research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

The crystal structures and Hirshfeld surface analysis of 6-(naphthalen-1-yl)-6a-nitro-6,6a,6b,7,9,11a-hexa­hydro­spiro­[chromeno[3′,4′:3,4]pyrrolo­[1,2-c]thia­zole-11,11′-indeno­[1,2-b]quinoxaline] and 6′-(naphthalen-1-yl)-6a′-nitro-6′,6a′,6b′,7′,8′,9′,10′,12a′-octa­hydro-2H-spiro­[ace­naphthyl­ene-1,12′-chromeno[3,4-a]indolizin]-2-one

CROSSMARK_Color_square_no_text.svg

aPG & Research Department of Physics, The New College (Autonomous), University of Madras, Chennai 600 014, Tamil Nadu, India, and bDepartment of Biophysics, All India Institute of Medical Science, New Delhi 110029, India
*Correspondence e-mail: mnizam.new@gmail.com

Edited by C. Massera, Università di Parma, Italy (Received 16 July 2019; accepted 18 September 2019; online 27 September 2019)

The title compounds, 6-(naphthalen-1-yl)-6a-nitro-6,6a,6 b,7,9,11a-hexa­hydro­spiro­[chromeno[3′,4′:3,4]pyrrolo­[1,2-c]thia­zole-11,11′-indeno­[1,2-b]quinoxaline], C37H26N4O3S, (I), and 6′-(naphthalen-1-yl)-6a′-nitro-6′,6a′,6b′,7′,8′,9′,10′,12a′-octa­hydro-2H-spiro­[ace­naphthyl­ene-1,12′-chromeno[3,4-a]indolizin]-2-one, C36H28N2O4, (II), are new spiro derivatives, in which both the pyrrolidine rings adopt twisted conformations. In (I), the five-membered thia­zole ring adopts an envelope conformation, while the eight-membered pyrrolidine-thia­zole ring adopts a boat conformation. An intra­molecular C—H⋯N hydrogen bond occurs, involving a C atom of the pyran ring and an N atom of the pyrazine ring. In (II), the six-membered piperidine ring adopts a chair conformation. An intra­molecular C—H⋯O hydrogen bond occurs, involving a C atom of the pyrrolidine ring and the keto O atom. For both compounds, the crystal structure is stabilized by inter­molecular C—H⋯O hydrogen bonds. In (I), the C—H⋯O hydrogen bonds link adjacent mol­ecules, forming R22(16) loops propagating along the b-axis direction, while in (II) they form zigzag chains along the b-axis direction. In both compounds, C—H⋯π inter­actions help to consolidate the structure, but no significant ππ inter­actions with centroid–centroid distances of less than 4 Å are observed.

1. Chemical context

Nitro­gen-containing heterocycles and their derivatives are present in many large mol­ecules suitable for photo-chemical, electrochemical and catalytic applications; moreover, some derivatives also possess non-linear optical (NLO) properties (Babu et al., 2014a[Babu, K. S. S., Peramaiyan, G., NizamMohideen, M. & Mohan, R. (2014a). Acta Cryst. E70, o391-o392.],b[Babu, K. S. S., Dhavamurthy, M., NizamMohideen, M., Peramaiyan, G. & Mohan, R. (2014b). Acta Cryst. E70, o600-o601.]). Spiro compounds are potential precursors for biologically important compounds such as amino sugars (NizamMohideen et al., 2009a[NizamMohideen, M., Damodiran, M., SubbiahPandi, A. & Perumal, P. T. (2009a). Acta Cryst. E65, o1156.]; Ali et al., 1988[Ali, A. S., Khan, J. H. & Wazeer, M. I. M. (1988). Tetrahedron, 44, 5911-5920.]), alkaloids (NizamMohideen et al., 2009c[NizamMohideen, M., Thenmozhi, S., SubbiahPandi, A., Savitha, G. & Perumal, P. T. (2009c). Acta Cryst. E65, o977-o978.]; Goti et al., 1997[Goti, A., Fedi, V., Nannelli, L., De Sarlo, F. & Brandi, A. (1997). Synlett, pp. 577-579.]), and exhibit anti­bacterial and anti­fungal activities (Ravi Kumar et al., 2003[Ravi Kumar, K. R., Mallesha, H. & Rangappa, K. S. (2003). Synth. Commun. 33, 1545-1555.]). The 1,3-dipolar cyclo­addition of nitro­nes with olefinic dipolarophiles proceeds through a concerted mechanism yielding highly substituted heterocyclic compounds (Gothelf & Jørgensen, 1998[Gothelf, K. V. & Jørgensen, K. A. (1998). Chem. Rev. 98, 863-910.]). The cornerstone for cyclo­addition reactions, nitro­nes, are excellent for spin trapping (NizamMohideen et al., 2009b[NizamMohideen, M., Damodiran, M., SubbiahPandi, A. & Perumal, P. T. (2009b). Acta Cryst. E65, o2305-o2306.]; Bernotas et al., 1996[Bernotas, R. C., Adams, G. & Carr, A. A. (1996). Tetrahedron, 52, 6519-6526.]) and are highly versatile synthetic inter­mediates (Breuer, 1982[Breuer, E. (1982). The Chemistry of Amino, Nitroso and Nitro Compounds and their Derivatives, Part I, edited by S. Patai, ch. 13. New York: Wiley Interscience.]). The stereochemistry, such as regioselectivity and enanti­oselectivity, of heterocyclic compounds (Huisgen, 1984[Huisgen, R. (1984). 1,3-Dipolar Cycloaddition Chemistry, Vol. I, edited by A. Padawa, pp. 3-27. New York: Wiley Interscience.]) can be studied by 1,3-dipolar cyclo­addition reactions. Against this background and considering the importance of their natural occurrence, biological, pharmacological and medicinal activities, use as synthetic inter­mediates, as well as in view of our ongoing research on the design of novel heterocycles, we have synthesized the title compounds and report herein their crystal structures.

[Scheme 1]
[Scheme 2]

2. Structural commentary

The bond lengths and angles are close to those reported for similar compounds (Devi et al., 2013a[Devi, S. K., Srinivasan, T., Rao, J. N. S., Raghunathan, R. & Velmurugan, D. (2013a). Acta Cryst. E69, o1047.],b[Devi, S. K., Srinivasan, T., Rao, J. N. S., Raghunathan, R. & Velmurugan, D. (2013b). Acta Cryst. E69, o993.]; Syed Abuthahir et al., 2019a[Syed Abuthahir, S., NizamMohideen, M., Viswanathan, V., Velmurugan, D. & Nagasivarao, J. (2019a). Acta Cryst. E75, 218-222.],b[Syed Abuthahir, S., NizamMohideen, M., Viswanathan, V., Velmurugan, D. & Nagasivarao, J. (2019b). Acta Cryst. E75, 255-259.]). In both compounds, the five-membered pyrrolidine ring (N3/C1/C16/C24/C25) adopts a twisted conformation [on C24 and C25 in (I)[link] and on C17 and N1 in (II)], with a pseudo-twofold axis passing through the N3—C1 and N1—C12 bonds, respectively. The puckering parameters are: q2 = 0.357 (2) Å, φ = 307.0 (3)° for (I)[link] and q2 = 0.415 (2) Å, φ = 348.5 (3)° for (II)[link]. The mean plane of the pyrrolidine ring is almost perpendicular to the mean plane of the cyclo­pentene ring (C1/C2/C7/C8/C15), being inclined by 88.5 (2) in (I)[link] and 84.3 (2)° in (II)[link]. It forms dihedral angles of 57.7 (2) in (I)[link] and 63.0 (2)° in (II)[link] with the mean plane of the pyran ring (O1/C16/C17/C22–C24), and subtends dihedral angles of 24.2 (2) in (I)[link] and 45.3 (2)° in (II)[link] with the mean plane of the naphthalene ring system (C28–C37). The mean plane of the pyran ring is inclined to the mean plane of the cyclo­pentene ring by 55.2 (2) in (I)[link] and 36.7 (2)° in (II)[link], while it subtends dihedral angles of 64.3 (2) in (I)[link] and 81.0 (2)° in (II)[link] with the mean plane of the naphthalene unit.

In (I)[link], the five-membered thia­zole ring (S1/C25–C27/N3) adopts an envelope conformation on C25 with a pseudo-twofold axis passing through the S1—C26 bond. Its puckering parameters are q2 = 0.391 (2) Å and φ = 251.9 (3)°. The eight-membered pyrrolidine-thia­zole ring (S1/C24–C27/C1/C16/N3) adopts a boat conformation with a total puckering amplitude Q = 1.351 (2) Å and φ = 321.43 (8)°. The mean planes of the pyran and thia­zole rings are inclined to each other by 77.5 (2)°. The mean plane of the pyrazine ring (N1/N2/C8/C9/C14/C15) forms a dihedral angle of 57.1 (2)° with the mean plane of the pyran ring, while it is almost perpendicular with respect to the mean plane of the pyrrolidine ring, forming an angle of 89.8 (2)°. The pyrazine ring is inclined by 51.9 (2), 1.9 (2) and 69.5 (2)° with respect to the mean planes of the thia­zole and cyclo­pentene ring and the naphthalene ring system, respectively. An intra­molecular C23–H23⋯N1 hydrogen bond is formed (Fig. 1[link]).

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], with atom labelling. Displacement ellipsoids are drawn at the 30% probability level. The intra­molecular C—H⋯N hydrogen bond (Table 1[link]) is shown as a dashed line.

In (II)[link], the six-membered piperidine ring (N1/C13–C17) adopts a chair conformation with puckering parameters q2 = 0.045 (2) Å, θ = 175.7 (2)° and φ = 22 (3)°. The dihedral angle between the ace­naphthyl­ene (C1–C12) and naphthalene (C27–C36) ring systems is 63.8 (6)°. Moreover, this moiety is inclined of 85.3 (1), 36.1 (1) and 89.4 (2) ° with respect to the mean planes of the pyrrolidine (N1/C12/C17–C19), pyran (O4/C18–C20/C25/C26) and piperidine (N1/C13–C17) rings, respectively. The keto atom O1 deviates from the mean plane of the ace­naphthyl­ene unit by 0.148 (1) Å. An intra­molecular C17—H17⋯O1 hydrogen bond is present (Fig. 2[link]).

[Figure 2]
Figure 2
The mol­ecular structure of (II)[link], with atom labelling. Displacement ellipsoids are drawn at the 30% probability level. The intra­molecular C—H⋯O hydrogen bond (Table 2[link]) is shown as a dashed lines.

3. Supra­molecular features

For both compounds, the crystal structure is stabilized by inter­molecular C—H⋯O hydrogen bonds (Tables 1[link] and 2[link]). In (I)[link], the C—H⋯O hydrogen bonds link adjacent mol­ecules, forming R22(16) loops propagating along the b-axis direction. The loops are linked by C—H⋯S hydrogen bonds, forming layers parallel to the (101) plane; C—H⋯π inter­actions are present within the layers (Table 1[link], Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

Cg1 is the centroid of the C9–C14 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C19—H19⋯S1i 0.93 2.78 3.640 (3) 156
C23—H23⋯N1 0.98 2.41 3.267 (3) 145
C27—H27B⋯O2ii 0.97 2.59 3.393 (3) 140
C30—H30⋯O3iii 0.93 2.57 3.480 (3) 166
C33—H33⋯O3iv 0.93 2.58 3.274 (3) 131
C20—H20⋯Cg1v 0.93 2.81 3.706 (3) 163
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x-1, y, z; (iii) -x+1, -y, -z+1; (iv) -x, -y, -z+1; (v) x+1, y, z.

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

Cg1 is the centroid of the C6–C11 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13A⋯O3i 0.97 2.59 3.413 (3) 143
C17—H17⋯O1 0.98 2.50 3.148 (2) 124
C32—H32⋯O1ii 0.93 2.59 3.318 (3) 135
C35—H35⋯Cg1iii 0.93 2.92 3.849 (2) 176
Symmetry codes: (i) [x, -y, z-{\script{1\over 2}}]; (ii) [x, -y+1, z+{\script{1\over 2}}]; (iii) [x, -y, z+{\script{1\over 2}}].
[Figure 3]
Figure 3
View of the crystal packing of (I)[link] along the a axis of the unit cell; only the H atoms involved in the weak inter­actions have been included. In this orientation, the atom O3 in position 1 − x, −y, 1 − z is exactly superimposed on the O3 atom in position −x, −y, 1 − z, which inter­acts with C33—H33. The mol­ecule in position −x, −y, 1 − z is not shown for clarity.

In the crystal of (II)[link], mol­ecules are linked by C—H⋯O inter­actions, forming zigzag chains along the b-axis direction (Fig. 4[link] and Table 2[link]). A C—H⋯π inter­action links the chains to form layers parallel to (100), yielding a three-dimensional supra­molecular structure. No significant ππ inter­actions with centroid–centroid distances of less than 4 Å were observed in either compound.

[Figure 4]
Figure 4
View of the crystal packing of (II)[link] along the a axis of the unit cell; only the H atoms involved in hydrogen bonding have been included.

4. Hirshfeld surface analysis

The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]), and the associated two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]), employed to analyse the inter­molecular contacts in the crystals, were performed with CrystalExplorer17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net]).

The Hirshfeld surfaces of (I)[link] and (II)[link] mapped over dnorm are given in Figs. 5[link] and 6[link], respectively, while the inter­molecular contacts are illustrated in Fig. 7[link] for (I)[link] and in Fig. 8[link] for (II)[link]. They are colour-mapped with the normalized contact distance, dnorm, varying from red (distances shorter than the sum of the van der Waals radii) through white to blue (distances longer than the sum of the van der Waals radii). The red spots on the surface indicate the inter­molecular contacts involved in hydrogen bonding.

[Figure 5]
Figure 5
The Hirshfeld surface mapped over dnorm for (I)[link] mapped over an arbitrary colour scale of −0.177 (red) to 3.260 (blue).
[Figure 6]
Figure 6
The Hirshfeld surface mapped over dnorm for (II)[link] mapped over an arbitrary colour scale of −0.080 (red) to 3.098 (blue).
[Figure 7]
Figure 7
A view of the Hirshfeld surface mapped over dnorm for (I)[link], showing the various inter­molecular contacts in the crystal.
[Figure 8]
Figure 8
A view of the Hirshfeld surface mapped over dnorm for (II)[link], showing the various inter­molecular contacts in the crystal.

The fingerprint plots for the two compounds are given in Figs. 9[link] and 10[link]. For (I)[link], they reveal that the principal inter­molecular contacts are H⋯H (44.9%, Fig. 9[link]b), C⋯H/H⋯C (25.0%, Fig. 9[link]c), O⋯H/H⋯O (11.8%, Fig. 9[link]d), S⋯H/H⋯S (5.4%, Fig. 9[link]e) and N⋯H/H⋯N (4.0%, Fig. 9[link]f), followed by the C⋯C contacts (3.5%, Fig. 9[link]g). For (II)[link], they reveal a similar trend, with the principal inter­molecular contacts being H⋯H (56.4%, Fig. 10[link]b), C⋯H/H⋯C (21.9%, Fig. 10[link]c), O⋯H/H⋯O (14.5%, Fig. 10[link]d), followed by the C⋯C contacts (0.9%, Fig. 10[link]e). In both compounds the H⋯H inter­molecular contacts predominate.

[Figure 9]
Figure 9
The full two-dimensional fingerprint plot for (I)[link] (a), and the fingerprint plots delineated into (b) H⋯H, (c) C⋯H/H⋯C, (d) O⋯H/H⋯O, (e) S⋯H/H⋯S, (f) N⋯H/H⋯N and (g) C⋯C contacts.
[Figure 10]
Figure 10
The full two-dimensional fingerprint plot for (II)[link] (a), and the fingerprint plots delineated into (b) H⋯H, (c) C⋯H/H⋯C, (d) O⋯H/H⋯O and (e) C⋯C contacts.

5. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.39, August 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the 6′-(4-phen­yl)-6a′-hexa­hydro-2H,6′H,6b′H-spiro­[benzo­pyrano[3,4-a]indolizin]-2-one skeleton yielded five hits: namely 6-(4- meth­oxy­phen­yl)-6a-nitro-6,6a,6b,7,8,9,10,12a-octa­hydro­spiro-[chromeno[3,4-a]indolizine-12,3-indolin]-2-one (AFONEQ; Devi et al., 2013a[Devi, S. K., Srinivasan, T., Rao, J. N. S., Raghunathan, R. & Velmurugan, D. (2013a). Acta Cryst. E69, o1047.]) and 6-(4-meth­oxy­phen­yl)-6a-nitro-6,6a,6b,7,8,9,10,12a-octa­hydro­spiro­[chromeno[3,4-a]indolizine-12,3-indolin]-2-one (FIDCOM; Devi et al., 2013b[Devi, S. K., Srinivasan, T., Rao, J. N. S., Raghunathan, R. & Velmurugan, D. (2013b). Acta Cryst. E69, o993.]). In addition, the crystal structures of 6-(naphthalen-1-yl)-6a-nitro-6,6a,6b,7,9,11a-hexa­hydro­spiro­[chromeno[3′,4′:3,4]pyrrolo [1,2-c]thia­zole-11,11′-indeno­[1,2-b]quinoxaline] (XITKUJ and XITKOD; Syed Abuthahir et al., 2019a[Syed Abuthahir, S., NizamMohideen, M., Viswanathan, V., Velmurugan, D. & Nagasivarao, J. (2019a). Acta Cryst. E75, 218-222.]) and 6′-(naphthalen-1-yl)-6a′-nitro-6′,6a′,6b′,7′,8′,9′,10′,12a′-octa­hydro-2H-spiro­[ace­naphthyl­ene-1,12′-chromeno[3,4-a]indoliz­in]-2-one (XIWRUT01; Syed Abuthahir et al., 2019b[Syed Abuthahir, S., NizamMohideen, M., Viswanathan, V., Velmurugan, D. & Nagasivarao, J. (2019b). Acta Cryst. E75, 255-259.]) were recently reported by some of us. The bond lengths and bond angles are very similar to those reported here for the title compounds.

6. Synthesis and crystallization

Compound (I)[link]: to a solution of indeno­quinoxalinone (0.232 g, 1.0 mmol) and thia­zolidine-4-carb­oxy­lic acid (0.199 g, 1.5 mmol) in dry toluene, 0.302 g (1.0 mmol) of 2-(naphthalen-1-yl)-3-nitro-2H-chromene were added under a nitro­gen atmosphere.

Compound (II)[link]: to a solution of ace­naphtho­quinone (0.182 g, 1.0 mmol) and pipacolinic acid (0.193 g, 1.5 mmol) in dry toluene, (0.302 g, 1 mmol) of 2-(naphthalen-1-yl)-3-nitro-2H-chromene were added under a nitro­gen atmosphere.

The solutions were refluxed for 18 h in a Dean–Stark apparatus to give the cyclo­adducts. After completion of the reactions as indicated by TLC, the solvent was evaporated under reduced pressure. The crude products obtained were purified by column chromatography using hexa­ne/EtOAc (7:3) as eluent (yield 84%). Colourless block-like crystals of the title compounds, suitable for X-ray diffraction analysis, were obtained by slow evaporation of solutions in ethanol.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All H atoms were positioned geometrically, with N—H = 0.86 Å, C—H = 0.93-0.97 Å, and constrained to ride on their parent atoms with Uiso(H) = 1.5Ueq(C-meth­yl) and 1.2Ueq(N, C) for all other H atoms.

Table 3
Experimental details

  (I) (II)
Crystal data
Chemical formula C37H26N4O3S C36H28N2O4
Mr 606.68 552.60
Crystal system, space group Monoclinic, P21/n Monoclinic, C2/c
Temperature (K) 293 293
a, b, c (Å) 8.3690 (3), 13.2440 (4), 29.2210 (5) 35.7360 (5), 11.4510 (4), 15.3130 (3)
β (°) 93.280 (2) 98.378 (2)
V3) 3233.52 (16) 6199.4 (3)
Z 4 8
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.14 0.08
Crystal size (mm) 0.25 × 0.20 × 0.15 0.30 × 0.24 × 0.22
 
Data collection
Diffractometer Bruker Kappa APEXII CCD Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.741, 0.852 0.742, 0.863
No. of measured, independent and observed [I > 2σ(I)] reflections 30398, 8083, 4209 24488, 5464, 4002
Rint 0.061 0.027
(sin θ/λ)max−1) 0.673 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.164, 1.06 0.043, 0.126, 1.07
No. of reflections 8083 5464
No. of parameters 406 380
No. of restraints 1 0
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.36, −0.34 0.15, −0.16
Computer programs: APEX2 and SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2018 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

For both structures, data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXT2018 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008). Software used to prepare material for publication: WinGX (Farrugia, 2012), publCIF (Westrip, 2010) and PLATON (Spek, 2009 for (I); WinGX (Farrugia, 2012), publCIF (Westrip, 2010) and PLATON (Spek, 2009) for (II).

6-(Naphthalen-1-yl)-6a-nitro-6,6a,6b,7,9,11a-hexahydrospiro[chromeno[3',4':3,4]pyrrolo[1,2-c]thiazole-11,11'-indeno[1,2-b]quinoxaline] (I) top
Crystal data top
C37H26N4O3SF(000) = 1264
Mr = 606.68Dx = 1.246 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.3690 (3) ÅCell parameters from 8083 reflections
b = 13.2440 (4) Åθ = 1.8–26.9°
c = 29.2210 (5) ŵ = 0.14 mm1
β = 93.280 (2)°T = 293 K
V = 3233.52 (16) Å3Block, colourless
Z = 40.25 × 0.20 × 0.15 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4209 reflections with I > 2σ(I)
ω and φ scansRint = 0.061
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
θmax = 28.6°, θmin = 1.4°
Tmin = 0.741, Tmax = 0.852h = 1110
30398 measured reflectionsk = 1417
8083 independent reflectionsl = 3939
Refinement top
Refinement on F21 restraint
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.164 w = 1/[σ2(Fo2) + (0.0738P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
8083 reflectionsΔρmax = 0.36 e Å3
406 parametersΔρmin = 0.34 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1161 (2)0.24359 (15)0.30919 (6)0.0494 (5)
C20.0918 (2)0.23613 (16)0.25673 (7)0.0541 (5)
C30.1107 (3)0.15404 (18)0.22850 (7)0.0671 (6)
H30.1394260.0915800.2409690.081*
C40.0865 (3)0.1652 (2)0.18134 (8)0.0849 (8)
H40.0981280.1099920.1621380.102*
C50.0448 (3)0.2591 (3)0.16285 (9)0.0936 (9)
H50.0310660.2662370.1312060.112*
C60.0239 (3)0.3398 (2)0.18991 (9)0.0859 (8)
H60.0077780.4015260.1771930.103*
C70.0505 (2)0.32971 (17)0.23738 (7)0.0614 (6)
C80.0423 (2)0.40471 (18)0.27342 (8)0.0610 (6)
C90.0036 (3)0.55087 (19)0.31022 (12)0.0825 (8)
C100.0465 (4)0.6527 (2)0.31060 (17)0.1145 (11)
H100.0765700.6847490.2831370.137*
C110.0510 (5)0.7035 (3)0.3502 (2)0.1415 (17)
H110.0846520.7704620.3498120.170*
C120.0066 (5)0.6582 (3)0.3912 (2)0.1382 (15)
H120.0101540.6952070.4181450.166*
C130.0430 (4)0.5595 (2)0.39324 (12)0.1058 (10)
H130.0738510.5298930.4212270.127*
C140.0463 (3)0.50397 (19)0.35256 (10)0.0750 (7)
C150.0833 (2)0.35657 (16)0.31577 (8)0.0541 (5)
C160.2865 (2)0.20774 (14)0.32709 (6)0.0472 (5)
H160.3257810.1611820.3042080.057*
C170.4111 (2)0.28888 (15)0.33502 (7)0.0517 (5)
C180.4752 (2)0.33919 (18)0.29859 (8)0.0670 (6)
H180.4399900.3231380.2687110.080*
C190.5897 (3)0.4123 (2)0.30622 (9)0.0801 (7)
H190.6314020.4452640.2814660.096*
C200.6434 (3)0.4371 (2)0.35007 (10)0.0846 (8)
H200.7204220.4871770.3550190.102*
C210.5830 (3)0.38786 (18)0.38640 (9)0.0722 (7)
H210.6199960.4036980.4161510.087*
C220.4672 (2)0.31471 (16)0.37893 (7)0.0556 (5)
C230.2641 (2)0.21920 (14)0.41284 (6)0.0472 (5)
H230.1824140.2713260.4069210.057*
C240.25919 (19)0.14506 (12)0.37099 (6)0.0446 (4)
C250.0895 (2)0.10286 (14)0.36166 (6)0.0482 (5)
H250.0405530.0910760.3908620.058*
C260.0710 (3)0.00792 (16)0.33174 (7)0.0591 (5)
H26A0.0881860.0526860.3500030.071*
H26B0.1460090.0085850.3076420.071*
C270.1468 (2)0.15173 (17)0.31845 (8)0.0665 (6)
H27A0.1745840.1866680.2899260.080*
H27B0.2289950.1654000.3397060.080*
C280.2370 (2)0.17076 (14)0.45860 (6)0.0466 (5)
C290.3636 (3)0.12777 (16)0.48297 (7)0.0579 (5)
H290.4634340.1274500.4705630.069*
C300.3470 (3)0.08386 (17)0.52642 (7)0.0670 (6)
H300.4352120.0561200.5426550.080*
C310.2015 (3)0.08258 (16)0.54417 (7)0.0621 (6)
H310.1902450.0528150.5726330.074*
C320.0676 (2)0.12492 (14)0.52078 (6)0.0523 (5)
C330.0829 (3)0.12485 (18)0.53942 (7)0.0656 (6)
H330.0940900.0941060.5676720.079*
C340.2109 (3)0.1675 (2)0.51796 (8)0.0789 (7)
H340.3094620.1653330.5310710.095*
C350.1964 (3)0.21564 (19)0.47545 (8)0.0747 (7)
H350.2851470.2464480.4608050.090*
C360.0535 (2)0.21727 (16)0.45578 (7)0.0582 (5)
H360.0458760.2490530.4276060.070*
C370.0839 (2)0.17177 (13)0.47715 (6)0.0460 (5)
N10.0872 (2)0.40293 (14)0.35511 (7)0.0660 (5)
N20.0036 (2)0.49945 (16)0.26964 (8)0.0773 (6)
N30.00650 (17)0.18572 (12)0.33735 (5)0.0503 (4)
N40.37670 (19)0.06748 (12)0.37895 (5)0.0512 (4)
O10.41679 (16)0.26684 (11)0.41708 (4)0.0619 (4)
O20.51538 (18)0.08236 (11)0.36905 (6)0.0754 (5)
O30.33881 (17)0.01166 (11)0.39739 (5)0.0637 (4)
S10.13165 (8)0.01440 (5)0.30819 (2)0.0791 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0494 (11)0.0584 (13)0.0412 (10)0.0039 (9)0.0084 (9)0.0061 (9)
C20.0503 (12)0.0696 (14)0.0425 (11)0.0071 (10)0.0034 (9)0.0093 (10)
C30.0787 (15)0.0808 (16)0.0424 (12)0.0018 (12)0.0073 (11)0.0045 (11)
C40.0974 (19)0.110 (2)0.0471 (14)0.0118 (16)0.0034 (13)0.0004 (14)
C50.113 (2)0.125 (3)0.0428 (14)0.0156 (18)0.0011 (14)0.0160 (17)
C60.0889 (19)0.106 (2)0.0622 (17)0.0077 (15)0.0052 (14)0.0348 (16)
C70.0522 (13)0.0786 (16)0.0534 (13)0.0104 (11)0.0015 (10)0.0171 (12)
C80.0456 (12)0.0651 (16)0.0719 (15)0.0070 (10)0.0005 (10)0.0185 (12)
C90.0619 (16)0.0558 (17)0.130 (3)0.0140 (12)0.0078 (16)0.0102 (17)
C100.100 (2)0.059 (2)0.184 (4)0.0076 (16)0.007 (2)0.015 (2)
C110.134 (3)0.056 (2)0.235 (6)0.007 (2)0.020 (3)0.013 (3)
C120.135 (3)0.079 (3)0.201 (5)0.013 (2)0.019 (3)0.057 (3)
C130.113 (2)0.075 (2)0.129 (3)0.0083 (16)0.0026 (19)0.0351 (18)
C140.0578 (15)0.0589 (17)0.109 (2)0.0086 (11)0.0058 (13)0.0062 (15)
C150.0417 (11)0.0601 (14)0.0606 (13)0.0059 (9)0.0040 (9)0.0053 (11)
C160.0443 (11)0.0593 (12)0.0388 (10)0.0001 (9)0.0087 (8)0.0067 (9)
C170.0411 (11)0.0617 (13)0.0528 (12)0.0031 (9)0.0087 (9)0.0111 (10)
C180.0544 (13)0.0859 (16)0.0617 (14)0.0054 (12)0.0137 (10)0.0237 (12)
C190.0638 (15)0.100 (2)0.0775 (18)0.0176 (14)0.0161 (13)0.0349 (14)
C200.0656 (16)0.0879 (19)0.101 (2)0.0264 (13)0.0080 (14)0.0270 (15)
C210.0594 (14)0.0815 (16)0.0751 (16)0.0216 (12)0.0003 (12)0.0125 (12)
C220.0478 (11)0.0656 (14)0.0536 (13)0.0129 (10)0.0062 (9)0.0096 (10)
C230.0471 (11)0.0532 (12)0.0414 (10)0.0103 (9)0.0039 (8)0.0013 (8)
C240.0446 (11)0.0522 (11)0.0374 (10)0.0006 (9)0.0064 (8)0.0052 (8)
C250.0511 (11)0.0581 (12)0.0357 (10)0.0109 (9)0.0063 (8)0.0007 (9)
C260.0691 (14)0.0637 (14)0.0451 (11)0.0129 (10)0.0079 (10)0.0040 (9)
C270.0500 (13)0.0894 (17)0.0599 (14)0.0130 (11)0.0024 (10)0.0090 (11)
C280.0513 (12)0.0513 (11)0.0372 (10)0.0065 (9)0.0027 (9)0.0014 (8)
C290.0536 (12)0.0751 (14)0.0451 (11)0.0008 (11)0.0038 (10)0.0002 (10)
C300.0722 (16)0.0801 (16)0.0479 (12)0.0037 (12)0.0027 (11)0.0071 (11)
C310.0766 (16)0.0703 (15)0.0394 (11)0.0079 (12)0.0037 (11)0.0063 (10)
C320.0638 (13)0.0558 (12)0.0376 (10)0.0159 (10)0.0047 (10)0.0043 (9)
C330.0643 (15)0.0885 (17)0.0446 (12)0.0236 (12)0.0082 (11)0.0002 (11)
C340.0611 (15)0.118 (2)0.0595 (15)0.0158 (14)0.0195 (12)0.0035 (14)
C350.0548 (14)0.1079 (19)0.0618 (15)0.0005 (12)0.0062 (11)0.0050 (13)
C360.0548 (13)0.0741 (14)0.0461 (11)0.0036 (11)0.0069 (10)0.0040 (10)
C370.0506 (11)0.0487 (11)0.0389 (10)0.0108 (9)0.0036 (9)0.0045 (8)
N10.0608 (11)0.0621 (13)0.0754 (14)0.0053 (9)0.0074 (10)0.0065 (10)
N20.0665 (13)0.0621 (14)0.1031 (18)0.0071 (10)0.0031 (11)0.0214 (12)
N30.0424 (9)0.0652 (11)0.0437 (9)0.0082 (8)0.0065 (7)0.0062 (8)
N40.0532 (11)0.0584 (11)0.0425 (9)0.0018 (9)0.0063 (8)0.0021 (8)
O10.0589 (9)0.0785 (10)0.0483 (8)0.0286 (7)0.0026 (6)0.0055 (7)
O20.0502 (9)0.0822 (11)0.0953 (12)0.0063 (7)0.0185 (8)0.0192 (9)
O30.0709 (10)0.0622 (9)0.0586 (9)0.0008 (7)0.0085 (7)0.0144 (7)
S10.0740 (4)0.0978 (5)0.0647 (4)0.0289 (3)0.0022 (3)0.0161 (3)
Geometric parameters (Å, º) top
C1—N31.481 (2)C20—H200.9300
C1—C151.535 (3)C21—C221.379 (3)
C1—C21.538 (3)C21—H210.9300
C1—C161.564 (3)C22—O11.369 (2)
C2—C31.379 (3)C23—O11.424 (2)
C2—C71.397 (3)C23—C281.512 (2)
C3—C41.389 (3)C23—C241.567 (2)
C3—H30.9300C23—H230.9800
C4—C51.393 (4)C24—N41.4321 (9)
C4—H40.9300C24—C251.536 (2)
C5—C61.347 (4)C25—N31.461 (2)
C5—H50.9300C25—C261.534 (3)
C6—C71.399 (3)C25—H250.9800
C6—H60.9300C26—S11.795 (2)
C7—C81.452 (3)C26—H26A0.9700
C8—N21.299 (3)C26—H26B0.9700
C8—C151.417 (3)C27—N31.439 (2)
C9—N21.367 (3)C27—S11.849 (2)
C9—C101.412 (4)C27—H27A0.9700
C9—C141.412 (4)C27—H27B0.9700
C10—C111.340 (6)C28—C291.366 (3)
C10—H100.9300C28—C371.420 (3)
C11—C121.373 (6)C29—C301.411 (3)
C11—H110.9300C29—H290.9300
C12—C131.372 (5)C30—C311.351 (3)
C12—H120.9300C30—H300.9300
C13—C141.399 (4)C31—C321.396 (3)
C13—H130.9300C31—H310.9300
C14—N11.382 (3)C32—C331.401 (3)
C15—N11.302 (3)C32—C371.431 (3)
C16—C171.506 (3)C33—C341.335 (3)
C16—C241.556 (2)C33—H330.9300
C16—H160.9800C34—C351.408 (3)
C17—C221.384 (3)C34—H340.9300
C17—C181.389 (3)C35—C361.356 (3)
C18—C191.371 (3)C35—H350.9300
C18—H180.9300C36—C371.412 (3)
C19—C201.374 (3)C36—H360.9300
C19—H190.9300N4—O21.2279 (19)
C20—C211.368 (3)N4—O31.2285 (19)
N3—C1—C15108.30 (15)C21—C22—C17121.22 (19)
N3—C1—C2118.02 (15)O1—C23—C28106.87 (14)
C15—C1—C299.97 (15)O1—C23—C24109.20 (14)
N3—C1—C16103.82 (14)C28—C23—C24115.20 (15)
C15—C1—C16114.83 (15)O1—C23—H23108.5
C2—C1—C16112.33 (15)C28—C23—H23108.5
C3—C2—C7119.43 (19)C24—C23—H23108.5
C3—C2—C1129.31 (19)N4—C24—C25112.77 (15)
C7—C2—C1111.21 (18)N4—C24—C16112.63 (14)
C2—C3—C4119.6 (2)C25—C24—C16103.05 (13)
C2—C3—H3120.2N4—C24—C23109.61 (14)
C4—C3—H3120.2C25—C24—C23110.44 (13)
C3—C4—C5119.9 (2)C16—C24—C23108.10 (14)
C3—C4—H4120.0N3—C25—C26107.98 (15)
C5—C4—H4120.0N3—C25—C24102.83 (13)
C6—C5—C4121.3 (2)C26—C25—C24117.50 (16)
C6—C5—H5119.4N3—C25—H25109.4
C4—C5—H5119.4C26—C25—H25109.4
C5—C6—C7119.2 (2)C24—C25—H25109.4
C5—C6—H6120.4C25—C26—S1104.00 (14)
C7—C6—H6120.4C25—C26—H26A111.0
C2—C7—C6120.5 (2)S1—C26—H26A111.0
C2—C7—C8109.52 (19)C25—C26—H26B111.0
C6—C7—C8130.0 (2)S1—C26—H26B111.0
N2—C8—C15123.8 (2)H26A—C26—H26B109.0
N2—C8—C7128.4 (2)N3—C27—S1107.58 (14)
C15—C8—C7107.9 (2)N3—C27—H27A110.2
N2—C9—C10119.8 (3)S1—C27—H27A110.2
N2—C9—C14121.9 (2)N3—C27—H27B110.2
C10—C9—C14118.3 (3)S1—C27—H27B110.2
C11—C10—C9120.6 (4)H27A—C27—H27B108.5
C11—C10—H10119.7C29—C28—C37119.65 (17)
C9—C10—H10119.7C29—C28—C23119.15 (17)
C10—C11—C12120.9 (4)C37—C28—C23121.18 (16)
C10—C11—H11119.5C28—C29—C30121.9 (2)
C12—C11—H11119.5C28—C29—H29119.1
C13—C12—C11121.4 (4)C30—C29—H29119.1
C13—C12—H12119.3C31—C30—C29119.2 (2)
C11—C12—H12119.3C31—C30—H30120.4
C12—C13—C14118.9 (4)C29—C30—H30120.4
C12—C13—H13120.5C30—C31—C32121.53 (19)
C14—C13—H13120.5C30—C31—H31119.2
N1—C14—C13118.7 (3)C32—C31—H31119.2
N1—C14—C9121.5 (2)C31—C32—C33121.59 (19)
C13—C14—C9119.8 (3)C31—C32—C37119.71 (18)
N1—C15—C8123.5 (2)C33—C32—C37118.69 (19)
N1—C15—C1125.07 (19)C34—C33—C32122.1 (2)
C8—C15—C1111.42 (19)C34—C33—H33118.9
C17—C16—C24112.77 (15)C32—C33—H33118.9
C17—C16—C1116.40 (16)C33—C34—C35119.9 (2)
C24—C16—C1105.28 (13)C33—C34—H34120.0
C17—C16—H16107.3C35—C34—H34120.0
C24—C16—H16107.3C36—C35—C34120.2 (2)
C1—C16—H16107.3C36—C35—H35119.9
C22—C17—C18117.82 (19)C34—C35—H35119.9
C22—C17—C16120.94 (16)C35—C36—C37121.41 (19)
C18—C17—C16121.24 (19)C35—C36—H36119.3
C19—C18—C17120.7 (2)C37—C36—H36119.3
C19—C18—H18119.6C36—C37—C28124.43 (17)
C17—C18—H18119.6C36—C37—C32117.55 (17)
C18—C19—C20120.6 (2)C28—C37—C32118.01 (17)
C18—C19—H19119.7C15—N1—C14114.5 (2)
C20—C19—H19119.7C8—N2—C9114.8 (2)
C21—C20—C19119.6 (2)C27—N3—C25109.89 (15)
C21—C20—H20120.2C27—N3—C1121.03 (15)
C19—C20—H20120.2C25—N3—C1111.50 (14)
C20—C21—C22120.0 (2)O2—N4—O3120.76 (14)
C20—C21—H21120.0O2—N4—C24119.74 (16)
C22—C21—H21120.0O3—N4—C24119.43 (15)
O1—C22—C21116.28 (19)C22—O1—C23116.79 (14)
O1—C22—C17122.44 (17)C26—S1—C2793.26 (9)
N3—C1—C2—C366.0 (3)C28—C23—C24—N457.8 (2)
C15—C1—C2—C3176.9 (2)O1—C23—C24—C25172.68 (14)
C16—C1—C2—C354.7 (3)C28—C23—C24—C2567.09 (19)
N3—C1—C2—C7116.51 (19)O1—C23—C24—C1660.63 (17)
C15—C1—C2—C70.53 (19)C28—C23—C24—C16179.14 (14)
C16—C1—C2—C7122.75 (17)N4—C24—C25—N3158.22 (14)
C7—C2—C3—C40.8 (3)C16—C24—C25—N336.51 (16)
C1—C2—C3—C4178.1 (2)C23—C24—C25—N378.75 (16)
C2—C3—C4—C50.6 (4)N4—C24—C25—C2639.8 (2)
C3—C4—C5—C61.4 (4)C16—C24—C25—C2681.88 (18)
C4—C5—C6—C72.4 (4)C23—C24—C25—C26162.86 (16)
C3—C2—C7—C61.8 (3)N3—C25—C26—S139.77 (16)
C1—C2—C7—C6179.58 (19)C24—C25—C26—S1155.37 (13)
C3—C2—C7—C8178.23 (18)O1—C23—C28—C2937.1 (2)
C1—C2—C7—C80.5 (2)C24—C23—C28—C2984.4 (2)
C5—C6—C7—C22.6 (3)O1—C23—C28—C37141.13 (16)
C5—C6—C7—C8177.5 (2)C24—C23—C28—C3797.4 (2)
C2—C7—C8—N2177.9 (2)C37—C28—C29—C300.0 (3)
C6—C7—C8—N22.0 (4)C23—C28—C29—C30178.23 (18)
C2—C7—C8—C151.4 (2)C28—C29—C30—C311.2 (3)
C6—C7—C8—C15178.7 (2)C29—C30—C31—C320.9 (3)
N2—C9—C10—C11178.4 (3)C30—C31—C32—C33179.1 (2)
C14—C9—C10—C110.9 (4)C30—C31—C32—C370.6 (3)
C9—C10—C11—C120.3 (6)C31—C32—C33—C34178.2 (2)
C10—C11—C12—C130.4 (6)C37—C32—C33—C340.4 (3)
C11—C12—C13—C140.7 (5)C32—C33—C34—C350.9 (4)
C12—C13—C14—N1176.2 (3)C33—C34—C35—C361.2 (4)
C12—C13—C14—C91.8 (4)C34—C35—C36—C370.4 (3)
N2—C9—C14—N11.4 (3)C35—C36—C37—C28179.9 (2)
C10—C9—C14—N1176.1 (2)C35—C36—C37—C320.9 (3)
N2—C9—C14—C13179.4 (2)C29—C28—C37—C36177.57 (18)
C10—C9—C14—C131.9 (4)C23—C28—C37—C360.6 (3)
N2—C8—C15—N10.5 (3)C29—C28—C37—C321.4 (3)
C7—C8—C15—N1179.83 (18)C23—C28—C37—C32179.62 (16)
N2—C8—C15—C1177.54 (18)C31—C32—C37—C36177.34 (18)
C7—C8—C15—C11.8 (2)C33—C32—C37—C361.3 (3)
N3—C1—C15—N155.3 (2)C31—C32—C37—C281.7 (3)
C2—C1—C15—N1179.41 (18)C33—C32—C37—C28179.68 (17)
C16—C1—C15—N160.2 (2)C8—C15—N1—C140.6 (3)
N3—C1—C15—C8122.67 (17)C1—C15—N1—C14177.19 (18)
C2—C1—C15—C81.42 (19)C13—C14—N1—C15178.3 (2)
C16—C1—C15—C8121.85 (17)C9—C14—N1—C150.3 (3)
N3—C1—C16—C17135.76 (16)C15—C8—N2—C90.5 (3)
C15—C1—C16—C1717.7 (2)C7—C8—N2—C9178.7 (2)
C2—C1—C16—C1795.63 (19)C10—C9—N2—C8176.0 (2)
N3—C1—C16—C2410.06 (18)C14—C9—N2—C81.4 (3)
C15—C1—C16—C24107.98 (17)S1—C27—N3—C2527.14 (18)
C2—C1—C16—C24138.67 (16)S1—C27—N3—C1105.11 (17)
C24—C16—C17—C2212.0 (3)C26—C25—N3—C2744.43 (19)
C1—C16—C17—C22109.8 (2)C24—C25—N3—C27169.30 (15)
C24—C16—C17—C18167.06 (17)C26—C25—N3—C192.60 (17)
C1—C16—C17—C1871.1 (2)C24—C25—N3—C132.28 (18)
C22—C17—C18—C190.3 (3)C15—C1—N3—C2792.1 (2)
C16—C17—C18—C19179.3 (2)C2—C1—N3—C2720.4 (3)
C17—C18—C19—C200.0 (4)C16—C1—N3—C27145.47 (17)
C18—C19—C20—C210.6 (4)C15—C1—N3—C25136.36 (16)
C19—C20—C21—C220.9 (4)C2—C1—N3—C25111.15 (18)
C20—C21—C22—O1178.0 (2)C16—C1—N3—C2513.90 (19)
C20—C21—C22—C170.7 (4)C25—C24—N4—O2151.16 (16)
C18—C17—C22—O1177.23 (18)C16—C24—N4—O235.0 (2)
C16—C17—C22—O11.8 (3)C23—C24—N4—O285.35 (19)
C18—C17—C22—C210.1 (3)C25—C24—N4—O331.9 (2)
C16—C17—C22—C21179.00 (19)C16—C24—N4—O3147.98 (16)
C17—C16—C24—N481.57 (19)C23—C24—N4—O391.63 (18)
C1—C16—C24—N4150.52 (15)C21—C22—O1—C23158.47 (18)
C17—C16—C24—C25156.62 (15)C17—C22—O1—C2324.2 (3)
C1—C16—C24—C2528.71 (18)C28—C23—O1—C22179.04 (16)
C17—C16—C24—C2339.69 (19)C24—C23—O1—C2253.8 (2)
C1—C16—C24—C2388.23 (16)C25—C26—S1—C2720.61 (14)
O1—C23—C24—N462.48 (18)N3—C27—S1—C262.64 (15)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C9–C14 ring.
D—H···AD—HH···AD···AD—H···A
C19—H19···S1i0.932.783.640 (3)156
C23—H23···N10.982.413.267 (3)145
C27—H27B···O2ii0.972.593.393 (3)140
C30—H30···O3iii0.932.573.480 (3)166
C33—H33···O3iv0.932.583.274 (3)131
C20—H20···Cg1v0.932.813.706 (3)163
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x1, y, z; (iii) x+1, y, z+1; (iv) x, y, z+1; (v) x+1, y, z.
6'-(nNphthalen-1-yl)-6a'-nitro-6',6a',6b',7',8',9',10',12a'-octahydro-2H-spiro[acenaphthylene-1,12'-chromeno[3,4-a]indolizin]-2-one (II) top
Crystal data top
C36H28N2O4F(000) = 2320
Mr = 552.60Dx = 1.184 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 35.7360 (5) ÅCell parameters from 5464 reflections
b = 11.4510 (4) Åθ = 1.8–26.9°
c = 15.3130 (3) ŵ = 0.08 mm1
β = 98.378 (2)°T = 293 K
V = 6199.4 (3) Å3Block, colourless
Z = 80.30 × 0.24 × 0.22 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4002 reflections with I > 2σ(I)
ω and φ scansRint = 0.027
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
θmax = 25.0°, θmin = 1.2°
Tmin = 0.742, Tmax = 0.863h = 3842
24488 measured reflectionsk = 1213
5464 independent reflectionsl = 1818
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.043 w = 1/[σ2(Fo2) + (0.0521P)2 + 3.3964P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.126(Δ/σ)max < 0.001
S = 1.07Δρmax = 0.15 e Å3
5464 reflectionsΔρmin = 0.16 e Å3
380 parametersExtinction correction: SHELXL2018/3 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00076 (10)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.11638 (5)0.06508 (18)0.21020 (13)0.0526 (5)
C20.08463 (6)0.01305 (19)0.17739 (14)0.0626 (6)
C30.05810 (7)0.0115 (3)0.10306 (19)0.0961 (9)
H30.0575870.0487100.0621780.115*
C40.03208 (9)0.1019 (4)0.0903 (3)0.1207 (12)
H40.0138860.1011400.0402250.145*
C50.03227 (8)0.1916 (3)0.1486 (3)0.1065 (11)
H50.0142600.2503960.1374330.128*
C60.05926 (7)0.1975 (2)0.2259 (2)0.0786 (7)
C70.06434 (8)0.2845 (2)0.2910 (3)0.0942 (9)
H70.0478480.3477740.2869660.113*
C80.09285 (9)0.2781 (2)0.3597 (2)0.0951 (9)
H80.0957990.3382840.4009210.114*
C90.11834 (7)0.18250 (18)0.37060 (18)0.0755 (7)
H90.1374210.1788460.4187980.091*
C100.11421 (6)0.09664 (16)0.30913 (14)0.0542 (5)
C110.08490 (5)0.10469 (17)0.23760 (15)0.0588 (5)
C120.13643 (5)0.01453 (15)0.30137 (12)0.0460 (4)
C130.18850 (6)0.06500 (19)0.22802 (14)0.0631 (6)
H13A0.1802080.0208880.1746210.076*
H13B0.1767200.1414420.2217320.076*
C140.23091 (6)0.0782 (2)0.24037 (14)0.0674 (6)
H14A0.2388520.1298720.2897820.081*
H14B0.2384690.1130150.1878990.081*
C150.24999 (6)0.0384 (2)0.25728 (14)0.0629 (6)
H15A0.2432590.0888510.2065290.075*
H15B0.2772280.0281520.2662450.075*
C160.23775 (5)0.09456 (17)0.33870 (12)0.0507 (5)
H16A0.2454240.0459090.3900510.061*
H16B0.2497170.1703050.3491530.061*
C170.19517 (5)0.10841 (14)0.32397 (11)0.0405 (4)
H170.1882580.1598960.2730580.049*
C180.17508 (5)0.15277 (14)0.40030 (10)0.0388 (4)
C190.13489 (5)0.10116 (15)0.38040 (11)0.0435 (4)
H190.1299350.0559390.4318310.052*
C200.10467 (5)0.19219 (17)0.36118 (12)0.0487 (5)
C210.06688 (6)0.1676 (2)0.36418 (15)0.0669 (6)
H210.0599280.0942450.3823870.080*
C220.03949 (7)0.2515 (3)0.34024 (19)0.0896 (8)
H220.0141380.2343240.3415790.108*
C230.04983 (8)0.3603 (3)0.3145 (2)0.0908 (8)
H230.0312900.4163070.2980340.109*
C240.08670 (7)0.3874 (2)0.31264 (15)0.0703 (6)
H240.0934260.4618060.2961620.084*
C250.11409 (6)0.30341 (17)0.33549 (12)0.0509 (5)
C260.17650 (5)0.28672 (14)0.40757 (11)0.0413 (4)
H260.2021950.3108810.4005100.050*
C270.16712 (5)0.34448 (14)0.49082 (11)0.0415 (4)
C280.17669 (5)0.46539 (15)0.50394 (12)0.0450 (4)
C290.19530 (6)0.53161 (16)0.44563 (14)0.0567 (5)
H290.2015030.4966680.3948210.068*
C300.20438 (7)0.64609 (18)0.46233 (17)0.0721 (6)
H300.2168390.6878050.4231150.087*
C310.19517 (8)0.7009 (2)0.53741 (19)0.0803 (7)
H310.2016380.7787340.5482450.096*
C320.17682 (7)0.64135 (19)0.59490 (17)0.0725 (7)
H320.1705970.6790860.6446040.087*
C330.16703 (5)0.52252 (17)0.58021 (13)0.0540 (5)
C340.14859 (6)0.4597 (2)0.64003 (14)0.0643 (6)
H340.1426730.4967070.6903190.077*
C350.13925 (6)0.3460 (2)0.62578 (14)0.0633 (6)
H350.1266940.3058190.6656090.076*
C360.14858 (5)0.28885 (17)0.55064 (12)0.0522 (5)
H360.1419200.2108330.5414310.063*
N10.17683 (4)0.00441 (12)0.30412 (9)0.0443 (4)
N20.19688 (4)0.10032 (13)0.48422 (9)0.0446 (4)
O10.12667 (4)0.14930 (13)0.17294 (9)0.0709 (4)
O20.22409 (4)0.15545 (12)0.51946 (8)0.0571 (4)
O30.18748 (4)0.00476 (11)0.50940 (9)0.0627 (4)
O40.15134 (4)0.33150 (10)0.33224 (8)0.0487 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0576 (12)0.0525 (11)0.0461 (11)0.0046 (9)0.0021 (9)0.0045 (9)
C20.0584 (13)0.0660 (13)0.0601 (13)0.0069 (10)0.0020 (10)0.0108 (11)
C30.0794 (17)0.114 (2)0.0852 (19)0.0180 (16)0.0215 (14)0.0094 (16)
C40.091 (2)0.142 (3)0.117 (3)0.032 (2)0.0279 (19)0.026 (2)
C50.0661 (17)0.105 (2)0.143 (3)0.0336 (16)0.0011 (19)0.044 (2)
C60.0606 (14)0.0592 (14)0.119 (2)0.0139 (11)0.0230 (15)0.0269 (15)
C70.0746 (18)0.0551 (15)0.160 (3)0.0212 (13)0.0402 (19)0.0172 (18)
C80.106 (2)0.0475 (14)0.138 (3)0.0099 (14)0.037 (2)0.0152 (15)
C90.0815 (16)0.0490 (12)0.0959 (18)0.0076 (11)0.0127 (13)0.0128 (12)
C100.0586 (12)0.0402 (10)0.0649 (13)0.0048 (9)0.0127 (10)0.0030 (9)
C110.0490 (11)0.0521 (12)0.0761 (14)0.0082 (9)0.0121 (10)0.0218 (11)
C120.0542 (11)0.0382 (9)0.0442 (10)0.0071 (8)0.0031 (8)0.0002 (8)
C130.0747 (14)0.0630 (13)0.0510 (12)0.0012 (11)0.0066 (10)0.0232 (10)
C140.0704 (14)0.0788 (15)0.0544 (12)0.0128 (12)0.0134 (11)0.0214 (11)
C150.0594 (12)0.0819 (15)0.0490 (11)0.0065 (11)0.0135 (9)0.0075 (11)
C160.0515 (11)0.0555 (11)0.0457 (10)0.0018 (9)0.0096 (8)0.0066 (9)
C170.0497 (10)0.0397 (9)0.0320 (8)0.0028 (8)0.0053 (7)0.0003 (7)
C180.0494 (10)0.0364 (9)0.0304 (8)0.0001 (7)0.0054 (7)0.0016 (7)
C190.0505 (10)0.0409 (9)0.0399 (9)0.0043 (8)0.0096 (8)0.0022 (8)
C200.0476 (11)0.0550 (11)0.0435 (10)0.0018 (9)0.0062 (8)0.0027 (9)
C210.0538 (13)0.0753 (15)0.0722 (14)0.0007 (11)0.0108 (11)0.0047 (12)
C220.0497 (13)0.113 (2)0.105 (2)0.0131 (14)0.0077 (13)0.0040 (18)
C230.0709 (18)0.090 (2)0.108 (2)0.0287 (15)0.0020 (15)0.0058 (17)
C240.0750 (16)0.0622 (13)0.0709 (15)0.0183 (12)0.0017 (12)0.0036 (11)
C250.0569 (12)0.0527 (11)0.0420 (10)0.0078 (9)0.0037 (9)0.0003 (9)
C260.0485 (10)0.0374 (9)0.0385 (9)0.0019 (8)0.0075 (8)0.0025 (7)
C270.0442 (10)0.0399 (9)0.0406 (9)0.0026 (7)0.0064 (8)0.0017 (8)
C280.0449 (10)0.0399 (10)0.0486 (10)0.0050 (8)0.0018 (8)0.0051 (8)
C290.0663 (13)0.0409 (10)0.0635 (13)0.0014 (9)0.0117 (10)0.0022 (9)
C300.0810 (16)0.0437 (12)0.0903 (17)0.0069 (11)0.0079 (13)0.0020 (12)
C310.0918 (18)0.0391 (12)0.104 (2)0.0025 (11)0.0069 (15)0.0148 (13)
C320.0802 (16)0.0533 (13)0.0797 (16)0.0144 (12)0.0028 (13)0.0254 (12)
C330.0525 (11)0.0490 (11)0.0578 (12)0.0125 (9)0.0005 (9)0.0120 (9)
C340.0679 (14)0.0736 (15)0.0543 (12)0.0145 (11)0.0183 (11)0.0170 (11)
C350.0673 (13)0.0734 (15)0.0537 (12)0.0045 (11)0.0240 (10)0.0015 (11)
C360.0613 (12)0.0479 (11)0.0494 (11)0.0010 (9)0.0142 (9)0.0020 (9)
N10.0514 (9)0.0416 (8)0.0400 (8)0.0027 (7)0.0073 (7)0.0072 (6)
N20.0598 (10)0.0397 (8)0.0342 (8)0.0023 (7)0.0069 (7)0.0012 (7)
O10.0850 (10)0.0700 (10)0.0530 (8)0.0173 (8)0.0057 (7)0.0154 (8)
O20.0614 (8)0.0619 (9)0.0445 (7)0.0041 (7)0.0042 (6)0.0052 (6)
O30.0911 (10)0.0452 (8)0.0497 (8)0.0023 (7)0.0028 (7)0.0117 (6)
O40.0599 (8)0.0432 (7)0.0428 (7)0.0028 (6)0.0073 (6)0.0067 (5)
Geometric parameters (Å, º) top
C1—O11.205 (2)C18—N21.526 (2)
C1—C21.474 (3)C18—C261.538 (2)
C1—C121.583 (3)C18—C191.542 (2)
C2—C31.371 (3)C19—C201.499 (3)
C2—C111.396 (3)C19—H190.9800
C3—C41.386 (4)C20—C211.387 (3)
C3—H30.9300C20—C251.389 (3)
C4—C51.361 (5)C21—C221.382 (3)
C4—H40.9300C21—H210.9300
C5—C61.416 (4)C22—C231.374 (4)
C5—H50.9300C22—H220.9300
C6—C111.398 (3)C23—C241.358 (4)
C6—C71.402 (4)C23—H230.9300
C7—C81.356 (4)C24—C251.381 (3)
C7—H70.9300C24—H240.9300
C8—C91.419 (3)C25—O41.377 (2)
C8—H80.9300C26—O41.449 (2)
C9—C101.354 (3)C26—C271.516 (2)
C9—H90.9300C26—H260.9800
C10—C111.404 (3)C27—C361.364 (3)
C10—C121.514 (2)C27—C281.433 (2)
C12—N11.454 (2)C28—C291.410 (3)
C12—C191.572 (2)C28—C331.424 (3)
C13—N11.468 (2)C29—C301.366 (3)
C13—C141.507 (3)C29—H290.9300
C13—H13A0.9700C30—C311.391 (4)
C13—H13B0.9700C30—H300.9300
C14—C151.504 (3)C31—C321.356 (4)
C14—H14A0.9700C31—H310.9300
C14—H14B0.9700C32—C331.415 (3)
C15—C161.523 (3)C32—H320.9300
C15—H15A0.9700C33—C341.403 (3)
C15—H15B0.9700C34—C351.353 (3)
C16—C171.514 (2)C34—H340.9300
C16—H16A0.9700C35—C361.405 (3)
C16—H16B0.9700C35—H350.9300
C17—N11.461 (2)C36—H360.9300
C17—C181.544 (2)N2—O21.2174 (18)
C17—H170.9800N2—O31.2233 (18)
O1—C1—C2126.65 (19)C26—C18—C19114.61 (14)
O1—C1—C12125.46 (17)N2—C18—C17105.74 (13)
C2—C1—C12107.79 (17)C26—C18—C17111.64 (13)
C3—C2—C11119.7 (2)C19—C18—C17104.29 (13)
C3—C2—C1132.8 (2)C20—C19—C18113.32 (14)
C11—C2—C1107.47 (17)C20—C19—C12113.13 (14)
C2—C3—C4118.5 (3)C18—C19—C12104.94 (13)
C2—C3—H3120.8C20—C19—H19108.4
C4—C3—H3120.8C18—C19—H19108.4
C5—C4—C3122.1 (3)C12—C19—H19108.4
C5—C4—H4118.9C21—C20—C25118.24 (18)
C3—C4—H4118.9C21—C20—C19121.96 (18)
C4—C5—C6121.5 (3)C25—C20—C19119.73 (16)
C4—C5—H5119.2C22—C21—C20120.4 (2)
C6—C5—H5119.2C22—C21—H21119.8
C11—C6—C7115.8 (2)C20—C21—H21119.8
C11—C6—C5115.1 (3)C23—C22—C21119.8 (2)
C7—C6—C5129.1 (3)C23—C22—H22120.1
C8—C7—C6121.2 (2)C21—C22—H22120.1
C8—C7—H7119.4C24—C23—C22121.0 (2)
C6—C7—H7119.4C24—C23—H23119.5
C7—C8—C9122.0 (3)C22—C23—H23119.5
C7—C8—H8119.0C23—C24—C25119.3 (2)
C9—C8—H8119.0C23—C24—H24120.3
C10—C9—C8118.4 (3)C25—C24—H24120.3
C10—C9—H9120.8O4—C25—C24118.78 (18)
C8—C9—H9120.8O4—C25—C20119.99 (16)
C9—C10—C11119.21 (19)C24—C25—C20121.2 (2)
C9—C10—C12131.26 (19)O4—C26—C27109.11 (13)
C11—C10—C12109.53 (17)O4—C26—C18106.57 (13)
C2—C11—C6123.1 (2)C27—C26—C18119.13 (14)
C2—C11—C10113.48 (17)O4—C26—H26107.2
C6—C11—C10123.4 (2)C27—C26—H26107.2
N1—C12—C10113.71 (15)C18—C26—H26107.2
N1—C12—C19102.58 (13)C36—C27—C28119.11 (16)
C10—C12—C19113.12 (15)C36—C27—C26123.32 (16)
N1—C12—C1113.58 (15)C28—C27—C26117.49 (15)
C10—C12—C1101.61 (15)C29—C28—C33117.74 (17)
C19—C12—C1112.70 (14)C29—C28—C27123.77 (17)
N1—C13—C14110.15 (16)C33—C28—C27118.49 (17)
N1—C13—H13A109.6C30—C29—C28121.3 (2)
C14—C13—H13A109.6C30—C29—H29119.4
N1—C13—H13B109.6C28—C29—H29119.4
C14—C13—H13B109.6C29—C30—C31120.6 (2)
H13A—C13—H13B108.1C29—C30—H30119.7
C15—C14—C13110.80 (18)C31—C30—H30119.7
C15—C14—H14A109.5C32—C31—C30120.3 (2)
C13—C14—H14A109.5C32—C31—H31119.8
C15—C14—H14B109.5C30—C31—H31119.8
C13—C14—H14B109.5C31—C32—C33120.8 (2)
H14A—C14—H14B108.1C31—C32—H32119.6
C14—C15—C16109.79 (17)C33—C32—H32119.6
C14—C15—H15A109.7C34—C33—C32121.2 (2)
C16—C15—H15A109.7C34—C33—C28119.54 (18)
C14—C15—H15B109.7C32—C33—C28119.2 (2)
C16—C15—H15B109.7C35—C34—C33121.09 (19)
H15A—C15—H15B108.2C35—C34—H34119.5
C17—C16—C15108.95 (15)C33—C34—H34119.5
C17—C16—H16A109.9C34—C35—C36119.8 (2)
C15—C16—H16A109.9C34—C35—H35120.1
C17—C16—H16B109.9C36—C35—H35120.1
C15—C16—H16B109.9C27—C36—C35121.92 (18)
H16A—C16—H16B108.3C27—C36—H36119.0
N1—C17—C16110.45 (14)C35—C36—H36119.0
N1—C17—C18101.79 (13)C12—N1—C17106.72 (13)
C16—C17—C18119.33 (14)C12—N1—C13116.30 (14)
N1—C17—H17108.2C17—N1—C13114.36 (15)
C16—C17—H17108.2O2—N2—O3124.22 (15)
C18—C17—H17108.2O2—N2—C18116.50 (14)
N2—C18—C26108.91 (13)O3—N2—C18119.18 (14)
N2—C18—C19111.24 (13)C25—O4—C26112.30 (13)
O1—C1—C2—C33.4 (4)C12—C19—C20—C2599.28 (19)
C12—C1—C2—C3179.9 (3)C25—C20—C21—C221.4 (3)
O1—C1—C2—C11174.7 (2)C19—C20—C21—C22175.6 (2)
C12—C1—C2—C112.0 (2)C20—C21—C22—C230.9 (4)
C11—C2—C3—C40.2 (4)C21—C22—C23—C240.5 (4)
C1—C2—C3—C4178.2 (3)C22—C23—C24—C251.2 (4)
C2—C3—C4—C50.4 (5)C23—C24—C25—O4179.1 (2)
C3—C4—C5—C60.0 (6)C23—C24—C25—C200.7 (3)
C4—C5—C6—C110.7 (4)C21—C20—C25—O4179.57 (17)
C4—C5—C6—C7177.7 (3)C19—C20—C25—O43.4 (3)
C11—C6—C7—C80.9 (4)C21—C20—C25—C240.6 (3)
C5—C6—C7—C8177.4 (3)C19—C20—C25—C24176.42 (18)
C6—C7—C8—C91.6 (4)N2—C18—C26—O4172.49 (12)
C7—C8—C9—C101.3 (4)C19—C18—C26—O447.16 (18)
C8—C9—C10—C110.5 (3)C17—C18—C26—O471.12 (17)
C8—C9—C10—C12179.6 (2)N2—C18—C26—C2748.6 (2)
C3—C2—C11—C60.5 (3)C19—C18—C26—C2776.68 (19)
C1—C2—C11—C6177.97 (19)C17—C18—C26—C27165.04 (14)
C3—C2—C11—C10178.3 (2)O4—C26—C27—C36105.74 (18)
C1—C2—C11—C100.2 (2)C18—C26—C27—C3616.9 (2)
C7—C6—C11—C2177.7 (2)O4—C26—C27—C2870.94 (18)
C5—C6—C11—C20.9 (3)C18—C26—C27—C28166.47 (15)
C7—C6—C11—C100.1 (3)C36—C27—C28—C29179.01 (18)
C5—C6—C11—C10178.5 (2)C26—C27—C28—C292.2 (3)
C9—C10—C11—C2177.7 (2)C36—C27—C28—C331.1 (2)
C12—C10—C11—C22.3 (2)C26—C27—C28—C33177.96 (15)
C9—C10—C11—C60.1 (3)C33—C28—C29—C301.1 (3)
C12—C10—C11—C6179.87 (19)C27—C28—C29—C30178.72 (19)
C9—C10—C12—N154.4 (3)C28—C29—C30—C310.5 (3)
C11—C10—C12—N1125.65 (17)C29—C30—C31—C320.4 (4)
C9—C10—C12—C1962.1 (3)C30—C31—C32—C330.6 (4)
C11—C10—C12—C19117.85 (17)C31—C32—C33—C34179.0 (2)
C9—C10—C12—C1176.8 (2)C31—C32—C33—C280.0 (3)
C11—C10—C12—C13.2 (2)C29—C28—C33—C34179.83 (18)
O1—C1—C12—N151.1 (3)C27—C28—C33—C340.0 (3)
C2—C1—C12—N1125.63 (17)C29—C28—C33—C320.9 (3)
O1—C1—C12—C10173.6 (2)C27—C28—C33—C32178.98 (17)
C2—C1—C12—C103.1 (2)C32—C33—C34—C35180.0 (2)
O1—C1—C12—C1965.0 (3)C28—C33—C34—C351.1 (3)
C2—C1—C12—C19118.25 (17)C33—C34—C35—C360.9 (3)
N1—C13—C14—C1554.9 (2)C28—C27—C36—C351.3 (3)
C13—C14—C15—C1658.2 (2)C26—C27—C36—C35177.94 (17)
C14—C15—C16—C1758.6 (2)C34—C35—C36—C270.3 (3)
C15—C16—C17—N156.9 (2)C10—C12—N1—C17162.50 (15)
C15—C16—C17—C18174.30 (16)C19—C12—N1—C1740.00 (16)
N1—C17—C18—N285.76 (14)C1—C12—N1—C1781.93 (17)
C16—C17—C18—N236.02 (19)C10—C12—N1—C1368.5 (2)
N1—C17—C18—C26155.94 (13)C19—C12—N1—C13168.96 (15)
C16—C17—C18—C2682.28 (19)C1—C12—N1—C1347.0 (2)
N1—C17—C18—C1931.64 (15)C16—C17—N1—C12173.41 (14)
C16—C17—C18—C19153.42 (15)C18—C17—N1—C1245.67 (16)
N2—C18—C19—C20130.92 (15)C16—C17—N1—C1356.51 (19)
C26—C18—C19—C206.8 (2)C18—C17—N1—C13175.76 (15)
C17—C18—C19—C20115.54 (15)C14—C13—N1—C12179.97 (17)
N2—C18—C19—C12105.17 (14)C14—C13—N1—C1754.9 (2)
C26—C18—C19—C12130.73 (14)C26—C18—N2—O233.06 (19)
C17—C18—C19—C128.37 (16)C19—C18—N2—O2160.32 (14)
N1—C12—C19—C20142.03 (15)C17—C18—N2—O287.05 (16)
C10—C12—C19—C2095.07 (18)C26—C18—N2—O3150.48 (15)
C1—C12—C19—C2019.5 (2)C19—C18—N2—O323.2 (2)
N1—C12—C19—C1818.00 (16)C17—C18—N2—O389.41 (17)
C10—C12—C19—C18140.90 (15)C24—C25—O4—C26137.77 (17)
C1—C12—C19—C18104.52 (16)C20—C25—O4—C2642.4 (2)
C18—C19—C20—C21163.06 (17)C27—C26—O4—C2563.81 (17)
C12—C19—C20—C2177.6 (2)C18—C26—O4—C2566.03 (17)
C18—C19—C20—C2520.0 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C6–C11 ring.
D—H···AD—HH···AD···AD—H···A
C13—H13A···O3i0.972.593.413 (3)143
C17—H17···O10.982.503.148 (2)124
C32—H32···O1ii0.932.593.318 (3)135
C35—H35···Cg1iii0.932.923.849 (2)176
Symmetry codes: (i) x, y, z1/2; (ii) x, y+1, z+1/2; (iii) x, y, z+1/2.
 

Acknowledgements

The authors are grateful to the SAIF, IIT, Madras, India, for the data collection.

References

First citationAli, A. S., Khan, J. H. & Wazeer, M. I. M. (1988). Tetrahedron, 44, 5911–5920.  CrossRef CAS Web of Science Google Scholar
First citationBabu, K. S. S., Dhavamurthy, M., NizamMohideen, M., Peramaiyan, G. & Mohan, R. (2014b). Acta Cryst. E70, o600–o601.  CSD CrossRef IUCr Journals Google Scholar
First citationBabu, K. S. S., Peramaiyan, G., NizamMohideen, M. & Mohan, R. (2014a). Acta Cryst. E70, o391–o392.  CSD CrossRef IUCr Journals Google Scholar
First citationBernotas, R. C., Adams, G. & Carr, A. A. (1996). Tetrahedron, 52, 6519–6526.  CrossRef CAS Web of Science Google Scholar
First citationBreuer, E. (1982). The Chemistry of Amino, Nitroso and Nitro Compounds and their Derivatives, Part I, edited by S. Patai, ch. 13. New York: Wiley Interscience.  Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDevi, S. K., Srinivasan, T., Rao, J. N. S., Raghunathan, R. & Velmurugan, D. (2013a). Acta Cryst. E69, o1047.  CSD CrossRef IUCr Journals Google Scholar
First citationDevi, S. K., Srinivasan, T., Rao, J. N. S., Raghunathan, R. & Velmurugan, D. (2013b). Acta Cryst. E69, o993.  CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGothelf, K. V. & Jørgensen, K. A. (1998). Chem. Rev. 98, 863–910.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGoti, A., Fedi, V., Nannelli, L., De Sarlo, F. & Brandi, A. (1997). Synlett, pp. 577–579.  CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHuisgen, R. (1984). 1,3-Dipolar Cycloaddition Chemistry, Vol. I, edited by A. Padawa, pp. 3–27. New York: Wiley Interscience.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationNizamMohideen, M., Damodiran, M., SubbiahPandi, A. & Perumal, P. T. (2009a). Acta Cryst. E65, o1156.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNizamMohideen, M., Damodiran, M., SubbiahPandi, A. & Perumal, P. T. (2009b). Acta Cryst. E65, o2305–o2306.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNizamMohideen, M., Thenmozhi, S., SubbiahPandi, A., Savitha, G. & Perumal, P. T. (2009c). Acta Cryst. E65, o977–o978.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRavi Kumar, K. R., Mallesha, H. & Rangappa, K. S. (2003). Synth. Commun. 33, 1545–1555.  CrossRef Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSyed Abuthahir, S., NizamMohideen, M., Viswanathan, V., Velmurugan, D. & Nagasivarao, J. (2019a). Acta Cryst. E75, 218–222.  CSD CrossRef IUCr Journals Google Scholar
First citationSyed Abuthahir, S., NizamMohideen, M., Viswanathan, V., Velmurugan, D. & Nagasivarao, J. (2019b). Acta Cryst. E75, 255–259.  CSD CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds