research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of two 4H-chromene derivatives: 2-amino-3-cyano-4-(3,4-di­chloro­phen­yl)-7-hy­dr­oxy-4H-benzo[1,2-b]pyran 1,4-dioxane monosolvate and 2-amino-3-cyano-4-(2,6-di­chloro­phen­yl)-7-hy­dr­oxy-4H-benzo[1,2-b]pyran

aDepartment of Chemistry, Jamal Mohamed College, Tiruchirappalli 620 020, India, and bDepartment of Physics, K. Ramakrishnan College of Engineering, Samayapuram, Tiruchirappalli 621 115, India
*Correspondence e-mail: ssilambu2012@gmail.com

Edited by A. V. Yatsenko, Moscow State University, Russia (Received 3 September 2019; accepted 25 September 2019; online 27 September 2019)

In the title compounds, C16H9Cl2N2O2·C4H8O2 and C16H9Cl2N2O2, the bicyclic 4H-chromene cores are nearly planar with maximum deviations of 0.081 (2) and 0.087 (2) Å. In both structures, the chromene derivative mol­ecules are linked into centrosymmetric dimers by pairs of N—H⋯O hydrogen bonds, forming R22(16) motifs. These dimers are further linked in the 3,4-di­chloro­phenyl derivative by N—H⋯N hydrogen bonds into double layers parallel to (100) and in the 2,6-di­chloro­phenyl derivative by O—H⋯N hydrogen bonds into ribbons along the [1[\overline{1}]0] direction. In the 3,4-di­chloro­phenyl derivative, the 1,4-dioxane solvent mol­ecules are connected to the chromene mol­ecules via O—H⋯O hydrogen bonds.

1. Chemical context

Many compounds containing the heterocyclic pyran moiety exhibit diverse pharmacological activities. The pyran ring is a core unit found in benzo­pyrans, chromones, coumarins and flavanoids. Numerous naturally occurring compounds containing a pyran ring show therapeutic activities such as anti­viral (Martínez-Grau & Marco, 1997[Martínez-Grau, A. & Marco, J. (1997). Bioorg. Med. Chem. Lett. 7, 3165-3170.]), anti­microbial (Khafagy et al., 2002[Khafagy, M. M., Abd El-Wahab, A. H. F., Eid, F. A. & El-Agrody, A. M. (2002). Farmaco, 57, 715-722.]), mutagenicity (Hiramoto et al., 1997[Hiramoto, K., Nasuhara, A., Michikoshi, K., Kato, T. & Kikugawa, K. (1997). Mutat. Res. 395, 47-56.]), sex pheromone (Bianchi & Tava, 1987[Bianchi, G. & Tava, A. (1987). Agric. Biol. Chem. 51, 2001-2002.]), anti­tumor (Mohr et al., 1975[Mohr, S. J., Chirigos, M. A., Fuhrman, F. S. & Pryor, J. W. (1975). Cancer Res. 35, 3750-3754.]), cancer therapy (Anderson et al., 2005[Anderson, D. R., Hegde, S., Reinhard, E., Gomez, L., Vernier, W. F., Lee, L., Liu, S., Sambandam, A., Snider, P. A. & Masih, L. (2005). Bioorg. Med. Chem. Lett. 15, 1587-1590.]), central nervous system activity (Eiden & Denk, 1991[Eiden, F. & Denk, F. (1991). Arch. Pharm. Pharm. Med. Chem. 324, 353-354.]), anti­fungal (Schiller et al., 2010[Schiller, R., Tichotová, L., Pavlík, J., Buchta, V., Melichar, B., Votruba, I., Kuneš, J., Špulák, M. & Pour, M. (2010). Bioorg. Med. Chem. Lett. 20, 7358-7360.]), anti­proliferative (Osman et al., 2011[Osman, S., Albert, B. J., Wang, Y., Li, M., Czaicki, N. L. & Koide, K. (2011). Chem. Eur. J. 17, 895-904.]), anti­diabetic (Bisht et al., 2011[Bisht, S. S., Jaiswal, N., Sharma, A., Fatima, S., Sharma, R., Rahuja, N., Srivastava, A. K., Bajpai, V., Kumar, B. & Tripathi, R. P. (2011). Carbohydr. Res. 346, 1191-1201.]), anti-inflammatory (Wang et al., 1996[Wang, S. M., Milne, G. W. A., Yan, X. J., Posey, I. J., Nicklaus, M. C., Graham, L. & Rice, W. G. (1996). J. Med. Chem. 39, 2047-2054.]; Wang et al., 2005[Wang, Y., Mo, S. Y., Wang, S. J., Li, S., Yang, Y. C. & Shi, J. G. (2005). Org. Lett. 7, 1675-1678.]) and calcium channel antagonist activity (Shahrisa et al., 2011[Shahrisa, A., Zirak, M., Mehdipour, A. R. & Miri, R. (2011). Chem. Heterocycl. Compd. 46, 1354-1363.]).

2-Amino-4H-benzo[1,2-b]pyrans (2-amino-4H-chromenes) act as synthetic building blocks for the design of various pyran-containing bio-active mol­ecules (Kale et al., 2013[Kale, S. R., Kahandal, S. S., Burange, A. S., Gawande, M. B. & Jayaram, R. V. (2013). Catal. Sci. Technol. 3, 2050-2056.]; Sabry et al., 2011[Sabry, N. M., Mohamed, H. M., Khattab, E. S. A. E. H., Motlaq, S. & El-Agrody, A. M. (2011). Eur. J. Med. Chem. 46, 765-772.]; Kidwai et al., 2010[Kidwai, M., Poddar, R., Bhardwaj, S., Singh, S. & Luthra, M. P. (2010). Eur. J. Med. Chem. 45, 5031-5038.]); among them are cytotoxic and anti-HIV preparations (Patil et al., 1993[Patil, A. D., Freyer, A. J., Eggleston, D. S., Haltiwanger, R. C., Bean, M. F., Taylor, P. B., Caranfa, M. J., Breen, A. L., Bartus, H. R., Johnson, R. K., Hertzberg, R. P. & Westley, J. W. (1993). J. Med. Chem. 36, 4131-4138.]; Emmadi et al., 2012[Emmadi, N. R., Atmakur, K., Chityal, G. K., Pombala, S. & Nanubolu, J. B. (2012). Bioorg. Med. Chem. Lett. 22, 7261-7264.]) and anti­cancer (Wu et al., 2003[Wu, J. Y. C., Fong, W. F., Zhang, J. X., Leung, C. H., Kwong, H. L., Yang, M. S., Li, D. & Cheung, H. (2003). Eur. J. Pharmacol. 473, 9-17.]; Perrella et al., 1994[Perrella, F. W., Chen, S. F., Behrens, D. L., Kaltenbach, R. F. & Seitz, S. P. (1994). J. Med. Chem. 37, 2232-2237.]), anti­microbial (Mungra et al., 2011[Mungra, D. C., Patel, M. P., Rajani, D. P. & Patel, R. G. (2011). Eur. J. Med. Chem. 46, 4192-4200.]) and anti­coagulant agents (Cingolani et al., 1969[Cingolani, G., Gualtieri, F. & Pigini, M. (1969). J. Med. Chem. 12, 531-532.]).

Against this background we carried out the crystallographic studies of the title 4H-chromenes 2-amino-3-cyano-4-(3,4-di­chloro­phen­yl)-7-hy­droxy-4H-benzo[1,2-b]pyran 1,4-dioxane mono solvate (I)[link] and 2-amino-3-cyano-4-(2,6-di­chloro­phen­yl)-7-hy­droxy-4H-benzo[1,2-b]pyran (II)[link].

[Scheme 1]

2. Structural commentary

The asymmetric units of the title compounds are illustrated in Figs. 1[link] and 2[link]. The mol­ecules of the two 4H-chromene deriv­atives differ only in the positions of the chlorine atoms attached to the phenyl ring, and the key bond dimensions in (I)[link] and (II)[link] essentially coincide. The bicyclic chromene cores in the two structures are nearly planar, with the largest deviation from the mean plane being observed for the sp3-hybridized C7 atom in both cases [0.081 (2) and 0.087 (2) Å in (I)[link] and (II)[link], respectively]. The inter­atomic distances in the pyran rings indicate a strong π-conjugation of the electron-donating atoms O2 and N2 with the cyano acceptor groups. As a result of this conjugation, the C8=C9 bonds [1.349 (3) Å in (I)[link] and 1.354 (2) Å in (II)] are longer than the typical double bonds (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]), whereas the C9—N2 bonds are shortened [1.335 (3) and 1.342 (2) Å for (I)[link] and (II)[link], respectively], thus the amino groups in the studied structures were assumed to be planar and treated with the AFIX 43 instruction. Besides this, the O—C distances in the pyran rings are asymmetric [1.393 (2) and 1.393 (2) Å for O2—C10 vs. 1.357 (3) and 1.353 (2) Å for O2—C9 in (I)[link] and (II)[link], respectively]. The observed planarity of the bicyclic chromene units is also a consequence of π-conjugation. The dihedral angle between the mean planes of the 4H-chromene ring system and the phenyl ring attached to C7 is 80.82 (9)° in (I)[link] and 85.36 (8)° in (II)[link]. In (II)[link], the o-chlorine atom Cl1 forms short intra­molecular contacts with atoms C8 and C9 of the pyran ring of 3.111 (2) and 3.193 (2) Å, respectively.

[Figure 1]
Figure 1
The asymmetric unit of (I)[link], with atom labelling and 50% probability displacement ellipsoids. The hydrogen bond is represented by a dashed line.
[Figure 2]
Figure 2
The mol­ecular structure of (II)[link], with atom labelling and 50% probability displacement ellipsoids.

3. Supra­molecular features

As shown in Figs. 3[link] and 4[link], in both of the title structures the 4H-chromene derivative mol­ecules are linked by pairs of N—H⋯O hydrogen bonds (Tables 1[link] and 2[link]) into centrosymmetric dimers, thus forming R22(16) motifs. In (I)[link], these dimers are further connected by N—H⋯N hydrogen bonds into double layers parallel to the (100) plane (Fig. 5[link]). In (II)[link], the dimers are linked by O—H⋯N hydrogen bonds into ribbons along the [1[\overline{1}]0] direction. In (I)[link], the 1,4-dioxane solvent mol­ecules are linked to the chromene mol­ecules via O—H⋯O hydrogen bonds. In this compound, the C—H⋯Cl contacts (Table 2[link]) also contribute to the stability of crystal structure.

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—HO1⋯O16 0.82 1.85 2.658 (3) 167
N2—HNB⋯O1i 0.86 2.19 2.978 (3) 153
N2—HNA⋯N1ii 0.86 2.22 2.989 (3) 149
C4—H4⋯Cl2iii 0.93 2.87 3.692 (3) 148
Symmetry codes: (i) -x, -y+2, -z+1; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x, y-1, z.

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯Cl2 0.98 2.50 3.078 (3) 117
N2—HNB⋯O1i 0.86 2.19 3.048 (2) 173
O1—HO1⋯N1ii 0.85 (3) 1.95 (3) 2.762 (2) 160 (3)
Symmetry codes: (i) -x+2, -y+1, -z; (ii) x+1, y-1, z.
[Figure 3]
Figure 3
A view of the hydrogen-bonding inter­actions in (I)[link], showing the formation of centrosymmetric dimers. The C-bound hydrogen atoms are omitted for clarity. [Symmetry codes: (i) −x, 2 − y, 1 − z; (ii) −x, [{1\over 2}] + y, [{1\over 2}] − z.]
[Figure 4]
Figure 4
A view of the hydrogen-bonding inter­actions in (II)[link], showing the formation of centrosymmetric dimers and ribbons. The C-bound hydrogen atoms are omitted for clarity. [Symmetry codes: (i) 2 − x, 1 − y, −z; (ii) 1 + x, y − 1, z.]
[Figure 5]
Figure 5
Double layers of hydrogen-bonded mol­ecules in (I)[link]. The 1,4-dioxane mol­ecules are omitted for clarity.

4. Database survey

A search in the Cambridge Structural Database (CSD version 5.40, last update August 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), revealed 107 structures of 4H-chromene derivatives, among them 25 containing the 2-amino-3-cyano-4H-chromene moiety. Of these, two structures, viz. 2-amino-7-hy­droxy-4-(4-hy­droxy­phen­yl)-4H-chromene-3-carbo­nitrile (HUPCEC; Horton et al., 2015[Horton, P. N., Akkurt, M., Mohamed, S. K., Younes, S. H. H. & Albayati, M. R. (2015). Acta Cryst. E71, o546-o547.]) and 2-amino-4-(4-bromo­phen­yl)-7-hy­droxy-4H-chromene-3-carbo­nitrile (UFEKOI; Bi et al., 2017[Bi, Q., Ruan, W.-W., Cao, L. & Xu, Y.-J. (2017). Biomed. Res. India, 28, 1290-1293.]) are closely related to compounds (I)[link] and (II)[link]. In the structures of both HUPCEC and UFEKOI, the mol­ecules adopt the same conformation as in (I)[link] and (II)[link] and also form centrosymmetric dimers by pairs of N—H⋯O hydrogen bonds as in the title structures.

5. Synthesis and crystallization

Both studied compounds were prepared by the same procedure. Mixtures of 3,4-chloro­benzaldehyde (8.75 g, 0.05 mol) [for (I)] or 2,4-di­chloro­benzaldehyde (8.75 g, 0.05 mol) [for (II)], malono­nitrile (3.3 ml, 0.05 mol) and resorcinol (5.5 g, 0.05 mol) in 150 ml of water were refluxed for about 10-20 minutes in 250 ml round-bottom flasks. The progress of the reaction was monitored by thin layer chromatography using silica gel-G plates. After the product had formed, the reaction mixtures were kept in the refrigerator overnight. The solid mass that settled was filtered using a suction pump, washed well with a mixture of methanol and water and dried in air. The crude products were recrystallized from methanol giving white powders. Single crystals were grown by slow evaporation of solutions in 1,4-dioxane (I)[link] or aceto­nitrile (II)[link]. The melting points are 518-523 K for (I)[link] and 513-515 K for (II)[link].

6. Refinement

Crystal data, diffraction data and structure refinement details for (I)[link] and (II)[link] are summarized in Table 3[link]. All hydrogen atoms bound to C and N were located from the difference-Fourier maps and refined isotropically using a riding model, with Uiso(H) = 1.2Ueq(C,N) and C—H = 0.98 Å for methine, 0.97 Å for methyl­ene and 0.93 Å for aromatic C atoms, and N—H = 0.86 Å. In (I)[link], the hy­droxy H atom was constrained with AFIX 147, but its Uiso value was allowed to refine freely. In (II)[link], the OH hydrogen atom was freely refined.

Table 3
Experimental details

  (I) (II)
Crystal data
Chemical formula C16H9Cl2N2O2·C4H8O2 C16H9Cl2N2O2
Mr 420.25 332.15
Crystal system, space group Monoclinic, P21/c Triclinic, P[\overline{1}]
Temperature (K) 294 294
a, b, c (Å) 12.753 (9), 6.665 (4), 24.050 (14) 6.271 (3), 8.697 (5), 13.794 (7)
α, β, γ (°) 90, 102.95 (3), 90 107.06 (2), 94.269 (17), 95.00 (3)
V3) 1992 (2) 712.5 (7)
Z 4 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.36 0.46
Crystal size (mm) 0.15 × 0.15 × 0.10 0.15 × 0.15 × 0.10
 
Data collection
Diffractometer Bruker Kappa APEX3 CMOS Bruker Kappa APEX3 CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2018[Bruker (2018). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2018[Bruker (2018). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.704, 0.745 0.704, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 34682, 3492, 2885 22289, 2499, 2239
Rint 0.033 0.023
(sin θ/λ)max−1) 0.595 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.121, 1.11 0.033, 0.081, 1.11
No. of reflections 3492 2499
No. of parameters 256 204
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.26, −0.24 0.23, −0.25
Computer programs: APEX3, SAINT and XPREP (Bruker, 2018[Bruker (2018). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014/6 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2007[Brandenburg, K. (2007). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

For both structures, data collection: APEX3 (Bruker, 2018); cell refinement: APEX3 and SAINT (Bruker, 2018); data reduction: SAINT and XPREP (Bruker, 2018); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014/6 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 2007) and Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009).

2-Amino-3-cyano-4-(3,4-dichlorophenyl)-7-hydroxy-4H-benzo[1,2-b]pyran 1,4-dioxane monosolvate (I) top
Crystal data top
C16H9Cl2N2O2·C4H8O2Dx = 1.401 Mg m3
Mr = 420.25Melting point: 520 K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.753 (9) ÅCell parameters from 9965 reflections
b = 6.665 (4) Åθ = 3.2–26.7°
c = 24.050 (14) ŵ = 0.36 mm1
β = 102.95 (3)°T = 294 K
V = 1992 (2) Å3Block, colourless
Z = 40.15 × 0.15 × 0.10 mm
F(000) = 868
Data collection top
Bruker Kappa APEX3 CMOS
diffractometer
3492 independent reflections
Radiation source: fine-focus sealed tube2885 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ω and φ scanθmax = 25.0°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2018)
h = 1515
Tmin = 0.704, Tmax = 0.745k = 77
34682 measured reflectionsl = 2826
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.121 w = 1/[σ2(Fo2) + (0.0541P)2 + 1.1852P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max < 0.001
3492 reflectionsΔρmax = 0.26 e Å3
256 parametersΔρmin = 0.24 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0174 (18)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.60648 (5)0.18411 (11)0.42962 (4)0.0702 (3)
Cl20.52933 (5)0.63066 (11)0.40894 (4)0.0679 (3)
O10.12386 (15)0.8018 (3)0.63654 (6)0.0519 (5)
HO10.15450.73860.66480.074 (10)*
O20.07140 (12)0.8197 (2)0.43851 (6)0.0379 (4)
N20.01565 (18)0.8571 (3)0.34552 (8)0.0530 (6)
HNA0.00510.82070.31040.064*
HNB0.00320.97500.35400.064*
N10.0608 (2)0.3924 (4)0.28098 (9)0.0748 (8)
C30.47549 (17)0.2502 (4)0.42953 (10)0.0424 (6)
C40.40418 (19)0.1065 (4)0.43879 (12)0.0512 (6)
H40.42660.02600.44520.061*
C50.29931 (18)0.1579 (3)0.43861 (11)0.0439 (6)
H50.25160.05920.44480.053*
C60.26401 (16)0.3532 (3)0.42946 (8)0.0303 (5)
C70.14837 (15)0.4087 (3)0.43059 (8)0.0305 (5)
H70.10680.28410.42790.037*
C110.14231 (15)0.5105 (3)0.48595 (8)0.0292 (4)
C120.17291 (16)0.4127 (3)0.53832 (9)0.0358 (5)
H120.19800.28150.53910.043*
C130.16731 (17)0.5037 (4)0.58889 (9)0.0382 (5)
H130.18680.43370.62310.046*
C140.13242 (16)0.7003 (3)0.58846 (8)0.0354 (5)
C100.10667 (15)0.7052 (3)0.48756 (8)0.0291 (4)
C150.10195 (16)0.8023 (3)0.53756 (8)0.0337 (5)
H150.07860.93460.53690.040*
C90.06130 (16)0.7304 (3)0.38688 (8)0.0342 (5)
C80.09544 (16)0.5416 (3)0.38111 (8)0.0347 (5)
C220.07678 (19)0.4596 (4)0.32560 (10)0.0459 (6)
C10.33627 (17)0.4972 (3)0.42043 (9)0.0361 (5)
H10.31400.62980.41430.043*
C20.44144 (17)0.4463 (3)0.42042 (9)0.0380 (5)
O160.24114 (17)0.6481 (4)0.73252 (9)0.0769 (6)
C170.2288 (3)0.5035 (7)0.77295 (16)0.0937 (12)
H1710.15650.44910.76300.112*
H1720.23890.56590.81020.112*
C180.3066 (3)0.3413 (7)0.7754 (2)0.1008 (13)
H1810.29760.24500.80420.121*
H1820.29300.27270.73890.121*
O190.4122 (2)0.4128 (5)0.78824 (13)0.1129 (10)
C200.4249 (4)0.5602 (9)0.7484 (3)0.140 (2)
H2010.41590.49860.71110.169*
H2020.49740.61370.75900.169*
C210.3484 (3)0.7239 (7)0.7450 (2)0.1147 (16)
H2110.36220.79570.78100.138*
H2120.35730.81710.71540.138*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0349 (3)0.0613 (5)0.1189 (7)0.0130 (3)0.0268 (4)0.0064 (4)
Cl20.0449 (4)0.0492 (4)0.1188 (7)0.0051 (3)0.0379 (4)0.0059 (4)
O10.0682 (12)0.0615 (11)0.0250 (8)0.0233 (9)0.0080 (8)0.0009 (8)
O20.0528 (9)0.0356 (8)0.0245 (7)0.0081 (7)0.0070 (6)0.0006 (6)
N20.0766 (15)0.0540 (13)0.0266 (10)0.0236 (11)0.0079 (9)0.0035 (9)
N10.100 (2)0.0820 (18)0.0351 (13)0.0287 (16)0.0006 (12)0.0151 (12)
C30.0294 (11)0.0424 (13)0.0557 (14)0.0061 (10)0.0105 (10)0.0031 (11)
C40.0408 (13)0.0324 (12)0.0819 (18)0.0077 (10)0.0171 (12)0.0016 (12)
C50.0362 (12)0.0333 (12)0.0634 (15)0.0015 (10)0.0138 (11)0.0009 (11)
C60.0300 (10)0.0334 (11)0.0273 (10)0.0020 (9)0.0059 (8)0.0045 (9)
C70.0258 (10)0.0325 (11)0.0328 (11)0.0011 (8)0.0062 (8)0.0046 (9)
C110.0220 (9)0.0354 (11)0.0305 (10)0.0020 (8)0.0062 (8)0.0008 (9)
C120.0333 (11)0.0346 (12)0.0394 (12)0.0048 (9)0.0082 (9)0.0041 (9)
C130.0374 (12)0.0481 (14)0.0285 (11)0.0053 (10)0.0060 (9)0.0080 (10)
C140.0305 (11)0.0481 (13)0.0275 (11)0.0035 (9)0.0065 (8)0.0018 (9)
C100.0244 (9)0.0370 (11)0.0253 (10)0.0007 (8)0.0042 (8)0.0035 (9)
C150.0323 (11)0.0377 (12)0.0306 (11)0.0046 (9)0.0061 (8)0.0010 (9)
C90.0317 (11)0.0455 (13)0.0261 (10)0.0020 (9)0.0079 (8)0.0005 (9)
C80.0284 (10)0.0474 (13)0.0274 (10)0.0041 (9)0.0043 (8)0.0054 (9)
C220.0459 (13)0.0541 (15)0.0347 (13)0.0145 (11)0.0028 (10)0.0041 (11)
C10.0344 (11)0.0306 (11)0.0450 (12)0.0042 (9)0.0126 (9)0.0021 (9)
C20.0320 (11)0.0395 (12)0.0439 (12)0.0026 (9)0.0115 (9)0.0032 (10)
O160.0632 (13)0.0935 (16)0.0644 (13)0.0044 (12)0.0062 (10)0.0279 (12)
C170.067 (2)0.126 (3)0.091 (2)0.018 (2)0.0234 (18)0.049 (2)
C180.082 (3)0.096 (3)0.126 (3)0.008 (2)0.027 (2)0.042 (2)
O190.0663 (16)0.131 (3)0.137 (2)0.0268 (17)0.0141 (15)0.043 (2)
C200.075 (3)0.139 (4)0.219 (6)0.007 (3)0.056 (3)0.052 (5)
C210.079 (3)0.108 (3)0.141 (4)0.018 (3)0.008 (2)0.034 (3)
Geometric parameters (Å, º) top
Cl1—C31.727 (2)C12—H120.9300
Cl2—C21.727 (2)C13—C141.383 (3)
O1—C141.365 (3)C13—H130.9300
O1—HO10.8200C14—C151.378 (3)
O2—C91.357 (3)C10—C151.379 (3)
O2—C101.393 (2)C15—H150.9300
N2—C91.335 (3)C9—C81.349 (3)
N2—HNA0.8600C8—C221.413 (3)
N2—HNB0.8600C1—C21.384 (3)
N1—C221.138 (3)C1—H10.9300
C3—C41.373 (3)O16—C171.403 (4)
C3—C21.379 (3)O16—C211.426 (5)
C4—C51.380 (3)C17—C181.459 (5)
C4—H40.9300C17—H1710.9700
C5—C61.379 (3)C17—H1720.9700
C5—H50.9300C18—O191.396 (5)
C6—C11.381 (3)C18—H1810.9700
C6—C71.527 (3)C18—H1820.9700
C7—C111.512 (3)O19—C201.406 (5)
C7—C81.515 (3)C20—C211.453 (7)
C7—H70.9800C20—H2010.9700
C11—C101.378 (3)C20—H2020.9700
C11—C121.394 (3)C21—H2110.9700
C12—C131.375 (3)C21—H2120.9700
C14—O1—HO1109.5C10—C15—H15120.5
C9—O2—C10118.75 (17)N2—C9—C8127.6 (2)
C9—N2—HNA120.0N2—C9—O2109.9 (2)
C9—N2—HNB120.0C8—C9—O2122.48 (19)
HNA—N2—HNB120.0C9—C8—C22117.9 (2)
C4—C3—C2119.4 (2)C9—C8—C7124.17 (18)
C4—C3—Cl1119.81 (19)C22—C8—C7117.8 (2)
C2—C3—Cl1120.80 (18)N1—C22—C8179.3 (3)
C3—C4—C5120.2 (2)C6—C1—C2120.7 (2)
C3—C4—H4119.9C6—C1—H1119.6
C5—C4—H4119.9C2—C1—H1119.6
C6—C5—C4121.1 (2)C3—C2—C1120.2 (2)
C6—C5—H5119.4C3—C2—Cl2120.48 (17)
C4—C5—H5119.4C1—C2—Cl2119.31 (18)
C5—C6—C1118.41 (19)C17—O16—C21110.4 (3)
C5—C6—C7120.53 (19)O16—C17—C18110.9 (3)
C1—C6—C7121.05 (19)O16—C17—H171109.5
C11—C7—C8109.13 (17)C18—C17—H171109.5
C11—C7—C6111.39 (16)O16—C17—H172109.5
C8—C7—C6112.94 (16)C18—C17—H172109.5
C11—C7—H7107.7H171—C17—H172108.1
C8—C7—H7107.7O19—C18—C17111.6 (4)
C6—C7—H7107.7O19—C18—H181109.3
C10—C11—C12116.24 (18)C17—C18—H181109.3
C10—C11—C7121.97 (18)O19—C18—H182109.3
C12—C11—C7121.79 (19)C17—C18—H182109.3
C13—C12—C11122.2 (2)H181—C18—H182108.0
C13—C12—H12118.9C18—O19—C20109.9 (3)
C11—C12—H12118.9O19—C20—C21112.6 (4)
C12—C13—C14119.5 (2)O19—C20—H201109.1
C12—C13—H13120.3C21—C20—H201109.1
C14—C13—H13120.3O19—C20—H202109.1
O1—C14—C15116.6 (2)C21—C20—H202109.1
O1—C14—C13123.34 (19)H201—C20—H202107.8
C15—C14—C13120.01 (19)O16—C21—C20110.2 (4)
C11—C10—C15123.07 (18)O16—C21—H211109.6
C11—C10—O2122.57 (17)C20—C21—H211109.6
C15—C10—O2114.36 (18)O16—C21—H212109.6
C14—C15—C10119.0 (2)C20—C21—H212109.6
C14—C15—H15120.5H211—C21—H212108.1
C2—C3—C4—C50.4 (4)C11—C10—C15—C141.1 (3)
Cl1—C3—C4—C5179.8 (2)O2—C10—C15—C14178.35 (18)
C3—C4—C5—C60.3 (4)C10—O2—C9—N2173.17 (18)
C4—C5—C6—C10.0 (3)C10—O2—C9—C87.7 (3)
C4—C5—C6—C7178.7 (2)N2—C9—C8—C223.7 (3)
C5—C6—C7—C11102.8 (2)O2—C9—C8—C22177.2 (2)
C1—C6—C7—C1175.9 (2)N2—C9—C8—C7178.9 (2)
C5—C6—C7—C8134.0 (2)O2—C9—C8—C70.1 (3)
C1—C6—C7—C847.3 (3)C11—C7—C8—C97.6 (3)
C8—C7—C11—C108.1 (2)C6—C7—C8—C9116.9 (2)
C6—C7—C11—C10117.2 (2)C11—C7—C8—C22169.73 (19)
C8—C7—C11—C12172.12 (18)C6—C7—C8—C2265.8 (2)
C6—C7—C11—C1262.5 (2)C5—C6—C1—C20.2 (3)
C10—C11—C12—C130.5 (3)C7—C6—C1—C2178.92 (19)
C7—C11—C12—C13179.75 (19)C4—C3—C2—C10.2 (4)
C11—C12—C13—C141.4 (3)Cl1—C3—C2—C1179.98 (18)
C12—C13—C14—O1179.6 (2)C4—C3—C2—Cl2179.7 (2)
C12—C13—C14—C151.1 (3)Cl1—C3—C2—Cl20.1 (3)
C12—C11—C10—C150.8 (3)C6—C1—C2—C30.1 (3)
C7—C11—C10—C15178.98 (18)C6—C1—C2—Cl2179.97 (16)
C12—C11—C10—O2178.63 (18)C21—O16—C17—C1856.6 (5)
C7—C11—C10—O21.6 (3)O16—C17—C18—O1957.7 (5)
C9—O2—C10—C116.9 (3)C17—C18—O19—C2056.0 (5)
C9—O2—C10—C15172.56 (18)C18—O19—C20—C2155.8 (6)
O1—C14—C15—C10178.52 (19)C17—O16—C21—C2055.5 (5)
C13—C14—C15—C100.1 (3)O19—C20—C21—O1655.7 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—HO1···O160.821.852.658 (3)167
N2—HNB···O1i0.862.192.978 (3)153
N2—HNA···N1ii0.862.222.989 (3)149
C4—H4···Cl2iii0.932.873.692 (3)148
Symmetry codes: (i) x, y+2, z+1; (ii) x, y+1/2, z+1/2; (iii) x, y1, z.
2-Amino-3-cyano-4-(2,6-dichlorophenyl)-7-hydroxy-4H-\ benzo[1,2-b]pyran (II) top
Crystal data top
C16H9Cl2N2O2F(000) = 338
Mr = 332.15Dx = 1.548 Mg m3
Triclinic, P1Melting point: 514 K
a = 6.271 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.697 (5) ÅCell parameters from 8750 reflections
c = 13.794 (7) Åθ = 3.1–30.4°
α = 107.06 (2)°µ = 0.46 mm1
β = 94.269 (17)°T = 294 K
γ = 95.00 (3)°Block, colourless
V = 712.5 (7) Å30.15 × 0.15 × 0.10 mm
Z = 2
Data collection top
Bruker Kappa APEX3 CMOS
diffractometer
2499 independent reflections
Radiation source: fine-focus sealed tube2239 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω and φ scanθmax = 25.0°, θmin = 3.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2018)
h = 77
Tmin = 0.704, Tmax = 0.746k = 1010
22289 measured reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.033H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.081 w = 1/[σ2(Fo2) + (0.0263P)2 + 0.4717P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max < 0.001
2499 reflectionsΔρmax = 0.23 e Å3
204 parametersΔρmin = 0.25 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.080 (10)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.84692 (8)0.84534 (6)0.32241 (4)0.04703 (19)
Cl20.10752 (8)0.50064 (7)0.36100 (4)0.0536 (2)
O11.0482 (2)0.15972 (18)0.09764 (12)0.0484 (4)
HO11.058 (5)0.092 (4)0.130 (2)0.084 (10)*
O20.7394 (2)0.62001 (14)0.07971 (9)0.0331 (3)
N10.1786 (3)0.9314 (2)0.18547 (15)0.0538 (5)
N20.6119 (3)0.83118 (18)0.04811 (12)0.0372 (4)
HNB0.71280.82660.00870.045*
HNA0.52620.90460.05400.045*
C140.8930 (3)0.2578 (2)0.12922 (13)0.0314 (4)
C130.7476 (3)0.2339 (2)0.19616 (13)0.0327 (4)
H130.74980.14520.22070.039*
C120.6001 (3)0.3428 (2)0.22588 (13)0.0303 (4)
H120.50330.32580.27060.036*
C110.5912 (3)0.47743 (19)0.19116 (12)0.0252 (4)
C70.4337 (3)0.59914 (19)0.22777 (12)0.0244 (3)
H70.28920.53940.21310.029*
C60.4733 (3)0.67923 (19)0.34378 (12)0.0256 (4)
C10.3324 (3)0.6415 (2)0.40945 (13)0.0340 (4)
C20.3630 (4)0.7086 (3)0.51432 (15)0.0489 (5)
H20.26370.68080.55490.059*
C30.5406 (4)0.8159 (3)0.55754 (15)0.0545 (6)
H30.56230.86210.62800.065*
C80.4401 (3)0.7173 (2)0.16603 (12)0.0272 (4)
C220.2927 (3)0.8338 (2)0.17803 (13)0.0333 (4)
C90.5883 (3)0.72374 (19)0.10034 (12)0.0270 (4)
C100.7341 (3)0.49354 (19)0.12257 (12)0.0258 (4)
C150.8841 (3)0.3873 (2)0.09093 (13)0.0306 (4)
H150.97780.40280.04460.037*
C40.6873 (4)0.8561 (3)0.49742 (15)0.0482 (5)
H40.80940.92820.52690.058*
C50.6524 (3)0.7886 (2)0.39261 (13)0.0333 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0390 (3)0.0566 (3)0.0404 (3)0.0157 (2)0.0042 (2)0.0129 (2)
Cl20.0435 (3)0.0712 (4)0.0448 (3)0.0174 (2)0.0084 (2)0.0216 (3)
O10.0615 (10)0.0440 (8)0.0580 (9)0.0319 (7)0.0295 (7)0.0303 (7)
O20.0421 (7)0.0305 (6)0.0376 (7)0.0150 (5)0.0189 (5)0.0204 (5)
N10.0546 (11)0.0603 (12)0.0685 (12)0.0324 (10)0.0294 (9)0.0405 (10)
N20.0469 (9)0.0356 (8)0.0409 (9)0.0166 (7)0.0178 (7)0.0231 (7)
C140.0388 (10)0.0269 (8)0.0303 (9)0.0110 (7)0.0057 (7)0.0088 (7)
C130.0433 (10)0.0254 (8)0.0340 (9)0.0057 (7)0.0052 (8)0.0154 (7)
C120.0362 (9)0.0298 (9)0.0276 (8)0.0013 (7)0.0063 (7)0.0128 (7)
C110.0289 (8)0.0243 (8)0.0222 (8)0.0023 (6)0.0012 (6)0.0071 (6)
C70.0235 (8)0.0264 (8)0.0242 (8)0.0026 (6)0.0033 (6)0.0090 (6)
C60.0285 (8)0.0259 (8)0.0247 (8)0.0063 (7)0.0043 (6)0.0098 (7)
C10.0354 (10)0.0376 (10)0.0314 (9)0.0017 (8)0.0065 (7)0.0139 (8)
C20.0648 (14)0.0541 (12)0.0293 (10)0.0009 (11)0.0165 (9)0.0143 (9)
C30.0846 (17)0.0510 (13)0.0232 (9)0.0059 (12)0.0054 (10)0.0076 (9)
C80.0309 (9)0.0284 (8)0.0249 (8)0.0082 (7)0.0036 (7)0.0107 (7)
C220.0358 (9)0.0374 (10)0.0341 (9)0.0099 (8)0.0097 (7)0.0191 (8)
C90.0325 (9)0.0252 (8)0.0255 (8)0.0085 (7)0.0032 (7)0.0094 (7)
C100.0328 (9)0.0232 (8)0.0248 (8)0.0055 (7)0.0043 (7)0.0113 (6)
C150.0362 (9)0.0304 (9)0.0299 (9)0.0092 (7)0.0109 (7)0.0130 (7)
C40.0604 (13)0.0444 (11)0.0323 (10)0.0108 (10)0.0050 (9)0.0073 (9)
C50.0375 (10)0.0336 (9)0.0298 (9)0.0002 (7)0.0057 (7)0.0118 (7)
Geometric parameters (Å, º) top
Cl1—C51.7383 (19)C11—C71.515 (2)
Cl2—C11.736 (2)C7—C81.515 (2)
O1—C141.362 (2)C7—C61.538 (2)
O1—HO10.85 (3)C7—H70.9800
O2—C91.353 (2)C6—C51.394 (3)
O2—C101.392 (2)C6—C11.397 (2)
N1—C221.144 (2)C1—C21.383 (3)
N2—C91.342 (2)C2—C31.364 (3)
N2—HNB0.8600C2—H20.9300
N2—HNA0.8600C3—C41.373 (3)
C14—C151.381 (2)C3—H30.9300
C14—C131.390 (3)C8—C91.354 (2)
C13—C121.380 (3)C8—C221.413 (2)
C13—H130.9300C10—C151.380 (2)
C12—C111.392 (2)C15—H150.9300
C12—H120.9300C4—C51.384 (3)
C11—C101.378 (2)C4—H40.9300
C14—O1—HO1112 (2)C2—C1—Cl2116.30 (15)
C9—O2—C10118.64 (13)C6—C1—Cl2120.20 (14)
C9—N2—HNB120.0C3—C2—C1119.25 (19)
C9—N2—HNA120.0C3—C2—H2120.4
HNB—N2—HNA120.0C1—C2—H2120.4
O1—C14—C15116.39 (16)C2—C3—C4120.18 (19)
O1—C14—C13123.88 (16)C2—C3—H3119.9
C15—C14—C13119.73 (16)C4—C3—H3119.9
C12—C13—C14119.48 (15)C9—C8—C22115.95 (15)
C12—C13—H13120.3C9—C8—C7123.49 (14)
C14—C13—H13120.3C22—C8—C7120.51 (15)
C13—C12—C11122.22 (16)N1—C22—C8177.10 (19)
C13—C12—H12118.9N2—C9—O2110.03 (14)
C11—C12—H12118.9N2—C9—C8126.71 (15)
C10—C11—C12116.26 (15)O2—C9—C8123.25 (15)
C10—C11—C7122.30 (14)C11—C10—C15123.29 (15)
C12—C11—C7121.44 (15)C11—C10—O2122.40 (14)
C11—C7—C8109.10 (13)C15—C10—O2114.31 (14)
C11—C7—C6111.28 (13)C10—C15—C14118.96 (16)
C8—C7—C6114.32 (14)C10—C15—H15120.5
C11—C7—H7107.3C14—C15—H15120.5
C8—C7—H7107.3C3—C4—C5119.6 (2)
C6—C7—H7107.3C3—C4—H4120.2
C5—C6—C1114.50 (15)C5—C4—H4120.2
C5—C6—C7124.05 (14)C4—C5—C6123.02 (17)
C1—C6—C7121.41 (15)C4—C5—Cl1116.49 (15)
C2—C1—C6123.48 (18)C6—C5—Cl1120.49 (13)
O1—C14—C13—C12178.13 (17)C10—O2—C9—N2176.56 (14)
C15—C14—C13—C121.9 (3)C10—O2—C9—C84.5 (2)
C14—C13—C12—C110.1 (3)C22—C8—C9—N21.8 (3)
C13—C12—C11—C102.0 (2)C7—C8—C9—N2175.57 (16)
C13—C12—C11—C7177.63 (15)C22—C8—C9—O2179.42 (15)
C10—C11—C7—C88.4 (2)C7—C8—C9—O23.2 (3)
C12—C11—C7—C8172.08 (15)C12—C11—C10—C152.0 (2)
C10—C11—C7—C6118.71 (17)C7—C11—C10—C15177.61 (15)
C12—C11—C7—C660.9 (2)C12—C11—C10—O2178.39 (15)
C11—C7—C6—C570.1 (2)C7—C11—C10—O22.0 (2)
C8—C7—C6—C554.1 (2)C9—O2—C10—C115.0 (2)
C11—C7—C6—C1107.41 (18)C9—O2—C10—C15175.30 (15)
C8—C7—C6—C1128.44 (17)C11—C10—C15—C140.1 (3)
C5—C6—C1—C21.3 (3)O2—C10—C15—C14179.77 (15)
C7—C6—C1—C2179.01 (18)O1—C14—C15—C10178.14 (16)
C5—C6—C1—Cl2177.27 (13)C13—C14—C15—C101.9 (3)
C7—C6—C1—Cl20.4 (2)C2—C3—C4—C50.9 (4)
C6—C1—C2—C30.9 (3)C3—C4—C5—C60.3 (3)
Cl2—C1—C2—C3177.78 (18)C3—C4—C5—Cl1179.69 (18)
C1—C2—C3—C40.3 (4)C1—C6—C5—C40.7 (3)
C11—C7—C8—C99.1 (2)C7—C6—C5—C4178.35 (17)
C6—C7—C8—C9116.24 (18)C1—C6—C5—Cl1178.63 (13)
C11—C7—C8—C22173.69 (15)C7—C6—C5—Cl11.0 (2)
C6—C7—C8—C2261.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···Cl20.982.503.078 (3)117
N2—HNB···O1i0.862.193.048 (2)173
O1—HO1···N1ii0.85 (3)1.95 (3)2.762 (2)160 (3)
Symmetry codes: (i) x+2, y+1, z; (ii) x+1, y1, z.
 

Acknowledgements

The authors thank Dr Babu Varghese, Senior Scientific Officer, SAIF, IIT Madras, Chennai, India, for the data collection.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAnderson, D. R., Hegde, S., Reinhard, E., Gomez, L., Vernier, W. F., Lee, L., Liu, S., Sambandam, A., Snider, P. A. & Masih, L. (2005). Bioorg. Med. Chem. Lett. 15, 1587–1590.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBi, Q., Ruan, W.-W., Cao, L. & Xu, Y.-J. (2017). Biomed. Res. India, 28, 1290–1293.  CAS Google Scholar
First citationBianchi, G. & Tava, A. (1987). Agric. Biol. Chem. 51, 2001–2002.  CrossRef CAS Google Scholar
First citationBisht, S. S., Jaiswal, N., Sharma, A., Fatima, S., Sharma, R., Rahuja, N., Srivastava, A. K., Bajpai, V., Kumar, B. & Tripathi, R. P. (2011). Carbohydr. Res. 346, 1191–1201.  CrossRef CAS PubMed Google Scholar
First citationBrandenburg, K. (2007). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2018). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCingolani, G., Gualtieri, F. & Pigini, M. (1969). J. Med. Chem. 12, 531–532.  CrossRef CAS PubMed Google Scholar
First citationEiden, F. & Denk, F. (1991). Arch. Pharm. Pharm. Med. Chem. 324, 353–354.  CrossRef CAS Web of Science Google Scholar
First citationEmmadi, N. R., Atmakur, K., Chityal, G. K., Pombala, S. & Nanubolu, J. B. (2012). Bioorg. Med. Chem. Lett. 22, 7261–7264.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHiramoto, K., Nasuhara, A., Michikoshi, K., Kato, T. & Kikugawa, K. (1997). Mutat. Res. 395, 47–56.  CrossRef CAS PubMed Google Scholar
First citationHorton, P. N., Akkurt, M., Mohamed, S. K., Younes, S. H. H. & Albayati, M. R. (2015). Acta Cryst. E71, o546–o547.  CSD CrossRef IUCr Journals Google Scholar
First citationKale, S. R., Kahandal, S. S., Burange, A. S., Gawande, M. B. & Jayaram, R. V. (2013). Catal. Sci. Technol. 3, 2050–2056.  Web of Science CrossRef CAS Google Scholar
First citationKhafagy, M. M., Abd El-Wahab, A. H. F., Eid, F. A. & El-Agrody, A. M. (2002). Farmaco, 57, 715–722.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKidwai, M., Poddar, R., Bhardwaj, S., Singh, S. & Luthra, M. P. (2010). Eur. J. Med. Chem. 45, 5031–5038.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMartínez-Grau, A. & Marco, J. (1997). Bioorg. Med. Chem. Lett. 7, 3165–3170.  Google Scholar
First citationMohr, S. J., Chirigos, M. A., Fuhrman, F. S. & Pryor, J. W. (1975). Cancer Res. 35, 3750–3754.  PubMed CAS Web of Science Google Scholar
First citationMungra, D. C., Patel, M. P., Rajani, D. P. & Patel, R. G. (2011). Eur. J. Med. Chem. 46, 4192–4200.  Web of Science CrossRef CAS PubMed Google Scholar
First citationOsman, S., Albert, B. J., Wang, Y., Li, M., Czaicki, N. L. & Koide, K. (2011). Chem. Eur. J. 17, 895–904.  CrossRef CAS PubMed Google Scholar
First citationPatil, A. D., Freyer, A. J., Eggleston, D. S., Haltiwanger, R. C., Bean, M. F., Taylor, P. B., Caranfa, M. J., Breen, A. L., Bartus, H. R., Johnson, R. K., Hertzberg, R. P. & Westley, J. W. (1993). J. Med. Chem. 36, 4131–4138.  CSD CrossRef CAS PubMed Web of Science Google Scholar
First citationPerrella, F. W., Chen, S. F., Behrens, D. L., Kaltenbach, R. F. & Seitz, S. P. (1994). J. Med. Chem. 37, 2232–2237.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSabry, N. M., Mohamed, H. M., Khattab, E. S. A. E. H., Motlaq, S. & El-Agrody, A. M. (2011). Eur. J. Med. Chem. 46, 765–772.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSchiller, R., Tichotová, L., Pavlík, J., Buchta, V., Melichar, B., Votruba, I., Kuneš, J., Špulák, M. & Pour, M. (2010). Bioorg. Med. Chem. Lett. 20, 7358–7360.  CrossRef CAS PubMed Google Scholar
First citationShahrisa, A., Zirak, M., Mehdipour, A. R. & Miri, R. (2011). Chem. Heterocycl. Compd. 46, 1354–1363.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, S. M., Milne, G. W. A., Yan, X. J., Posey, I. J., Nicklaus, M. C., Graham, L. & Rice, W. G. (1996). J. Med. Chem. 39, 2047–2054.  CrossRef CAS PubMed Google Scholar
First citationWang, Y., Mo, S. Y., Wang, S. J., Li, S., Yang, Y. C. & Shi, J. G. (2005). Org. Lett. 7, 1675–1678.  CrossRef PubMed CAS Google Scholar
First citationWu, J. Y. C., Fong, W. F., Zhang, J. X., Leung, C. H., Kwong, H. L., Yang, M. S., Li, D. & Cheung, H. (2003). Eur. J. Pharmacol. 473, 9–17.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds