research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

The structure and Hirshfeld surface analysis of the salt 3-methacryl­amido-N,N,N-tri­methyl­propan-1-aminium 2-acryl­amido-2-methyl­propane-1-sulfonate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand
*Correspondence e-mail: jsimpson@alkali.otago.ac.nz

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 28 August 2019; accepted 29 August 2019; online 10 September 2019)

The title salt, C10H21N2O+·C7H12NO4S, comprises a 3-methacryl­amido-N,N,N-tri­methyl­propan-1-aminium cation and a 2-acryl­amido-2-methyl­propane-1-sulfonate anion. The salt crystallizes with two unique cation–anion pairs in the asymmetric unit of the ortho­rhom­bic unit cell. The crystal studied was an inversion twin with a 0.52 (4):0.48 (4) domain ratio. In the crystal, the cations and anions stack along the b-axis direction and are linked by an extensive series of N—H⋯O and C—H⋯O hydrogen bonds, forming a three-dimensional network. Hirshfeld surface analysis was carried out on both the asymmetric unit and the two individual salts. The contribution of inter­atomic contacts to the surfaces of the individual cations and anions are also compared.

1. Chemical context

We are currently inter­ested in tough hydro­gels with a built-in capacity for self-healing, as a means of improving their performance in practical applications (Goswami et al., 2017[Goswami, S. K., McAdam, C. J., Hanton, L. R. & Moratti, S. C. (2017). Macromol. Rapid Commun. 38, 1700103.]; Pushparajan et al., 2018[Pushparajan, C., Goswami, S. K., McAdam, C. J., Hanton, L. R., Dearden, P. K., Moratti, S. C. & Cridge, A. G. (2018). Electrophoresis, 39, 824-832.]). One approach involves the polymerization of ion-pair comonomers (IPC) typically based on sulfonate anions and quaternary ammonium cations (McAdam et al., 2019[McAdam, C. J., Hanton, L. R., Moratti, S. C., Simpson, J. & Wickramasinhage, R. N. (2019). Acta Cryst. E75, 946-950.]). The covalent cross-linking of mixed cationic and anionic monomers generates polyampholytes (Zurick & Bernards, 2014[Zurick, K. M. & Bernards, M. (2014). J. Appl. Polym. Sci. 131, 40069.]) with additional toughness and self-healing ability due to electrostatic inter­actions between the oppositely charged functional groups present (Ihsan et al., 2016[Ihsan, A. B., Sun, T. L., Kurokawa, T., Karobi, S. N., Nakajima, T., Nonoyama, T., Roy, C. K., Luo, F. & Gong, J. P. (2016). Macromolecules, 49, 4245-4252.]; Haag & Bernards, 2017[Haag, S. L. & Bernards, M. T. (2017). Gels, 3, 41.]). The title IPC salt was first reported in 1978 at the emergence of this field (Salamone et al., 1978[Salamone, J. C., Tsai, C. C., Olson, A. P. & Watterson, A. C. (1978). ACS Polymer Preprints E19, 261-264.]). The original synthesis utilized ion-exchange chromatography (Salamone et al., 1980[Salamone, J. C., Tsai, C. C., Olson, A. P. & Watterson, A. C. (1980). Ions in Polymers - Advances in Chemistry, Vol. 187, edited by A. Eisenberg, ch. 22, p. 337-346. ACS Publications.]) but this preparative methodology has been superseded by the argentometric mixing approach (Li et al., 2010[Li, G., Xue, H., Gao, C., Zhang, F. & Jiang, S. (2010). Macromolecules, 43, 14-16.]).

[Scheme 1]

2. Structural commentary

The title compound (1) is a salt consisting of a 3-methacryl­amido-N,N,N-tri­methyl­propan-1-aminium cation and a 2-acryl­amido-2-methyl­propane-1-sulfonate anion. The asymmetric unit contains two unique pairs of cations and anions and the individual cation/anion pairs are shown in Figs. 1[link] and 2[link]. In the numbering scheme the two salts are distinguished by leading 1 and 2 characters. A feature of both cation/anion pairs is the substantial number of inter­molecular contacts, N—H⋯O, C—H⋯O and weaker C—H⋯N hydrogen bonds, Table 1[link], linking the cations to the anions, with the O12 and O22 atoms acting as bifurcated acceptors enclosing R21(6) ring motifs in each case.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N12—H12N⋯O15 0.84 (7) 2.02 (7) 2.841 (6) 167 (7)
N13—H13N⋯O11i 0.88 (7) 2.10 (7) 2.943 (6) 162 (6)
N22—H22N⋯O25 0.93 (7) 2.00 (7) 2.865 (6) 154 (6)
N23—H23N⋯O21ii 0.82 (7) 2.15 (7) 2.961 (6) 174 (7)
C11—H11D⋯O12 0.99 2.31 3.216 (8) 151
C12—H12A⋯O14iii 0.99 2.68 3.583 (8) 151
C13—H13B⋯O12 0.99 2.69 3.463 (8) 135
C18—H18C⋯O14iii 0.98 2.23 3.182 (10) 164
C18—H18B⋯O22iii 0.98 2.25 3.192 (8) 160
C18—H18A⋯O23iv 0.98 2.28 3.226 (9) 162
C19—H19A⋯O24iii 0.98 2.63 3.555 (10) 157
C110—H11B⋯O21 0.98 2.65 3.182 (11) 114
C116—H116⋯O11i 0.95 2.68 3.375 (7) 131
C117—H11N⋯N12 0.95 2.73 3.338 (8) 123
C21—H21D⋯O22 0.99 2.34 3.236 (8) 151
C22—H22B⋯O24iv 0.99 2.53 3.463 (8) 157
C23—H23B⋯O22 0.99 2.65 3.442 (7) 137
C28—H28A⋯O12 0.98 2.20 3.162 (9) 166
C28—H28B⋯O13v 0.98 2.27 3.195 (9) 158
C29—H29C⋯O23 0.98 2.41 3.377 (10) 169
C211—H21F⋯O21i 0.99 2.71 3.674 (8) 164
C216—H216⋯O21ii 0.95 2.69 3.405 (7) 132
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+1, z]; (ii) [x-{\script{1\over 2}}, -y+2, z]; (iii) [x+{\script{1\over 2}}, -y+2, z]; (iv) [x+{\script{1\over 2}}, -y+1, z]; (v) x, y-1, z.
[Figure 1]
Figure 1
Salt 1 of the title compound showing the atom numbering with ellipsoids drawn at the 50% probability level. N—H⋯O, C—H⋯O and C—H⋯N hydrogen bonds are drawn as dashed grey, cyan and green lines, respectively.
[Figure 2]
Figure 2
Salt 2 of (1) showing the atom numbering with ellipsoids drawn at the 50% probability level.

In the asymmetric unit the cations and anions are inter­connected by further N—H⋯O, C—H⋯O and C—H⋯N hydrogen bonds with O12 and O22 acting as trifurcated and bifurcated acceptors, respectively, Fig. 3[link]. The unique cation and anions pairs in (1) are reasonably similar to one another. Examination of selected bond distances, Table 2[link], confirms this similarity. Furthermore, the individual cations and anions overlay with r.m.s. deviations of only 0.0561 Å for the two cations and 0.0228 Å for the anions (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]). For the cations the most significant variations occur around the amide unit and for one of the methyl groups of the tri­methyl­amine substituent, Fig. 4[link]. The anions are even more closely comparable with only small variations around the amide N atoms and the vinyl groups, Fig. 5[link].

Table 2
Selected bond lengths (Å) for salts 1 and 2

Salt 1   Salt 2  
C18—N11 1.479 (10) C28—N21 1.504 (9)
C19—N11 1.506 (9) C29—N21 1.506 (9)
C110—N11 1.498 (11) C210—N21 1.504 (10)
N11—C11 1.511 (8) N21—C21 1.500 (8)
C13—N12 1.463 (7) C23—N22 1.457 (7)
N12—C14 1.330 (7) N22—C24 1.338 (7)
C14—O11 1.239 (7) C24—O21 1.236 (7)
C15—C16 1.367 (9) C25—C26 1.352 (9)
O12—S1 1.434 (5) O22—S2 1.436 (4)
O13—S1 1.447 (6) O23—S2 1.437 (6)
O14—S1 1.436 (7) O24—S2 1.432 (7)
S1—C111 1.778 (8) S2—C211 1.786 (8)
N13—C115 1.333 (7) N23—C215 1.338 (7)
C115—O15 1.245 (7) C215—O25 1.235 (7)
C116—C117 1.304 (9) C216—C217 1.323 (9)
[Figure 3]
Figure 3
Inter­molecular contacts in the asymmetric unit of (1).
[Figure 4]
Figure 4
An overlay of the two unique cations of (1), r.m.s. deviation 0.0561 Å.
[Figure 5]
Figure 5
An overlay of the two unique anions of (1), r.m.s. deviation 0.0228 Å.

While the cations both adopt stretched arrangements, aided by the central propyl units, the anions are U-shaped with the acryl­amide and sulfonate residues on opposite vertices of the U. The relative conformations of the C=O and vinyl double bonds within the C115 and C215 acryl­amide substituents of the anions are s-cis, as found in similar compounds (Goswami et al., 2017[Goswami, S. K., McAdam, C. J., Hanton, L. R. & Moratti, S. C. (2017). Macromol. Rapid Commun. 38, 1700103.]). The two methacryl­amide residues of the cations are similarly arranged.

3. Supra­molecular features

In the crystal, a series of N—H⋯O and C—H⋯O hydrogen bonds, Table 1[link], form double chains of cations and anions along the a axis with adjacent double chains forming sheets in the ac plane, Fig. 6[link]. These sheets are stacked along the b-axis direction by additional C—H⋯O hydrogen bonds, Fig. 7[link].

[Figure 6]
Figure 6
Sheets of the cations and anions of (1) in the ac plane. All hydrogen bonds are shown as dashed cyan lines.
[Figure 7]
Figure 7
Overall packing of the title compound viewed along the b-axis direction.

4. Hirshfeld Analysis

Further details of the inter­molecular architecture of this salt are available using Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) with surfaces and two-dimensional fingerprint plots generated by CrystalExplorer (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia, Nedlands, Western Australia; https://hirshfeldsurface.net.]). Hirshfeld surfaces of the asymmetric unit of the structure which comprises salts 1 and 2, viewed for opposite faces are shown in Fig. 8[link](a) and 8(b). The red circles on the Hirshfeld surfaces correspond to the N—H⋯O and some of the numerous C—H⋯O contacts that play a significant role in stabilizing the packing in this structure. Fingerprint plots of the contacts on the Hirshfeld surface of the asymmetric unit of (1) are shown in Fig. 9[link]. These comprise H⋯H, H⋯C/C⋯H, and H⋯O/O⋯H and the much weaker and less significant H⋯N/N⋯H contributions. All contacts are detailed in Table 3[link].

Table 3
Percentage contributions of the inter­atomic contacts to the Hirshfeld surface of the asymmetric unit of (1)

Contacts Included surface area (%)
H⋯H 68.9
H⋯O/O⋯H 22.6
H⋯C/C⋯H 8.0
H⋯N/N⋯H 0.5
[Figure 8]
Figure 8
Hirshfeld surfaces for opposite faces of the asymmetric unit of (1) mapped over dnorm in the range −0.5027 to 1.6303 a.u.
[Figure 9]
Figure 9
Full two-dimensional fingerprint plots for the asymmetric unit of (1) (a) and (b)–(e) separate contact types for the separate contact types for the asymmetric unit of the salt. These are found to be H⋯H, H⋯O/O⋯H, H⋯C/C⋯H and H⋯N/N⋯H contacts.

The surfaces of the two discrete salt components of the structure can also be examined individually. Fig. 10[link](a) and 10(b) for salt 1 and Fig. 11[link](a) and 11(b) for salt 2 show the Hirshfeld surfaces of the individual salts 1 and 2, for opposite faces in each case. An immediate observation, strongly supported by the surface area data found in the fingerprint plots, vide infra, is that the surface contacts in the two discrete salts are reasonably similar to one another. Such similarities are also signalled by the closely comparable metrical data for the two salts and the results of the overlay experiments on the pairs of cations and anions discussed earlier.

[Figure 10]
Figure 10
Hirshfeld surfaces for opposite faces of salt 1 mapped over dnorm in the range −0.4919 to 1.6314 a.u.
[Figure 11]
Figure 11
Hirshfeld surfaces for opposite faces of salt 2 mapped over dnorm in the range −0.5029 to 1.6274 a.u.

It is also instructive to investigate the differences in contacts for the discrete cation and anion components of both salts by recording fingerprint plots for the two salts together with those of the discrete cations and anions. All of the surface contributions for the individual salts and their component cations and anions are shown in Table 4[link], with fingerprint plots for these contacts displayed in Fig. 12[link] for salt 1 and Fig. 13[link] for salt 2. The fingerprint plots for the two salts are closely analogous as indeed are the percentage contribution figures in Table 4[link], further highlighting their similarities. The most notable differences between the values for the salt and its components are that the H⋯H van der Waals inter­actions are significantly greater for the cations in comparison to the anions, while the anion shows considerable increases in the H⋯O/O⋯H contacts reflecting the prominent role of the sulfonate O atoms in hydrogen bond formation. The H⋯N/N⋯H contributions to all of the surfaces are very weak but are included for completeness.

Table 4
Percentage contributions of the inter­atomic contacts to the Hirshfeld surface of the individual salts of (1)

Contact Salt 1 Cation Anion Salt 2 Cation Anion
H⋯H 68.9 67.3 54.9 68.9 67.2 54.5
H⋯O/O⋯H 23.5 24.9 35.4 23.6 25.1 35.7
H⋯C/C⋯H 7.2 7.0 8.8 7.0 6.7 8.7
H⋯N/N⋯H 0.4 0.8 0.8 0.5 0.9 1.0
[Figure 12]
Figure 12
Full two-dimensional fingerprint plots for salt 1 (a) its cation (b) and anion (c); (d)–(o) separate contact types for the salt, cation and anion systems respectively. These are found to be H⋯H, H⋯O/O⋯H, H⋯C/C⋯H and H⋯N/N⋯H contacts.
[Figure 13]
Figure 13
Full two-dimensional fingerprint plots for salt 2 (a) its cation (b) and anion (c); (d)–(o) separate contact types for the salt, cation and anion systems respectively. These are found to be H⋯H, H⋯O/O⋯H, H⋯C/C⋯H and H⋯N/N⋯H contacts.

5. Database survey

The Cambridge Structural Database (version 5.40 Nov 2018 with update of May 2019; Groom et al. 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) contains structures of 66 acryl­amide and 41 methacryl­amide derivatives including acryl­amide itself (ARCLAM01; Zhou et al. 2007[Zhou, Q.-L., Zhang, Z.-H. & Jing, Z.-L. (2007). Acta Cryst. E63, o3039.]) and both the s-cis (WANSAG) and s-trans (WANSAG01) conformations of methacryl­amide (Guo et al. 2005[Guo, C., Hickey, M. B., Guggenheim, E. R., Enkelmann, V. & Foxman, B. M. (2005). Chem. Commun. pp. 2220-2222.]). However, these results show that both components of this salt are unusual with no hits for any structures of related methyl­acryl­amido cations nor acryl­amido­sulfonate anions. Indeed, the only structure showing even a moderately close relationship to either of the mol­ecules reported here is N,N,N′,N′-tetra­methyl-N′′-[3-(tri­methyl­aza­nium­yl)prop­yl]guanidinium bis­(tetra­phenyl­borate) acetone solvate (Tiritiris, 2013[Tiritiris, I. (2013). Acta Cryst. E69, o337-o338.]) that contains the Me3N+(CH2)3NH- fragment.

6. Synthesis and crystallization

The title compound was prepared via an argentometric mixing approach (Li et al., 2010[Li, G., Xue, H., Gao, C., Zhang, F. & Jiang, S. (2010). Macromolecules, 43, 14-16.]) from the silver salt of 2-acryl­amido-2-methyl-1-propane­sulfonic acid (AMPS) and 3-(meth­acryl­oyl­amino)­propyl-tri­methyl­ammonium chloride (MPT Cl). After filtration of the AgCl precipitate, the solution was freeze-dried and the ion-pair comonomers recrystallized from dioxane.

1H NMR (400 MHz, DMSO-d6): δ 8.36 (br s, 1H, AMPS amide H), 8.06 (br s, 1H, MPT amide H), 6.09–5.89 (m, 2H, AMPS =CH2), 5.69 (m, 1H, MPT=CH), 5.48 (m, 1H, AMPS =CH), 5.32 (m, 1H MPT=CH), 3.31–3.22 (m, 2H, MPT CH2), 3.15 (m, 2H, MPT CH2), 3.02 (s, 9H, MPT CH3), 2.72 (s, 2H, AMPS CH2), 1.91–1.79 (m, 2H, MPT CH2), 1.79 (s, 3H, MPT=CCH3), 1.41 (s, 6H, AMPS CH3).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. N—H hydrogen atoms were located in a difference-Fourier map and their coordinates were refined with Uiso(H) = 1.2Ueq(N). All H atoms bound to carbon were refined using a riding model with d(C—H) = 0.95 Å and Uiso(H) = 1.2Ueq(C) for aromatic and vinyl H atoms, d(C—H) = 0.99 Å and Uiso(H) = 1.2Ueq(C) for methyl­ene and d(C—H) = 0.98 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms. The crystal studied was refined as a two-component inversion twin with a 0.58 (4):0.42 (4) domain ratio. Two reflections with Fo >>> Fc were omitted from the final refinement cycles.

Table 5
Experimental details

Crystal data
Chemical formula C10H21N2O+·C7H12NO4S
Mr 391.52
Crystal system, space group Orthorhombic, Pca21
Temperature (K) 100
a, b, c (Å) 17.5093 (7), 7.8052 (3), 30.3155 (13)
V3) 4143.0 (3)
Z 8
Radiation type Cu Kα
μ (mm−1) 1.65
Crystal size (mm) 0.46 × 0.27 × 0.11
 
Data collection
Diffractometer Rigaku Oxford Diffraction SuperNova, Dual, Cu at zero, Atlas
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO, Rigaku Oxford Diffraction Ltd, Yarnton, England.])
Tmin, Tmax 0.589, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 10436, 5961, 5040
Rint 0.054
(sin θ/λ)max−1) 0.620
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.173, 1.03
No. of reflections 5961
No. of parameters 494
No. of restraints 31
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.64, −0.32
Absolute structure Refined as an inversion twin.
Absolute structure parameter 0.47 (4)
Computer programs: CrysAlis PRO (Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO, Rigaku Oxford Diffraction Ltd, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), TITAN (Hunter & Simpson, 1999[Hunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), publCIF (Westrip 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2018); cell refinement: CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b) and TITAN (Hunter & Simpson, 1999); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2018 (Sheldrick, 2015b), enCIFer (Allen et al., 2004), PLATON (Spek, 2009), publCIF (Westrip 2010) and WinGX (Farrugia, 2012).

3-Methacrylamido-N,N,N-trimethylpropan-1-aminium 2-acrylamido-2-methylpropane-1-sulfonate top
Crystal data top
C10H21N2O+·C7H12NO4SDx = 1.255 Mg m3
Mr = 391.52Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, Pca21Cell parameters from 4725 reflections
a = 17.5093 (7) Åθ = 5.2–72.8°
b = 7.8052 (3) ŵ = 1.65 mm1
c = 30.3155 (13) ÅT = 100 K
V = 4143.0 (3) Å3Plate, colourless
Z = 80.46 × 0.27 × 0.11 mm
F(000) = 1696
Data collection top
Rigaku Oxford Diffraction SuperNova, Dual, Cu at zero, Atlas
diffractometer
5961 independent reflections
Radiation source: SuperNova (Cu) X-ray Source5040 reflections with I > 2σ(I)
Detector resolution: 5.1725 pixels mm-1Rint = 0.054
ω scansθmax = 72.8°, θmin = 5.1°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2018)
h = 2115
Tmin = 0.589, Tmax = 1.000k = 96
10436 measured reflectionsl = 3636
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.060 w = 1/[σ2(Fo2) + (0.1018P)2 + 1.0621P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.173(Δ/σ)max < 0.001
S = 1.03Δρmax = 0.64 e Å3
5961 reflectionsΔρmin = 0.32 e Å3
494 parametersAbsolute structure: Refined as an inversion twin.
31 restraintsAbsolute structure parameter: 0.47 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin. Two reflections with Fo >>> Fc were omitted from the final refinement cycles.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C180.6830 (4)0.9831 (8)0.5183 (3)0.0247 (16)
H18A0.6901980.8781680.5356040.037*
H18B0.6930851.0830250.5370280.037*
H18C0.7183250.9832170.4932810.037*
C190.5921 (5)1.1545 (9)0.4766 (3)0.0349 (17)
H19A0.5951831.2520640.4968890.052*
H19B0.5418871.1531420.4623850.052*
H19C0.6319851.1651390.4540630.052*
C1100.5495 (5)0.9882 (10)0.5403 (3)0.037 (2)
H11A0.5600701.0862340.5595140.055*
H11B0.5561690.8816400.5568940.055*
H11C0.4968350.9953780.5294200.055*
N110.6035 (4)0.9905 (6)0.5019 (2)0.0258 (14)
C110.5863 (4)0.8365 (8)0.4734 (2)0.0247 (14)
H11D0.5302610.8266010.4700450.030*
H11E0.6043920.7323780.4888610.030*
C120.6220 (3)0.8411 (7)0.4280 (2)0.0250 (12)
H12A0.6778820.8576860.4305860.030*
H12B0.6006680.9377740.4108670.030*
C130.6053 (3)0.6730 (7)0.4046 (2)0.0249 (12)
H13A0.6378440.5817810.4173310.030*
H13B0.5512890.6409570.4098070.030*
N120.6191 (3)0.6838 (6)0.35712 (17)0.0224 (10)
H12N0.578 (4)0.693 (9)0.343 (3)0.027*
C140.6881 (3)0.6571 (7)0.3401 (2)0.0198 (11)
O110.7443 (2)0.6223 (6)0.36331 (15)0.0272 (9)
C150.6946 (4)0.6717 (8)0.2908 (2)0.0261 (13)
C160.7639 (4)0.6354 (9)0.2722 (2)0.0358 (15)
H16A0.7706110.6446680.2412360.043*
H16B0.8053930.6008120.2903790.043*
C170.6299 (4)0.7244 (13)0.2650 (3)0.047 (2)
H17A0.6448940.7337160.2339330.071*
H17B0.6118140.8359870.2755060.071*
H17C0.5889960.6396230.2679550.071*
O120.4219 (3)0.8164 (6)0.42637 (18)0.0348 (11)
O130.4113 (5)1.1199 (7)0.4319 (2)0.067 (2)
O140.3005 (3)0.9400 (12)0.4408 (2)0.070 (2)
S10.37335 (9)0.9620 (2)0.41979 (5)0.0265 (4)
C1110.3578 (4)0.9838 (7)0.3621 (3)0.0221 (15)
H11F0.3305981.0934990.3572820.026*
H11G0.4083540.9944520.3477900.026*
C1120.3129 (3)0.8423 (7)0.33741 (19)0.0195 (11)
C1130.2292 (3)0.8345 (8)0.3513 (2)0.0302 (14)
H11H0.2034290.7426380.3350130.045*
H11I0.2044780.9441820.3446920.045*
H11J0.2259600.8115780.3829950.045*
C1140.3169 (4)0.8832 (9)0.2880 (2)0.0285 (13)
H11K0.3704430.8918770.2788430.043*
H11L0.2909350.9921590.2821970.043*
H11M0.2918160.7916020.2712380.043*
N130.3453 (3)0.6713 (6)0.34566 (17)0.0204 (10)
H13N0.309 (4)0.600 (9)0.354 (2)0.025*
C1150.4176 (3)0.6236 (7)0.33943 (19)0.0198 (11)
O150.4681 (2)0.7184 (5)0.32397 (14)0.0233 (8)
C1160.4340 (3)0.4425 (8)0.3526 (2)0.0238 (12)
H1160.3968130.3831810.3695590.029*
C1170.4965 (4)0.3618 (8)0.3420 (3)0.0337 (15)
H11N0.5346180.4180560.3249860.040*
H11O0.5040030.2466580.3511770.040*
C280.4323 (4)0.4759 (9)0.4825 (3)0.0251 (16)
H28A0.4385220.5778690.4640200.038*
H28B0.4401590.3728810.4646360.038*
H28C0.4698540.4785120.5065030.038*
C290.3427 (5)0.3137 (9)0.5288 (3)0.0353 (17)
H29A0.3817840.3096000.5519350.053*
H29B0.3476400.2128080.5097830.053*
H29C0.2919090.3144950.5424200.053*
C2100.2971 (4)0.4666 (10)0.4641 (3)0.0319 (16)
H21A0.2453900.4502620.4757310.048*
H21B0.3101270.3707690.4445900.048*
H21C0.2993130.5740640.4474340.048*
N210.3530 (3)0.4736 (6)0.5017 (2)0.0192 (11)
C210.3369 (4)0.6330 (8)0.5277 (2)0.0246 (14)
H21D0.2809490.6445820.5313000.030*
H21E0.3550320.7331840.5106380.030*
C220.3744 (3)0.6368 (8)0.5736 (2)0.0264 (12)
H22A0.3536210.5431420.5920740.032*
H22B0.4302120.6201490.5707930.032*
C230.3579 (3)0.8094 (8)0.59519 (19)0.0257 (13)
H23A0.3903920.8984580.5814960.031*
H23B0.3038400.8407670.5899970.031*
N220.3725 (3)0.8040 (6)0.64248 (17)0.0223 (10)
H22N0.332 (4)0.785 (9)0.662 (2)0.027*
C240.4405 (3)0.8420 (7)0.6600 (2)0.0214 (11)
O210.4954 (2)0.8854 (5)0.63690 (15)0.0255 (9)
C250.4467 (3)0.8314 (8)0.7094 (2)0.0242 (12)
C260.5143 (4)0.8731 (9)0.7281 (2)0.0354 (15)
H26A0.5201370.8680260.7592390.042*
H26B0.5559640.9075590.7101040.042*
C270.3810 (4)0.7778 (11)0.7356 (2)0.0415 (17)
H27A0.3951030.7753970.7668430.062*
H27B0.3648960.6631090.7262660.062*
H27C0.3389700.8588070.7311440.062*
O220.1734 (3)0.6760 (6)0.57622 (17)0.0310 (10)
O230.1667 (4)0.3726 (7)0.5717 (2)0.0591 (18)
O240.0536 (3)0.5449 (11)0.5619 (2)0.0624 (19)
S20.12650 (9)0.52727 (18)0.58283 (5)0.0240 (4)
C2110.1106 (5)0.5078 (7)0.6408 (3)0.0217 (15)
H21F0.0830630.3987160.6458750.026*
H21G0.1611040.4968670.6552100.026*
C2120.0661 (3)0.6508 (7)0.6651 (2)0.0215 (11)
C2130.0178 (3)0.6588 (8)0.6509 (2)0.0304 (14)
H21H0.0435090.7515350.6668560.046*
H21I0.0427400.5496170.6576980.046*
H21J0.0207280.6805390.6191120.046*
C2140.0700 (4)0.6112 (8)0.7144 (2)0.0274 (13)
H21K0.1235020.6090820.7239130.041*
H21L0.0466100.4992440.7200770.041*
H21M0.0424080.6997370.7308560.041*
N230.0982 (3)0.8228 (6)0.65627 (16)0.0205 (10)
H23N0.071 (4)0.904 (10)0.649 (2)0.025*
C2150.1711 (3)0.8691 (8)0.6618 (2)0.0215 (12)
O250.2210 (2)0.7750 (5)0.67734 (14)0.0240 (9)
C2160.1867 (3)1.0492 (8)0.6480 (2)0.0234 (12)
H2160.1488171.1079510.6313840.028*
C2170.2507 (3)1.1311 (8)0.6577 (3)0.0346 (16)
H21N0.2894151.0750500.6742280.041*
H21O0.2578901.2458410.6481340.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C180.025 (4)0.027 (3)0.022 (4)0.002 (2)0.001 (3)0.002 (2)
C190.054 (5)0.028 (3)0.022 (4)0.017 (3)0.003 (3)0.001 (3)
C1100.026 (4)0.055 (5)0.028 (4)0.002 (3)0.013 (3)0.010 (3)
N110.031 (3)0.027 (3)0.019 (3)0.003 (2)0.004 (3)0.0038 (19)
C110.024 (3)0.031 (3)0.019 (3)0.008 (2)0.003 (3)0.005 (2)
C120.023 (3)0.030 (3)0.022 (3)0.001 (2)0.001 (2)0.005 (2)
C130.024 (3)0.026 (3)0.025 (3)0.002 (2)0.001 (2)0.004 (2)
N120.020 (2)0.027 (2)0.021 (2)0.0001 (19)0.004 (2)0.0041 (19)
C140.017 (2)0.015 (2)0.027 (3)0.002 (2)0.000 (2)0.004 (2)
O110.0191 (19)0.035 (2)0.028 (2)0.0022 (16)0.0012 (17)0.0033 (19)
C150.031 (3)0.023 (3)0.024 (3)0.004 (2)0.004 (2)0.001 (2)
C160.031 (3)0.047 (4)0.029 (3)0.012 (3)0.005 (3)0.009 (3)
C170.023 (3)0.087 (6)0.032 (4)0.009 (4)0.003 (3)0.018 (4)
O120.046 (2)0.030 (2)0.028 (3)0.0111 (19)0.012 (2)0.002 (2)
O130.128 (6)0.029 (3)0.044 (4)0.008 (3)0.038 (4)0.004 (3)
O140.031 (3)0.154 (6)0.024 (3)0.020 (4)0.002 (2)0.006 (4)
S10.0313 (9)0.0304 (8)0.0177 (8)0.0080 (6)0.0038 (7)0.0061 (7)
C1110.021 (3)0.021 (3)0.024 (5)0.002 (2)0.002 (3)0.002 (2)
C1120.019 (3)0.015 (2)0.025 (3)0.003 (2)0.002 (2)0.007 (2)
C1130.020 (3)0.028 (3)0.042 (4)0.005 (2)0.005 (3)0.003 (3)
C1140.031 (3)0.032 (3)0.022 (3)0.009 (3)0.004 (3)0.004 (2)
N130.017 (2)0.021 (2)0.023 (2)0.0006 (18)0.0009 (19)0.0006 (19)
C1150.019 (3)0.024 (3)0.016 (3)0.003 (2)0.000 (2)0.006 (2)
O150.0176 (18)0.029 (2)0.024 (2)0.0012 (16)0.0026 (16)0.0008 (17)
C1160.022 (3)0.021 (3)0.029 (3)0.003 (2)0.002 (2)0.001 (3)
C1170.029 (3)0.023 (3)0.049 (4)0.000 (2)0.002 (3)0.012 (3)
C280.017 (3)0.035 (3)0.024 (4)0.000 (2)0.003 (3)0.005 (3)
C290.051 (5)0.024 (3)0.031 (4)0.009 (3)0.006 (3)0.002 (3)
C2100.022 (4)0.049 (4)0.025 (4)0.000 (3)0.002 (3)0.011 (3)
N210.013 (2)0.025 (2)0.020 (3)0.0014 (18)0.000 (2)0.003 (2)
C210.023 (3)0.029 (3)0.022 (3)0.002 (2)0.003 (3)0.007 (3)
C220.025 (3)0.034 (3)0.021 (3)0.005 (2)0.000 (2)0.004 (2)
C230.024 (3)0.034 (3)0.019 (3)0.001 (2)0.005 (2)0.001 (2)
N220.016 (2)0.031 (2)0.020 (2)0.0014 (19)0.0027 (19)0.002 (2)
C240.023 (3)0.020 (3)0.021 (3)0.003 (2)0.000 (2)0.002 (2)
O210.0214 (19)0.030 (2)0.025 (2)0.0029 (17)0.0025 (17)0.0014 (18)
C250.026 (3)0.024 (3)0.023 (3)0.002 (2)0.003 (2)0.002 (2)
C260.038 (3)0.043 (4)0.026 (3)0.012 (3)0.006 (3)0.012 (3)
C270.028 (3)0.072 (5)0.024 (3)0.007 (3)0.000 (3)0.007 (3)
O220.038 (2)0.031 (2)0.024 (2)0.0106 (18)0.0061 (19)0.0002 (19)
O230.116 (5)0.030 (3)0.032 (3)0.013 (3)0.034 (3)0.006 (2)
O240.034 (3)0.130 (5)0.023 (3)0.025 (3)0.003 (2)0.006 (4)
S20.0250 (8)0.0296 (8)0.0173 (8)0.0039 (6)0.0017 (6)0.0010 (7)
C2110.034 (4)0.017 (3)0.014 (4)0.005 (2)0.000 (3)0.0022 (19)
C2120.019 (2)0.020 (3)0.026 (3)0.004 (2)0.003 (2)0.002 (2)
C2130.026 (3)0.032 (3)0.033 (4)0.000 (2)0.001 (3)0.002 (3)
C2140.028 (3)0.033 (3)0.022 (3)0.004 (2)0.005 (2)0.003 (3)
N230.022 (2)0.019 (2)0.021 (2)0.0039 (18)0.0001 (19)0.0009 (19)
C2150.020 (3)0.025 (3)0.019 (3)0.000 (2)0.001 (2)0.007 (2)
O250.0188 (19)0.029 (2)0.024 (2)0.0009 (16)0.0004 (16)0.0006 (18)
C2160.022 (3)0.023 (3)0.025 (3)0.004 (2)0.003 (2)0.003 (3)
C2170.025 (3)0.025 (3)0.053 (4)0.003 (2)0.001 (3)0.004 (3)
Geometric parameters (Å, º) top
C18—N111.479 (10)C28—N211.504 (9)
C18—H18A0.9800C28—H28A0.9800
C18—H18B0.9800C28—H28B0.9800
C18—H18C0.9800C28—H28C0.9800
C19—N111.506 (9)C29—N211.506 (9)
C19—H19A0.9800C29—H29A0.9800
C19—H19B0.9800C29—H29B0.9800
C19—H19C0.9800C29—H29C0.9800
C110—N111.498 (11)C210—N211.504 (10)
C110—H11A0.9800C210—H21A0.9800
C110—H11B0.9800C210—H21B0.9800
C110—H11C0.9800C210—H21C0.9800
N11—C111.511 (8)N21—C211.500 (8)
C11—C121.511 (9)C21—C221.539 (9)
C11—H11D0.9900C21—H21D0.9900
C11—H11E0.9900C21—H21E0.9900
C12—C131.520 (8)C22—C231.525 (8)
C12—H12A0.9900C22—H22A0.9900
C12—H12B0.9900C22—H22B0.9900
C13—N121.463 (7)C23—N221.457 (7)
C13—H13A0.9900C23—H23A0.9900
C13—H13B0.9900C23—H23B0.9900
N12—C141.330 (7)N22—C241.338 (7)
N12—H12N0.84 (7)N22—H22N0.93 (7)
C14—O111.239 (7)C24—O211.236 (7)
C14—C151.505 (8)C24—C251.505 (8)
C15—C161.367 (9)C25—C261.352 (9)
C15—C171.436 (9)C25—C271.457 (9)
C16—H16A0.9500C26—H26A0.9500
C16—H16B0.9500C26—H26B0.9500
C17—H17A0.9800C27—H27A0.9800
C17—H17B0.9800C27—H27B0.9800
C17—H17C0.9800C27—H27C0.9800
O12—S11.434 (5)O22—S21.436 (4)
O13—S11.447 (6)O23—S21.437 (6)
O14—S11.436 (7)O24—S21.432 (7)
S1—C1111.778 (8)S2—C2111.786 (8)
C111—C1121.548 (8)C211—C2121.547 (8)
C111—H11F0.9900C211—H21F0.9900
C111—H11G0.9900C211—H21G0.9900
C112—N131.472 (7)C212—N231.479 (7)
C112—C1131.526 (7)C212—C2141.529 (8)
C112—C1141.534 (8)C212—C2131.532 (8)
C113—H11H0.9800C213—H21H0.9800
C113—H11I0.9800C213—H21I0.9800
C113—H11J0.9800C213—H21J0.9800
C114—H11K0.9800C214—H21K0.9800
C114—H11L0.9800C214—H21L0.9800
C114—H11M0.9800C214—H21M0.9800
N13—C1151.333 (7)N23—C2151.338 (7)
N13—H13N0.88 (7)N23—H23N0.82 (7)
C115—O151.245 (7)C215—O251.235 (7)
C115—C1161.496 (8)C215—C2161.492 (9)
C116—C1171.304 (9)C216—C2171.323 (9)
C116—H1160.9500C216—H2160.9500
C117—H11N0.9500C217—H21N0.9500
C117—H11O0.9500C217—H21O0.9500
N11—C18—H18A109.5N21—C28—H28A109.5
N11—C18—H18B109.5N21—C28—H28B109.5
H18A—C18—H18B109.5H28A—C28—H28B109.5
N11—C18—H18C109.5N21—C28—H28C109.5
H18A—C18—H18C109.5H28A—C28—H28C109.5
H18B—C18—H18C109.5H28B—C28—H28C109.5
N11—C19—H19A109.5N21—C29—H29A109.5
N11—C19—H19B109.5N21—C29—H29B109.5
H19A—C19—H19B109.5H29A—C29—H29B109.5
N11—C19—H19C109.5N21—C29—H29C109.5
H19A—C19—H19C109.5H29A—C29—H29C109.5
H19B—C19—H19C109.5H29B—C29—H29C109.5
N11—C110—H11A109.5N21—C210—H21A109.5
N11—C110—H11B109.5N21—C210—H21B109.5
H11A—C110—H11B109.5H21A—C210—H21B109.5
N11—C110—H11C109.5N21—C210—H21C109.5
H11A—C110—H11C109.5H21A—C210—H21C109.5
H11B—C110—H11C109.5H21B—C210—H21C109.5
C18—N11—C110109.4 (7)C21—N21—C210107.8 (5)
C18—N11—C19109.2 (6)C21—N21—C28111.5 (5)
C110—N11—C19108.8 (6)C210—N21—C28108.0 (6)
C18—N11—C11110.4 (5)C21—N21—C29112.2 (6)
C110—N11—C11108.0 (6)C210—N21—C29107.8 (6)
C19—N11—C11111.0 (6)C28—N21—C29109.4 (6)
N11—C11—C12114.8 (5)N21—C21—C22114.3 (5)
N11—C11—H11D108.6N21—C21—H21D108.7
C12—C11—H11D108.6C22—C21—H21D108.7
N11—C11—H11E108.6N21—C21—H21E108.7
C12—C11—H11E108.6C22—C21—H21E108.7
H11D—C11—H11E107.5H21D—C21—H21E107.6
C11—C12—C13108.9 (5)C23—C22—C21108.9 (5)
C11—C12—H12A109.9C23—C22—H22A109.9
C13—C12—H12A109.9C21—C22—H22A109.9
C11—C12—H12B109.9C23—C22—H22B109.9
C13—C12—H12B109.9C21—C22—H22B109.9
H12A—C12—H12B108.3H22A—C22—H22B108.3
N12—C13—C12112.2 (5)N22—C23—C22111.3 (5)
N12—C13—H13A109.2N22—C23—H23A109.4
C12—C13—H13A109.2C22—C23—H23A109.4
N12—C13—H13B109.2N22—C23—H23B109.4
C12—C13—H13B109.2C22—C23—H23B109.4
H13A—C13—H13B107.9H23A—C23—H23B108.0
C14—N12—C13121.5 (5)C24—N22—C23122.7 (5)
C14—N12—H12N127 (5)C24—N22—H22N118 (4)
C13—N12—H12N111 (5)C23—N22—H22N119 (4)
O11—C14—N12122.4 (6)O21—C24—N22121.9 (5)
O11—C14—C15121.4 (5)O21—C24—C25121.6 (5)
N12—C14—C15116.2 (5)N22—C24—C25116.5 (5)
C16—C15—C17122.4 (6)C26—C25—C27122.2 (6)
C16—C15—C14117.4 (6)C26—C25—C24117.8 (5)
C17—C15—C14120.2 (5)C27—C25—C24120.1 (5)
C15—C16—H16A120.0C25—C26—H26A120.0
C15—C16—H16B120.0C25—C26—H26B120.0
H16A—C16—H16B120.0H26A—C26—H26B120.0
C15—C17—H17A109.5C25—C27—H27A109.5
C15—C17—H17B109.5C25—C27—H27B109.5
H17A—C17—H17B109.5H27A—C27—H27B109.5
C15—C17—H17C109.5C25—C27—H27C109.5
H17A—C17—H17C109.5H27A—C27—H27C109.5
H17B—C17—H17C109.5H27B—C27—H27C109.5
O12—S1—O14111.7 (4)O24—S2—O22111.7 (4)
O12—S1—O13111.6 (4)O24—S2—O23114.4 (5)
O14—S1—O13113.4 (5)O22—S2—O23111.5 (4)
O12—S1—C111107.7 (3)O24—S2—C211107.8 (4)
O14—S1—C111108.1 (4)O22—S2—C211107.2 (3)
O13—S1—C111103.8 (3)O23—S2—C211103.6 (3)
C112—C111—S1119.0 (5)C212—C211—S2119.0 (5)
C112—C111—H11F107.6C212—C211—H21F107.6
S1—C111—H11F107.6S2—C211—H21F107.6
C112—C111—H11G107.6C212—C211—H21G107.6
S1—C111—H11G107.6S2—C211—H21G107.6
H11F—C111—H11G107.0H21F—C211—H21G107.0
N13—C112—C113106.7 (5)N23—C212—C214110.1 (5)
N13—C112—C114109.7 (4)N23—C212—C213106.0 (5)
C113—C112—C114108.7 (5)C214—C212—C213109.0 (5)
N13—C112—C111111.7 (5)N23—C212—C211112.3 (5)
C113—C112—C111112.5 (5)C214—C212—C211107.3 (5)
C114—C112—C111107.5 (5)C213—C212—C211112.3 (5)
C112—C113—H11H109.5C212—C213—H21H109.5
C112—C113—H11I109.5C212—C213—H21I109.5
H11H—C113—H11I109.5H21H—C213—H21I109.5
C112—C113—H11J109.5C212—C213—H21J109.5
H11H—C113—H11J109.5H21H—C213—H21J109.5
H11I—C113—H11J109.5H21I—C213—H21J109.5
C112—C114—H11K109.5C212—C214—H21K109.5
C112—C114—H11L109.5C212—C214—H21L109.5
H11K—C114—H11L109.5H21K—C214—H21L109.5
C112—C114—H11M109.5C212—C214—H21M109.5
H11K—C114—H11M109.5H21K—C214—H21M109.5
H11L—C114—H11M109.5H21L—C214—H21M109.5
C115—N13—C112126.5 (5)C215—N23—C212125.8 (5)
C115—N13—H13N123 (4)C215—N23—H23N112 (5)
C112—N13—H13N110 (4)C212—N23—H23N122 (5)
O15—C115—N13124.2 (6)O25—C215—N23124.2 (6)
O15—C115—C116121.7 (5)O25—C215—C216122.6 (5)
N13—C115—C116114.1 (5)N23—C215—C216113.2 (5)
C117—C116—C115123.5 (6)C217—C216—C215123.2 (6)
C117—C116—H116118.3C217—C216—H216118.4
C115—C116—H116118.3C215—C216—H216118.4
C116—C117—H11N120.0C216—C217—H21N120.0
C116—C117—H11O120.0C216—C217—H21O120.0
H11N—C117—H11O120.0H21N—C217—H21O120.0
C18—N11—C11—C1274.4 (7)C210—N21—C21—C22164.9 (6)
C110—N11—C11—C12165.9 (6)C28—N21—C21—C2276.7 (7)
C19—N11—C11—C1246.8 (9)C29—N21—C21—C2246.4 (8)
N11—C11—C12—C13175.5 (5)N21—C21—C22—C23176.3 (5)
C11—C12—C13—N12164.4 (5)C21—C22—C23—N22163.8 (5)
C12—C13—N12—C1485.9 (6)C22—C23—N22—C2490.1 (7)
C13—N12—C14—O110.2 (8)C23—N22—C24—O210.5 (9)
C13—N12—C14—C15179.8 (5)C23—N22—C24—C25179.7 (5)
O11—C14—C15—C163.7 (9)O21—C24—C25—C260.8 (9)
N12—C14—C15—C16176.4 (6)N22—C24—C25—C26178.5 (6)
O11—C14—C15—C17175.4 (7)O21—C24—C25—C27179.3 (6)
N12—C14—C15—C174.5 (9)N22—C24—C25—C271.4 (9)
O12—S1—C111—C11265.6 (6)O24—S2—C211—C21256.9 (7)
O14—S1—C111—C11255.3 (7)O22—S2—C211—C21263.5 (6)
O13—S1—C111—C112176.0 (6)O23—S2—C211—C212178.5 (6)
S1—C111—C112—N1352.7 (7)S2—C211—C212—N2352.1 (7)
S1—C111—C112—C11367.2 (7)S2—C211—C212—C214173.1 (5)
S1—C111—C112—C114173.1 (5)S2—C211—C212—C21367.2 (7)
C113—C112—N13—C115177.8 (5)C214—C212—N23—C21566.0 (7)
C114—C112—N13—C11564.6 (7)C213—C212—N23—C215176.3 (5)
C111—C112—N13—C11554.5 (7)C211—C212—N23—C21553.4 (8)
C112—N13—C115—O152.6 (9)C212—N23—C215—O254.1 (9)
C112—N13—C115—C116177.6 (5)C212—N23—C215—C216177.1 (5)
O15—C115—C116—C11712.6 (10)O25—C215—C216—C21711.3 (10)
N13—C115—C116—C117167.2 (6)N23—C215—C216—C217167.5 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N12—H12N···O150.84 (7)2.02 (7)2.841 (6)167 (7)
N13—H13N···O11i0.88 (7)2.10 (7)2.943 (6)162 (6)
N22—H22N···O250.93 (7)2.00 (7)2.865 (6)154 (6)
N23—H23N···O21ii0.82 (7)2.15 (7)2.961 (6)174 (7)
C11—H11D···O120.992.313.216 (8)151
C12—H12A···O14iii0.992.683.583 (8)151
C13—H13B···O120.992.693.463 (8)135
C18—H18C···O14iii0.982.233.182 (10)164
C18—H18B···O22iii0.982.253.192 (8)160
C18—H18A···O23iv0.982.283.226 (9)162
C19—H19A···O24iii0.982.633.555 (10)157
C110—H11B···O210.982.653.182 (11)114
C116—H116···O11i0.952.683.375 (7)131
C117—H11N···N120.952.733.338 (8)123
C21—H21D···O220.992.343.236 (8)151
C22—H22B···O24iv0.992.533.463 (8)157
C23—H23B···O220.992.653.442 (7)137
C28—H28A···O120.982.203.162 (9)166
C28—H28B···O13v0.982.273.195 (9)158
C29—H29C···O230.982.413.377 (10)169
C211—H21F···O21i0.992.713.674 (8)164
C216—H216···O21ii0.952.693.405 (7)132
Symmetry codes: (i) x1/2, y+1, z; (ii) x1/2, y+2, z; (iii) x+1/2, y+2, z; (iv) x+1/2, y+1, z; (v) x, y1, z.
Selected bond lengths (Å) for salts 1 and 2 top
Salt 1Salt 2
C18—N111.479 (10)C28—N211.504 (9)
C19—N111.506 (9)C29—N211.506 (9)
C110—N111.498 (11)C210—N211.504 (10)
N11—C111.511 (8)N21—C211.500 (8)
C13—N121.463 (7)C23—N221.457 (7)
N12—C141.330 (7)N22—C241.338 (7)
C14—O111.239 (7)C24—O211.236 (7)
C15—C161.367 (9)C25—C261.352 (9)
O12—S11.434 (5)O22—S21.436 (4)
O13—S11.447 (6)O23—S21.437 (6)
O14—S11.436 (7)O24—S21.432 (7)
S1—C1111.778 (8)S2—C2111.786 (8)
N13—C1151.333 (7)N23—C2151.338 (7)
C115—O151.245 (7)C215—O251.235 (7)
C116—C1171.304 (9)C216—C2171.323 (9)
Percentage contributions of the interatomic contacts to the Hirshfeld surface of the asymmetric unit of (1) top
ContactsIncluded surface area (%)
H···H68.9
H···O/O···H22.6
H···C/C···H8.0
H···N/N···H0.5
Percentage contributions of the interatomic contacts to the Hirshfeld surface of the individual salts of (1) top
ContactSalt 1CationAnionSalt 2CationAnion
H···H68.967.354.968.967.254.5
H···O/O···H23.524.935.423.625.135.7
H···C/C···H7.27.08.87.06.78.7
H···N/N···H0.40.80.80.50.91.0
 

Funding information

We thank the NZ Ministry of Business, Innovation and Employment Science Investment Fund (grant No. UOO-X1206) for support of this work and the University of Otago for the purchase of the diffractometer. JS also thanks the Department of Chemistry, University of Otago for support of his work.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGoswami, S. K., McAdam, C. J., Hanton, L. R. & Moratti, S. C. (2017). Macromol. Rapid Commun. 38, 1700103.  Web of Science CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGuo, C., Hickey, M. B., Guggenheim, E. R., Enkelmann, V. & Foxman, B. M. (2005). Chem. Commun. pp. 2220–2222.  Web of Science CSD CrossRef Google Scholar
First citationHaag, S. L. & Bernards, M. T. (2017). Gels, 3, 41.  Google Scholar
First citationHunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.  Google Scholar
First citationIhsan, A. B., Sun, T. L., Kurokawa, T., Karobi, S. N., Nakajima, T., Nonoyama, T., Roy, C. K., Luo, F. & Gong, J. P. (2016). Macromolecules, 49, 4245–4252.  Web of Science CrossRef Google Scholar
First citationLi, G., Xue, H., Gao, C., Zhang, F. & Jiang, S. (2010). Macromolecules, 43, 14–16.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcAdam, C. J., Hanton, L. R., Moratti, S. C., Simpson, J. & Wickramasinhage, R. N. (2019). Acta Cryst. E75, 946–950.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPushparajan, C., Goswami, S. K., McAdam, C. J., Hanton, L. R., Dearden, P. K., Moratti, S. C. & Cridge, A. G. (2018). Electrophoresis, 39, 824–832.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRigaku OD (2018). CrysAlis PRO, Rigaku Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSalamone, J. C., Tsai, C. C., Olson, A. P. & Watterson, A. C. (1978). ACS Polymer Preprints E19, 261-264.  Google Scholar
First citationSalamone, J. C., Tsai, C. C., Olson, A. P. & Watterson, A. C. (1980). Ions in Polymers – Advances in Chemistry, Vol. 187, edited by A. Eisenberg, ch. 22, p. 337–346. ACS Publications.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTiritiris, I. (2013). Acta Cryst. E69, o337–o338.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia, Nedlands, Western Australia; https://hirshfeldsurface.net.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhou, Q.-L., Zhang, Z.-H. & Jing, Z.-L. (2007). Acta Cryst. E63, o3039.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZurick, K. M. & Bernards, M. (2014). J. Appl. Polym. Sci. 131, 40069.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds