 (7) |
N13—H13N | 0.88 (7) | N23—H23N | 0.82 (7) |
C115—O15 | 1.245 (7) | C215—O25 | 1.235 (7) |
C115—C116 | 1.496 (8) | C215—C216 | 1.492 (9) |
C116—C117 | 1.304 (9) | C216—C217 | 1.323 (9) |
C116—H116 | 0.9500 | C216—H216 | 0.9500 |
C117—H11N | 0.9500 | C217—H21N | 0.9500 |
C117—H11O | 0.9500 | C217—H21O | 0.9500 |
N11—C18—H18A | 109.5 | N21—C28—H28A | 109.5 |
N11—C18—H18B | 109.5 | N21—C28—H28B | 109.5 |
H18A—C18—H18B | 109.5 | H28A—C28—H28B | 109.5 |
N11—C18—H18C | 109.5 | N21—C28—H28C | 109.5 |
H18A—C18—H18C | 109.5 | H28A—C28—H28C | 109.5 |
H18B—C18—H18C | 109.5 | H28B—C28—H28C | 109.5 |
N11—C19—H19A | 109.5 | N21—C29—H29A | 109.5 |
N11—C19—H19B | 109.5 | N21—C29—H29B | 109.5 |
H19A—C19—H19B | 109.5 | H29A—C29—H29B | 109.5 |
N11—C19—H19C | 109.5 | N21—C29—H29C | 109.5 |
H19A—C19—H19C | 109.5 | H29A—C29—H29C | 109.5 |
H19B—C19—H19C | 109.5 | H29B—C29—H29C | 109.5 |
N11—C110—H11A | 109.5 | N21—C210—H21A | 109.5 |
N11—C110—H11B | 109.5 | N21—C210—H21B | 109.5 |
H11A—C110—H11B | 109.5 | H21A—C210—H21B | 109.5 |
N11—C110—H11C | 109.5 | N21—C210—H21C | 109.5 |
H11A—C110—H11C | 109.5 | H21A—C210—H21C | 109.5 |
H11B—C110—H11C | 109.5 | H21B—C210—H21C | 109.5 |
C18—N11—C110 | 109.4 (7) | C21—N21—C210 | 107.8 (5) |
C18—N11—C19 | 109.2 (6) | C21—N21—C28 | 111.5 (5) |
C110—N11—C19 | 108.8 (6) | C210—N21—C28 | 108.0 (6) |
C18—N11—C11 | 110.4 (5) | C21—N21—C29 | 112.2 (6) |
C110—N11—C11 | 108.0 (6) | C210—N21—C29 | 107.8 (6) |
C19—N11—C11 | 111.0 (6) | C28—N21—C29 | 109.4 (6) |
N11—C11—C12 | 114.8 (5) | N21—C21—C22 | 114.3 (5) |
N11—C11—H11D | 108.6 | N21—C21—H21D | 108.7 |
C12—C11—H11D | 108.6 | C22—C21—H21D | 108.7 |
N11—C11—H11E | 108.6 | N21—C21—H21E | 108.7 |
C12—C11—H11E | 108.6 | C22—C21—H21E | 108.7 |
H11D—C11—H11E | 107.5 | H21D—C21—H21E | 107.6 |
C11—C12—C13 | 108.9 (5) | C23—C22—C21 | 108.9 (5) |
C11—C12—H12A | 109.9 | C23—C22—H22A | 109.9 |
C13—C12—H12A | 109.9 | C21—C22—H22A | 109.9 |
C11—C12—H12B | 109.9 | C23—C22—H22B | 109.9 |
C13—C12—H12B | 109.9 | C21—C22—H22B | 109.9 |
H12A—C12—H12B | 108.3 | H22A—C22—H22B | 108.3 |
N12—C13—C12 | 112.2 (5) | N22—C23—C22 | 111.3 (5) |
N12—C13—H13A | 109.2 | N22—C23—H23A | 109.4 |
C12—C13—H13A | 109.2 | C22—C23—H23A | 109.4 |
N12—C13—H13B | 109.2 | N22—C23—H23B | 109.4 |
C12—C13—H13B | 109.2 | C22—C23—H23B | 109.4 |
H13A—C13—H13B | 107.9 | H23A—C23—H23B | 108.0 |
C14—N12—C13 | 121.5 (5) | C24—N22—C23 | 122.7 (5) |
C14—N12—H12N | 127 (5) | C24—N22—H22N | 118 (4) |
C13—N12—H12N | 111 (5) | C23—N22—H22N | 119 (4) |
O11—C14—N12 | 122.4 (6) | O21—C24—N22 | 121.9 (5) |
O11—C14—C15 | 121.4 (5) | O21—C24—C25 | 121.6 (5) |
N12—C14—C15 | 116.2 (5) | N22—C24—C25 | 116.5 (5) |
C16—C15—C17 | 122.4 (6) | C26—C25—C27 | 122.2 (6) |
C16—C15—C14 | 117.4 (6) | C26—C25—C24 | 117.8 (5) |
C17—C15—C14 | 120.2 (5) | C27—C25—C24 | 120.1 (5) |
C15—C16—H16A | 120.0 | C25—C26—H26A | 120.0 |
C15—C16—H16B | 120.0 | C25—C26—H26B | 120.0 |
H16A—C16—H16B | 120.0 | H26A—C26—H26B | 120.0 |
C15—C17—H17A | 109.5 | C25—C27—H27A | 109.5 |
C15—C17—H17B | 109.5 | C25—C27—H27B | 109.5 |
H17A—C17—H17B | 109.5 | H27A—C27—H27B | 109.5 |
C15—C17—H17C | 109.5 | C25—C27—H27C | 109.5 |
H17A—C17—H17C | 109.5 | H27A—C27—H27C | 109.5 |
H17B—C17—H17C | 109.5 | H27B—C27—H27C | 109.5 |
O12—S1—O14 | 111.7 (4) | O24—S2—O22 | 111.7 (4) |
O12—S1—O13 | 111.6 (4) | O24—S2—O23 | 114.4 (5) |
O14—S1—O13 | 113.4 (5) | O22—S2—O23 | 111.5 (4) |
O12—S1—C111 | 107.7 (3) | O24—S2—C211 | 107.8 (4) |
O14—S1—C111 | 108.1 (4) | O22—S2—C211 | 107.2 (3) |
O13—S1—C111 | 103.8 (3) | O23—S2—C211 | 103.6 (3) |
C112—C111—S1 | 119.0 (5) | C212—C211—S2 | 119.0 (5) |
C112—C111—H11F | 107.6 | C212—C211—H21F | 107.6 |
S1—C111—H11F | 107.6 | S2—C211—H21F | 107.6 |
C112—C111—H11G | 107.6 | C212—C211—H21G | 107.6 |
S1—C111—H11G | 107.6 | S2—C211—H21G | 107.6 |
H11F—C111—H11G | 107.0 | H21F—C211—H21G | 107.0 |
N13—C112—C113 | 106.7 (5) | N23—C212—C214 | 110.1 (5) |
N13—C112—C114 | 109.7 (4) | N23—C212—C213 | 106.0 (5) |
C113—C112—C114 | 108.7 (5) | C214—C212—C213 | 109.0 (5) |
N13—C112—C111 | 111.7 (5) | N23—C212—C211 | 112.3 (5) |
C113—C112—C111 | 112.5 (5) | C214—C212—C211 | 107.3 (5) |
C114—C112—C111 | 107.5 (5) | C213—C212—C211 | 112.3 (5) |
C112—C113—H11H | 109.5 | C212—C213—H21H | 109.5 |
C112—C113—H11I | 109.5 | C212—C213—H21I | 109.5 |
H11H—C113—H11I | 109.5 | H21H—C213—H21I | 109.5 |
C112—C113—H11J | 109.5 | C212—C213—H21J | 109.5 |
H11H—C113—H11J | 109.5 | H21H—C213—H21J | 109.5 |
H11I—C113—H11J | 109.5 | H21I—C213—H21J | 109.5 |
C112—C114—H11K | 109.5 | C212—C214—H21K | 109.5 |
C112—C114—H11L | 109.5 | C212—C214—H21L | 109.5 |
H11K—C114—H11L | 109.5 | H21K—C214—H21L | 109.5 |
C112—C114—H11M | 109.5 | C212—C214—H21M | 109.5 |
H11K—C114—H11M | 109.5 | H21K—C214—H21M | 109.5 |
H11L—C114—H11M | 109.5 | H21L—C214—H21M | 109.5 |
C115—N13—C112 | 126.5 (5) | C215—N23—C212 | 125.8 (5) |
C115—N13—H13N | 123 (4) | C215—N23—H23N | 112 (5) |
C112—N13—H13N | 110 (4) | C212—N23—H23N | 122 (5) |
O15—C115—N13 | 124.2 (6) | O25—C215—N23 | 124.2 (6) |
O15—C115—C116 | 121.7 (5) | O25—C215—C216 | 122.6 (5) |
N13—C115—C116 | 114.1 (5) | N23—C215—C216 | 113.2 (5) |
C117—C116—C115 | 123.5 (6) | C217—C216—C215 | 123.2 (6) |
C117—C116—H116 | 118.3 | C217—C216—H216 | 118.4 |
C115—C116—H116 | 118.3 | C215—C216—H216 | 118.4 |
C116—C117—H11N | 120.0 | C216—C217—H21N | 120.0 |
C116—C117—H11O | 120.0 | C216—C217—H21O | 120.0 |
H11N—C117—H11O | 120.0 | H21N—C217—H21O | 120.0 |
C18—N11—C11—C12 | −74.4 (7) | C210—N21—C21—C22 | 164.9 (6) |
C110—N11—C11—C12 | 165.9 (6) | C28—N21—C21—C22 | −76.7 (7) |
C19—N11—C11—C12 | 46.8 (9) | C29—N21—C21—C22 | 46.4 (8) |
N11—C11—C12—C13 | 175.5 (5) | N21—C21—C22—C23 | 176.3 (5) |
C11—C12—C13—N12 | 164.4 (5) | C21—C22—C23—N22 | 163.8 (5) |
C12—C13—N12—C14 | 85.9 (6) | C22—C23—N22—C24 | 90.1 (7) |
C13—N12—C14—O11 | −0.2 (8) | C23—N22—C24—O21 | 0.5 (9) |
C13—N12—C14—C15 | 179.8 (5) | C23—N22—C24—C25 | 179.7 (5) |
O11—C14—C15—C16 | 3.7 (9) | O21—C24—C25—C26 | 0.8 (9) |
N12—C14—C15—C16 | −176.4 (6) | N22—C24—C25—C26 | −178.5 (6) |
O11—C14—C15—C17 | −175.4 (7) | O21—C24—C25—C27 | −179.3 (6) |
N12—C14—C15—C17 | 4.5 (9) | N22—C24—C25—C27 | 1.4 (9) |
O12—S1—C111—C112 | 65.6 (6) | O24—S2—C211—C212 | −56.9 (7) |
O14—S1—C111—C112 | −55.3 (7) | O22—S2—C211—C212 | 63.5 (6) |
O13—S1—C111—C112 | −176.0 (6) | O23—S2—C211—C212 | −178.5 (6) |
S1—C111—C112—N13 | −52.7 (7) | S2—C211—C212—N23 | −52.1 (7) |
S1—C111—C112—C113 | 67.2 (7) | S2—C211—C212—C214 | −173.1 (5) |
S1—C111—C112—C114 | −173.1 (5) | S2—C211—C212—C213 | 67.2 (7) |
C113—C112—N13—C115 | −177.8 (5) | C214—C212—N23—C215 | 66.0 (7) |
C114—C112—N13—C115 | 64.6 (7) | C213—C212—N23—C215 | −176.3 (5) |
C111—C112—N13—C115 | −54.5 (7) | C211—C212—N23—C215 | −53.4 (8) |
C112—N13—C115—O15 | −2.6 (9) | C212—N23—C215—O25 | −4.1 (9) |
C112—N13—C115—C116 | 177.6 (5) | C212—N23—C215—C216 | 177.1 (5) |
O15—C115—C116—C117 | −12.6 (10) | O25—C215—C216—C217 | −11.3 (10) |
N13—C115—C116—C117 | 167.2 (6) | N23—C215—C216—C217 | 167.5 (6) |
D—H···A | D—H | H···A | D···A | D—H···A |
N12—H12N···O15 | 0.84 (7) | 2.02 (7) | 2.841 (6) | 167 (7) |
N13—H13N···O11i | 0.88 (7) | 2.10 (7) | 2.943 (6) | 162 (6) |
N22—H22N···O25 | 0.93 (7) | 2.00 (7) | 2.865 (6) | 154 (6) |
N23—H23N···O21ii | 0.82 (7) | 2.15 (7) | 2.961 (6) | 174 (7) |
C11—H11D···O12 | 0.99 | 2.31 | 3.216 (8) | 151 |
C12—H12A···O14iii | 0.99 | 2.68 | 3.583 (8) | 151 |
C13—H13B···O12 | 0.99 | 2.69 | 3.463 (8) | 135 |
C18—H18C···O14iii | 0.98 | 2.23 | 3.182 (10) | 164 |
C18—H18B···O22iii | 0.98 | 2.25 | 3.192 (8) | 160 |
C18—H18A···O23iv | 0.98 | 2.28 | 3.226 (9) | 162 |
C19—H19A···O24iii | 0.98 | 2.63 | 3.555 (10) | 157 |
C110—H11B···O21 | 0.98 | 2.65 | 3.182 (11) | 114 |
C116—H116···O11i | 0.95 | 2.68 | 3.375 (7) | 131 |
C117—H11N···N12 | 0.95 | 2.73 | 3.338 (8) | 123 |
C21—H21D···O22 | 0.99 | 2.34 | 3.236 (8) | 151 |
C22—H22B···O24iv | 0.99 | 2.53 | 3.463 (8) | 157 |
C23—H23B···O22 | 0.99 | 2.65 | 3.442 (7) | 137 |
C28—H28A···O12 | 0.98 | 2.20 | 3.162 (9) | 166 |
C28—H28B···O13v | 0.98 | 2.27 | 3.195 (9) | 158 |
C29—H29C···O23 | 0.98 | 2.41 | 3.377 (10) | 169 |
C211—H21F···O21i | 0.99 | 2.71 | 3.674 (8) | 164 |
C216—H216···O21ii | 0.95 | 2.69 | 3.405 (7) | 132 |
Symmetry codes: (i) x−1/2, −y+1, z; (ii) x−1/2, −y+2, z; (iii) x+1/2, −y+2, z; (iv) x+1/2, −y+1, z; (v) x, y−1, z. |
Salt 1 | Salt 2 | ||
C18—N11 | 1.479 (10) | C28—N21 | 1.504 (9) |
C19—N11 | 1.506 (9) | C29—N21 | 1.506 (9) |
C110—N11 | 1.498 (11) | C210—N21 | 1.504 (10) |
N11—C11 | 1.511 (8) | N21—C21 | 1.500 (8) |
C13—N12 | 1.463 (7) | C23—N22 | 1.457 (7) |
N12—C14 | 1.330 (7) | N22—C24 | 1.338 (7) |
C14—O11 | 1.239 (7) | C24—O21 | 1.236 (7) |
C15—C16 | 1.367 (9) | C25—C26 | 1.352 (9) |
O12—S1 | 1.434 (5) | O22—S2 | 1.436 (4) |
O13—S1 | 1.447 (6) | O23—S2 | 1.437 (6) |
O14—S1 | 1.436 (7) | O24—S2 | 1.432 (7) |
S1—C111 | 1.778 (8) | S2—C211 | 1.786 (8) |
N13—C115 | 1.333 (7) | N23—C215 | 1.338 (7) |
C115—O15 | 1.245 (7) | C215—O25 | 1.235 (7) |
C116—C117 | 1.304 (9) | C216—C217 | 1.323 (9) |
Contacts | Included surface area (%) |
H···H | 68.9 |
H···O/O···H | 22.6 |
H···C/C···H | 8.0 |
H···N/N···H | 0.5 |
Contact | Salt 1 | Cation | Anion | Salt 2 | Cation | Anion |
H···H | 68.9 | 67.3 | 54.9 | 68.9 | 67.2 | 54.5 |
H···O/O···H | 23.5 | 24.9 | 35.4 | 23.6 | 25.1 | 35.7 |
H···C/C···H | 7.2 | 7.0 | 8.8 | 7.0 | 6.7 | 8.7 |
H···N/N···H | 0.4 | 0.8 | 0.8 | 0.5 | 0.9 | 1.0 |
Funding information
We thank the NZ Ministry of Business, Innovation and Employment Science Investment Fund (grant No. UOO-X1206) for support of this work and the University of Otago for the purchase of the diffractometer. JS also thanks the Department of Chemistry, University of Otago for support of his work.
References
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338. Web of Science CrossRef CAS IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Goswami, S. K., McAdam, C. J., Hanton, L. R. & Moratti, S. C. (2017). Macromol. Rapid Commun. 38, 1700103. Web of Science CrossRef Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Guo, C., Hickey, M. B., Guggenheim, E. R., Enkelmann, V. & Foxman, B. M. (2005). Chem. Commun. pp. 2220–2222. Web of Science CSD CrossRef Google Scholar
Haag, S. L. & Bernards, M. T. (2017). Gels, 3, 41. Google Scholar
Hunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand. Google Scholar
Ihsan, A. B., Sun, T. L., Kurokawa, T., Karobi, S. N., Nakajima, T., Nonoyama, T., Roy, C. K., Luo, F. & Gong, J. P. (2016). Macromolecules, 49, 4245–4252. Web of Science CrossRef Google Scholar
Li, G., Xue, H., Gao, C., Zhang, F. & Jiang, S. (2010). Macromolecules, 43, 14–16. Web of Science CrossRef CAS PubMed Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
McAdam, C. J., Hanton, L. R., Moratti, S. C., Simpson, J. & Wickramasinhage, R. N. (2019). Acta Cryst. E75, 946–950. Web of Science CSD CrossRef IUCr Journals Google Scholar
Pushparajan, C., Goswami, S. K., McAdam, C. J., Hanton, L. R., Dearden, P. K., Moratti, S. C. & Cridge, A. G. (2018). Electrophoresis, 39, 824–832. Web of Science CrossRef CAS PubMed Google Scholar
Rigaku OD (2018). CrysAlis PRO, Rigaku Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Salamone, J. C., Tsai, C. C., Olson, A. P. & Watterson, A. C. (1978). ACS Polymer Preprints E19, 261-264. Google Scholar
Salamone, J. C., Tsai, C. C., Olson, A. P. & Watterson, A. C. (1980). Ions in Polymers – Advances in Chemistry, Vol. 187, edited by A. Eisenberg, ch. 22, p. 337–346. ACS Publications. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tiritiris, I. (2013). Acta Cryst. E69, o337–o338. CSD CrossRef CAS IUCr Journals Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia, Nedlands, Western Australia; https://hirshfeldsurface.net. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhou, Q.-L., Zhang, Z.-H. & Jing, Z.-L. (2007). Acta Cryst. E63, o3039. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zurick, K. M. & Bernards, M. (2014). J. Appl. Polym. Sci. 131, 40069. Web of Science CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.