research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures and hydrogen-bonding analysis of a series of solvated ammonium salts of molybdenum(II) chloride clusters

aDepartment of Chemistry, Otterbein University, Westerville, OH 43081, USA
*Correspondence e-mail: djohnston@otterbein.edu

Edited by E. V. Boldyreva, Russian Academy of Sciences, Russia (Received 18 July 2019; accepted 9 October 2019; online 22 October 2019)

Charge-assisted hydrogen bonding plays a significant role in the crystal structures of solvates of ionic com­pounds, especially when the cation or cations are primary ammonium salts. We report the crystal structures of four ammonium salts of molybdenum halide cluster solvates where we observe significant hydrogen bonding between the solvent molecules and cations. The crystal structures of bis­(anilinium) octa-μ3-chlorido-hexa­chlorido-octa­hedro-hexa­molybdate N,N-di­­methyl­formamide tetra­solvate, (C6H8N)2[Mo6Cl8Cl6]·4C3H7NO, (I), p-phenyl­enedi­ammonium octa-μ3-chlorido-hexa­chlorido-octa­hedro-hexa­mol­yb­date N,N-di­methyl­formamide hexa­solvate, (C6H10N2)[Mo6Cl8Cl6]·6C3H7NO, (II), N,N′-(1,4-phenyl­ene)bis­(propan-2-iminium) octa-μ3-chlorido-hexa­chlo­rido-octa­hedro-hexa­molybdate acetone tris­olvate, (C12H18N2)[Mo6Cl8Cl6]·3C3H6O, (III), and 1,1′-dimethyl-4,4′-bipyridinium octa-μ3-chlo­rido-hexa­chlorido-octa­hedro-hexa­molybdate N,N-di­methyl­formamide tetra­solvate, (C12H14N2)[Mo6Cl8Cl6]·4C3H7NO, (IV), are reported and described. In (I), the anilinium cations and N,N-di­methyl­formamide (DMF) solvent mol­ecules form a cyclic R42(8) hydrogen-bonded motif centered on a crystallographic inversion center with an additional DMF mol­ecule forming a D(2) inter­action. The p-phenyl­enedi­ammonium cation in (II) forms three D(2) inter­actions between the three N—H bonds and three independent N,N-di­methyl­formamide mol­ecules. The dication in (III) is a protonated Schiff base solvated by acetone mol­ecules. Compound (IV) contains a methyl viologen dication with N,N-di­methyl­formamide mol­ecules forming close contacts with both aromatic and methyl H atoms.

1. Chemical context

The unique photochemistry of the molybdenum and tungsten halide clusters [M6X8Y6]2− (M = Mo, W; X, Y = Cl, Br, I) has been known for over 30 years (Maverick et al., 1983[Maverick, A. W., Najdzionek, J. S., MacKenzie, D., Nocera, D. G. & Gray, H. B. (1983). J. Am. Chem. Soc. 105, 1878-1882.]) and researchers continue to explore the tunabilty of the redox potentials, crystal structures and photochemical properties of cluster-containing com­pounds via variation of the bridging and terminal ligands and the counter-ion (Mikhailov et al., 2016[Mikhailov, M. A., Brylev, K. A., Abramov, P. A., Sakuda, E., Akagi, S., Ito, A., Kitamura, N. & Sokolov, M. N. (2016). Inorg. Chem. 55, 8437-8445.]; Saito et al., 2017[Saito, N., Lemoine, P., Dumait, N., Amela-Cortes, M., Paofai, S., Roisnel, T., Nassif, V., Grasset, F., Wada, Y., Ohashi, N. & Cordier, S. (2017). J. Cluster Sci. 28, 773-798.]; Akagi et al., 2018[Akagi, S., Fujii, S. & Kitamura, N. (2018). Dalton Trans. 47, 1131-1139.]). Metal clusters, such as molybdenum halides, consist of an inner [Mo6X8]4+ core surrounded by six axial ligands which are more labile than the core ligands, making the preparation of mixed-ligand cluster com­plexes relatively straightforward.

Charge-assisted hydrogen bonds (CAHBs) are particularly strong among hydrogen bonds (Gilli & Gilli, 2009[Gilli, G. & Gilli, P. (2009). The Nature of the Hydrogen Bond: Outline of a Comprehensive Hydrogen Bond Theory. Oxford University Press.]) and can be a significant factor in the design and formation of supra­molecular com­plexes. CAHBs have been exploited in the formation of supra­molecular organic–inorganic uranyl materials (de Groot et al., 2014[Groot, J. de, Gojdas, K., Unruh, D. K. & Forbes, T. Z. (2014). Cryst. Growth Des. 14, 1357-1365.]), noncovalent macrocycles and catenanes (Pop et al., 2016[Pop, L., Hadade, N. D., van der Lee, A., Barboiu, M., Grosu, I. & Legrand, Y.-M. (2016). Cryst. Growth Des. 16, 3271-3278.]), mol­ecular switches (Gurbanov et al., 2017[Gurbanov, A. V., Mahmudov, K. T., Kopylovich, M. N., Guedes da Silva, F. M., Sutradhar, M., Guseinov, F. I., Zubkov, F. I., Maharramov, A. M. & Pombeiro, A. J. L. (2017). Dyes Pigments, 138, 107-111.]), and CAHB networks (Ward, 2009[Ward, M. D. (2009). Molecular Networks, Vol. 132, edited by M. W. Hosseini, pp. 1-23. Berlin, Heidelberg: Springer.]). Protonated di­amines are a common motif found in hydrogen-bonded materials (Brozdowska & Chojnacki, 2017[Brozdowska, A. & Chojnacki, J. (2017). Acta Cryst. B73, 507-518.]; Zick & Geiger, 2018[Zick, P. L. & Geiger, D. K. (2018). Acta Cryst. C74, 1725-1731.]). Examination of the nature and range of hydrogen bonding for solvates can provide information about the stability and physical properties of mol­ecular solids (Brychczynska et al., 2012[Brychczynska, M., Davey, R. J. & Pidcock, E. (2012). CrystEngComm, 14, 1479-1484.]).

We have prepared a series of ammonium salts of the [Mo6Cl8Cl6]2− com­plex anion, each containing cations `solvated' by either di­methyl­formamide or acetone through strong CAHBs.

2. Structural commentary

The asymmetric unit of dianilinium salt (I) (Fig. 1[link]) contains half a cluster unit, one anilinium cation, and two independent N,N-di­methyl­formamide (DMF) mol­ecules. The structure with the atom-numbering scheme is shown in Fig. 2[link]. The [Mo6Cl8Cl6]2− cluster unit resides on a crystallographic inversion center, as it does in all four structures. In com­pound (II), the asymmetric unit contains half a cluster unit, half a p-phenyl­enedi­ammonium cation, and three independent DMF mol­ecules. The p-phenyl­enedi­ammonium cation is disordered over two positions (rotation of 70.6° about the N—N axis), with a refined occupancy of 0.918 (4) for the primary orientation. The structure with the atom-numbering scheme is shown in Fig. 3[link].

[Figure 1]
Figure 1
The structures of (I)–(IV).
[Figure 2]
Figure 2
Displacement ellipsoid plot and atom-numbering scheme for (I), with ellipsoids drawn at the 50% probability level.
[Figure 3]
Figure 3
Displacement ellipsoid plot and atom-numbering scheme for (II), with ellipsoids drawn at the 50% probability level. The minor com­ponent of the disordered p-phenyl­enedi­ammonium cation is not shown for clarity.

The asymmetric unit of Schiff base salt (III) contains half a cluster unit, half a Schiff base cation, and two independent acetone mol­ecules. The structure with the atom-numbering scheme is shown in Fig. 4[link]. One acetone mol­ecule is disordered over an inversion center. The Schiff base cation, presumably formed from the reaction between a p-phenyl­enedi­ammonium cation and two acetone mol­ecules, shows strong similarities to the cation found in the bis­muthate structure reported by Shestimerova et al. (2018[Shestimerova, T. A., Golubev, N. A., Mironov, A. V., Bykov, M. A. & Shevelkov, A. V. (2018). Russ. Chem. Bull. 67, 1212-1219.]).

[Figure 4]
Figure 4
Displacement ellipsoid plot and atom-numbering scheme for (III), with ellipsoids drawn at the 50% probability level.

For com­parison, a dicationic salt incapable of conventional hydrogen bonding (methyl viologen) was prepared and structurally characterized. The asymmetric unit of (IV), as in the other structures, contains half of the cluster unit, half of the methyl viologen dication, and two independent DMF mol­ecules. The structure with the atom-numbering scheme is shown in Fig. 5[link].

[Figure 5]
Figure 5
Displacement ellipsoid plot and atom-numbering scheme for (IV), with ellipsoids drawn at the 50% probability level.

3. Hydrogen-bonding analysis

In com­pound (I), the anilinium cation and DMF mol­ecules form a cyclic R42(8) hydrogen-bonded motif centered on a crystallographic inversion center, with an additional DMF forming a D(2) inter­action, as illustrated in Fig. 6[link]. Although similar to some motifs discussed by Loehlin & Okasako (2007[Loehlin, J. H. & Okasako, E. L. N. (2007). Acta Cryst. B63, 132-141.]), the hydrogen-bonding network in (I) does not represent an example of saturated hydrogen bonding, as one DMF mol­ecule has an additional lone pair that is not involved in hydrogen bonding (Table 1[link]). The DMF mol­ecules in com­pound (II) form three unique D(2) inter­actions with the three N—H bonds on each end of the p-phenyl­enedi­ammonium cations, as shown in Fig. 7[link] (Table 2[link]). In com­pound (III), one acetone mol­ecule forms a hydrogen-bonding inter­action with the N—H group of the Schiff base, as shown in Fig. 8[link] (Table 3[link]).

Table 1
Hydrogen-bond geometry (Å, °) for (I)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2i 0.89 (3) 2.01 (3) 2.827 (3) 152 (2)
N1—H1B⋯O2ii 0.91 (3) 1.94 (3) 2.833 (3) 168 (3)
N1—H1C⋯O1iii 0.91 (3) 1.82 (3) 2.715 (3) 166 (3)
Symmetry codes: (i) -x+1, -y+1, -z; (ii) x-1, y, z; (iii) x, y, z-1.

Table 2
Hydrogen-bond geometry (Å, °) for (II)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2i 0.92 (2) 1.76 (2) 2.672 (4) 171 (4)
N1—H1B⋯O3ii 0.93 (2) 1.79 (2) 2.710 (4) 173 (4)
N1—H1C⋯O1iii 0.92 (2) 1.81 (2) 2.727 (4) 175 (4)
Symmetry codes: (i) x, y+1, z-1; (ii) -x+2, -y+1, -z; (iii) -x+1, -y+1, -z+1.

Table 3
Hydrogen-bond geometry (Å, °) for (III)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.87 (2) 1.93 (2) 2.791 (4) 172 (3)
Symmetry code: (i) x, y-1, z.
[Figure 6]
Figure 6
The cationic hydrogen-bonded dimer formed by anilinium cations and DMF mol­ecules in (I).
[Figure 7]
Figure 7
Hydrogen bonding in the DMF-solvated p-phenyl­enedi­ammonium dication in (II). The minor com­ponent of the disordered p-phenyl­enedi­ammonium cation is not shown for clarity.
[Figure 8]
Figure 8
Hydrogen bonding in the acetone-solvated Schiff base dication in (III).

In spite of the lack of conventional hydrogen bonding in com­pound (IV), the methyl viologen cation forms several C—H⋯O contacts, with the O atoms of the two independent DMF mol­ecules forming close contacts with the H atoms of the aromatic ring (O⋯H = 2.23 Å) and the methyl group (O⋯H = 2.31 Å) (Table 4[link]).

Table 4
Hydrogen-bond geometry (Å, °) for (IV)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O1i 0.95 2.23 3.063 (4) 145
C6—H6C⋯O2ii 0.98 2.31 3.088 (4) 136
Symmetry codes: (i) x, y+1, z; (ii) -x, -y+2, -z+1.

Analysis of the hydrogen bonding and close contacts via Hirshfeld surfaces and fingerprint plots was conducted using CrystalExplorer (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) and the results are shown in Fig. 9[link]. Compound (II) has the strongest hydrogen-bonding inter­actions, with similar, but slightly weaker, inter­actions for (I) and (III). All four com­pounds show very similar H(cation)⋯Cl(cluster anion) inter­actions. The C—H⋯O contacts in (IV), especially with the aromatic C—H group of the methyl viologen, can be clearly identified on the Hirshfeld surface.

[Figure 9]
Figure 9
Fingerprint plots and Hirshfeld surfaces for (I)–(IV). For (II), only the major com­ponent of the disordered p-phenyl­enedi­ammonium cation was included in the generation of the fingerprint plot.

4. Database survey

Inter­est in molybdenum(II) halide clusters and related com­pounds have led to numerous structural studies, with 45 entries in the Cambridge Structural Database (CSD, Version 5.40; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) containing the [Mo6Cl14]2− dianion and almost 200 structures containing the [Mo6X8]4+ core. Similarly, one can find over 50 structures in the Inorganic Crystal Structure Database (ICSD, Version 4.2.0; Hellenbrandt, 2004[Hellenbrandt, M. (2004). Crystallogr. Rev. 10, 17-22.]) containing the same molybdenum halide core structure. The structures of the [Mo6Cl14]2− cluster anions in this study are unremarkable and do not differ significantly from previous studies.

The anilinium cluster dihydrate structure published by Flemström (2003[Flemström, A. (2003). Acta Cryst. E59, m162-m164.]) has some similarities to (I). In that structure, the three N—H bonds of the anilinium cation serve as hydrogen-bond donors to one water mol­ecule (hydrate) and two terminal Cl atoms on two discrete cluster anions. The N—H⋯Cl inter­actions create C44(15) chains. The water mol­ecules create R44(14) rings involving two water mol­ecules and two cluster units, as well as C22(8) and C22(7) chains.

While DMF-solvated ammonium salts appear to be relatively uncommon, a series of molybdenum halide cluster salts have been prepared with di­methyl­formamide-coordinated metal cations serving as the counter-cation (Khutornoi et al., 2002[Khutornoi, V. A., Naumov, N. G., Mironov, Y. V., Oeckler, O., Simon, A. & Fedorov, V. E. (2002). Russ. J. Coord. Chem. 28, 183-190.]; Kozhomuratova et al., 2007[Kozhomuratova, Z. S., Mironov, Y. V., Shestopalov, M. A., Gaifulin, Y. M., Kurat'eva, N. V., Uskov, E. M. & Fedorov, V. E. (2007). Russ. J. Coord. Chem. 33, 1-6.]; Liu et al., 2006[Liu, X., Cai, L.-Z., Guo, C.-C., Li, Q. & Huang, J.-S. (2006). Jiegou Huaxue, 25, 90-94.]). The com­plexes prepared and characterized include the [Mo6Cl8Cl6]2−, [Mo6Br8Cl6]2−, and [Mo6Br8(NCS)6]2− cluster anions as salts with [M(DMF)]2+ cations, where M = Ca2+, Mn2+, and Co2+. A similar set of rhenium chalcogenide cluster salts with DMF-solvated calcium and a series of lanthanides has been prepared by Perruchas et al. (2002[Perruchas, S., Simon, F., Uriel, S., Avarvari, N., Boubekeur, K. & Batail, P. (2002). J. Organomet. Chem. 643-644, 301-306.]) and Yarovoi et al. (2006[Yarovoi, S. S., Mironov, Yu. V., Solodovnikov, S. F., Solodovnikova, Z. A., Naumov, D. Yu. & Fedorov, V. E. (2006). Russ. J. Coord. Chem. 32, 712-722.]).

A separate search of the CSD for structures with similar hydrogen-bonded networks containing anilinium and p-phenyl­enedi­ammonium cations yielded a large number of hits due to their propensity for forming significant hydrogen-bonding networks. In the structure of anilinium di­hydrogen phosphate (Kaman et al., 2012[Kaman, O., Smrčok, Ľ., Gyepes, R. & Havlíček, D. (2012). Acta Cryst. C68, o57-o60.]), each of the three independent ammonium groups forms four different hydrogen bonds to the O atoms of nearby di­hydrogen phosphate moieties. A very similar set of hydrogen-bonding inter­actions and layered organic/inorganic structural arrangements are found in the structures of p-phenyl­enedi­ammonium bis­(di­hydrogen phosphate) (Mrad et al., 2006a[Mrad, M. L., Nasr, C. B. & Rzaigui, M. (2006a). Mater. Res. Bull. 41, 1287-1294.]) and p-phenyl­enedi­ammonium di­hydrogen diphosphate (Mrad et al., 2006b[Mrad, M. L., Nasr, C. B., Rzaigui, M. & Lefebvre, F. (2006b). Phosphorus Sulfur Silicon, 181, 1625-1635.]). While less closely related to the current report, the structure of p-phenyl­enedi­ammonium tetra­chlorido­zincate(II) (Bringley & Rajeswaran, 2006[Bringley, J. F. & Rajeswaran, M. (2006). Acta Cryst. E62, m1304-m1305.]) also displays alternating organic and inorganic layers and strong hydrogen bonding between the tetra­chlorido­zinc(II) anions and the p-phenyl­enedi­ammonium cations.

A dimethyl sulfoxide (DMSO)-solvated p-phenyl­enedi­ammonium salt of an iodido­bis­muthate reported by Shestimerova et al. (2018[Shestimerova, T. A., Golubev, N. A., Mironov, A. V., Bykov, M. A. & Shevelkov, A. V. (2018). Russ. Chem. Bull. 67, 1212-1219.]) displays strong structural similarities to (II) in the way the DMSO solvates the p-phenyl­enedi­ammonium cation. Three unique DMSO mol­ecules also form D(2) inter­actions with each end of the p-phenyl­enedi­ammonium. One of the three DMSO mol­ecules simultaneously coordinates to one of the Bi atoms.

5. Synthesis and crystallization

All reagents were used as received from the manufacturer.

5.1. Cluster synthesis, metathesis, and crystallization of (I), (II), and (IV)

The hydro­nium salt of the [Mo6Cl8Cl6]2− anion was prepared by the method of Hay et al. (2004[Hay, D. N., Adams, J. A., Carpenter, J., DeVries, S. L., Domyancich, J., Dumser, B., Goldsmith, S., Kruse, M. A., Leone, A., Moussavi-Harami, F., O'Brien, J. A., Pfaffly, J. R., Sylves, M., Taravati, P., Thomas, J. L., Tiernan, B. & Messerle, L. (2004). Inorg. Chim. Acta, 357, 644-648.]) and then metathesized to the appropriate ammonium salt by combining an ethano­lic solution of (H3O)2[Mo6Cl8Cl6]·6H2O with a slight stoichiometric excess (∼2.5 times) of the respective ammonium chloride salt (anilinium chloride, p-phenyl­enedi­amine hydro­chloride, and methyl viologen dichloride). The bright-yellow precipitate that formed was isolated by filtration and the product was recrystallized by vapor diffusion of diethyl ether into a di­methyl­formamide solution of the cluster salt.

5.2. Synthesis and crystallization of Schiff base salt (III)

The cluster in com­pound (III) was prepared and metathesized to the di­ammonium salt via the same procedure as above using the p-phenyl­enedi­ammonium chloride to isolate a yellow precipitate. The salt was then redissolved in acetone and allowed to evaporate. The acetone inadvertently formed a Schiff base dication in a reaction with the p-phenyl­enedi­ammonium cation (Kolb & Bahadir, 1994[Kolb, M. & Bahadir, M. (1994). J. Chromatogr. A, 685, 189-194.]).

6. Refinement

Crystal data, data collection, and structure refinement details are summarized in Table 5[link]. All H atoms were located in a difference map. All carbon-bonded H atoms were placed in idealized positions using a riding model, with aromatic and amide C—H = 0.95 Å and methyl C—H = 0.98 Å, and with Uiso(H) = 1.2Ueq(C) (aromatic and amide) or Uiso(H) = 1.5Ueq(C) (meth­yl). The positions of all H atoms bonded to N atoms were refined with N—H distances restrained to 0.91 (2) (NH3) or 0.88 (2) Å (Schiff base), and with Uiso(H) = 1.5Ueq(N).

Table 5
Experimental details

  (I) (II) (III) (IV)
Crystal data
Chemical formula (C6H8N)2[Mo6Cl8Cl6]·4C3H7NO (C6H10N2)[Mo6Cl8Cl6]·6C3H7NO (C12H18N2)[Mo6Cl8Cl6]·3C3H6O (C12H14N2)[Mo6Cl8Cl6]·4C3H7NO
Mr 1552.59 1620.67 1436.46 1550.57
Crystal system, space group Triclinic, P[\overline{1}] Triclinic, P[\overline{1}] Triclinic, P[\overline{1}] Triclinic, P[\overline{1}]
Temperature (K) 200 200 200 200
a, b, c (Å) 9.9813 (11), 10.6074 (13), 12.1686 (15) 10.1752 (16), 10.3227 (16), 13.736 (2) 9.451 (2), 11.236 (3), 11.712 (3) 9.8252 (11), 10.0933 (11), 12.6319 (15)
α, β, γ (°) 104.606 (3), 90.709 (3), 103.146 (3) 95.204 (4), 111.483 (4), 101.973 (4) 64.933 (6), 71.174 (6), 75.440 (6) 107.395 (3), 91.881 (3), 93.309 (3)
V3) 1210.7 (3) 1291.1 (3) 1056.7 (5) 1191.8 (2)
Z 1 1 1 1
Radiation type Mo Kα Mo Kα Mo Kα Mo Kα
μ (mm−1) 2.32 2.18 2.64 2.35
Crystal size (mm) 0.48 × 0.46 × 0.12 0.50 × 0.13 × 0.13 0.55 × 0.33 × 0.20 0.32 × 0.30 × 0.28
 
Data collection
Diffractometer Bruker SMART X2S benchtop Bruker SMART X2S benchtop Bruker SMART X2S benchtop Bruker SMART X2S benchtop
Absorption correction Multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.498, 0.745 0.552, 0.745 0.490, 0.745 0.815, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 11709, 4245, 3834 12459, 4504, 3666 10036, 3692, 3220 11498, 4187, 3743
Rint 0.026 0.035 0.030 0.024
(sin θ/λ)max−1) 0.597 0.595 0.598 0.597
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.046, 1.07 0.026, 0.062, 1.03 0.025, 0.068, 1.05 0.020, 0.049, 1.02
No. of reflections 4245 4504 3692 4187
No. of parameters 258 285 235 250
No. of restraints 0 144 13 0
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.36, −0.54 0.66, −0.56 0.96, −0.82 0.42, −0.44
Computer programs: APEX2 (Bruker, 2012[Bruker (2012). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]), CrystalMaker (Palmer, 2019[Palmer, D. C. (2019). CrystalMaker. CrystalMaker Software Ltd, Begbroke, Oxfordshire, England.]), CrystalExplorer (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

All four structures were refined in the space group P[\overline{1}] and the [Mo6Cl14]2− dianion sits on an inversion center in every case. The dications in (II), (III), and (IV) are also each located on an inversion center. The p-phenyl­enedi­ammonium cation in (II) is disordered over two orientations with an occupancy of 0.918 (4) for the major com­ponent. One of the two acetone mol­ecules in (III) is disordered over an inversion center.

Supporting information


Computing details top

For all structures, data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: CrystalMaker (Palmer, 2019) and CrystalExplorer (Spackman & Jayatilaka, 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

Bis(anilinium) octa-µ3-chlorido-hexachlorido-octahedro-hexamolybdate N,N-dimethylformamide tetrasolvate (1) top
Crystal data top
(C6H8N)2[Mo6Cl8Cl6]·4C3H7NOZ = 1
Mr = 1552.59F(000) = 752
Triclinic, P1Dx = 2.129 Mg m3
a = 9.9813 (11) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.6074 (13) ÅCell parameters from 7006 reflections
c = 12.1686 (15) Åθ = 2.3–25.1°
α = 104.606 (3)°µ = 2.32 mm1
β = 90.709 (3)°T = 200 K
γ = 103.146 (3)°Plate, clear orangish yellow
V = 1210.7 (3) Å30.48 × 0.46 × 0.12 mm
Data collection top
Bruker SMART X2S benchtop
diffractometer
4245 independent reflections
Radiation source: sealed microfocus source, XOS X-beam microfocus source3834 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 8.3330 pixels mm-1θmax = 25.1°, θmin = 2.3°
φ and ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
k = 1212
Tmin = 0.498, Tmax = 0.745l = 1414
11709 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.019 w = 1/[σ2(Fo2) + (0.0123P)2 + 0.5808P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.046(Δ/σ)max = 0.001
S = 1.07Δρmax = 0.36 e Å3
4245 reflectionsΔρmin = 0.54 e Å3
258 parametersExtinction correction: SHELXL2018 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0096 (3)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo10.33000 (2)0.50142 (2)0.43962 (2)0.01755 (7)
Mo20.42505 (2)0.33816 (2)0.52988 (2)0.01753 (7)
Mo30.45872 (2)0.58737 (2)0.64151 (2)0.01766 (7)
Cl10.30660 (6)0.26453 (5)0.33717 (5)0.02208 (12)
Cl20.44848 (6)0.57046 (5)0.27978 (5)0.02298 (13)
Cl30.37196 (6)0.73926 (5)0.55008 (5)0.02352 (13)
Cl40.22876 (5)0.43149 (5)0.60532 (5)0.02318 (13)
Cl50.32774 (6)0.12583 (6)0.57003 (5)0.03234 (15)
Cl60.39836 (6)0.69501 (6)0.82888 (5)0.03331 (15)
Cl70.10839 (6)0.50315 (6)0.35713 (5)0.03118 (14)
N10.1138 (2)0.6861 (2)0.02394 (19)0.0291 (5)
H1A0.144 (3)0.612 (3)0.048 (2)0.044*
H1B0.026 (3)0.651 (3)0.010 (2)0.044*
H1C0.111 (3)0.732 (3)0.078 (2)0.044*
C10.1999 (2)0.7715 (2)0.0778 (2)0.0262 (5)
C20.1890 (3)0.7327 (3)0.1777 (2)0.0352 (6)
H20.1259070.6520290.1809550.042*
C30.2713 (3)0.8128 (3)0.2728 (2)0.0439 (7)
H30.2648480.7872220.3422950.053*
C40.3621 (3)0.9288 (3)0.2678 (3)0.0454 (7)
H40.4184750.9834100.3337880.055*
C50.2894 (3)0.8879 (2)0.0709 (2)0.0326 (6)
H50.2946130.9138730.0015800.039*
C60.3718 (3)0.9666 (3)0.1671 (2)0.0411 (7)
H60.4353301.0469730.1637420.049*
O10.0921 (2)0.85206 (19)0.84303 (16)0.0431 (5)
N20.0472 (2)0.88716 (19)0.67193 (17)0.0287 (5)
C70.0074 (3)1.0112 (3)0.7195 (2)0.0408 (7)
H7A0.0043551.0259200.8021890.061*
H7B0.0839241.0062770.6858430.061*
H7C0.0748461.0857550.7029380.061*
C80.0860 (2)0.8186 (3)0.7380 (2)0.0325 (6)
H80.1110340.7376080.7021150.039*
C90.0410 (3)0.8403 (3)0.5486 (2)0.0364 (6)
H9A0.0570140.7498010.5268860.055*
H9B0.1118880.9010630.5191420.055*
H9C0.0502690.8384660.5165990.055*
O20.85598 (19)0.57853 (18)0.05179 (17)0.0418 (5)
N30.7318 (2)0.7329 (2)0.05377 (17)0.0320 (5)
C100.7698 (3)0.6417 (3)0.0921 (2)0.0397 (7)
H100.7275100.6214230.1570830.048*
C110.6338 (3)0.8071 (3)0.1095 (2)0.0460 (7)
H11A0.6072180.7794920.1787080.069*
H11B0.5516120.7882230.0575830.069*
H11C0.6767850.9034850.1295680.069*
C120.7879 (4)0.7684 (4)0.0466 (3)0.0621 (10)
H12A0.8666910.8461440.0234970.093*
H12B0.7167670.7905460.0894310.093*
H12C0.8182320.6924170.0946170.093*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.01465 (11)0.01876 (11)0.01888 (11)0.00353 (8)0.00272 (8)0.00463 (8)
Mo20.01627 (11)0.01691 (10)0.01871 (11)0.00234 (8)0.00337 (8)0.00474 (8)
Mo30.01646 (12)0.01852 (11)0.01703 (11)0.00379 (8)0.00436 (8)0.00307 (8)
Cl10.0205 (3)0.0202 (3)0.0218 (3)0.0011 (2)0.0008 (2)0.0022 (2)
Cl20.0233 (3)0.0256 (3)0.0208 (3)0.0045 (2)0.0022 (2)0.0086 (2)
Cl30.0231 (3)0.0211 (3)0.0272 (3)0.0086 (2)0.0041 (2)0.0046 (2)
Cl40.0169 (3)0.0267 (3)0.0247 (3)0.0029 (2)0.0066 (2)0.0066 (2)
Cl50.0345 (3)0.0242 (3)0.0369 (3)0.0020 (3)0.0024 (3)0.0134 (3)
Cl60.0350 (4)0.0359 (3)0.0241 (3)0.0078 (3)0.0112 (3)0.0010 (3)
Cl70.0199 (3)0.0356 (3)0.0397 (3)0.0061 (3)0.0019 (3)0.0132 (3)
N10.0306 (12)0.0255 (11)0.0341 (12)0.0094 (10)0.0055 (10)0.0104 (10)
C10.0273 (13)0.0252 (12)0.0296 (13)0.0132 (11)0.0041 (11)0.0072 (10)
C20.0437 (16)0.0307 (13)0.0379 (15)0.0162 (12)0.0069 (13)0.0142 (12)
C30.063 (2)0.0469 (17)0.0309 (15)0.0328 (16)0.0019 (14)0.0097 (13)
C40.0505 (18)0.0396 (16)0.0433 (17)0.0259 (15)0.0084 (14)0.0073 (13)
C50.0372 (15)0.0263 (13)0.0383 (15)0.0145 (11)0.0117 (12)0.0089 (11)
C60.0412 (17)0.0277 (14)0.0495 (18)0.0115 (12)0.0063 (14)0.0016 (13)
O10.0496 (12)0.0479 (11)0.0392 (11)0.0149 (10)0.0045 (9)0.0219 (9)
N20.0270 (11)0.0275 (11)0.0326 (11)0.0065 (9)0.0007 (9)0.0094 (9)
C70.0462 (17)0.0355 (15)0.0465 (17)0.0170 (13)0.0084 (14)0.0144 (13)
C80.0248 (14)0.0313 (13)0.0428 (16)0.0048 (11)0.0040 (12)0.0140 (12)
C90.0334 (15)0.0362 (14)0.0332 (14)0.0008 (12)0.0040 (12)0.0062 (12)
O20.0359 (11)0.0345 (10)0.0614 (13)0.0134 (9)0.0149 (10)0.0192 (9)
N30.0309 (12)0.0407 (12)0.0301 (11)0.0169 (10)0.0066 (10)0.0120 (10)
C100.0391 (16)0.0390 (15)0.0470 (17)0.0112 (13)0.0145 (13)0.0197 (13)
C110.0527 (19)0.0527 (18)0.0427 (17)0.0301 (15)0.0149 (15)0.0142 (14)
C120.073 (2)0.099 (3)0.0438 (18)0.053 (2)0.0248 (17)0.0425 (19)
Geometric parameters (Å, º) top
Mo1—Mo2i2.6034 (4)C3—H30.9500
Mo1—Mo22.6051 (3)C3—C41.368 (4)
Mo1—Mo3i2.6068 (3)C4—H40.9500
Mo1—Mo32.6032 (4)C4—C61.381 (4)
Mo1—Cl12.4636 (6)C5—H50.9500
Mo1—Cl22.4697 (6)C5—C61.383 (4)
Mo1—Cl32.4782 (6)C6—H60.9500
Mo1—Cl42.4700 (6)O1—C81.234 (3)
Mo1—Cl72.4235 (6)N2—C71.444 (3)
Mo2—Mo32.5922 (4)N2—C81.319 (3)
Mo2—Mo3i2.6065 (3)N2—C91.453 (3)
Mo2—Cl12.4687 (6)C7—H7A0.9800
Mo2—Cl2i2.4772 (6)C7—H7B0.9800
Mo2—Cl3i2.4756 (6)C7—H7C0.9800
Mo2—Cl42.4758 (6)C8—H80.9500
Mo2—Cl52.4138 (6)C9—H9A0.9800
Mo3—Cl1i2.4754 (6)C9—H9B0.9800
Mo3—Cl2i2.4639 (6)C9—H9C0.9800
Mo3—Cl32.4695 (6)O2—C101.239 (3)
Mo3—Cl42.4652 (6)N3—C101.299 (3)
Mo3—Cl62.4288 (6)N3—C111.461 (3)
N1—H1A0.89 (3)N3—C121.449 (3)
N1—H1B0.91 (3)C10—H100.9500
N1—H1C0.91 (3)C11—H11A0.9800
N1—C11.465 (3)C11—H11B0.9800
C1—C21.376 (3)C11—H11C0.9800
C1—C51.371 (3)C12—H12A0.9800
C2—H20.9500C12—H12B0.9800
C2—C31.378 (4)C12—H12C0.9800
Mo2i—Mo1—Mo289.753 (11)Cl3—Mo3—Mo1i118.261 (15)
Mo2—Mo1—Mo3i60.013 (9)Cl3—Mo3—Mo2i58.306 (14)
Mo2i—Mo1—Mo3i59.675 (10)Cl3—Mo3—Mo2118.588 (17)
Mo3—Mo1—Mo2i60.080 (8)Cl3—Mo3—Cl1i89.67 (2)
Mo3—Mo1—Mo259.698 (9)Cl4—Mo3—Mo1i118.636 (17)
Mo3—Mo1—Mo3i89.786 (11)Cl4—Mo3—Mo158.254 (14)
Cl1—Mo1—Mo2i118.020 (15)Cl4—Mo3—Mo258.556 (14)
Cl1—Mo1—Mo258.214 (16)Cl4—Mo3—Mo2i118.205 (16)
Cl1—Mo1—Mo3117.899 (15)Cl4—Mo3—Cl1i175.592 (19)
Cl1—Mo1—Mo3i58.365 (14)Cl4—Mo3—Cl389.93 (2)
Cl1—Mo1—Cl289.683 (19)Cl6—Mo3—Mo1134.228 (19)
Cl1—Mo1—Cl3175.251 (19)Cl6—Mo3—Mo1i135.485 (18)
Cl1—Mo1—Cl489.963 (19)Cl6—Mo3—Mo2i137.228 (18)
Cl2—Mo1—Mo2i58.387 (15)Cl6—Mo3—Mo2132.798 (17)
Cl2—Mo1—Mo2117.999 (16)Cl6—Mo3—Cl1i94.40 (2)
Cl2—Mo1—Mo3118.444 (17)Cl6—Mo3—Cl2i90.84 (2)
Cl2—Mo1—Mo3i57.995 (14)Cl6—Mo3—Cl393.06 (2)
Cl2—Mo1—Cl390.38 (2)Cl6—Mo3—Cl490.01 (2)
Cl2—Mo1—Cl4175.624 (19)Mo1—Cl1—Mo263.764 (15)
Cl3—Mo1—Mo2i58.247 (14)Mo1—Cl1—Mo3i63.713 (15)
Cl3—Mo1—Mo2117.771 (17)Mo2—Cl1—Mo3i63.630 (15)
Cl3—Mo1—Mo3i117.898 (15)Mo1—Cl2—Mo2i63.507 (16)
Cl3—Mo1—Mo358.092 (14)Mo3i—Cl2—Mo163.792 (15)
Cl4—Mo1—Mo2i118.144 (16)Mo3i—Cl2—Mo2i63.287 (16)
Cl4—Mo1—Mo258.325 (14)Mo2i—Cl3—Mo163.408 (14)
Cl4—Mo1—Mo3i118.319 (15)Mo3—Cl3—Mo163.489 (16)
Cl4—Mo1—Mo358.077 (16)Mo3—Cl3—Mo2i63.616 (15)
Cl4—Mo1—Cl389.62 (2)Mo1—Cl4—Mo263.569 (15)
Cl7—Mo1—Mo2135.582 (17)Mo3—Cl4—Mo163.669 (15)
Cl7—Mo1—Mo2i134.650 (17)Mo3—Cl4—Mo263.286 (16)
Cl7—Mo1—Mo3135.962 (17)H1A—N1—H1B101 (2)
Cl7—Mo1—Mo3i134.249 (18)H1A—N1—H1C114 (3)
Cl7—Mo1—Cl192.00 (2)H1B—N1—H1C109 (2)
Cl7—Mo1—Cl291.25 (2)C1—N1—H1A108.4 (18)
Cl7—Mo1—Cl392.75 (2)C1—N1—H1B113.6 (18)
Cl7—Mo1—Cl493.12 (2)C1—N1—H1C111.0 (18)
Mo1i—Mo2—Mo190.246 (11)C2—C1—N1119.1 (2)
Mo1i—Mo2—Mo3i59.955 (8)C5—C1—N1119.1 (2)
Mo1—Mo2—Mo3i60.026 (9)C5—C1—C2121.8 (2)
Mo3—Mo2—Mo1i60.228 (8)C1—C2—H2120.6
Mo3—Mo2—Mo160.114 (10)C1—C2—C3118.8 (3)
Mo3—Mo2—Mo3i90.033 (11)C3—C2—H2120.6
Cl1—Mo2—Mo158.022 (15)C2—C3—H3119.7
Cl1—Mo2—Mo1i118.250 (15)C4—C3—C2120.5 (3)
Cl1—Mo2—Mo3i58.310 (15)C4—C3—H3119.7
Cl1—Mo2—Mo3118.122 (15)C3—C4—H4120.0
Cl1—Mo2—Cl2i175.448 (18)C3—C4—C6120.0 (3)
Cl1—Mo2—Cl3i89.68 (2)C6—C4—H4120.0
Cl1—Mo2—Cl489.71 (2)C1—C5—H5120.7
Cl2i—Mo2—Mo1i58.106 (14)C1—C5—C6118.6 (3)
Cl2i—Mo2—Mo1118.200 (16)C6—C5—H5120.7
Cl2i—Mo2—Mo358.105 (14)C4—C6—C5120.2 (3)
Cl2i—Mo2—Mo3i118.038 (16)C4—C6—H6119.9
Cl3i—Mo2—Mo1i58.346 (16)C5—C6—H6119.9
Cl3i—Mo2—Mo1118.097 (16)C7—N2—C9117.3 (2)
Cl3i—Mo2—Mo3118.549 (15)C8—N2—C7121.2 (2)
Cl3i—Mo2—Mo3i58.076 (14)C8—N2—C9121.5 (2)
Cl3i—Mo2—Cl2i90.26 (2)N2—C7—H7A109.5
Cl3i—Mo2—Cl4175.629 (18)N2—C7—H7B109.5
Cl4—Mo2—Mo158.105 (15)N2—C7—H7C109.5
Cl4—Mo2—Mo1i118.367 (16)H7A—C7—H7B109.5
Cl4—Mo2—Mo358.157 (14)H7A—C7—H7C109.5
Cl4—Mo2—Mo3i118.112 (15)H7B—C7—H7C109.5
Cl4—Mo2—Cl2i90.00 (2)O1—C8—N2124.7 (2)
Cl5—Mo2—Mo1i134.531 (18)O1—C8—H8117.6
Cl5—Mo2—Mo1135.222 (19)N2—C8—H8117.6
Cl5—Mo2—Mo3i135.276 (17)N2—C9—H9A109.5
Cl5—Mo2—Mo3134.689 (19)N2—C9—H9B109.5
Cl5—Mo2—Cl192.63 (2)N2—C9—H9C109.5
Cl5—Mo2—Cl2i91.92 (2)H9A—C9—H9B109.5
Cl5—Mo2—Cl3i92.04 (2)H9A—C9—H9C109.5
Cl5—Mo2—Cl492.31 (2)H9B—C9—H9C109.5
Mo1—Mo3—Mo1i90.214 (10)C10—N3—C11122.7 (2)
Mo1—Mo3—Mo2i59.965 (10)C10—N3—C12121.0 (2)
Mo2—Mo3—Mo1i60.098 (8)C12—N3—C11116.3 (2)
Mo2i—Mo3—Mo1i59.961 (8)O2—C10—N3126.1 (3)
Mo2—Mo3—Mo160.188 (8)O2—C10—H10116.9
Mo2—Mo3—Mo2i89.968 (10)N3—C10—H10116.9
Cl1i—Mo3—Mo1i57.923 (15)N3—C11—H11A109.5
Cl1i—Mo3—Mo1118.008 (15)N3—C11—H11B109.5
Cl1i—Mo3—Mo2118.001 (15)N3—C11—H11C109.5
Cl1i—Mo3—Mo2i58.058 (14)H11A—C11—H11B109.5
Cl2i—Mo3—Mo1i58.214 (14)H11A—C11—H11C109.5
Cl2i—Mo3—Mo1118.777 (16)H11B—C11—H11C109.5
Cl2i—Mo3—Mo258.608 (16)N3—C12—H12A109.5
Cl2i—Mo3—Mo2i118.165 (15)N3—C12—H12B109.5
Cl2i—Mo3—Cl1i89.55 (2)N3—C12—H12C109.5
Cl2i—Mo3—Cl3176.071 (19)H12A—C12—H12B109.5
Cl2i—Mo3—Cl490.56 (2)H12A—C12—H12C109.5
Cl3—Mo3—Mo158.419 (15)H12B—C12—H12C109.5
N1—C1—C2—C3179.4 (2)C3—C4—C6—C50.4 (4)
N1—C1—C5—C6178.9 (2)C5—C1—C2—C30.5 (4)
C1—C2—C3—C40.0 (4)C7—N2—C8—O10.0 (4)
C1—C5—C6—C40.8 (4)C9—N2—C8—O1179.2 (2)
C2—C1—C5—C60.9 (4)C11—N3—C10—O2177.1 (3)
C2—C3—C4—C60.1 (4)C12—N3—C10—O21.5 (5)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2ii0.89 (3)2.01 (3)2.827 (3)152 (2)
N1—H1B···O2iii0.91 (3)1.94 (3)2.833 (3)168 (3)
N1—H1C···O1iv0.91 (3)1.82 (3)2.715 (3)166 (3)
Symmetry codes: (ii) x+1, y+1, z; (iii) x1, y, z; (iv) x, y, z1.
p-Phenylenediammonium octa-µ3-chlorido-hexachlorido-octahedro-hexamolybdate N,N-dimethylformamide hexasolvate (2) top
Crystal data top
(C6H10N2)[Mo6Cl8Cl6]·6C3H7NOZ = 1
Mr = 1620.67F(000) = 790
Triclinic, P1Dx = 2.084 Mg m3
a = 10.1752 (16) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.3227 (16) ÅCell parameters from 4690 reflections
c = 13.736 (2) Åθ = 2.2–25.0°
α = 95.204 (4)°µ = 2.18 mm1
β = 111.483 (4)°T = 200 K
γ = 101.973 (4)°Needle, yellow
V = 1291.1 (3) Å30.50 × 0.13 × 0.13 mm
Data collection top
Bruker SMART X2S benchtop
diffractometer
4504 independent reflections
Radiation source: sealed microfocus source, XOS X-beam microfocus source3666 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
Detector resolution: 8.3330 pixels mm-1θmax = 25.0°, θmin = 2.4°
φ and ω scansh = 1212
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
k = 1212
Tmin = 0.552, Tmax = 0.745l = 1616
12459 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.026 w = 1/[σ2(Fo2) + (0.0182P)2 + 0.7035P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.062(Δ/σ)max = 0.002
S = 1.03Δρmax = 0.66 e Å3
4504 reflectionsΔρmin = 0.56 e Å3
285 parametersExtinction correction: SHELXL2018 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
144 restraintsExtinction coefficient: 0.0019 (2)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mo10.38576 (3)0.32569 (3)0.46504 (2)0.01984 (9)
Mo20.38226 (3)0.53457 (3)0.37203 (2)0.01942 (9)
Mo30.61719 (3)0.44772 (3)0.43759 (2)0.01961 (9)
Cl10.39098 (9)0.31721 (8)0.28606 (6)0.02470 (19)
Cl20.16889 (8)0.41769 (8)0.40411 (7)0.02485 (19)
Cl30.61432 (9)0.25211 (8)0.52889 (7)0.02446 (19)
Cl40.39296 (9)0.35261 (8)0.64765 (6)0.02436 (19)
Cl50.23637 (10)0.09538 (8)0.42076 (7)0.0329 (2)
Cl60.22927 (9)0.58540 (9)0.20362 (7)0.0303 (2)
Cl70.77350 (10)0.38668 (9)0.35511 (7)0.0340 (2)
N10.6572 (4)0.7709 (3)0.0311 (3)0.0349 (8)
H1A0.593 (4)0.816 (4)0.008 (3)0.052*
H1B0.735 (3)0.773 (4)0.010 (3)0.052*
H1C0.702 (4)0.814 (4)0.1013 (17)0.052*
C10.5771 (4)0.6310 (4)0.0161 (3)0.0300 (8)
C20.4838 (4)0.5982 (4)0.0660 (3)0.0346 (10)0.918 (4)
H20.4730710.6662860.1116720.041*0.918 (4)
C2A0.614 (4)0.562 (3)0.098 (2)0.0346 (10)0.082 (4)
H2A0.6901350.6034140.1649230.041*0.082 (4)
C30.5946 (4)0.5334 (4)0.0500 (3)0.0368 (11)0.918 (4)
H30.6598710.5566140.0842210.044*0.918 (4)
C3A0.465 (2)0.570 (3)0.0792 (18)0.0368 (11)0.082 (4)
H3A0.4406870.6206720.1346260.044*0.082 (4)
O10.2262 (3)0.1030 (3)0.7614 (2)0.0397 (7)
N20.0590 (3)0.1987 (3)0.6536 (2)0.0345 (7)
C40.0193 (4)0.2197 (4)0.5464 (3)0.0471 (11)
H4A0.0121280.1734440.4967230.071*
H4B0.0018810.3163510.5448270.071*
H4C0.1246670.1834800.5255520.071*
C50.0344 (6)0.2671 (6)0.7385 (4)0.089 (2)
H5A0.1053770.3553970.7671140.133*
H5B0.0459620.2135360.7950200.133*
H5C0.0649120.2791680.7113590.133*
C60.1511 (4)0.1229 (3)0.6738 (3)0.0310 (9)
H60.1608250.0783930.6140920.037*
O20.4557 (3)0.1235 (3)0.9024 (2)0.0528 (8)
N30.5360 (3)0.0093 (3)0.7928 (2)0.0365 (8)
C70.6841 (5)0.0426 (5)0.8704 (4)0.0737 (16)
H7A0.7426680.0190700.8631070.111*
H7B0.6843100.0509960.9421090.111*
H7C0.7260720.1313440.8587730.111*
C80.5004 (5)0.0294 (4)0.6892 (3)0.0521 (12)
H8A0.5160510.1274090.6974000.078*
H8B0.3978000.0145480.6437920.078*
H8C0.5633720.0016220.6563590.078*
C90.4359 (4)0.0854 (4)0.8172 (4)0.0401 (10)
H90.3393260.1135380.7639030.048*
O31.1120 (3)0.2000 (3)0.0265 (2)0.0531 (8)
N40.9538 (3)0.2480 (3)0.0950 (2)0.0348 (7)
C100.8672 (5)0.3384 (4)0.1084 (4)0.0542 (12)
H10A0.9104010.3867970.1821730.081*
H10B0.7670060.2861610.0917100.081*
H10C0.8656660.4032230.0603620.081*
C110.9567 (5)0.1356 (4)0.1512 (3)0.0513 (11)
H11A0.9862430.0660790.1167450.077*
H11B0.8591380.0978800.1496070.077*
H11C1.0268570.1667730.2252190.077*
C121.0327 (4)0.2695 (4)0.0379 (3)0.0415 (10)
H121.0278450.3446300.0028200.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.01844 (16)0.01776 (16)0.02281 (18)0.00192 (12)0.00933 (13)0.00253 (12)
Mo20.01778 (16)0.01982 (16)0.02082 (18)0.00380 (12)0.00849 (13)0.00326 (12)
Mo30.01810 (16)0.01988 (16)0.02220 (18)0.00434 (12)0.01006 (13)0.00274 (12)
Cl10.0253 (4)0.0231 (4)0.0234 (5)0.0034 (3)0.0097 (4)0.0003 (3)
Cl20.0174 (4)0.0274 (4)0.0279 (5)0.0026 (3)0.0088 (4)0.0041 (4)
Cl30.0252 (4)0.0212 (4)0.0287 (5)0.0079 (3)0.0115 (4)0.0047 (4)
Cl40.0249 (4)0.0248 (4)0.0264 (5)0.0041 (3)0.0142 (4)0.0067 (4)
Cl50.0336 (5)0.0222 (4)0.0385 (5)0.0019 (4)0.0151 (4)0.0018 (4)
Cl60.0290 (5)0.0361 (5)0.0254 (5)0.0108 (4)0.0087 (4)0.0072 (4)
Cl70.0331 (5)0.0407 (5)0.0373 (5)0.0137 (4)0.0223 (4)0.0051 (4)
N10.0345 (19)0.039 (2)0.0338 (19)0.0056 (16)0.0181 (16)0.0081 (16)
C10.028 (2)0.036 (2)0.029 (2)0.0097 (17)0.0132 (17)0.0136 (17)
C20.039 (2)0.038 (2)0.032 (2)0.015 (2)0.018 (2)0.0055 (19)
C2A0.039 (2)0.038 (2)0.032 (2)0.015 (2)0.018 (2)0.0055 (19)
C30.035 (2)0.049 (3)0.033 (2)0.010 (2)0.021 (2)0.012 (2)
C3A0.035 (2)0.049 (3)0.033 (2)0.010 (2)0.021 (2)0.012 (2)
O10.0426 (16)0.0405 (16)0.0385 (17)0.0171 (13)0.0145 (14)0.0111 (13)
N20.0296 (17)0.0395 (19)0.040 (2)0.0109 (15)0.0191 (15)0.0086 (15)
C40.030 (2)0.060 (3)0.054 (3)0.013 (2)0.015 (2)0.027 (2)
C50.109 (5)0.126 (5)0.065 (4)0.083 (4)0.045 (3)0.016 (4)
C60.032 (2)0.0247 (19)0.039 (2)0.0027 (17)0.0197 (19)0.0024 (17)
O20.0527 (19)0.0526 (19)0.052 (2)0.0122 (15)0.0172 (16)0.0249 (16)
N30.0329 (18)0.0305 (18)0.040 (2)0.0080 (15)0.0073 (15)0.0089 (15)
C70.048 (3)0.060 (3)0.082 (4)0.008 (3)0.001 (3)0.027 (3)
C80.076 (3)0.054 (3)0.041 (3)0.032 (3)0.029 (2)0.016 (2)
C90.033 (2)0.027 (2)0.051 (3)0.0096 (18)0.007 (2)0.003 (2)
O30.0490 (18)0.0476 (18)0.071 (2)0.0059 (15)0.0388 (17)0.0033 (16)
N40.0308 (17)0.0370 (19)0.0326 (19)0.0017 (15)0.0122 (15)0.0045 (15)
C100.047 (3)0.057 (3)0.064 (3)0.012 (2)0.028 (2)0.008 (2)
C110.051 (3)0.055 (3)0.048 (3)0.009 (2)0.021 (2)0.020 (2)
C120.039 (2)0.040 (2)0.037 (2)0.004 (2)0.014 (2)0.0043 (19)
Geometric parameters (Å, º) top
Mo1—Mo2i2.6065 (5)C3A—H3A0.9500
Mo1—Mo22.6040 (5)O1—C61.229 (4)
Mo1—Mo32.6039 (5)N2—C41.456 (5)
Mo1—Mo3i2.5984 (5)N2—C51.435 (5)
Mo1—Cl12.4724 (9)N2—C61.312 (4)
Mo1—Cl22.4764 (9)C4—H4A0.9800
Mo1—Cl32.4727 (9)C4—H4B0.9800
Mo1—Cl42.4708 (9)C4—H4C0.9800
Mo1—Cl52.4277 (9)C5—H5A0.9800
Mo2—Mo3i2.6027 (5)C5—H5B0.9800
Mo2—Mo32.6055 (5)C5—H5C0.9800
Mo2—Cl12.4729 (9)C6—H60.9500
Mo2—Cl22.4644 (9)O2—C91.228 (5)
Mo2—Cl3i2.4682 (9)N3—C71.442 (5)
Mo2—Cl4i2.4629 (9)N3—C81.450 (5)
Mo2—Cl62.4436 (9)N3—C91.316 (5)
Mo3—Cl12.4781 (9)C7—H7A0.9800
Mo3—Cl2i2.4751 (9)C7—H7B0.9800
Mo3—Cl32.4724 (9)C7—H7C0.9800
Mo3—Cl4i2.4632 (9)C8—H8A0.9800
Mo3—Cl72.4116 (9)C8—H8B0.9800
N1—H1A0.922 (18)C8—H8C0.9800
N1—H1B0.927 (18)C9—H90.9500
N1—H1C0.924 (18)O3—C121.227 (5)
N1—C11.458 (5)N4—C101.453 (5)
C1—C21.367 (5)N4—C111.450 (5)
C1—C2A1.361 (16)N4—C121.314 (5)
C1—C31.377 (5)C10—H10A0.9800
C1—C3A1.366 (16)C10—H10B0.9800
C2—H20.9500C10—H10C0.9800
C2—C3ii1.378 (5)C11—H11A0.9800
C2A—H2A0.9500C11—H11B0.9800
C2A—C3Aii1.380 (15)C11—H11C0.9800
C3—H30.9500C12—H120.9500
Mo2—Mo1—Mo2i90.126 (16)Cl4i—Mo3—Cl3175.60 (3)
Mo3—Mo1—Mo2i59.936 (14)Cl7—Mo3—Mo1136.77 (3)
Mo3—Mo1—Mo260.038 (12)Cl7—Mo3—Mo1i133.17 (3)
Mo3i—Mo1—Mo2i60.074 (13)Cl7—Mo3—Mo2i135.56 (3)
Mo3i—Mo1—Mo260.036 (15)Cl7—Mo3—Mo2134.21 (3)
Mo3i—Mo1—Mo389.946 (14)Cl7—Mo3—Cl192.98 (3)
Cl1—Mo1—Mo2i118.30 (2)Cl7—Mo3—Cl2i91.41 (3)
Cl1—Mo1—Mo258.24 (2)Cl7—Mo3—Cl393.96 (3)
Cl1—Mo1—Mo3i118.26 (2)Cl7—Mo3—Cl4i90.44 (3)
Cl1—Mo1—Mo358.37 (2)Mo1—Cl1—Mo263.55 (2)
Cl1—Mo1—Cl289.61 (3)Mo1—Cl1—Mo363.47 (2)
Cl1—Mo1—Cl390.01 (3)Mo2—Cl1—Mo363.50 (2)
Cl2—Mo1—Mo257.97 (2)Mo2—Cl2—Mo163.61 (2)
Cl2—Mo1—Mo2i118.37 (2)Mo2—Cl2—Mo3i63.59 (2)
Cl2—Mo1—Mo3i58.32 (2)Mo3i—Cl2—Mo163.31 (2)
Cl2—Mo1—Mo3117.99 (2)Mo2i—Cl3—Mo163.68 (2)
Cl3—Mo1—Mo2i58.08 (2)Mo2i—Cl3—Mo363.58 (2)
Cl3—Mo1—Mo2118.24 (2)Mo3—Cl3—Mo163.55 (2)
Cl3—Mo1—Mo3i118.13 (2)Mo2i—Cl4—Mo163.78 (2)
Cl3—Mo1—Mo358.22 (2)Mo2i—Cl4—Mo3i63.86 (2)
Cl3—Mo1—Cl2175.50 (3)Mo3i—Cl4—Mo163.56 (2)
Cl4—Mo1—Mo2i57.96 (2)H1A—N1—H1B112 (4)
Cl4—Mo1—Mo2118.09 (2)H1A—N1—H1C110 (4)
Cl4—Mo1—Mo3117.88 (2)H1B—N1—H1C103 (3)
Cl4—Mo1—Mo3i58.08 (2)C1—N1—H1A108 (3)
Cl4—Mo1—Cl1175.46 (3)C1—N1—H1B109 (3)
Cl4—Mo1—Cl290.28 (3)C1—N1—H1C114 (3)
Cl4—Mo1—Cl389.74 (3)C2—C1—N1119.9 (3)
Cl5—Mo1—Mo2i134.38 (3)C2—C1—C3120.7 (4)
Cl5—Mo1—Mo2135.49 (3)C2A—C1—N1119.6 (15)
Cl5—Mo1—Mo3135.18 (2)C2A—C1—C3A120.3 (10)
Cl5—Mo1—Mo3i134.87 (3)C3—C1—N1119.4 (3)
Cl5—Mo1—Cl192.58 (3)C3A—C1—N1120.1 (16)
Cl5—Mo1—Cl292.57 (3)C1—C2—H2119.9
Cl5—Mo1—Cl391.93 (3)C1—C2—C3ii120.1 (4)
Cl5—Mo1—Cl491.96 (3)C3ii—C2—H2119.9
Mo1—Mo2—Mo1i89.873 (16)C1—C2A—H2A121.4
Mo1—Mo2—Mo359.978 (12)C1—C2A—C3Aii117 (3)
Mo3i—Mo2—Mo1i59.981 (14)C3Aii—C2A—H2A121.4
Mo3i—Mo2—Mo159.875 (13)C1—C3—C2ii119.2 (4)
Mo3—Mo2—Mo1i59.809 (14)C1—C3—H3120.4
Mo3i—Mo2—Mo389.819 (14)C2ii—C3—H3120.4
Cl1—Mo2—Mo1i118.14 (2)C1—C3A—C2Aii122 (3)
Cl1—Mo2—Mo158.22 (2)C1—C3A—H3A118.8
Cl1—Mo2—Mo3i118.08 (2)C2Aii—C3A—H3A118.8
Cl1—Mo2—Mo358.34 (2)C5—N2—C4117.3 (3)
Cl2—Mo2—Mo1i118.37 (2)C6—N2—C4122.3 (3)
Cl2—Mo2—Mo158.42 (2)C6—N2—C5120.4 (3)
Cl2—Mo2—Mo3118.38 (2)N2—C4—H4A109.5
Cl2—Mo2—Mo3i58.40 (2)N2—C4—H4B109.5
Cl2—Mo2—Cl189.88 (3)N2—C4—H4C109.5
Cl2—Mo2—Cl3i89.95 (3)H4A—C4—H4B109.5
Cl3i—Mo2—Mo1i58.25 (2)H4A—C4—H4C109.5
Cl3i—Mo2—Mo1118.15 (2)H4B—C4—H4C109.5
Cl3i—Mo2—Mo3i58.29 (2)N2—C5—H5A109.5
Cl3i—Mo2—Mo3118.04 (2)N2—C5—H5B109.5
Cl3i—Mo2—Cl1175.56 (3)N2—C5—H5C109.5
Cl4i—Mo2—Mo1118.04 (2)H5A—C5—H5B109.5
Cl4i—Mo2—Mo1i58.26 (2)H5A—C5—H5C109.5
Cl4i—Mo2—Mo358.07 (2)H5B—C5—H5C109.5
Cl4i—Mo2—Mo3i118.22 (2)O1—C6—N2127.2 (4)
Cl4i—Mo2—Cl189.81 (3)O1—C6—H6116.4
Cl4i—Mo2—Cl2175.77 (3)N2—C6—H6116.4
Cl4i—Mo2—Cl3i90.03 (3)C7—N3—C8117.8 (4)
Cl6—Mo2—Mo1i133.87 (3)C9—N3—C7120.7 (4)
Cl6—Mo2—Mo1136.26 (3)C9—N3—C8121.5 (4)
Cl6—Mo2—Mo3i134.96 (3)N3—C7—H7A109.5
Cl6—Mo2—Mo3135.19 (2)N3—C7—H7B109.5
Cl6—Mo2—Cl193.14 (3)N3—C7—H7C109.5
Cl6—Mo2—Cl292.74 (3)H7A—C7—H7B109.5
Cl6—Mo2—Cl3i91.30 (3)H7A—C7—H7C109.5
Cl6—Mo2—Cl4i91.49 (3)H7B—C7—H7C109.5
Mo1i—Mo3—Mo190.053 (14)N3—C8—H8A109.5
Mo1i—Mo3—Mo2i60.086 (12)N3—C8—H8B109.5
Mo1—Mo3—Mo259.984 (14)N3—C8—H8C109.5
Mo1i—Mo3—Mo260.116 (12)H8A—C8—H8B109.5
Mo2i—Mo3—Mo160.082 (11)H8A—C8—H8C109.5
Mo2i—Mo3—Mo290.179 (13)H8B—C8—H8C109.5
Cl1—Mo3—Mo1i118.25 (2)O2—C9—N3126.1 (4)
Cl1—Mo3—Mo158.16 (2)O2—C9—H9116.9
Cl1—Mo3—Mo258.15 (2)N3—C9—H9116.9
Cl1—Mo3—Mo2i118.23 (2)C11—N4—C10117.9 (3)
Cl2i—Mo3—Mo1118.07 (2)C12—N4—C10121.7 (3)
Cl2i—Mo3—Mo1i58.37 (2)C12—N4—C11120.3 (4)
Cl2i—Mo3—Mo2118.46 (2)N4—C10—H10A109.5
Cl2i—Mo3—Mo2i58.00 (2)N4—C10—H10B109.5
Cl2i—Mo3—Cl1175.60 (3)N4—C10—H10C109.5
Cl3—Mo3—Mo158.23 (2)H10A—C10—H10B109.5
Cl3—Mo3—Mo1i118.20 (2)H10A—C10—H10C109.5
Cl3—Mo3—Mo2118.20 (2)H10B—C10—H10C109.5
Cl3—Mo3—Mo2i58.13 (2)N4—C11—H11A109.5
Cl3—Mo3—Cl189.89 (3)N4—C11—H11B109.5
Cl3—Mo3—Cl2i89.61 (3)N4—C11—H11C109.5
Cl4i—Mo3—Mo1118.03 (2)H11A—C11—H11B109.5
Cl4i—Mo3—Mo1i58.36 (2)H11A—C11—H11C109.5
Cl4i—Mo3—Mo2i118.43 (2)H11B—C11—H11C109.5
Cl4i—Mo3—Mo258.06 (2)O3—C12—N4125.0 (4)
Cl4i—Mo3—Cl189.68 (3)O3—C12—H12117.5
Cl4i—Mo3—Cl2i90.48 (3)N4—C12—H12117.5
N1—C1—C2—C3ii178.5 (3)C3A—C1—C2A—C3Aii1.0 (17)
N1—C1—C2A—C3Aii179.7 (9)C4—N2—C6—O1177.0 (4)
N1—C1—C3—C2ii178.5 (3)C5—N2—C6—O11.6 (6)
N1—C1—C3A—C2Aii179.7 (9)C7—N3—C9—O22.6 (6)
C2—C1—C3—C2ii0.3 (6)C8—N3—C9—O2179.8 (4)
C2A—C1—C3A—C2Aii1.1 (18)C10—N4—C12—O3177.3 (4)
C3—C1—C2—C3ii0.3 (6)C11—N4—C12—O30.4 (6)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2iii0.92 (2)1.76 (2)2.672 (4)171 (4)
N1—H1B···O3iv0.93 (2)1.79 (2)2.710 (4)173 (4)
N1—H1C···O1i0.92 (2)1.81 (2)2.727 (4)175 (4)
Symmetry codes: (i) x+1, y+1, z+1; (iii) x, y+1, z1; (iv) x+2, y+1, z.
N,N'-(1,4-Phenylene)bis(propan-2-iminium) octa-µ3-chlorido-hexachlorido-octahedro-hexamolybdate acetone trisolvate (3) top
Crystal data top
(C12H18N2)[Mo6Cl8Cl6]·3C3H6OZ = 1
Mr = 1436.46F(000) = 690
Triclinic, P1Dx = 2.257 Mg m3
a = 9.451 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.236 (3) ÅCell parameters from 5309 reflections
c = 11.712 (3) Åθ = 2.2–25.1°
α = 64.933 (6)°µ = 2.64 mm1
β = 71.174 (6)°T = 200 K
γ = 75.440 (6)°Block, clear light orange
V = 1056.7 (5) Å30.55 × 0.33 × 0.20 mm
Data collection top
Bruker SMART X2S benchtop
diffractometer
3692 independent reflections
Radiation source: sealed microfocus source, XOS X-beam microfocus source3220 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 8.3330 pixels mm-1θmax = 25.2°, θmin = 2.6°
φ and ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
k = 1313
Tmin = 0.490, Tmax = 0.745l = 1313
10036 measured reflections
Refinement top
Refinement on F2Primary atom site location: heavy-atom method
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.025H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.068 w = 1/[σ2(Fo2) + (0.0347P)2 + 0.3989P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
3692 reflectionsΔρmax = 0.96 e Å3
235 parametersΔρmin = 0.82 e Å3
13 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mo10.54044 (3)0.46936 (2)0.65449 (2)0.01669 (9)
Mo20.46251 (3)0.32776 (2)0.56169 (2)0.01681 (9)
Mo30.29965 (3)0.55064 (2)0.56544 (2)0.01718 (9)
Cl10.41212 (10)0.10003 (8)0.64118 (8)0.0324 (2)
Cl20.76390 (8)0.58538 (7)0.52537 (7)0.02273 (17)
Cl30.69229 (9)0.25958 (7)0.64379 (7)0.02413 (18)
Cl40.59212 (10)0.43277 (8)0.85707 (7)0.0303 (2)
Cl50.38283 (9)0.68264 (7)0.65005 (7)0.02236 (17)
Cl60.31409 (9)0.35417 (8)0.76707 (7)0.02377 (18)
Cl70.03772 (9)0.61748 (9)0.65222 (9)0.0360 (2)
N10.2062 (3)0.0615 (3)0.2565 (3)0.0242 (6)
H10.196 (4)0.021 (3)0.211 (3)0.036*
C10.4140 (4)0.1369 (4)0.0787 (3)0.0382 (9)
H1A0.4317170.2284390.0225740.057*
H1B0.3669160.1025500.0376600.057*
H1C0.5103550.0819190.0916010.057*
C20.3131 (4)0.1337 (3)0.2058 (3)0.0265 (7)
C30.3406 (4)0.2109 (3)0.2704 (4)0.0370 (9)
H3A0.4248100.1634870.3111570.056*
H3B0.2497700.2222270.3371340.056*
H3C0.3655720.2980480.2058170.056*
C40.1507 (4)0.0037 (3)0.4928 (3)0.0281 (7)
H40.2538810.0060020.4869340.034*
C50.1019 (4)0.0328 (3)0.3819 (3)0.0227 (7)
C60.0482 (4)0.0368 (3)0.3885 (3)0.0274 (7)
H60.0799660.0622410.3113170.033*
O10.1737 (3)0.9573 (3)0.0897 (2)0.0440 (7)
C70.0245 (5)0.7839 (4)0.1942 (4)0.0502 (11)
H7A0.0126960.8022210.2716960.075*
H7B0.0676730.6911370.2094010.075*
H7C0.0742890.8001900.1759110.075*
C80.1262 (4)0.8717 (4)0.0818 (4)0.0345 (8)
C90.1705 (5)0.8501 (4)0.0432 (4)0.0468 (10)
H9A0.2058230.9301840.1153500.070*
H9B0.0831090.8303920.0566880.070*
H9C0.2515270.7753700.0396530.070*
O20.0767 (6)0.3001 (5)0.0578 (5)0.0461 (13)0.5
C100.0375 (9)0.4167 (7)0.0246 (6)0.0351 (17)0.5
C110.143 (2)0.512 (2)0.011 (2)0.049 (5)0.5
H11A0.1178150.5488630.0568090.073*0.5
H11B0.1349090.5841340.0940950.073*0.5
H11C0.2468600.4662490.0186850.073*0.5
C120.1156 (17)0.473 (2)0.006 (2)0.044 (5)0.5
H12A0.1148860.4959680.0851080.067*0.5
H12B0.1484420.5536550.0260590.067*0.5
H12C0.1853880.4084430.0631190.067*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.01921 (17)0.01543 (15)0.01644 (15)0.00245 (12)0.00747 (11)0.00459 (11)
Mo20.01936 (17)0.01344 (15)0.01826 (15)0.00251 (11)0.00714 (11)0.00450 (11)
Mo30.01548 (17)0.01715 (15)0.01989 (15)0.00117 (11)0.00588 (11)0.00728 (12)
Cl10.0385 (5)0.0179 (4)0.0390 (5)0.0077 (4)0.0110 (4)0.0057 (3)
Cl20.0208 (4)0.0243 (4)0.0272 (4)0.0053 (3)0.0092 (3)0.0098 (3)
Cl30.0278 (4)0.0172 (4)0.0286 (4)0.0030 (3)0.0158 (3)0.0065 (3)
Cl40.0429 (5)0.0301 (4)0.0223 (4)0.0098 (4)0.0159 (4)0.0053 (3)
Cl50.0248 (4)0.0208 (4)0.0247 (4)0.0008 (3)0.0075 (3)0.0118 (3)
Cl60.0266 (4)0.0245 (4)0.0186 (4)0.0084 (3)0.0029 (3)0.0057 (3)
Cl70.0189 (4)0.0453 (5)0.0457 (5)0.0015 (4)0.0055 (4)0.0237 (4)
N10.0263 (16)0.0219 (14)0.0257 (14)0.0046 (12)0.0068 (12)0.0090 (11)
C10.040 (2)0.036 (2)0.0310 (19)0.0163 (18)0.0023 (16)0.0037 (16)
C20.0241 (19)0.0158 (16)0.0354 (18)0.0018 (14)0.0126 (15)0.0045 (14)
C30.037 (2)0.0235 (18)0.054 (2)0.0030 (16)0.0155 (18)0.0152 (17)
C40.0213 (18)0.0312 (18)0.0346 (18)0.0018 (15)0.0099 (15)0.0136 (15)
C50.0251 (19)0.0163 (15)0.0275 (16)0.0008 (13)0.0074 (14)0.0102 (13)
C60.028 (2)0.0311 (18)0.0265 (17)0.0021 (15)0.0113 (14)0.0115 (15)
O10.0565 (18)0.0433 (16)0.0429 (15)0.0198 (14)0.0152 (13)0.0166 (13)
C70.038 (2)0.047 (2)0.063 (3)0.012 (2)0.013 (2)0.014 (2)
C80.031 (2)0.0322 (19)0.043 (2)0.0004 (16)0.0204 (17)0.0105 (16)
C90.057 (3)0.043 (2)0.050 (2)0.001 (2)0.028 (2)0.018 (2)
O20.051 (4)0.037 (3)0.052 (3)0.007 (3)0.016 (3)0.015 (3)
C100.046 (5)0.038 (5)0.020 (3)0.006 (4)0.003 (3)0.013 (3)
C110.048 (8)0.054 (10)0.061 (10)0.010 (7)0.008 (8)0.040 (8)
C120.043 (7)0.042 (8)0.036 (8)0.000 (6)0.006 (5)0.017 (7)
Geometric parameters (Å, º) top
Mo1—Mo2i2.5943 (6)C2—C31.480 (5)
Mo1—Mo22.6126 (5)C3—H3A0.9800
Mo1—Mo32.6038 (6)C3—H3B0.9800
Mo1—Mo3i2.6031 (7)C3—H3C0.9800
Mo1—Cl22.4695 (9)C4—H40.9500
Mo1—Cl32.4627 (9)C4—C51.381 (4)
Mo1—Cl42.4202 (9)C4—C6ii1.372 (5)
Mo1—Cl52.4727 (9)C5—C61.386 (4)
Mo1—Cl62.4729 (9)C6—H60.9500
Mo2—Mo3i2.6069 (6)O1—C81.206 (4)
Mo2—Mo32.5989 (7)C7—H7A0.9800
Mo2—Cl12.4391 (10)C7—H7B0.9800
Mo2—Cl2i2.4668 (9)C7—H7C0.9800
Mo2—Cl32.4727 (9)C7—C81.480 (5)
Mo2—Cl5i2.4738 (9)C8—C91.494 (5)
Mo2—Cl62.4616 (9)C9—H9A0.9800
Mo3—Cl2i2.4655 (8)C9—H9B0.9800
Mo3—Cl3i2.4680 (9)C9—H9C0.9800
Mo3—Cl52.4767 (8)O2—C101.193 (8)
Mo3—Cl62.4714 (9)C10—C111.488 (13)
Mo3—Cl72.4110 (10)C10—C121.475 (13)
N1—H10.870 (18)C11—H11A0.9800
N1—C21.284 (4)C11—H11B0.9800
N1—C51.434 (4)C11—H11C0.9800
C1—H1A0.9800C12—H12A0.9800
C1—H1B0.9800C12—H12B0.9800
C1—H1C0.9800C12—H12C0.9800
C1—C21.477 (5)
Mo2i—Mo1—Mo289.98 (2)Cl3i—Mo3—Cl589.98 (3)
Mo2i—Mo1—Mo3i60.005 (19)Cl3i—Mo3—Cl6175.12 (3)
Mo2i—Mo1—Mo360.202 (14)Cl5—Mo3—Mo158.18 (2)
Mo3i—Mo1—Mo259.977 (16)Cl5—Mo3—Mo1i118.35 (2)
Mo3—Mo1—Mo259.763 (15)Cl5—Mo3—Mo2i58.17 (2)
Mo3i—Mo1—Mo389.98 (2)Cl5—Mo3—Mo2118.46 (3)
Cl2—Mo1—Mo2118.05 (2)Cl6—Mo3—Mo158.25 (2)
Cl2—Mo1—Mo2i58.24 (2)Cl6—Mo3—Mo1i117.84 (3)
Cl2—Mo1—Mo3i58.09 (2)Cl6—Mo3—Mo258.02 (2)
Cl2—Mo1—Mo3118.42 (3)Cl6—Mo3—Mo2i117.94 (2)
Cl2—Mo1—Cl590.29 (3)Cl6—Mo3—Cl590.12 (3)
Cl2—Mo1—Cl6175.36 (2)Cl7—Mo3—Mo1134.62 (3)
Cl3—Mo1—Mo258.22 (2)Cl7—Mo3—Mo1i135.36 (2)
Cl3—Mo1—Mo2i118.22 (2)Cl7—Mo3—Mo2i134.89 (3)
Cl3—Mo1—Mo3i58.23 (2)Cl7—Mo3—Mo2135.11 (3)
Cl3—Mo1—Mo3117.98 (2)Cl7—Mo3—Cl2i92.39 (3)
Cl3—Mo1—Cl289.80 (3)Cl7—Mo3—Cl3i92.59 (3)
Cl3—Mo1—Cl5175.65 (2)Cl7—Mo3—Cl591.72 (3)
Cl3—Mo1—Cl689.39 (3)Cl7—Mo3—Cl692.28 (3)
Cl4—Mo1—Mo2i134.02 (3)Mo2i—Cl2—Mo163.41 (2)
Cl4—Mo1—Mo2136.00 (2)Mo3i—Cl2—Mo163.67 (2)
Cl4—Mo1—Mo3i135.46 (3)Mo3i—Cl2—Mo2i63.59 (2)
Cl4—Mo1—Mo3134.55 (2)Mo1—Cl3—Mo263.92 (2)
Cl4—Mo1—Cl291.90 (3)Mo1—Cl3—Mo3i63.73 (2)
Cl4—Mo1—Cl393.21 (3)Mo3i—Cl3—Mo263.69 (2)
Cl4—Mo1—Cl591.13 (3)Mo1—Cl5—Mo2i63.26 (2)
Cl4—Mo1—Cl692.71 (3)Mo1—Cl5—Mo363.48 (2)
Cl5—Mo1—Mo2i58.39 (2)Mo2i—Cl5—Mo363.55 (2)
Cl5—Mo1—Mo2118.08 (2)Mo2—Cl6—Mo163.94 (2)
Cl5—Mo1—Mo358.33 (2)Mo2—Cl6—Mo363.58 (3)
Cl5—Mo1—Mo3i118.37 (2)Mo3—Cl6—Mo163.56 (2)
Cl5—Mo1—Cl690.17 (3)C2—N1—H1117 (2)
Cl6—Mo1—Mo2i118.37 (2)C2—N1—C5129.1 (3)
Cl6—Mo1—Mo257.82 (2)C5—N1—H1114 (2)
Cl6—Mo1—Mo358.19 (2)H1A—C1—H1B109.5
Cl6—Mo1—Mo3i117.79 (2)H1A—C1—H1C109.5
Mo1i—Mo2—Mo190.02 (2)H1B—C1—H1C109.5
Mo1i—Mo2—Mo360.165 (17)C2—C1—H1A109.5
Mo1i—Mo2—Mo3i60.081 (15)C2—C1—H1B109.5
Mo3—Mo2—Mo159.951 (17)C2—C1—H1C109.5
Mo3i—Mo2—Mo159.830 (17)N1—C2—C1118.1 (3)
Mo3—Mo2—Mo3i90.00 (2)N1—C2—C3122.8 (3)
Cl1—Mo2—Mo1135.83 (3)C1—C2—C3119.1 (3)
Cl1—Mo2—Mo1i134.15 (2)C2—C3—H3A109.5
Cl1—Mo2—Mo3134.88 (3)C2—C3—H3B109.5
Cl1—Mo2—Mo3i135.11 (2)C2—C3—H3C109.5
Cl1—Mo2—Cl2i91.56 (3)H3A—C3—H3B109.5
Cl1—Mo2—Cl393.08 (3)H3A—C3—H3C109.5
Cl1—Mo2—Cl5i91.61 (3)H3B—C3—H3C109.5
Cl1—Mo2—Cl692.55 (3)C5—C4—H4120.4
Cl2i—Mo2—Mo1i58.35 (2)C6ii—C4—H4120.4
Cl2i—Mo2—Mo1118.11 (2)C6ii—C4—C5119.1 (3)
Cl2i—Mo2—Mo3i118.40 (2)C4—C5—N1121.0 (3)
Cl2i—Mo2—Mo358.18 (2)C4—C5—C6121.2 (3)
Cl2i—Mo2—Cl3175.35 (2)C6—C5—N1117.7 (3)
Cl2i—Mo2—Cl5i90.33 (3)C4ii—C6—C5119.6 (3)
Cl3—Mo2—Mo157.85 (2)C4ii—C6—H6120.2
Cl3—Mo2—Mo1i118.13 (2)C5—C6—H6120.2
Cl3—Mo2—Mo3i58.07 (2)H7A—C7—H7B109.5
Cl3—Mo2—Mo3117.79 (2)H7A—C7—H7C109.5
Cl3—Mo2—Cl5i89.93 (3)H7B—C7—H7C109.5
Cl5i—Mo2—Mo1118.09 (2)C8—C7—H7A109.5
Cl5i—Mo2—Mo1i58.35 (2)C8—C7—H7B109.5
Cl5i—Mo2—Mo3i58.28 (2)C8—C7—H7C109.5
Cl5i—Mo2—Mo3118.49 (2)O1—C8—C7121.9 (4)
Cl6—Mo2—Mo158.24 (2)O1—C8—C9120.5 (3)
Cl6—Mo2—Mo1i118.54 (3)C7—C8—C9117.7 (3)
Cl6—Mo2—Mo3i118.06 (2)C8—C9—H9A109.5
Cl6—Mo2—Mo358.39 (2)C8—C9—H9B109.5
Cl6—Mo2—Cl2i89.98 (3)C8—C9—H9C109.5
Cl6—Mo2—Cl389.42 (3)H9A—C9—H9B109.5
Cl6—Mo2—Cl5i175.82 (2)H9A—C9—H9C109.5
Mo1i—Mo3—Mo190.025 (19)H9B—C9—H9C109.5
Mo1—Mo3—Mo2i59.719 (18)O2—C10—C11122.1 (9)
Mo1i—Mo3—Mo2i60.193 (13)O2—C10—C12120.8 (9)
Mo2—Mo3—Mo160.287 (13)C12—C10—C11116.9 (14)
Mo2—Mo3—Mo1i59.830 (12)C10—C11—H11A109.5
Mo2—Mo3—Mo2i90.00 (2)C10—C11—H11B109.5
Cl2i—Mo3—Mo1118.50 (2)C10—C11—H11C109.5
Cl2i—Mo3—Mo1i58.24 (2)H11A—C11—H11B109.5
Cl2i—Mo3—Mo258.23 (2)H11A—C11—H11C109.5
Cl2i—Mo3—Mo2i118.42 (2)H11B—C11—H11C109.5
Cl2i—Mo3—Cl3i89.77 (3)C10—C12—H12A109.5
Cl2i—Mo3—Cl5175.88 (3)C10—C12—H12B109.5
Cl2i—Mo3—Cl689.79 (3)C10—C12—H12C109.5
Cl3i—Mo3—Mo1i58.03 (2)H12A—C12—H12B109.5
Cl3i—Mo3—Mo1117.94 (2)H12A—C12—H12C109.5
Cl3i—Mo3—Mo2i58.24 (2)H12B—C12—H12C109.5
Cl3i—Mo3—Mo2117.85 (2)
N1—C5—C6—C4ii176.9 (3)C5—N1—C2—C1174.4 (3)
C2—N1—C5—C446.6 (5)C5—N1—C2—C34.4 (5)
C2—N1—C5—C6136.5 (3)C6ii—C4—C5—N1176.7 (3)
C4—C5—C6—C4ii0.1 (5)C6ii—C4—C5—C60.1 (5)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1iii0.87 (2)1.93 (2)2.791 (4)172 (3)
Symmetry code: (iii) x, y1, z.
1,1'-Dimethyl-4,4'-bipyridinium octa-µ3-chlorido-hexachlorido-octahedro-hexamolybdate N,N-dimethylformamide tetrasolvate (4) top
Crystal data top
(C12H14N2)[Mo6Cl8Cl6]·4C3H7NOZ = 1
Mr = 1550.57F(000) = 750
Triclinic, P1Dx = 2.161 Mg m3
a = 9.8252 (11) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.0933 (11) ÅCell parameters from 6604 reflections
c = 12.6319 (15) Åθ = 2.6–25.0°
α = 107.395 (3)°µ = 2.35 mm1
β = 91.881 (3)°T = 200 K
γ = 93.309 (3)°Block, orange
V = 1191.8 (2) Å30.32 × 0.30 × 0.28 mm
Data collection top
Bruker SMART X2S benchtop
diffractometer
4187 independent reflections
Radiation source: sealed microfocus source, XOS X-beam microfocus source3743 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
Detector resolution: 8.3330 pixels mm-1θmax = 25.1°, θmin = 2.3°
φ and ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
k = 1111
Tmin = 0.815, Tmax = 1.000l = 1515
11498 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.020 w = 1/[σ2(Fo2) + (0.0184P)2 + 0.8263P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.049(Δ/σ)max = 0.002
S = 1.02Δρmax = 0.42 e Å3
4187 reflectionsΔρmin = 0.44 e Å3
250 parametersExtinction correction: SHELXL2018 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0075 (3)
Primary atom site location: heavy-atom method
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo10.34350 (2)0.52105 (2)0.42443 (2)0.01878 (7)
Mo20.43880 (2)0.61443 (2)0.62913 (2)0.01930 (7)
Mo30.41622 (2)0.34763 (2)0.52876 (2)0.01916 (7)
Cl40.21336 (6)0.48336 (6)0.57792 (5)0.02520 (14)
Cl20.51113 (6)0.44527 (7)0.72253 (5)0.02551 (14)
Cl70.30745 (7)0.14843 (7)0.56719 (6)0.03486 (17)
Cl60.35663 (7)0.76331 (7)0.79813 (6)0.03874 (18)
Cl30.32970 (6)0.26780 (6)0.33243 (5)0.02516 (14)
Cl10.37330 (6)0.77313 (6)0.52328 (5)0.02510 (14)
Cl50.13401 (6)0.54800 (7)0.32618 (5)0.03256 (16)
N10.0168 (2)0.9093 (3)0.7467 (2)0.0392 (6)
C30.0031 (2)0.9806 (3)0.5519 (2)0.0299 (6)
C60.0223 (4)0.8700 (4)0.8508 (3)0.0560 (9)
H6A0.0921440.9304390.9031090.084*
H6B0.0451410.7728670.8342440.084*
H6C0.0667690.8806190.8839440.084*
O10.0987 (4)0.2529 (3)0.9699 (2)0.0947 (11)
N20.1930 (3)0.4599 (3)0.9693 (2)0.0462 (7)
C70.1610 (5)0.3616 (4)1.0150 (3)0.0661 (11)
H70.1901270.3785921.0906650.079*
C90.1539 (4)0.4414 (4)0.8553 (3)0.0642 (10)
H9A0.1915690.3572500.8082680.096*
H9B0.1893230.5222990.8342810.096*
H9C0.0541110.4320880.8452570.096*
C80.2613 (6)0.5918 (5)1.0316 (4)0.0954 (17)
H8A0.2741540.5952931.1096410.143*
H8B0.2057030.6673441.0261780.143*
H8C0.3503530.6024891.0012460.143*
O20.2430 (3)0.9764 (3)0.1097 (2)0.0629 (7)
N30.4369 (3)0.9015 (3)0.1660 (2)0.0425 (6)
C100.3573 (4)0.9392 (3)0.0942 (3)0.0479 (8)
H100.3935720.9366710.0248550.058*
C120.3883 (4)0.9057 (4)0.2736 (3)0.0567 (9)
H12A0.3115830.9652990.2897800.085*
H12B0.4622200.9433210.3305450.085*
H12C0.3581020.8113730.2733420.085*
C110.5716 (4)0.8576 (4)0.1409 (4)0.0698 (11)
H11A0.5768760.7623590.1443730.105*
H11B0.6383600.9200020.1950530.105*
H11C0.5914810.8605830.0660690.105*
C20.0219 (3)0.8454 (3)0.5522 (2)0.0407 (7)
H20.0306560.7749460.4839420.049*
C10.0281 (3)0.8128 (4)0.6492 (3)0.0450 (8)
H10.0406360.7195620.6475480.054*
C40.0086 (4)1.0768 (3)0.6542 (3)0.0499 (9)
H40.0212381.1708230.6585850.060*
C50.0023 (4)1.0392 (3)0.7493 (3)0.0539 (9)
H50.0118121.1074040.8186480.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.01652 (11)0.02000 (13)0.02050 (12)0.00181 (8)0.00057 (8)0.00707 (9)
Mo20.01846 (11)0.01990 (13)0.01947 (12)0.00228 (9)0.00309 (8)0.00547 (9)
Mo30.01755 (11)0.01909 (13)0.02210 (12)0.00020 (8)0.00183 (8)0.00827 (9)
Cl40.0185 (3)0.0295 (3)0.0290 (3)0.0021 (2)0.0059 (2)0.0103 (3)
Cl20.0272 (3)0.0301 (4)0.0223 (3)0.0025 (3)0.0018 (2)0.0124 (3)
Cl70.0300 (3)0.0327 (4)0.0474 (4)0.0075 (3)0.0014 (3)0.0226 (3)
Cl60.0430 (4)0.0374 (4)0.0305 (4)0.0072 (3)0.0131 (3)0.0001 (3)
Cl30.0239 (3)0.0227 (3)0.0259 (3)0.0016 (2)0.0023 (2)0.0038 (3)
Cl10.0240 (3)0.0207 (3)0.0318 (3)0.0047 (2)0.0021 (2)0.0090 (3)
Cl50.0254 (3)0.0383 (4)0.0335 (4)0.0070 (3)0.0058 (3)0.0100 (3)
N10.0294 (12)0.0537 (17)0.0346 (13)0.0046 (11)0.0096 (10)0.0125 (12)
C30.0193 (12)0.0339 (16)0.0316 (14)0.0056 (11)0.0078 (11)0.0031 (12)
C60.054 (2)0.082 (3)0.0421 (19)0.0242 (19)0.0164 (16)0.0289 (19)
O10.166 (3)0.0601 (18)0.0529 (17)0.046 (2)0.0022 (19)0.0192 (15)
N20.0566 (17)0.0467 (16)0.0351 (14)0.0092 (13)0.0047 (12)0.0153 (13)
C70.105 (3)0.061 (3)0.0329 (18)0.010 (2)0.0046 (19)0.0184 (19)
C90.078 (3)0.070 (3)0.047 (2)0.013 (2)0.0116 (19)0.028 (2)
C80.132 (4)0.080 (3)0.067 (3)0.046 (3)0.033 (3)0.026 (3)
O20.0563 (16)0.0770 (18)0.0618 (16)0.0167 (14)0.0073 (13)0.0295 (14)
N30.0483 (15)0.0320 (14)0.0497 (16)0.0033 (12)0.0034 (13)0.0165 (12)
C100.060 (2)0.0404 (19)0.0432 (18)0.0019 (16)0.0034 (16)0.0146 (16)
C120.078 (3)0.048 (2)0.047 (2)0.0120 (18)0.0094 (18)0.0183 (17)
C110.056 (2)0.064 (3)0.100 (3)0.0104 (19)0.009 (2)0.038 (2)
C20.0383 (16)0.0433 (19)0.0360 (16)0.0171 (14)0.0025 (13)0.0024 (14)
C10.0423 (17)0.049 (2)0.0455 (19)0.0226 (15)0.0062 (14)0.0125 (16)
C40.079 (2)0.0295 (17)0.0366 (17)0.0111 (16)0.0227 (16)0.0043 (14)
C50.080 (3)0.039 (2)0.0360 (18)0.0106 (17)0.0218 (17)0.0016 (15)
Geometric parameters (Å, º) top
Mo1—Mo2i2.6043 (4)C6—H6C0.9800
Mo1—Mo22.5948 (4)O1—C71.195 (4)
Mo1—Mo32.6026 (3)N2—C71.318 (4)
Mo1—Mo3i2.5996 (4)N2—C91.432 (4)
Mo1—Cl42.4671 (6)N2—C81.442 (5)
Mo1—Cl2i2.4692 (6)C7—H70.9500
Mo1—Cl32.4650 (7)C9—H9A0.9800
Mo1—Cl12.4716 (7)C9—H9B0.9800
Mo1—Cl52.4392 (7)C9—H9C0.9800
Mo2—Mo3i2.5949 (3)C8—H8A0.9800
Mo2—Mo32.6037 (4)C8—H8B0.9800
Mo2—Cl42.4760 (6)C8—H8C0.9800
Mo2—Cl22.4701 (6)O2—C101.208 (4)
Mo2—Cl62.4088 (7)N3—C101.331 (4)
Mo2—Cl3i2.4683 (6)N3—C121.445 (4)
Mo2—Cl12.4720 (6)N3—C111.435 (4)
Mo3—Cl42.4745 (6)C10—H100.9500
Mo3—Cl22.4766 (7)C12—H12A0.9800
Mo3—Cl72.4061 (7)C12—H12B0.9800
Mo3—Cl32.4719 (7)C12—H12C0.9800
Mo3—Cl1i2.4689 (6)C11—H11A0.9800
N1—C61.484 (4)C11—H11B0.9800
N1—C11.334 (4)C11—H11C0.9800
N1—C51.327 (4)C2—H20.9500
C3—C3ii1.477 (5)C2—C11.361 (4)
C3—C21.388 (4)C1—H10.9500
C3—C41.377 (4)C4—H40.9500
C6—H6A0.9800C4—C51.363 (4)
C6—H6B0.9800C5—H50.9500
Mo2—Mo1—Mo2i89.921 (11)Cl7—Mo3—Mo2i135.04 (2)
Mo2—Mo1—Mo3i59.942 (8)Cl7—Mo3—Cl492.33 (2)
Mo2—Mo1—Mo360.128 (10)Cl7—Mo3—Cl292.13 (2)
Mo3—Mo1—Mo2i59.784 (9)Cl7—Mo3—Cl392.61 (2)
Mo3i—Mo1—Mo2i60.045 (11)Cl7—Mo3—Cl1i91.81 (2)
Mo3i—Mo1—Mo389.992 (11)Cl3—Mo3—Mo158.057 (16)
Cl4—Mo1—Mo2i118.129 (17)Cl3—Mo3—Mo1i118.159 (16)
Cl4—Mo1—Mo258.503 (17)Cl3—Mo3—Mo2117.829 (17)
Cl4—Mo1—Mo3i118.428 (17)Cl3—Mo3—Mo2i58.247 (16)
Cl4—Mo1—Mo358.357 (16)Cl3—Mo3—Cl489.57 (2)
Cl4—Mo1—Cl2i175.80 (2)Cl3—Mo3—Cl2175.25 (2)
Cl4—Mo1—Cl190.24 (2)Cl1i—Mo3—Mo1118.500 (16)
Cl2i—Mo1—Mo2118.347 (18)Cl1i—Mo3—Mo1i58.302 (17)
Cl2i—Mo1—Mo2i58.200 (16)Cl1i—Mo3—Mo2i58.376 (16)
Cl2i—Mo1—Mo3i58.426 (16)Cl1i—Mo3—Mo2118.352 (17)
Cl2i—Mo1—Mo3117.975 (17)Cl1i—Mo3—Cl4175.86 (2)
Cl2i—Mo1—Cl190.06 (2)Cl1i—Mo3—Cl289.95 (2)
Cl3—Mo1—Mo2i58.199 (15)Cl1i—Mo3—Cl390.20 (2)
Cl3—Mo1—Mo2118.426 (17)Mo1—Cl4—Mo263.328 (16)
Cl3—Mo1—Mo358.314 (17)Mo1—Cl4—Mo363.562 (15)
Cl3—Mo1—Mo3i118.235 (16)Mo3—Cl4—Mo263.465 (17)
Cl3—Mo1—Cl489.90 (2)Mo1i—Cl2—Mo263.638 (16)
Cl3—Mo1—Cl2i89.50 (2)Mo1i—Cl2—Mo363.422 (17)
Cl3—Mo1—Cl1175.83 (2)Mo2—Cl2—Mo363.519 (17)
Cl1—Mo1—Mo2i118.234 (17)Mo1—Cl3—Mo2i63.726 (16)
Cl1—Mo1—Mo258.347 (15)Mo1—Cl3—Mo363.629 (16)
Cl1—Mo1—Mo3i58.203 (15)Mo2i—Cl3—Mo363.372 (16)
Cl1—Mo1—Mo3118.456 (18)Mo1—Cl1—Mo263.322 (17)
Cl5—Mo1—Mo2134.428 (19)Mo3i—Cl1—Mo163.496 (16)
Cl5—Mo1—Mo2i135.644 (19)Mo3i—Cl1—Mo263.363 (16)
Cl5—Mo1—Mo3134.380 (19)C1—N1—C6119.9 (3)
Cl5—Mo1—Mo3i135.62 (2)C5—N1—C6120.5 (3)
Cl5—Mo1—Cl491.17 (2)C5—N1—C1119.6 (3)
Cl5—Mo1—Cl2i93.01 (2)C2—C3—C3ii122.0 (3)
Cl5—Mo1—Cl392.03 (2)C4—C3—C3ii121.9 (3)
Cl5—Mo1—Cl192.13 (2)C4—C3—C2116.1 (3)
Mo1—Mo2—Mo1i90.078 (10)N1—C6—H6A109.5
Mo1—Mo2—Mo3i60.121 (11)N1—C6—H6B109.5
Mo1—Mo2—Mo360.084 (8)N1—C6—H6C109.5
Mo3—Mo2—Mo1i59.890 (9)H6A—C6—H6B109.5
Mo3i—Mo2—Mo1i60.076 (9)H6A—C6—H6C109.5
Mo3i—Mo2—Mo390.070 (10)H6B—C6—H6C109.5
Cl4—Mo2—Mo1i118.113 (18)C7—N2—C9120.4 (3)
Cl4—Mo2—Mo158.169 (15)C7—N2—C8122.3 (3)
Cl4—Mo2—Mo358.238 (16)C9—N2—C8117.2 (3)
Cl4—Mo2—Mo3i118.272 (17)O1—C7—N2125.8 (3)
Cl2—Mo2—Mo1118.429 (18)O1—C7—H7117.1
Cl2—Mo2—Mo1i58.164 (15)N2—C7—H7117.1
Cl2—Mo2—Mo358.360 (17)N2—C9—H9A109.5
Cl2—Mo2—Mo3i118.230 (17)N2—C9—H9B109.5
Cl2—Mo2—Cl490.05 (2)N2—C9—H9C109.5
Cl2—Mo2—Cl1175.86 (2)H9A—C9—H9B109.5
Cl6—Mo2—Mo1134.52 (2)H9A—C9—H9C109.5
Cl6—Mo2—Mo1i135.40 (2)H9B—C9—H9C109.5
Cl6—Mo2—Mo3134.68 (2)N2—C8—H8A109.5
Cl6—Mo2—Mo3i135.25 (2)N2—C8—H8B109.5
Cl6—Mo2—Cl491.70 (2)N2—C8—H8C109.5
Cl6—Mo2—Cl292.13 (2)H8A—C8—H8B109.5
Cl6—Mo2—Cl3i92.69 (2)H8A—C8—H8C109.5
Cl6—Mo2—Cl192.01 (3)H8B—C8—H8C109.5
Cl3i—Mo2—Mo1i58.075 (17)C10—N3—C12119.7 (3)
Cl3i—Mo2—Mo1118.479 (16)C10—N3—C11122.2 (3)
Cl3i—Mo2—Mo3i58.382 (16)C11—N3—C12118.1 (3)
Cl3i—Mo2—Mo3117.956 (16)O2—C10—N3125.6 (3)
Cl3i—Mo2—Cl4175.60 (2)O2—C10—H10117.2
Cl3i—Mo2—Cl289.40 (2)N3—C10—H10117.2
Cl3i—Mo2—Cl190.21 (2)N3—C12—H12A109.5
Cl1—Mo2—Mo1i118.322 (16)N3—C12—H12B109.5
Cl1—Mo2—Mo158.332 (17)N3—C12—H12C109.5
Cl1—Mo2—Mo3i58.262 (16)H12A—C12—H12B109.5
Cl1—Mo2—Mo3118.397 (19)H12A—C12—H12C109.5
Cl1—Mo2—Cl490.03 (2)H12B—C12—H12C109.5
Mo1i—Mo3—Mo190.008 (11)N3—C11—H11A109.5
Mo1i—Mo3—Mo260.064 (8)N3—C11—H11B109.5
Mo1—Mo3—Mo259.788 (11)N3—C11—H11C109.5
Mo2i—Mo3—Mo160.140 (9)H11A—C11—H11B109.5
Mo2i—Mo3—Mo1i59.936 (10)H11A—C11—H11C109.5
Mo2i—Mo3—Mo289.930 (10)H11B—C11—H11C109.5
Cl4—Mo3—Mo1i118.345 (18)C3—C2—H2119.6
Cl4—Mo3—Mo158.082 (15)C1—C2—C3120.8 (3)
Cl4—Mo3—Mo258.296 (16)C1—C2—H2119.6
Cl4—Mo3—Mo2i118.209 (17)N1—C1—C2121.2 (3)
Cl4—Mo3—Cl289.94 (2)N1—C1—H1119.4
Cl2—Mo3—Mo1117.894 (18)C2—C1—H1119.4
Cl2—Mo3—Mo1i58.152 (15)C3—C4—H4119.4
Cl2—Mo3—Mo2i118.066 (17)C5—C4—C3121.1 (3)
Cl2—Mo3—Mo258.121 (16)C5—C4—H4119.4
Cl7—Mo3—Mo1135.303 (19)N1—C5—C4121.2 (3)
Cl7—Mo3—Mo1i134.689 (19)N1—C5—H5119.4
Cl7—Mo3—Mo2135.02 (2)C4—C5—H5119.4
C3ii—C3—C2—C1179.5 (3)C8—N2—C7—O1176.1 (5)
C3ii—C3—C4—C5179.8 (3)C12—N3—C10—O21.1 (5)
C3—C2—C1—N10.3 (5)C11—N3—C10—O2179.6 (3)
C3—C4—C5—N10.8 (5)C2—C3—C4—C50.3 (5)
C6—N1—C1—C2179.3 (3)C1—N1—C5—C41.0 (5)
C6—N1—C5—C4179.5 (3)C4—C3—C2—C10.0 (4)
C9—N2—C7—O10.6 (7)C5—N1—C1—C20.8 (5)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O1iii0.952.233.063 (4)145
C6—H6C···O2ii0.982.313.088 (4)136
Symmetry codes: (ii) x, y+2, z+1; (iii) x, y+1, z.
 

Acknowledgements

This work was supported in part by the National Science Foundation. The authors thank H. Kaur and A. Maldonado for initial work on this project.

Funding information

Funding for this research was provided by: National Science Foundation, Division Of Undergraduate Education (grant No. 0942850 to DHJ).

References

First citationAkagi, S., Fujii, S. & Kitamura, N. (2018). Dalton Trans. 47, 1131–1139.  CrossRef CAS PubMed Google Scholar
First citationBringley, J. F. & Rajeswaran, M. (2006). Acta Cryst. E62, m1304–m1305.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBrozdowska, A. & Chojnacki, J. (2017). Acta Cryst. B73, 507–518.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2012). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBrychczynska, M., Davey, R. J. & Pidcock, E. (2012). CrystEngComm, 14, 1479–1484.  CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlemström, A. (2003). Acta Cryst. E59, m162–m164.  CSD CrossRef IUCr Journals Google Scholar
First citationGilli, G. & Gilli, P. (2009). The Nature of the Hydrogen Bond: Outline of a Comprehensive Hydrogen Bond Theory. Oxford University Press.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGroot, J. de, Gojdas, K., Unruh, D. K. & Forbes, T. Z. (2014). Cryst. Growth Des. 14, 1357–1365.  Google Scholar
First citationGurbanov, A. V., Mahmudov, K. T., Kopylovich, M. N., Guedes da Silva, F. M., Sutradhar, M., Guseinov, F. I., Zubkov, F. I., Maharramov, A. M. & Pombeiro, A. J. L. (2017). Dyes Pigments, 138, 107–111.  Web of Science CSD CrossRef CAS Google Scholar
First citationHay, D. N., Adams, J. A., Carpenter, J., DeVries, S. L., Domyancich, J., Dumser, B., Goldsmith, S., Kruse, M. A., Leone, A., Moussavi-Harami, F., O'Brien, J. A., Pfaffly, J. R., Sylves, M., Taravati, P., Thomas, J. L., Tiernan, B. & Messerle, L. (2004). Inorg. Chim. Acta, 357, 644–648.  CrossRef CAS Google Scholar
First citationHellenbrandt, M. (2004). Crystallogr. Rev. 10, 17–22.  CrossRef CAS Google Scholar
First citationKaman, O., Smrčok, Ľ., Gyepes, R. & Havlíček, D. (2012). Acta Cryst. C68, o57–o60.  CrossRef IUCr Journals Google Scholar
First citationKhutornoi, V. A., Naumov, N. G., Mironov, Y. V., Oeckler, O., Simon, A. & Fedorov, V. E. (2002). Russ. J. Coord. Chem. 28, 183–190.  CrossRef CAS Google Scholar
First citationKolb, M. & Bahadir, M. (1994). J. Chromatogr. A, 685, 189–194.  CrossRef CAS Google Scholar
First citationKozhomuratova, Z. S., Mironov, Y. V., Shestopalov, M. A., Gaifulin, Y. M., Kurat'eva, N. V., Uskov, E. M. & Fedorov, V. E. (2007). Russ. J. Coord. Chem. 33, 1–6.  CrossRef CAS Google Scholar
First citationLiu, X., Cai, L.-Z., Guo, C.-C., Li, Q. & Huang, J.-S. (2006). Jiegou Huaxue, 25, 90–94.  Google Scholar
First citationLoehlin, J. H. & Okasako, E. L. N. (2007). Acta Cryst. B63, 132–141.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMaverick, A. W., Najdzionek, J. S., MacKenzie, D., Nocera, D. G. & Gray, H. B. (1983). J. Am. Chem. Soc. 105, 1878–1882.  CrossRef CAS Web of Science Google Scholar
First citationMikhailov, M. A., Brylev, K. A., Abramov, P. A., Sakuda, E., Akagi, S., Ito, A., Kitamura, N. & Sokolov, M. N. (2016). Inorg. Chem. 55, 8437–8445.  CSD CrossRef CAS PubMed Google Scholar
First citationMrad, M. L., Nasr, C. B. & Rzaigui, M. (2006a). Mater. Res. Bull. 41, 1287–1294.  CSD CrossRef CAS Google Scholar
First citationMrad, M. L., Nasr, C. B., Rzaigui, M. & Lefebvre, F. (2006b). Phosphorus Sulfur Silicon, 181, 1625–1635.  CSD CrossRef CAS Google Scholar
First citationPalmer, D. C. (2019). CrystalMaker. CrystalMaker Software Ltd, Begbroke, Oxfordshire, England.  Google Scholar
First citationPerruchas, S., Simon, F., Uriel, S., Avarvari, N., Boubekeur, K. & Batail, P. (2002). J. Organomet. Chem. 643–644, 301–306.  CSD CrossRef CAS Google Scholar
First citationPop, L., Hadade, N. D., van der Lee, A., Barboiu, M., Grosu, I. & Legrand, Y.-M. (2016). Cryst. Growth Des. 16, 3271–3278.  Web of Science CSD CrossRef CAS Google Scholar
First citationSaito, N., Lemoine, P., Dumait, N., Amela-Cortes, M., Paofai, S., Roisnel, T., Nassif, V., Grasset, F., Wada, Y., Ohashi, N. & Cordier, S. (2017). J. Cluster Sci. 28, 773–798.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShestimerova, T. A., Golubev, N. A., Mironov, A. V., Bykov, M. A. & Shevelkov, A. V. (2018). Russ. Chem. Bull. 67, 1212–1219.  CSD CrossRef CAS Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationWard, M. D. (2009). Molecular Networks, Vol. 132, edited by M. W. Hosseini, pp. 1–23. Berlin, Heidelberg: Springer.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYarovoi, S. S., Mironov, Yu. V., Solodovnikov, S. F., Solodovnikova, Z. A., Naumov, D. Yu. & Fedorov, V. E. (2006). Russ. J. Coord. Chem. 32, 712–722.  CrossRef CAS Google Scholar
First citationZick, P. L. & Geiger, D. K. (2018). Acta Cryst. C74, 1725–1731.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds