research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Different packing motifs mediated by weak inter­actions and polymorphism in the crystal structures of five 2-(benzyl­­idene)benzosuberone derivatives

aDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland, bFundação Oswaldo Cruz, Instituto de Tecnologia em Fármacos Manguinhos, 21041-250 Rio de Janeiro, RJ, Brazil, and cCHEMSOL, 1 Harcourt Road, Aberdeen AB15 5NY, Scotland
*Correspondence e-mail: w.harrison@abdn.ac.uk

Edited by E. V. Boldyreva, Russian Academy of Sciences, Russia (Received 7 August 2019; accepted 18 October 2019; online 29 October 2019)

The syntheses and crystal structures of five 2-benzyl­idene-1-benzosuberone [1-benzosuberone is 6,7,8,9-tetra­hydro-5H-benzo[7]annulen-5-one] derivatives, viz. 2-(4-meth­oxy­benzyl­idene)-1-benzosuberone, C19H18O2, (I), 2-(4-eth­oxy­benzyl­idene)-1-benzosuberone, C20H20O2, (II), 2-(4-benzyl­benzyl­idene)-1-benzosuberone, C25H22O2, (III), 2-(4-chloro­benzyl­idene)-1-benzosuberone, C18H15ClO, (IV) and 2-(4-cyano­benzyl­idene)-1-benzosuberone, C19H15NO, (V), are described. The conformations of the benzosuberone fused six- plus seven-membered ring fragments are very similar in each case, but the dihedral angles between the fused benzene ring and the pendant benzene ring differ somewhat, with values of 23.79 (3) for (I), 24.60 (4) for (II), 33.72 (4) for (III), 29.93 (8) for (IV) and 21.81 (7)° for (V). Key features of the packing include pairwise C—H⋯O hydrogen bonds for (II) and (IV), and pairwise C—H⋯N hydrogen bonds for (V), which generate inversion dimers in each case. The packing for (I) and (III) feature C—H⋯O hydrogen bonds, which lead to [010] and [100] chains, respectively. Weak C—H⋯π inter­actions consolidate the structures and weak aromatic ππ stacking is seen in (II) [centroid–centroid separation = 3.8414 (7) Å] and (III) [3.9475 (7) Å]. A polymorph of (I) crystallized from a different solvent has been reported previously [Dimmock et al. (1999[Dimmock, J. R., Kandepu, N. M., Nazarali, A. J., Kowalchuk, T. P., Motaganahalli, N., Quail, J. W., Mykytiuk, P., Audette, G. F., Prasad, L., Perjési, P., Allen, T. M., Santos, C. L., Szydlowski, J., De Clercq, E. & Balzarini, J. (1999). J. Med. Chem. 42, 1358-1366.]) J. Med. Chem. 42, 1358–1366] in the same space group but with a packing motif based on inversion dimers resembling that seen in (IV) in the present study. The Hirshfeld surfaces and fingerprint plots for (I) and its polymorph are com­pared and structural features of the 2-benzyl­idene-1-benzosuberone family of phases are surveyed.

1. Chemical context

The structurally related 2-benzyl­idenebenzo­cycloalkanone com­pounds, viz. (E)-2-benzyl­idene-2,3-di­hydro-1H-inden-1-one (n = 1), (E)-2-benzyl­idene-1-tetra­lone (n = 2) and (E)-2-benzyl­idene-1-benzosuberone (n = 3), which differ with respect to the number of methyl­ene groups, n, in the alkanone ring fused to the benzene ring (see Scheme 1[link]) have attracted attention in a number of areas. Their biological activities include anti­tumour (e.g. Gautam et al., 2016[Gautam, Y., Dwivedi, S., Srivastava, A., Hamidullah, H., Singh, A., Chanda, D., Singh, J., Rai, S., Konwar, R. & Negi, A. S. (2016). RSC Adv. 6, 33369-33379.]: Dimmock et al., 1999[Dimmock, J. R., Kandepu, N. M., Nazarali, A. J., Kowalchuk, T. P., Motaganahalli, N., Quail, J. W., Mykytiuk, P., Audette, G. F., Prasad, L., Perjési, P., Allen, T. M., Santos, C. L., Szydlowski, J., De Clercq, E. & Balzarini, J. (1999). J. Med. Chem. 42, 1358-1366.], 2002[Dimmock, J. R., Zello, G. A., Oloo, E. O., Quail, J. W., Kraatz, H.-B., Perjési, P., Aradi, F., Takács-Novák, K., Allen, T. M., Santos, C. L., Balzarini, J., De Clercq, E. & Stables, J. P. (2002). J. Med. Chem. 45, 3103-3111.]), anti­mycotic (Al-Nakib et al., 1997[Al-Nakib, T. M., Perjesi, P., Varghese, R. & Meegan, M. J. (1997). Med. Princ. Pract. 6, 14-21.]) and anti­fungal (Gupta & Jain, 2015[Gupta, D. & Jain, D. K. (2015). J. Adv. Pharm. Technol. Res. 6, 114-117.]) properties. Their physical properties include nonlinear optical (Watson et al., 1993[Watson, G. J. R., Turner, A. B. & Allen, S. (1993). Organic Materials for Non-linear Optics III, edited by G. J. Ashwell & D. Bloor. RSC Special Publication No. 137, pp. 112-117. Cambridge: Royal Society of Chemistry.]) and UV hypsochromic shifts and fluorescence effects (Fodor et al., 2011[Fodor, K., Tomescova, V., Kőszegi, T., Kron, I. & Perjési, P. (2011). Monatsh. Chem. 142, 463-468.]). It may be noted that these com­pounds can be considered as fused-ring analogues of chalcones (i.e. the `n = 0' family), which might allow for `tuneable' conformational control of the mol­ecule by changing the number of methyl­ene groups in the cyclo­alkanone ring (Dimmock et al., 1999[Dimmock, J. R., Kandepu, N. M., Nazarali, A. J., Kowalchuk, T. P., Motaganahalli, N., Quail, J. W., Mykytiuk, P., Audette, G. F., Prasad, L., Perjési, P., Allen, T. M., Santos, C. L., Szydlowski, J., De Clercq, E. & Balzarini, J. (1999). J. Med. Chem. 42, 1358-1366.]).

In continuation of our earlier reports of the crystal structures and Hirshfeld surface analyses of a number of (E)-2-benzyl­idene-2,3-di­hydro-1H-inden-1-one derivatives (Baddeley et al., 2017a[Baddeley, T. C., Gomes, L. R., Low, J. N., Turner, A. B., Wardell, J. L. & Watson, G. J. R. (2017a). Z. Kristallogr. 232, 317-334.]) and (E)-2-benzyl­idene-1-tetra­lone (Baddeley et al., 2017b[Baddeley, T. C., Gomes, L. R., Low, J. N., Turner, A. B., Wardell, J. L. & Watson, G. J. R. (2017b). Z. Kristallogr 232, 697-718.]), we now describe the syntheses and crystal structures of 2-(4-meth­oxy­benzyl­idene)-1-benzosuberone, (I)[link], 2-(4-eth­oxy­benzyl­idene)-1-benzosuberone, (II)[link], 2-(4-benzyl­benzyl­idene)-1-benzosuberone, (III)[link], 2-(4-chloro­benzyl­idene)-1-benzo­suberone, (IV)[link], and 2-(4-cyano­benzyl­idene)-1-benzosuberone, (V)[link] (see Scheme 2[link]).

[Scheme 1]
[Scheme 2]

2. Structural commentary

The mol­ecular structures of (I)–(V) are shown in Figs. 1–5[link][link][link][link][link], respectively. Each mol­ecule is the expected product arising from the base-catalysed condensation reaction between 1-benzosuberone and the appropriate 4-substituted benzaldehyde derivative (see Experimental section). The conformations of the benzosuberone fragments in (I)–(V) are almost identical, as shown by the overlay plot generated with QMOL (Gans & Shalloway, 2001[Gans, J. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557-9, 609.]) shown in Fig. 6[link]. The seven-membered ring, which is conformationally constrained by being fused to the C6–C11 benzene ring and by the presence of the sp2-hybridized atoms C1 and C2, at least approximates to a boat conformation; in the case of (I)[link], atoms C3/C4/C6/C11 are roughly coplanar (r.m.s. deviation = 0.095 Å), with C5 as the prow [deviation = 0.6139 (15) Å] and C1 and C2 as the stern [deviations = 1.0114 (16) and 1.0154 (16) Å, respectively]. This conformation results in a substantial degree of twist about the C11—C1 bond [C10—C11—C1=O1 = 36.06 (14)°] and O1 deviates from the C6–C11 benzene-ring plane by 0.7212 (17) Å. The corresponding data for the seven-membered rings in (II)–(V) are very similar to those for (I)[link] and are not stated here.

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], showing 50% probability displacement ellipsoids.
[Figure 2]
Figure 2
The mol­ecular structure of (II)[link], showing 50% probability displacement ellipsoids.
[Figure 3]
Figure 3
The mol­ecular structure of (III)[link], showing 50% probability displacement ellipsoids.
[Figure 4]
Figure 4
The mol­ecular structure of (IV)[link], showing 50% probability displacement ellipsoids.
[Figure 5]
Figure 5
The mol­ecular structure of (V)[link], showing 50% probability displacement ellipsoids.
[Figure 6]
Figure 6
Overlay plot for (I)–(V), with (I)[link] red, (II)[link] blue, (III)[link] orange, (IV)[link] purple and (V)[link] green.

The dihedral angles between the C6–C11 fused benzene ring and the C13–C18 pendant benzene ring are clustered in a ∼12° range, with values of 23.79 (3) for (I)[link], 24.60 (4) for (II)[link], 33.72 (4) for (III)[link], 29.93 (8) for (IV)[link] and 21.81 (7)° for (V)[link]. A com­parison of the C1—C2—C12—C13 and C2—C12—C13—C14 torsion angles for (I)[link] [−179.67 (10) and −33.81 (17)°, respectively] indicates that the twisting largely occurs about the C12—C13 bond, and the same conclusion can be drawn for (II)–(V).

For (I)[link], the C19 atom of the meth­oxy group is close to coplanar with its attached benzene ring [deviation = 0.1079 (19) Å] and for (II)[link] the eth­oxy group has an extended conformation [C16—O2—C19—C20 = 178.58 (10)°]. For (III)[link], an additional dihedral angle between the C13–C18 benzene ring and the terminal C20–C25 benzene ring of 78.78 (3)° is observed. Otherwise, the geometrical data for (I)–(V) are unexceptional and similar to those for related com­pounds (Dimmock et al., 1999[Dimmock, J. R., Kandepu, N. M., Nazarali, A. J., Kowalchuk, T. P., Motaganahalli, N., Quail, J. W., Mykytiuk, P., Audette, G. F., Prasad, L., Perjési, P., Allen, T. M., Santos, C. L., Szydlowski, J., De Clercq, E. & Balzarini, J. (1999). J. Med. Chem. 42, 1358-1366.], 2002[Dimmock, J. R., Zello, G. A., Oloo, E. O., Quail, J. W., Kraatz, H.-B., Perjési, P., Aradi, F., Takács-Novák, K., Allen, T. M., Santos, C. L., Balzarini, J., De Clercq, E. & Stables, J. P. (2002). J. Med. Chem. 45, 3103-3111.]).

It may be noted that a polymorph of (I)[link] [Cambridge Structural Database (CSD; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) refcode VENQUA; Dimmock et al., 1999[Dimmock, J. R., Kandepu, N. M., Nazarali, A. J., Kowalchuk, T. P., Motaganahalli, N., Quail, J. W., Mykytiuk, P., Audette, G. F., Prasad, L., Perjési, P., Allen, T. M., Santos, C. L., Szydlowski, J., De Clercq, E. & Balzarini, J. (1999). J. Med. Chem. 42, 1358-1366.]] has been reported in the same space group, i.e. P21/c; VENQUA was recrystallized from methanol solution rather than ethanol for (I)[link]. The bond lengths and angles in (I)[link] and VENQUA are very similar, although there is a ∼10° difference in the dihedral angle between the benzene rings [value for VENQUA = 35.88 (11)°, calculated with PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.])]; for an overlay plot of (I)[link] and VENQUA, see the supporting information.

3. Supra­molecular features

There are obviously no classical hydrogen bonds in these structures and, in each case, just one C—H group can be identified as the donor for a weak hydrogen bond with atom O1 as the acceptor in (I)–(IV) and atom N1 in (V)[link]; geometrical data for these inter­actions are listed in Tables 1[link]–5[link][link][link][link] and illustrated in Figs. 7[link]–11[link][link][link][link]. All the structures also feature weak C—H⋯π inter­actions with either the fused or pendant benzene rings as acceptors, but (II)[link] and (III)[link] are the only structures to display weak aromatic ππ stacking, in both cases between inversion-related C13–C18 rings. For (II)[link], the centroid–centroid separation is 3.8414 (7) Å and the slippage is 1.72 Å; equivalent data for (III)[link] are 3.9475 (7) and 1.89 Å, respectively.

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

Cg1 and Cg2 are the centroids of the C6–C11 and C13–C18 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15⋯O1i 0.95 2.35 3.2971 (14) 176
C19—H19ACg1ii 0.98 2.76 3.6165 (13) 146
C19—H19CCg2iii 0.98 2.74 3.6029 (13) 147
Symmetry codes: (i) x, y-1, z; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) -x+1, -y, -z+1.

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

Cg1 and Cg2 are the centroids of the C6–C11 and C13–C18 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18⋯O1i 0.95 2.36 3.2653 (14) 159
C4—H4BCg1ii 0.98 2.72 3.6429 (13) 155
C19—H19ACg2ii 0.98 2.71 3.5969 (13) 149
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Table 3
Hydrogen-bond geometry (Å, °) for (III)[link]

Cg3 is the centroid of the C20–C25 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15⋯O1i 0.95 2.40 3.3477 (13) 176
C18—H18⋯Cg3ii 0.95 2.64 3.5147 (13) 153
Symmetry codes: (i) x+1, y, z; (ii) x-1, y, z.

Table 4
Hydrogen-bond geometry (Å, °) for (IV)[link]

Cg1 is the centroid of the C6–C11 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯O1i 0.95 2.50 3.319 (2) 145
C3—H3ACg1ii 0.99 2.83 3.572 (2) 132
Symmetry codes: (i) -x, -y+1, -z+1; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Table 5
Hydrogen-bond geometry (Å, °) for (V)[link]

Cg1 is the centroid of the C6–C11 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17⋯N1i 0.95 2.54 3.438 (2) 157
C3—H3ACg1ii 0.99 2.84 3.6730 (16) 142
C8—H8⋯Cg1iii 0.95 2.88 3.7868 (17) 161
Symmetry codes: (i) -x, -y-1, -z+1; (ii) x, y-1, z; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 7]
Figure 7
Fragment of the crystal structure of (I)[link], showing part of a [010] chain linked by C15—H15⋯O1 hydrogen bonds. [Symmetry codes: (i) x, y − 1, z; (ii) x, y + 1, z.]
[Figure 8]
Figure 8
Fragment of the crystal structure of (II)[link], showing inversion dimers linked by pairs of C18—H18⋯O1 hydrogen bonds. [Symmetry code: (i) −x + 1, −y + 1, −z + 1.]
[Figure 9]
Figure 9
Fragment of the crystal structure of (III)[link], showing part of a [100] chain linked by C15—H15⋯O1 hydrogen bonds. [Symmetry codes: (i) x + 1, y, z; (ii) x − 1, y, z.]
[Figure 10]
Figure 10
Fragment of the crystal structure of (IV)[link], showing inversion dimers linked by pairs of C10—H10⋯O1 hydrogen bonds. [Symmetry code: (i) −x, −y + 1, −z + 1.]
[Figure 11]
Figure 11
Fragment of the crystal structure of (V)[link], showing inversion dimers linked by pairs of C17—H17⋯N1 hydrogen bonds. [Symmetry code: −x, −y + 1, −z + 1.]

The packing motifs for the extended structures of (I)[link] and (III)[link] are infinite C—H⋯O hydrogen-bonded chains, which propagate in the [010] and [100] directions, respectively. In each case, adjacent mol­ecules are related only by unit-cell translational symmetry and a C(8) graph-set motif results for both structures with the methyne group (C15—H15, ortho to the 4-substituent) involved as the donor.

The packing motifs for (II)[link] and (IV)[link] feature inversion dimers. In (II)[link], C18—H18 (meta to the 4-substituent) is the donor group and R22(14) loops arise. In this motif, C12—H12 is `sandwiched' between the donor and acceptor and the H12⋯O1 separation of 2.60 Å (see Fig. 8[link]) is borderline to be regarded as a directional bond. The donor group in (IV)[link] is C10—H10 in the fused benzene ring, which generates an R22(10) loop. The only possible inter­action involving the Cl atom is a long contact from C8—H8, with H⋯Cl = 2.93 Å. The presence of the cyano group in (V)[link] allows for the formation of pairwise C—H⋯N hydrogen bonds and an R22(10) graph-set motif arises; the shortest H⋯O contact in (V)[link] is 2.72 Å.

Rather than the C(8) chains arising from C15—H15⋯O1 hydrogen bonds seen in (I)[link], the packing for VENQUA (see above) features inversion dimers built from pairwise C10—H10⋯O1 inter­actions, which are very similar to those seen in 4-chloro derivative (IV)[link] in the present study. It may be noted that the density of VENQUA (ρ = 1.368 Mg m−3) is significantly greater than that of (I)[link] (ρ = 1.284 Mg m−3), suggesting that the former might be the more stable polymorph if the `rational packing rule' (Kitaigorodskii, 1961[Kitaigorodskii, A. I. (1961). In Organic Chemical Crystallography. New York: Consultants Bureau.]) is applicable in this case.

In order to gain further insight into these different packing motifs, the Hirshfeld surfaces and fingerprint plots for (I)[link] and VENQUA were calculated using CrystalExplorer (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. http://hirshfeldsurface.net.]), following the approach recently described by Tan et al. (2019[Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308-318.]). The Hirshfeld surface for (I)[link] (see supporting information) shows the expected large red spots (close contacts) in the vicinity of H15 and O1 corresponding to the C15—H15⋯O1 inter­action noted above, but there is little if any evidence of close contacts in the vicinity of H19A and H19C corresponding to the C—H⋯π contacts listed in Table 1[link]. The surface for VENQUA (see supporting information) shows red spots in the vicinity of H10 and O1 corresponding to the C10—H10⋯O1 hydrogen bond and H2A (our numbering scheme) corresponding to a C3—H2Aπ inter­action (H⋯π = 2.69 Å) to the centroid of the C6–C11 benzene ring, but there are also probably spurious features close to H8 and H17 corresponding to a short H⋯H contact of 2.07 Å between these atoms, which possibly arose because the H atoms of the C19 methyl group in VENQUA were geometrically placed and not treated using a rotating-group model. Notwithstanding this, the fingerprint plots for (I)[link] and VENQUA (see supporting information) decom­posed into the different percentage contact types (Table 6[link]) are almost identical; H⋯H (van der Waals) contacts dominate both structures, followed by C⋯H/H⋯C and then O⋯H/H⋯O. The percentage contributions of the other contact types are negligible.

Table 6
Fingerprint contact percentages for (I)[link] and VENQUA

Contact type (I) VENQUA
H⋯H 54.8 55.3
C⋯H/H⋯C 28.1 29.2
O—H/H⋯O 15.3 14.5
C⋯C 1.1 0.0
C⋯O/O⋯C 0.8 0.8
O⋯O 0.0 0.2

4. Database survey

A survey of the Cambridge Structural Database (CSD; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed 167 structures incorporating a 1-benzosuberone fragment but only 20 hits when an exocyclic C=C double bond at the 2-position was added to the search structure. The key papers reporting the structures of closely related, differently substituted, 2-benzyl­idene-1-benzosuberones are Dimmock et al. (1999[Dimmock, J. R., Kandepu, N. M., Nazarali, A. J., Kowalchuk, T. P., Motaganahalli, N., Quail, J. W., Mykytiuk, P., Audette, G. F., Prasad, L., Perjési, P., Allen, T. M., Santos, C. L., Szydlowski, J., De Clercq, E. & Balzarini, J. (1999). J. Med. Chem. 42, 1358-1366.], 2002[Dimmock, J. R., Zello, G. A., Oloo, E. O., Quail, J. W., Kraatz, H.-B., Perjési, P., Aradi, F., Takács-Novák, K., Allen, T. M., Santos, C. L., Balzarini, J., De Clercq, E. & Stables, J. P. (2002). J. Med. Chem. 45, 3103-3111.]). The hydrogen-bond data for (I)–(V) and the 12 structures reported in the two papers by Dimmock et al. are summarized in Table 7[link]. The most frequently observed motif is the centrosymmetric R22(10) loop involving C10—H10 as the donor group, but there are many others involving different C—H groups as donor and we see no obvious connection to the nature and position of the substituent(s) on the remote benzene ring. There are no structures in which the fused and pendant benzene rings tend towards being perpendicular (dihedral angle > 60°).

Table 7
Summary of the C—H⋯O and C—H⋯N hydrogen bonds and packing motifs for 2-(benzyl­idene)benzosuberone derivatives

Code/refcode Substituent(s) Space group φ Donor atom(s) Packing motif
(I) 4-OMe P21/c 23.79 (3) C15 C(8) chain
(II) 4-OEt P21/c 24.60 (4) C18 R22(14) loop
(III) 4-OBz P[\overline{1}] 33.72 (4) C15 C(8) chain
(IV) 4-Cl P21/n 29.93 (8) C10 R22(10) loop
(V) 4-CN P21/c 21.81 (7) C17 R22(10) loop
VENQOU 4-Me P21/n 29.72 (11) C10 R22(10) loop
VENQUA 4-OMe P21/n 35.88 (11) C10 R22(10) loop
VENSIQ 4-NMe2 P21/n 29.43 (11) C10 R22(10) loop
XUGXOM 2-NO2 P21/a 27.56 (6) C17 C(5) chain
VENREL 3-NO2 P[\overline{1}] 18.54 (9) C7,C14,C16 double chain
VENRIP 4-NO2 P[\overline{1}] 45.32 (9) C9,C15 sheet
XUGYED 2-Cl P21/c 28.40 (19) C14 C(7) chain
XUGXUS 3,4-Cl P21/c 39.01 (16) C15 C(8) chain
XUGYAZ 2,4-Cl P21/c 30.54 (12) C14 C(7) chain
XUGYUT 2-OMe P21 25.82 (17) None
XUGYON 3,4-OMe P[\overline{1}] 23.48 (9) C8,C15 sheet
XUGYIH 3,4,5-OMe P21/n 35.08 (10) C7 C(6) chain
Notes: packing analyses were carried out using PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); φ is the dihedral angle between the C6–C11 and C13–C18 benzene rings; for the `VEN' refcode family, see Dimmock et al. (1999[Dimmock, J. R., Kandepu, N. M., Nazarali, A. J., Kowalchuk, T. P., Motaganahalli, N., Quail, J. W., Mykytiuk, P., Audette, G. F., Prasad, L., Perjési, P., Allen, T. M., Santos, C. L., Szydlowski, J., De Clercq, E. & Balzarini, J. (1999). J. Med. Chem. 42, 1358-1366.]); for the `XUG' family, see Dimmock et al. (2002[Dimmock, J. R., Zello, G. A., Oloo, E. O., Quail, J. W., Kraatz, H.-B., Perjési, P., Aradi, F., Takács-Novák, K., Allen, T. M., Santos, C. L., Balzarini, J., De Clercq, E. & Stables, J. P. (2002). J. Med. Chem. 45, 3103-3111.]); the donor atom labels correspond to our atom numbering scheme.

The fact that (I)[link] and VENQUA have similar conformations but distinct packing motifs mediated by different C—H⋯O inter­actions to the same acceptor O atom may be com­pared with the fascinating recent survey of weak-inter­action polymorphs by Lo Presti (2018[Lo Presti, L. (2018). CrystEngComm, 20, 5976-5989.]). He concluded that weak hydrogen bonds and solvent effects may play an important kinetic role in promoting polymorph formation (after all, something has to favour a situation where the lowest-energy packing motif is not adopted) but they do not play a dominant energetic role in polymorph formation and that the overall energy balance between dispersive (attractive) and repulsive inter­actions is the most important consideration.

5. Synthesis and crystallization

Compounds (I)–(V) were obtained from the reaction of 1-benzosuberone (1 mmol) with the appropriate 4-substituted benzaldehyde (1 mmol) in ethanol (5 ml) treated with an ethano­lic solution of sodium hydroxide (30 mg in 5 ml ethanol). After stirring for 3–4 h at room temperature, each reaction mixture was cooled to 0 °C and the precipitated solid was recovered by filtration and rinsing with ice-cold ethanol. Recrystallization from ethanol solution at room temperature yielded colourless blocks [(I), (III)[link] and (V)] and plates [(II) and (IV)]. Spectroscopic data for (I)–(V) are available as supporting information.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 8[link]. All H atoms were located geometrically (C—H = 0.95–0.99 Å) and refined as riding atoms, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). The methyl groups in (I)[link] and (II)[link] were allowed to rotate, but not to tip, to best fit the electron density.

Table 8
Experimental details

  (I) (II) (III)
Crystal data
Chemical formula C19H18O2 C20H20O2 C25H22O2
Mr 278.33 292.36 354.42
Crystal system, space group Monoclinic, P21/c Monoclinic, P21/c Triclinic, P[\overline{1}]
Temperature (K) 100 100 100
a, b, c (Å) 10.9171 (3), 9.1262 (2), 15.2539 (3) 12.6208 (2), 14.99690 (17), 8.39151 (12) 9.2870 (2), 9.8727 (2), 12.2944 (3)
α, β, γ (°) 90, 108.618 (3), 90 90, 108.6814 (17), 90 67.098 (3), 81.472 (2), 61.989 (3)
V3) 1440.24 (6) 1504.60 (4) 915.92 (5)
Z 4 4 2
Radiation type Mo Kα Cu Kα Cu Kα
μ (mm−1) 0.08 0.64 0.63
Crystal size (mm) 0.20 × 0.15 × 0.05 0.20 × 0.11 × 0.03 0.17 × 0.11 × 0.04
 
Data collection
Diffractometer XtaLAB AFC12 (RCD3): Kappa single CCD XtaLAB AFC11 (RCD3): quarter-chi single CCD XtaLAB AFC11 (RCD3): quarter-chi single CCD
Absorption correction Multi-scan (CrysAlis PRO; Rigaku, 2017[Rigaku (2017). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.]) Gaussian (CrysAlis PRO; Rigaku, 2017[Rigaku (2017). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.]) Gaussian (CrysAlis PRO; Rigaku, 2017[Rigaku (2017). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.877, 1.000 0.772, 1.000 0.781, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 16988, 3296, 2843 9197, 2704, 2486 29818, 3336, 3073
Rint 0.033 0.024 0.036
(sin θ/λ)max−1) 0.649 0.602 0.602
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.093, 1.03 0.034, 0.092, 1.04 0.032, 0.080, 1.07
No. of reflections 3296 2704 3336
No. of parameters 191 201 245
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.25, −0.18 0.25, −0.20 0.19, −0.16
  (IV) (V)
Crystal data
Chemical formula C18H15ClO C19H15NO
Mr 282.75 273.32
Crystal system, space group Monoclinic, P21/n Monoclinic, P21/c
Temperature (K) 100 100
a, b, c (Å) 10.6273 (5), 11.6191 (4), 12.1114 (5) 12.4725 (4), 7.1718 (2), 15.9983 (5)
α, β, γ (°) 90, 108.777 (4), 90 90, 106.120 (3), 90
V3) 1415.92 (11) 1374.79 (8)
Z 4 4
Radiation type Cu Kα Cu Kα
μ (mm−1) 2.31 0.64
Crystal size (mm) 0.28 × 0.20 × 0.03 0.17 × 0.10 × 0.03
 
Data collection
Diffractometer XtaLAB AFC11 (RCD3): quarter-chi single CCD XtaLAB AFC11 (RCD3): quarter-chi single CCD
Absorption correction Multi-scan (CrysAlis PRO; Rigaku, 2017[Rigaku (2017). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.]) Gaussian (CrysAlis PRO; Rigaku, 2017[Rigaku (2017). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.722, 1.000 0.895, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 11747, 2568, 2203 9732, 2511, 2302
Rint 0.073 0.059
(sin θ/λ)max−1) 0.602 0.602
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.165, 1.11 0.068, 0.181, 1.06
No. of reflections 2568 2511
No. of parameters 181 190
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.32, −0.41 0.49, −0.32
Computer programs: CrysAlis PRO (Rigaku, 2017[Rigaku (2017). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For all structures, data collection: CrysAlis PRO (Rigaku, 2017); cell refinement: CrysAlis PRO (Rigaku, 2017); data reduction: CrysAlis PRO (Rigaku, 2017); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).

6-(4-Methoxybenzylidene)-6,7,8,9-tetrahydro-5H-benzo[7]annulen-5-one (I) top
Crystal data top
C19H18O2F(000) = 592
Mr = 278.33Dx = 1.284 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.9171 (3) ÅCell parameters from 6994 reflections
b = 9.1262 (2) Åθ = 3.6–30.6°
c = 15.2539 (3) ŵ = 0.08 mm1
β = 108.618 (3)°T = 100 K
V = 1440.24 (6) Å3Block, colourless
Z = 40.20 × 0.15 × 0.05 mm
Data collection top
XtaLAB AFC12 (RCD3): Kappa single CCD
diffractometer
3296 independent reflections
Radiation source: Rotating-anode X-ray tube2843 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.033
ω scansθmax = 27.5°, θmin = 2.6°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku, 2017)
h = 1314
Tmin = 0.877, Tmax = 1.000k = 1111
16988 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.093 w = 1/[σ2(Fo2) + (0.0435P)2 + 0.435P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3296 reflectionsΔρmax = 0.25 e Å3
191 parametersΔρmin = 0.18 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.21223 (10)0.67551 (12)0.33073 (7)0.0185 (2)
C20.25289 (10)0.51984 (12)0.35285 (7)0.0176 (2)
C30.26700 (10)0.42493 (12)0.27568 (7)0.0192 (2)
H3A0.32010.33840.30320.023*
H3B0.31460.48090.24130.023*
C40.13905 (11)0.37140 (12)0.20672 (7)0.0235 (2)
H4A0.15430.33920.14910.028*
H4B0.10770.28580.23330.028*
C50.03505 (11)0.49088 (12)0.18348 (8)0.0228 (2)
H5A0.03810.45860.12960.027*
H5B0.00220.50240.23650.027*
C60.08193 (10)0.63762 (12)0.16175 (7)0.0187 (2)
C70.03877 (11)0.69424 (13)0.07205 (7)0.0220 (2)
H70.01700.63690.02370.026*
C80.07549 (11)0.83208 (13)0.05212 (8)0.0237 (2)
H80.04610.86770.00960.028*
C90.15527 (11)0.91857 (13)0.12212 (8)0.0227 (2)
H90.17951.01390.10870.027*
C100.19928 (10)0.86472 (12)0.21178 (7)0.0199 (2)
H100.25340.92370.26000.024*
C110.16467 (10)0.72442 (12)0.23167 (7)0.0178 (2)
C120.28541 (10)0.48266 (12)0.44276 (7)0.0184 (2)
H120.27850.55980.48280.022*
C130.32958 (10)0.34296 (12)0.48884 (7)0.0179 (2)
C140.28868 (10)0.20616 (12)0.44938 (7)0.0186 (2)
H140.23000.20160.38810.022*
C150.33124 (10)0.07653 (12)0.49704 (7)0.0192 (2)
H150.30140.01520.46890.023*
C160.41828 (10)0.08253 (12)0.58673 (7)0.0182 (2)
C170.45955 (10)0.21776 (12)0.62786 (7)0.0205 (2)
H170.51890.22200.68890.025*
C180.41448 (11)0.34552 (12)0.58016 (7)0.0204 (2)
H180.44140.43710.60960.024*
C190.41639 (11)0.17646 (12)0.60092 (8)0.0220 (2)
H19A0.32240.17770.58740.033*
H19B0.45550.25440.64520.033*
H19C0.43700.19240.54360.033*
O10.21902 (8)0.76586 (9)0.39153 (5)0.0253 (2)
O20.46646 (7)0.03768 (8)0.63967 (5)0.02142 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0175 (5)0.0198 (5)0.0189 (5)0.0002 (4)0.0067 (4)0.0003 (4)
C20.0171 (5)0.0181 (5)0.0178 (5)0.0003 (4)0.0058 (4)0.0001 (4)
C30.0236 (6)0.0186 (5)0.0166 (5)0.0020 (4)0.0081 (4)0.0007 (4)
C40.0305 (6)0.0199 (6)0.0183 (5)0.0024 (5)0.0054 (5)0.0002 (4)
C50.0215 (6)0.0247 (6)0.0204 (5)0.0040 (4)0.0041 (4)0.0002 (4)
C60.0165 (5)0.0211 (5)0.0192 (5)0.0020 (4)0.0065 (4)0.0011 (4)
C70.0195 (5)0.0265 (6)0.0186 (5)0.0036 (4)0.0041 (4)0.0004 (4)
C80.0246 (6)0.0283 (6)0.0192 (5)0.0083 (5)0.0083 (4)0.0070 (4)
C90.0250 (6)0.0203 (6)0.0260 (6)0.0048 (4)0.0127 (5)0.0057 (4)
C100.0196 (5)0.0194 (5)0.0220 (5)0.0027 (4)0.0086 (4)0.0001 (4)
C110.0174 (5)0.0192 (5)0.0182 (5)0.0032 (4)0.0076 (4)0.0015 (4)
C120.0187 (5)0.0193 (5)0.0181 (5)0.0003 (4)0.0070 (4)0.0014 (4)
C130.0177 (5)0.0213 (5)0.0159 (5)0.0009 (4)0.0071 (4)0.0008 (4)
C140.0178 (5)0.0233 (6)0.0142 (5)0.0003 (4)0.0042 (4)0.0008 (4)
C150.0200 (5)0.0204 (5)0.0175 (5)0.0015 (4)0.0065 (4)0.0002 (4)
C160.0179 (5)0.0218 (5)0.0163 (5)0.0027 (4)0.0076 (4)0.0037 (4)
C170.0193 (5)0.0271 (6)0.0140 (5)0.0004 (4)0.0037 (4)0.0003 (4)
C180.0222 (5)0.0218 (5)0.0176 (5)0.0011 (4)0.0071 (4)0.0024 (4)
C190.0241 (6)0.0199 (5)0.0226 (5)0.0015 (4)0.0081 (4)0.0041 (4)
O10.0349 (5)0.0208 (4)0.0187 (4)0.0036 (3)0.0066 (3)0.0019 (3)
O20.0239 (4)0.0209 (4)0.0177 (4)0.0025 (3)0.0043 (3)0.0037 (3)
Geometric parameters (Å, º) top
C1—O11.2254 (13)C9—H90.9500
C1—C21.4945 (15)C10—C111.3955 (15)
C1—C111.5003 (14)C10—H100.9500
C2—C121.3458 (15)C12—C131.4614 (15)
C2—C31.5085 (14)C12—H120.9500
C3—C41.5356 (15)C13—C141.3959 (15)
C3—H3A0.9900C13—C181.4056 (15)
C3—H3B0.9900C14—C151.3887 (15)
C4—C51.5319 (16)C14—H140.9500
C4—H4A0.9900C15—C161.3956 (15)
C4—H4B0.9900C15—H150.9500
C5—C61.5078 (15)C16—O21.3642 (12)
C5—H5A0.9900C16—C171.3926 (15)
C5—H5B0.9900C17—C181.3793 (15)
C6—C71.3962 (15)C17—H170.9500
C6—C111.4021 (15)C18—H180.9500
C7—C81.3832 (16)C19—O21.4304 (13)
C7—H70.9500C19—H19A0.9800
C8—C91.3885 (17)C19—H19B0.9800
C8—H80.9500C19—H19C0.9800
C9—C101.3869 (15)
O1—C1—C2121.79 (10)C8—C9—H9120.3
O1—C1—C11118.68 (10)C9—C10—C11120.47 (11)
C2—C1—C11119.51 (9)C9—C10—H10119.8
C12—C2—C1115.63 (9)C11—C10—H10119.8
C12—C2—C3126.23 (10)C10—C11—C6120.42 (10)
C1—C2—C3117.81 (9)C10—C11—C1117.47 (10)
C2—C3—C4114.83 (9)C6—C11—C1121.99 (9)
C2—C3—H3A108.6C2—C12—C13130.49 (10)
C4—C3—H3A108.6C2—C12—H12114.8
C2—C3—H3B108.6C13—C12—H12114.8
C4—C3—H3B108.6C14—C13—C18117.46 (10)
H3A—C3—H3B107.5C14—C13—C12124.18 (9)
C5—C4—C3112.15 (9)C18—C13—C12118.30 (10)
C5—C4—H4A109.2C15—C14—C13121.92 (10)
C3—C4—H4A109.2C15—C14—H14119.0
C5—C4—H4B109.2C13—C14—H14119.0
C3—C4—H4B109.2C14—C15—C16119.28 (10)
H4A—C4—H4B107.9C14—C15—H15120.4
C6—C5—C4113.86 (9)C16—C15—H15120.4
C6—C5—H5A108.8O2—C16—C17115.97 (9)
C4—C5—H5A108.8O2—C16—C15124.19 (10)
C6—C5—H5B108.8C17—C16—C15119.84 (10)
C4—C5—H5B108.8C18—C17—C16120.12 (10)
H5A—C5—H5B107.7C18—C17—H17119.9
C7—C6—C11118.05 (10)C16—C17—H17119.9
C7—C6—C5120.80 (10)C17—C18—C13121.34 (10)
C11—C6—C5121.07 (9)C17—C18—H18119.3
C8—C7—C6121.41 (11)C13—C18—H18119.3
C8—C7—H7119.3O2—C19—H19A109.5
C6—C7—H7119.3O2—C19—H19B109.5
C7—C8—C9120.18 (10)H19A—C19—H19B109.5
C7—C8—H8119.9O2—C19—H19C109.5
C9—C8—H8119.9H19A—C19—H19C109.5
C10—C9—C8119.45 (11)H19B—C19—H19C109.5
C10—C9—H9120.3C16—O2—C19116.31 (8)
O1—C1—C2—C126.07 (15)O1—C1—C11—C1036.06 (14)
C11—C1—C2—C12175.42 (9)C2—C1—C11—C10142.50 (10)
O1—C1—C2—C3167.73 (10)O1—C1—C11—C6140.03 (11)
C11—C1—C2—C310.78 (14)C2—C1—C11—C641.42 (14)
C12—C2—C3—C4110.47 (12)C1—C2—C12—C13179.67 (10)
C1—C2—C3—C476.47 (12)C3—C2—C12—C136.47 (19)
C2—C3—C4—C540.48 (13)C2—C12—C13—C1433.81 (17)
C3—C4—C5—C646.53 (12)C2—C12—C13—C18148.98 (11)
C4—C5—C6—C7110.60 (11)C18—C13—C14—C151.16 (15)
C4—C5—C6—C1172.74 (13)C12—C13—C14—C15178.38 (10)
C11—C6—C7—C80.30 (16)C13—C14—C15—C160.55 (15)
C5—C6—C7—C8176.46 (10)C14—C15—C16—O2179.87 (9)
C6—C7—C8—C91.05 (17)C14—C15—C16—C171.11 (15)
C7—C8—C9—C100.97 (16)O2—C16—C17—C18179.03 (9)
C8—C9—C10—C110.46 (16)C15—C16—C17—C180.07 (15)
C9—C10—C11—C61.83 (15)C16—C17—C18—C131.85 (16)
C9—C10—C11—C1177.98 (9)C14—C13—C18—C172.36 (15)
C7—C6—C11—C101.73 (15)C12—C13—C18—C17179.75 (9)
C5—C6—C11—C10175.02 (10)C17—C16—O2—C19174.98 (9)
C7—C6—C11—C1177.70 (9)C15—C16—O2—C194.07 (14)
C5—C6—C11—C10.95 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···O1i0.952.353.2971 (14)176
C19—H19A···Cg1ii0.982.763.6165 (13)146
C19—H19C···Cg2iii0.982.743.6029 (13)147
Symmetry codes: (i) x, y1, z; (ii) x, y+1/2, z+1/2; (iii) x+1, y, z+1.
6-(4-Ethoxybenzylidene)-6,7,8,9-tetrahydro-5H-benzo[7]annulen-5-one (II) top
Crystal data top
C20H20O2F(000) = 624
Mr = 292.36Dx = 1.291 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 12.6208 (2) ÅCell parameters from 4578 reflections
b = 14.99690 (17) Åθ = 3.7–69.7°
c = 8.39151 (12) ŵ = 0.64 mm1
β = 108.6814 (17)°T = 100 K
V = 1504.60 (4) Å3Plate, colourless
Z = 40.20 × 0.11 × 0.03 mm
Data collection top
XtaLAB AFC11 (RCD3): quarter-chi single CCD
diffractometer
2704 independent reflections
Radiation source: Rotating-anode X-ray tube2486 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.024
ω scansθmax = 68.3°, θmin = 3.7°
Absorption correction: gaussian
(CrysAlis PRO; Rigaku, 2017)
h = 1415
Tmin = 0.772, Tmax = 1.000k = 1812
9197 measured reflectionsl = 99
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.034 w = 1/[σ2(Fo2) + (0.0491P)2 + 0.4554P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.092(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.25 e Å3
2704 reflectionsΔρmin = 0.20 e Å3
201 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0019 (3)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.29882 (10)0.41642 (7)0.43555 (14)0.0187 (3)
C20.34088 (9)0.37739 (8)0.60870 (14)0.0181 (3)
C30.27266 (9)0.30342 (8)0.64912 (14)0.0183 (3)
H3A0.32190.26680.74140.022*
H3B0.24380.26460.54920.022*
C40.17406 (9)0.33720 (8)0.70118 (14)0.0196 (3)
H4A0.20210.36030.81780.024*
H4B0.12260.28700.69900.024*
C50.10987 (10)0.41143 (8)0.58327 (14)0.0203 (3)
H5A0.03630.41930.60010.024*
H5B0.15170.46800.61550.024*
C60.09109 (10)0.39437 (7)0.39855 (14)0.0187 (3)
C70.01602 (10)0.37634 (8)0.28964 (15)0.0218 (3)
H70.07570.36830.33420.026*
C80.03708 (10)0.36985 (8)0.11691 (15)0.0239 (3)
H80.11040.35640.04510.029*
C90.04853 (10)0.38295 (8)0.04913 (15)0.0233 (3)
H90.03370.38080.06920.028*
C100.15569 (10)0.39914 (8)0.15573 (14)0.0201 (3)
H100.21450.40800.10970.024*
C110.17889 (10)0.40265 (7)0.33013 (14)0.0183 (3)
C120.43722 (9)0.41219 (8)0.71077 (14)0.0182 (3)
H120.46880.45650.65870.022*
C130.50252 (10)0.39471 (7)0.88640 (14)0.0183 (3)
C140.46487 (10)0.35195 (8)1.00672 (15)0.0207 (3)
H140.39110.32840.97370.025*
C150.53262 (10)0.34296 (8)1.17341 (15)0.0209 (3)
H150.50520.31341.25230.025*
C160.64063 (10)0.37742 (7)1.22393 (14)0.0186 (3)
C170.67988 (9)0.42064 (8)1.10640 (14)0.0193 (3)
H170.75370.44411.13990.023*
C180.61171 (10)0.42937 (8)0.94187 (14)0.0186 (3)
H180.63930.45970.86390.022*
C190.67659 (10)0.33225 (8)1.51117 (15)0.0229 (3)
H19A0.65310.27001.47980.028*
H19B0.61220.36551.52470.028*
C200.77366 (11)0.33441 (9)1.67216 (15)0.0271 (3)
H20A0.75150.30691.76260.041*
H20B0.79600.39641.70180.041*
H20C0.83670.30141.65690.041*
O10.36138 (7)0.45674 (6)0.37458 (10)0.0264 (2)
O20.71428 (7)0.37337 (6)1.38349 (10)0.0217 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0219 (6)0.0195 (6)0.0159 (6)0.0012 (4)0.0076 (5)0.0007 (4)
C20.0192 (6)0.0212 (6)0.0155 (6)0.0017 (4)0.0077 (5)0.0005 (4)
C30.0182 (6)0.0208 (6)0.0155 (5)0.0006 (4)0.0049 (4)0.0011 (4)
C40.0195 (6)0.0250 (6)0.0154 (5)0.0014 (5)0.0071 (5)0.0005 (4)
C50.0196 (6)0.0251 (6)0.0171 (6)0.0020 (5)0.0072 (5)0.0011 (4)
C60.0204 (6)0.0187 (5)0.0171 (6)0.0027 (4)0.0059 (5)0.0012 (4)
C70.0203 (6)0.0255 (6)0.0203 (6)0.0027 (5)0.0073 (5)0.0004 (5)
C80.0197 (6)0.0297 (6)0.0195 (6)0.0019 (5)0.0023 (5)0.0015 (5)
C90.0260 (6)0.0279 (6)0.0144 (6)0.0027 (5)0.0045 (5)0.0007 (5)
C100.0233 (6)0.0213 (6)0.0169 (6)0.0008 (5)0.0081 (5)0.0007 (4)
C110.0205 (6)0.0173 (5)0.0167 (6)0.0004 (4)0.0056 (5)0.0002 (4)
C120.0184 (6)0.0207 (6)0.0176 (6)0.0010 (4)0.0087 (5)0.0007 (4)
C130.0188 (6)0.0198 (5)0.0170 (6)0.0010 (4)0.0067 (5)0.0008 (4)
C140.0169 (6)0.0258 (6)0.0195 (6)0.0022 (5)0.0063 (5)0.0001 (5)
C150.0216 (6)0.0254 (6)0.0175 (6)0.0014 (5)0.0090 (5)0.0022 (4)
C160.0202 (6)0.0200 (6)0.0149 (6)0.0026 (4)0.0049 (5)0.0009 (4)
C170.0174 (6)0.0220 (6)0.0187 (6)0.0008 (4)0.0060 (5)0.0012 (4)
C180.0205 (6)0.0199 (6)0.0173 (6)0.0003 (4)0.0089 (5)0.0002 (4)
C190.0277 (6)0.0260 (6)0.0160 (6)0.0015 (5)0.0084 (5)0.0017 (5)
C200.0329 (7)0.0287 (7)0.0174 (6)0.0010 (5)0.0049 (5)0.0016 (5)
O10.0244 (5)0.0366 (5)0.0183 (4)0.0081 (4)0.0071 (3)0.0043 (4)
O20.0207 (4)0.0296 (5)0.0137 (4)0.0018 (3)0.0041 (3)0.0025 (3)
Geometric parameters (Å, º) top
C1—O11.2286 (14)C10—C111.3985 (16)
C1—C21.4971 (16)C10—H100.9500
C1—C111.5027 (16)C12—C131.4635 (16)
C2—C121.3481 (17)C12—H120.9500
C2—C31.5079 (16)C13—C141.4014 (16)
C3—C41.5311 (15)C13—C181.4053 (17)
C3—H3A0.9900C14—C151.3927 (16)
C3—H3B0.9900C14—H140.9500
C4—C51.5365 (16)C15—C161.3909 (17)
C4—H4A0.9900C15—H150.9500
C4—H4B0.9900C16—O21.3650 (14)
C5—C61.5130 (16)C16—C171.3968 (16)
C5—H5A0.9900C17—C181.3794 (16)
C5—H5B0.9900C17—H170.9500
C6—C71.3944 (17)C18—H180.9500
C6—C111.4074 (16)C19—O21.4426 (14)
C7—C81.3908 (17)C19—C201.5056 (17)
C7—H70.9500C19—H19A0.9900
C8—C91.3868 (18)C19—H19B0.9900
C8—H80.9500C20—H20A0.9800
C9—C101.3832 (18)C20—H20B0.9800
C9—H90.9500C20—H20C0.9800
O1—C1—C2121.41 (10)C11—C10—H10119.4
O1—C1—C11118.88 (10)C10—C11—C6119.69 (11)
C2—C1—C11119.65 (10)C10—C11—C1117.07 (10)
C12—C2—C1115.63 (10)C6—C11—C1123.24 (10)
C12—C2—C3127.28 (10)C2—C12—C13132.29 (11)
C1—C2—C3117.09 (10)C2—C12—H12113.9
C2—C3—C4113.30 (9)C13—C12—H12113.9
C2—C3—H3A108.9C14—C13—C18116.96 (11)
C4—C3—H3A108.9C14—C13—C12126.59 (11)
C2—C3—H3B108.9C18—C13—C12116.32 (10)
C4—C3—H3B108.9C15—C14—C13121.81 (11)
H3A—C3—H3B107.7C15—C14—H14119.1
C3—C4—C5111.41 (9)C13—C14—H14119.1
C3—C4—H4A109.3C16—C15—C14119.77 (11)
C5—C4—H4A109.3C16—C15—H15120.1
C3—C4—H4B109.3C14—C15—H15120.1
C5—C4—H4B109.3O2—C16—C15125.13 (10)
H4A—C4—H4B108.0O2—C16—C17115.41 (10)
C6—C5—C4114.49 (10)C15—C16—C17119.46 (11)
C6—C5—H5A108.6C18—C17—C16120.15 (11)
C4—C5—H5A108.6C18—C17—H17119.9
C6—C5—H5B108.6C16—C17—H17119.9
C4—C5—H5B108.6C17—C18—C13121.83 (10)
H5A—C5—H5B107.6C17—C18—H18119.1
C7—C6—C11118.32 (11)C13—C18—H18119.1
C7—C6—C5120.34 (11)O2—C19—C20106.86 (10)
C11—C6—C5121.17 (10)O2—C19—H19A110.3
C8—C7—C6121.21 (11)C20—C19—H19A110.3
C8—C7—H7119.4O2—C19—H19B110.3
C6—C7—H7119.4C20—C19—H19B110.3
C9—C8—C7120.24 (11)H19A—C19—H19B108.6
C9—C8—H8119.9C19—C20—H20A109.5
C7—C8—H8119.9C19—C20—H20B109.5
C10—C9—C8119.24 (11)H20A—C20—H20B109.5
C10—C9—H9120.4C19—C20—H20C109.5
C8—C9—H9120.4H20A—C20—H20C109.5
C9—C10—C11121.14 (11)H20B—C20—H20C109.5
C9—C10—H10119.4C16—O2—C19117.69 (9)
O1—C1—C2—C1220.55 (16)O1—C1—C11—C1027.78 (16)
C11—C1—C2—C12162.35 (10)C2—C1—C11—C10149.40 (11)
O1—C1—C2—C3158.66 (11)O1—C1—C11—C6151.50 (11)
C11—C1—C2—C318.45 (15)C2—C1—C11—C631.33 (16)
C12—C2—C3—C497.96 (14)C1—C2—C12—C13177.92 (11)
C1—C2—C3—C482.94 (12)C3—C2—C12—C133.0 (2)
C2—C3—C4—C545.35 (13)C2—C12—C13—C1417.9 (2)
C3—C4—C5—C642.50 (13)C2—C12—C13—C18166.41 (12)
C4—C5—C6—C7110.32 (12)C18—C13—C14—C150.80 (17)
C4—C5—C6—C1174.39 (14)C12—C13—C14—C15176.51 (11)
C11—C6—C7—C82.33 (17)C13—C14—C15—C160.32 (18)
C5—C6—C7—C8173.09 (11)C14—C15—C16—O2179.45 (11)
C6—C7—C8—C91.20 (18)C14—C15—C16—C170.06 (17)
C7—C8—C9—C102.45 (18)O2—C16—C17—C18179.24 (10)
C8—C9—C10—C110.12 (18)C15—C16—C17—C180.32 (17)
C9—C10—C11—C63.44 (17)C16—C17—C18—C130.85 (17)
C9—C10—C11—C1177.26 (11)C14—C13—C18—C171.07 (17)
C7—C6—C11—C104.59 (16)C12—C13—C18—C17177.23 (10)
C5—C6—C11—C10170.79 (10)C15—C16—O2—C191.70 (16)
C7—C6—C11—C1176.16 (11)C17—C16—O2—C19177.83 (10)
C5—C6—C11—C18.46 (17)C20—C19—O2—C16178.58 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18···O1i0.952.363.2653 (14)159
C4—H4B···Cg1ii0.982.723.6429 (13)155
C19—H19A···Cg2ii0.982.713.5969 (13)149
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1/2, z+1/2.
2-(4-Benzylbenzylidene)-6,7,8,9-tetrahydro-5H-benzo[7]annulen-5-one (III) top
Crystal data top
C25H22O2Z = 2
Mr = 354.42F(000) = 376
Triclinic, P1Dx = 1.285 Mg m3
a = 9.2870 (2) ÅCu Kα radiation, λ = 1.54184 Å
b = 9.8727 (2) ÅCell parameters from 19041 reflections
c = 12.2944 (3) Åθ = 3.9–70.3°
α = 67.098 (3)°µ = 0.63 mm1
β = 81.472 (2)°T = 100 K
γ = 61.989 (3)°Block, colourless
V = 915.92 (5) Å30.17 × 0.11 × 0.04 mm
Data collection top
XtaLAB AFC11 (RCD3): quarter-chi single CCD
diffractometer
3336 independent reflections
Radiation source: Rotating-anode X-ray tube3073 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.036
ω scansθmax = 68.2°, θmin = 3.9°
Absorption correction: gaussian
(CrysAlis PRO; Rigaku, 2017)
h = 1111
Tmin = 0.781, Tmax = 1.000k = 1111
29818 measured reflectionsl = 1414
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.032 w = 1/[σ2(Fo2) + (0.0343P)2 + 0.2601P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.080(Δ/σ)max < 0.001
S = 1.07Δρmax = 0.19 e Å3
3336 reflectionsΔρmin = 0.16 e Å3
245 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0027 (4)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.05094 (13)0.41786 (13)0.37210 (9)0.0206 (2)
C20.11044 (12)0.39278 (12)0.40498 (9)0.0201 (2)
C30.15112 (13)0.53459 (13)0.34098 (9)0.0218 (2)
H3A0.22990.52930.39050.026*
H3B0.05070.63970.32860.026*
C40.22435 (13)0.53175 (14)0.22121 (9)0.0253 (2)
H4A0.34040.44820.23400.030*
H4B0.22040.64060.17320.030*
C50.13332 (14)0.49174 (14)0.15296 (9)0.0261 (2)
H5A0.16750.51740.07020.031*
H5B0.16610.37200.18800.031*
C60.05030 (13)0.58461 (13)0.15292 (9)0.0232 (2)
C70.14024 (15)0.70291 (13)0.04850 (10)0.0286 (3)
H70.08460.72830.02210.034*
C80.30954 (15)0.78425 (14)0.04574 (10)0.0311 (3)
H80.36850.86520.02620.037*
C90.39279 (14)0.74770 (14)0.14755 (11)0.0295 (3)
H90.50870.80330.14570.035*
C100.30610 (13)0.62955 (13)0.25218 (10)0.0254 (2)
H100.36320.60330.32180.030*
C110.13575 (13)0.54864 (12)0.25643 (9)0.0214 (2)
C120.20322 (12)0.24621 (13)0.48767 (9)0.0203 (2)
H120.15490.17330.51620.024*
C130.36457 (13)0.17816 (13)0.54185 (9)0.0208 (2)
C140.48036 (13)0.23711 (13)0.49726 (9)0.0232 (2)
H140.45680.32740.42410.028*
C150.62886 (13)0.16712 (13)0.55709 (9)0.0239 (2)
H150.70510.20990.52530.029*
C160.66527 (12)0.03382 (13)0.66400 (9)0.0214 (2)
C170.55458 (13)0.03095 (12)0.70815 (9)0.0213 (2)
H170.58000.12360.77990.026*
C180.40818 (13)0.03976 (13)0.64743 (9)0.0211 (2)
H180.33440.00650.67790.025*
C190.92156 (13)0.02302 (14)0.68813 (10)0.0291 (3)
H19A0.87090.14020.67980.035*
H19B0.95670.01620.60960.035*
C201.06575 (13)0.07617 (13)0.77387 (9)0.0230 (2)
C211.18414 (13)0.22910 (13)0.77295 (10)0.0251 (2)
H211.17190.27090.71900.030*
C221.31964 (13)0.32064 (13)0.85007 (10)0.0266 (2)
H221.39850.42590.84990.032*
C231.34081 (13)0.25957 (14)0.92737 (10)0.0273 (3)
H231.43500.32160.97910.033*
C241.22388 (14)0.10747 (14)0.92885 (10)0.0283 (3)
H241.23760.06520.98190.034*
C251.08673 (13)0.01680 (13)0.85305 (10)0.0257 (2)
H251.00630.08680.85520.031*
O10.11776 (9)0.33551 (9)0.43769 (6)0.02637 (19)
O20.80574 (9)0.04221 (9)0.73220 (6)0.02490 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0216 (5)0.0216 (5)0.0211 (5)0.0107 (4)0.0026 (4)0.0097 (4)
C20.0206 (5)0.0227 (5)0.0199 (5)0.0118 (4)0.0035 (4)0.0089 (4)
C30.0214 (5)0.0210 (5)0.0235 (5)0.0110 (4)0.0009 (4)0.0069 (4)
C40.0233 (6)0.0246 (5)0.0255 (6)0.0122 (5)0.0037 (4)0.0060 (4)
C50.0296 (6)0.0267 (6)0.0219 (5)0.0135 (5)0.0058 (4)0.0094 (4)
C60.0298 (6)0.0209 (5)0.0224 (5)0.0128 (5)0.0001 (4)0.0091 (4)
C70.0407 (7)0.0254 (6)0.0226 (6)0.0172 (5)0.0016 (5)0.0077 (5)
C80.0413 (7)0.0218 (6)0.0280 (6)0.0106 (5)0.0124 (5)0.0065 (5)
C90.0269 (6)0.0248 (6)0.0362 (6)0.0062 (5)0.0092 (5)0.0140 (5)
C100.0252 (6)0.0254 (6)0.0291 (6)0.0113 (5)0.0011 (4)0.0129 (5)
C110.0240 (5)0.0197 (5)0.0232 (5)0.0101 (4)0.0012 (4)0.0096 (4)
C120.0211 (5)0.0232 (5)0.0205 (5)0.0129 (4)0.0036 (4)0.0091 (4)
C130.0208 (5)0.0212 (5)0.0219 (5)0.0097 (4)0.0017 (4)0.0092 (4)
C140.0227 (5)0.0230 (5)0.0217 (5)0.0114 (4)0.0006 (4)0.0046 (4)
C150.0226 (5)0.0256 (5)0.0243 (5)0.0144 (5)0.0030 (4)0.0063 (4)
C160.0192 (5)0.0221 (5)0.0230 (5)0.0088 (4)0.0002 (4)0.0086 (4)
C170.0223 (5)0.0197 (5)0.0210 (5)0.0105 (4)0.0011 (4)0.0055 (4)
C180.0214 (5)0.0217 (5)0.0235 (5)0.0122 (4)0.0033 (4)0.0092 (4)
C190.0242 (6)0.0305 (6)0.0307 (6)0.0183 (5)0.0022 (5)0.0008 (5)
C200.0205 (5)0.0242 (5)0.0242 (5)0.0146 (4)0.0018 (4)0.0033 (4)
C210.0288 (6)0.0261 (6)0.0255 (6)0.0174 (5)0.0023 (4)0.0088 (4)
C220.0236 (6)0.0217 (5)0.0303 (6)0.0103 (5)0.0030 (4)0.0062 (5)
C230.0236 (6)0.0296 (6)0.0250 (6)0.0153 (5)0.0030 (4)0.0009 (5)
C240.0355 (6)0.0325 (6)0.0231 (6)0.0209 (5)0.0015 (5)0.0093 (5)
C250.0260 (6)0.0224 (5)0.0273 (6)0.0115 (5)0.0056 (4)0.0085 (4)
O10.0258 (4)0.0314 (4)0.0242 (4)0.0182 (3)0.0011 (3)0.0058 (3)
O20.0201 (4)0.0269 (4)0.0257 (4)0.0141 (3)0.0028 (3)0.0019 (3)
Geometric parameters (Å, º) top
C1—O11.2294 (12)C13—C141.4001 (14)
C1—C21.4914 (14)C13—C181.4042 (15)
C1—C111.5025 (14)C14—C151.3895 (15)
C2—C121.3467 (15)C14—H140.9500
C2—C31.5077 (14)C15—C161.3933 (15)
C3—C41.5326 (15)C15—H150.9500
C3—H3A0.9900C16—O21.3723 (12)
C3—H3B0.9900C16—C171.3936 (14)
C4—C51.5352 (15)C17—C181.3774 (14)
C4—H4A0.9900C17—H170.9500
C4—H4B0.9900C18—H180.9500
C5—C61.5099 (15)C19—O21.4392 (12)
C5—H5A0.9900C19—C201.4990 (15)
C5—H5B0.9900C19—H19A0.9900
C6—C71.3945 (15)C19—H19B0.9900
C6—C111.4102 (15)C20—C251.3916 (16)
C7—C81.3881 (17)C20—C211.3925 (16)
C7—H70.9500C21—C221.3849 (16)
C8—C91.3850 (18)C21—H210.9500
C8—H80.9500C22—C231.3850 (16)
C9—C101.3859 (16)C22—H220.9500
C9—H90.9500C23—C241.3850 (17)
C10—C111.3960 (15)C23—H230.9500
C10—H100.9500C24—C251.3871 (16)
C12—C131.4637 (14)C24—H240.9500
C12—H120.9500C25—H250.9500
O1—C1—C2121.81 (9)C13—C12—H12114.0
O1—C1—C11118.85 (9)C14—C13—C18116.95 (9)
C2—C1—C11119.33 (9)C14—C13—C12125.98 (9)
C12—C2—C1116.43 (9)C18—C13—C12117.06 (9)
C12—C2—C3127.54 (9)C15—C14—C13121.79 (10)
C1—C2—C3116.03 (9)C15—C14—H14119.1
C2—C3—C4111.93 (9)C13—C14—H14119.1
C2—C3—H3A109.2C14—C15—C16119.59 (10)
C4—C3—H3A109.2C14—C15—H15120.2
C2—C3—H3B109.2C16—C15—H15120.2
C4—C3—H3B109.2O2—C16—C15124.70 (9)
H3A—C3—H3B107.9O2—C16—C17115.57 (9)
C3—C4—C5112.28 (9)C15—C16—C17119.73 (10)
C3—C4—H4A109.1C18—C17—C16119.83 (10)
C5—C4—H4A109.1C18—C17—H17120.1
C3—C4—H4B109.1C16—C17—H17120.1
C5—C4—H4B109.1C17—C18—C13122.01 (9)
H4A—C4—H4B107.9C17—C18—H18119.0
C6—C5—C4114.06 (9)C13—C18—H18119.0
C6—C5—H5A108.7O2—C19—C20108.38 (8)
C4—C5—H5A108.7O2—C19—H19A110.0
C6—C5—H5B108.7C20—C19—H19A110.0
C4—C5—H5B108.7O2—C19—H19B110.0
H5A—C5—H5B107.6C20—C19—H19B110.0
C7—C6—C11118.30 (10)H19A—C19—H19B108.4
C7—C6—C5120.45 (10)C25—C20—C21118.80 (10)
C11—C6—C5121.17 (9)C25—C20—C19121.35 (10)
C8—C7—C6121.25 (11)C21—C20—C19119.83 (10)
C8—C7—H7119.4C22—C21—C20120.46 (10)
C6—C7—H7119.4C22—C21—H21119.8
C9—C8—C7120.17 (10)C20—C21—H21119.8
C9—C8—H8119.9C21—C22—C23120.37 (10)
C7—C8—H8119.9C21—C22—H22119.8
C8—C9—C10119.62 (11)C23—C22—H22119.8
C8—C9—H9120.2C24—C23—C22119.60 (10)
C10—C9—H9120.2C24—C23—H23120.2
C9—C10—C11120.72 (11)C22—C23—H23120.2
C9—C10—H10119.6C23—C24—C25120.12 (10)
C11—C10—H10119.6C23—C24—H24119.9
C10—C11—C6119.92 (10)C25—C24—H24119.9
C10—C11—C1117.49 (9)C24—C25—C20120.64 (10)
C6—C11—C1122.50 (9)C24—C25—H25119.7
C2—C12—C13132.05 (9)C20—C25—H25119.7
C2—C12—H12114.0C16—O2—C19116.40 (8)
O1—C1—C2—C1220.98 (15)C3—C2—C12—C130.73 (19)
C11—C1—C2—C12159.81 (9)C2—C12—C13—C1417.70 (19)
O1—C1—C2—C3159.38 (10)C2—C12—C13—C18163.17 (11)
C11—C1—C2—C319.82 (13)C18—C13—C14—C152.86 (16)
C12—C2—C3—C495.36 (13)C12—C13—C14—C15178.01 (10)
C1—C2—C3—C484.23 (11)C13—C14—C15—C160.48 (16)
C2—C3—C4—C543.11 (12)C14—C15—C16—O2178.18 (10)
C3—C4—C5—C645.09 (12)C14—C15—C16—C171.83 (16)
C4—C5—C6—C7112.75 (11)O2—C16—C17—C18178.36 (9)
C4—C5—C6—C1170.46 (13)C15—C16—C17—C181.65 (16)
C11—C6—C7—C80.23 (16)C16—C17—C18—C130.86 (16)
C5—C6—C7—C8177.11 (10)C14—C13—C18—C173.06 (15)
C6—C7—C8—C90.60 (17)C12—C13—C18—C17177.73 (9)
C7—C8—C9—C100.04 (16)O2—C19—C20—C25102.31 (11)
C8—C9—C10—C110.89 (16)O2—C19—C20—C2179.43 (12)
C9—C10—C11—C61.26 (15)C25—C20—C21—C220.41 (15)
C9—C10—C11—C1177.85 (9)C19—C20—C21—C22178.72 (9)
C7—C6—C11—C100.69 (15)C20—C21—C22—C231.38 (16)
C5—C6—C11—C10176.17 (9)C21—C22—C23—C241.27 (16)
C7—C6—C11—C1177.10 (9)C22—C23—C24—C250.20 (16)
C5—C6—C11—C10.25 (15)C23—C24—C25—C200.77 (16)
O1—C1—C11—C1032.34 (14)C21—C20—C25—C240.67 (16)
C2—C1—C11—C10146.89 (10)C19—C20—C25—C24177.61 (10)
O1—C1—C11—C6144.16 (10)C15—C16—O2—C190.07 (15)
C2—C1—C11—C636.61 (14)C17—C16—O2—C19179.94 (9)
C1—C2—C12—C13179.68 (10)C20—C19—O2—C16179.68 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···O1i0.952.403.3477 (13)176
C18—H18···Cg3ii0.952.643.5147 (13)153
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.
2-(4-Chlorobenzylidene)-6,7,8,9-tetrahydro-5H-benzo[7]annulen-5-one (IV) top
Crystal data top
C18H15ClOF(000) = 592
Mr = 282.75Dx = 1.326 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
a = 10.6273 (5) ÅCell parameters from 4926 reflections
b = 11.6191 (4) Åθ = 4.8–70.0°
c = 12.1114 (5) ŵ = 2.31 mm1
β = 108.777 (4)°T = 100 K
V = 1415.92 (11) Å3Plate, colourless
Z = 40.28 × 0.20 × 0.03 mm
Data collection top
XtaLAB AFC11 (RCD3): quarter-chi single CCD
diffractometer
2568 independent reflections
Radiation source: Rotating-anode X-ray tube2203 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.073
ω scansθmax = 68.2°, θmin = 4.8°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku, 2017)
h = 1211
Tmin = 0.722, Tmax = 1.000k = 1313
11747 measured reflectionsl = 1413
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055H-atom parameters constrained
wR(F2) = 0.165 w = 1/[σ2(Fo2) + (0.1145P)2 + 0.0344P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max = 0.001
2568 reflectionsΔρmax = 0.32 e Å3
181 parametersΔρmin = 0.41 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2086 (2)0.65193 (16)0.58219 (17)0.0292 (4)
C20.34239 (19)0.67189 (16)0.67264 (17)0.0292 (4)
C30.34206 (19)0.73875 (16)0.77902 (17)0.0311 (5)
H3A0.42440.72070.84360.037*
H3B0.26580.71310.80290.037*
C40.3330 (2)0.86976 (16)0.76058 (18)0.0333 (5)
H4A0.42250.90040.76850.040*
H4B0.30280.90570.82180.040*
C50.2366 (2)0.90247 (17)0.64003 (18)0.0323 (5)
H5A0.22150.98660.63720.039*
H5B0.27750.88290.57960.039*
C60.1047 (2)0.84132 (17)0.61283 (17)0.0301 (5)
C70.0085 (2)0.90160 (19)0.61159 (17)0.0353 (5)
H70.00240.98200.62680.042*
C80.1309 (2)0.84680 (19)0.58856 (19)0.0367 (5)
H80.20710.88960.58850.044*
C90.1412 (2)0.72966 (19)0.56571 (17)0.0361 (5)
H90.22420.69170.55060.043*
C100.0297 (2)0.66851 (18)0.56509 (17)0.0330 (5)
H100.03690.58840.54860.040*
C110.09310 (19)0.72291 (16)0.58837 (16)0.0294 (5)
C120.4476 (2)0.62505 (16)0.65047 (18)0.0317 (5)
H120.42640.58250.57980.038*
C130.5893 (2)0.62893 (16)0.71748 (18)0.0303 (5)
C140.6506 (2)0.71561 (17)0.79718 (18)0.0334 (5)
H140.59830.77650.81160.040*
C150.7861 (2)0.71376 (17)0.85517 (18)0.0339 (5)
H150.82630.77300.90900.041*
C160.8629 (2)0.62534 (17)0.83450 (19)0.0341 (5)
C170.8062 (2)0.53886 (18)0.75589 (19)0.0391 (5)
H170.85930.47830.74210.047*
C180.6709 (2)0.54195 (18)0.69764 (18)0.0360 (5)
H180.63210.48330.64250.043*
O10.19203 (14)0.57880 (12)0.50600 (12)0.0347 (4)
Cl11.03346 (5)0.62611 (5)0.90563 (5)0.0469 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0308 (11)0.0267 (9)0.0297 (10)0.0017 (8)0.0091 (8)0.0023 (8)
C20.0292 (10)0.0258 (9)0.0307 (10)0.0012 (7)0.0068 (8)0.0018 (7)
C30.0273 (10)0.0325 (10)0.0309 (10)0.0007 (8)0.0056 (8)0.0006 (8)
C40.0274 (11)0.0321 (11)0.0371 (12)0.0021 (8)0.0056 (9)0.0064 (8)
C50.0308 (11)0.0277 (9)0.0362 (11)0.0004 (8)0.0076 (9)0.0006 (8)
C60.0289 (11)0.0296 (10)0.0295 (10)0.0005 (8)0.0063 (8)0.0004 (8)
C70.0330 (11)0.0362 (11)0.0330 (11)0.0017 (9)0.0056 (9)0.0004 (9)
C80.0286 (11)0.0469 (12)0.0328 (11)0.0045 (9)0.0074 (9)0.0001 (9)
C90.0289 (11)0.0455 (12)0.0312 (11)0.0047 (9)0.0059 (9)0.0015 (9)
C100.0323 (11)0.0344 (11)0.0295 (10)0.0043 (8)0.0062 (8)0.0008 (8)
C110.0280 (11)0.0318 (10)0.0263 (10)0.0004 (8)0.0058 (8)0.0017 (7)
C120.0350 (12)0.0274 (10)0.0303 (11)0.0015 (8)0.0073 (9)0.0008 (7)
C130.0306 (11)0.0317 (10)0.0284 (10)0.0020 (8)0.0090 (9)0.0025 (8)
C140.0296 (11)0.0314 (10)0.0384 (11)0.0005 (8)0.0099 (9)0.0030 (8)
C150.0325 (11)0.0338 (10)0.0350 (11)0.0023 (8)0.0101 (9)0.0016 (8)
C160.0281 (11)0.0383 (11)0.0356 (12)0.0005 (8)0.0099 (9)0.0045 (8)
C170.0339 (11)0.0373 (12)0.0465 (13)0.0049 (9)0.0134 (10)0.0025 (9)
C180.0334 (11)0.0344 (11)0.0397 (12)0.0005 (8)0.0110 (9)0.0059 (8)
O10.0348 (8)0.0318 (8)0.0354 (8)0.0029 (6)0.0083 (6)0.0060 (6)
Cl10.0268 (4)0.0552 (4)0.0545 (4)0.0032 (2)0.0071 (3)0.0000 (2)
Geometric parameters (Å, º) top
C1—O11.225 (2)C8—H80.9500
C1—C111.501 (3)C9—C101.384 (3)
C1—C21.507 (3)C9—H90.9500
C2—C121.346 (3)C10—C111.395 (3)
C2—C31.506 (3)C10—H100.9500
C3—C41.537 (3)C12—C131.464 (3)
C3—H3A0.9900C12—H120.9500
C3—H3B0.9900C13—C181.402 (3)
C4—C51.537 (3)C13—C141.402 (3)
C4—H4A0.9900C14—C151.385 (3)
C4—H4B0.9900C14—H140.9500
C5—C61.510 (3)C15—C161.384 (3)
C5—H5A0.9900C15—H150.9500
C5—H5B0.9900C16—C171.382 (3)
C6—C71.388 (3)C16—Cl11.739 (2)
C6—C111.404 (3)C17—C181.383 (3)
C7—C81.393 (3)C17—H170.9500
C7—H70.9500C18—H180.9500
C8—C91.386 (3)
O1—C1—C11119.82 (18)C7—C8—H8120.1
O1—C1—C2121.84 (18)C10—C9—C8119.48 (19)
C11—C1—C2118.33 (16)C10—C9—H9120.3
C12—C2—C3127.61 (18)C8—C9—H9120.3
C12—C2—C1116.26 (17)C9—C10—C11120.90 (19)
C3—C2—C1116.09 (16)C9—C10—H10119.6
C2—C3—C4113.82 (16)C11—C10—H10119.6
C2—C3—H3A108.8C10—C11—C6119.99 (18)
C4—C3—H3A108.8C10—C11—C1117.91 (17)
C2—C3—H3B108.8C6—C11—C1122.07 (17)
C4—C3—H3B108.8C2—C12—C13130.51 (18)
H3A—C3—H3B107.7C2—C12—H12114.7
C3—C4—C5111.98 (16)C13—C12—H12114.7
C3—C4—H4A109.2C18—C13—C14117.39 (19)
C5—C4—H4A109.2C18—C13—C12117.75 (18)
C3—C4—H4B109.2C14—C13—C12124.81 (17)
C5—C4—H4B109.2C15—C14—C13120.99 (18)
H4A—C4—H4B107.9C15—C14—H14119.5
C6—C5—C4112.27 (17)C13—C14—H14119.5
C6—C5—H5A109.1C16—C15—C14119.82 (19)
C4—C5—H5A109.1C16—C15—H15120.1
C6—C5—H5B109.1C14—C15—H15120.1
C4—C5—H5B109.1C17—C16—C15120.9 (2)
H5A—C5—H5B107.9C17—C16—Cl1119.91 (16)
C7—C6—C11118.35 (19)C15—C16—Cl1119.19 (17)
C7—C6—C5120.36 (18)C16—C17—C18118.90 (19)
C11—C6—C5121.30 (18)C16—C17—H17120.6
C6—C7—C8121.4 (2)C18—C17—H17120.6
C6—C7—H7119.3C17—C18—C13122.0 (2)
C8—C7—H7119.3C17—C18—H18119.0
C9—C8—C7119.8 (2)C13—C18—H18119.0
C9—C8—H8120.1
O1—C1—C2—C1214.6 (3)C5—C6—C11—C13.0 (3)
C11—C1—C2—C12166.52 (17)O1—C1—C11—C1038.8 (3)
O1—C1—C2—C3163.47 (18)C2—C1—C11—C10140.10 (18)
C11—C1—C2—C315.4 (2)O1—C1—C11—C6139.2 (2)
C12—C2—C3—C4101.3 (2)C2—C1—C11—C642.0 (3)
C1—C2—C3—C480.8 (2)C3—C2—C12—C133.2 (3)
C2—C3—C4—C539.8 (2)C1—C2—C12—C13178.97 (18)
C3—C4—C5—C648.7 (2)C2—C12—C13—C18157.7 (2)
C4—C5—C6—C7108.5 (2)C2—C12—C13—C1424.7 (3)
C4—C5—C6—C1171.4 (2)C18—C13—C14—C151.1 (3)
C11—C6—C7—C81.0 (3)C12—C13—C14—C15178.65 (19)
C5—C6—C7—C8178.97 (19)C13—C14—C15—C160.0 (3)
C6—C7—C8—C90.3 (3)C14—C15—C16—C170.5 (3)
C7—C8—C9—C100.5 (3)C14—C15—C16—Cl1178.57 (16)
C8—C9—C10—C110.7 (3)C15—C16—C17—C180.1 (3)
C9—C10—C11—C60.0 (3)Cl1—C16—C17—C18178.02 (16)
C9—C10—C11—C1177.98 (18)C16—C17—C18—C131.2 (3)
C7—C6—C11—C100.8 (3)C14—C13—C18—C171.6 (3)
C5—C6—C11—C10179.14 (17)C12—C13—C18—C17179.39 (18)
C7—C6—C11—C1177.07 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···O1i0.952.503.319 (2)145
C3—H3A···Cg1ii0.992.833.572 (2)132
Symmetry codes: (i) x, y+1, z+1; (ii) x1/2, y+3/2, z+1/2.
6-(4-Cyanobenzylidene)-6,7,8,9-tetrahydro-5H-benzo[7]annulen-5-one (V) top
Crystal data top
C19H15NOF(000) = 576
Mr = 273.32Dx = 1.321 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 12.4725 (4) ÅCell parameters from 3885 reflections
b = 7.1718 (2) Åθ = 5.7–69.4°
c = 15.9983 (5) ŵ = 0.64 mm1
β = 106.120 (3)°T = 100 K
V = 1374.79 (8) Å3Block, colourless
Z = 40.17 × 0.10 × 0.03 mm
Data collection top
XtaLAB AFC11 (RCD3): quarter-chi single CCD
diffractometer
2511 independent reflections
Radiation source: Rotating-anode X-ray tube2302 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.059
ω scansθmax = 68.2°, θmin = 3.7°
Absorption correction: gaussian
(CrysAlis PRO; Rigaku, 2017)
h = 1415
Tmin = 0.895, Tmax = 1.000k = 78
9732 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.068H-atom parameters constrained
wR(F2) = 0.181 w = 1/[σ2(Fo2) + (0.1396P)2 + 0.1712P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2511 reflectionsΔρmax = 0.49 e Å3
190 parametersΔρmin = 0.32 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.34825 (12)0.5911 (2)0.45058 (9)0.0284 (4)
C20.29525 (12)0.4044 (2)0.42080 (9)0.0275 (4)
C30.32674 (12)0.3153 (2)0.34549 (9)0.0279 (4)
H3A0.31500.17900.34740.033*
H3B0.40730.33660.35290.033*
C40.26091 (13)0.3882 (2)0.25527 (10)0.0292 (4)
H4A0.30800.37830.21480.035*
H4B0.19410.30930.23230.035*
C50.22444 (13)0.5911 (2)0.25887 (10)0.0296 (4)
H5A0.18500.63370.19940.036*
H5B0.17170.59930.29500.036*
C60.32277 (12)0.7168 (2)0.29642 (9)0.0279 (4)
C70.35894 (13)0.8371 (2)0.24193 (10)0.0304 (4)
H70.31920.84210.18200.037*
C80.45193 (14)0.9506 (2)0.27303 (11)0.0319 (4)
H80.47591.03060.23440.038*
C90.50973 (13)0.9462 (2)0.36109 (11)0.0318 (4)
H90.57341.02320.38290.038*
C100.47389 (13)0.8293 (2)0.41635 (10)0.0305 (4)
H100.51280.82790.47650.037*
C110.38136 (12)0.7129 (2)0.38553 (10)0.0279 (4)
C120.23202 (13)0.3273 (2)0.46664 (10)0.0294 (4)
H120.22480.39440.51600.035*
C130.17236 (13)0.1477 (2)0.44785 (10)0.0284 (4)
C140.11644 (13)0.0939 (2)0.36261 (10)0.0304 (4)
H140.11620.17520.31570.036*
C150.06168 (13)0.0752 (2)0.34565 (10)0.0304 (4)
H150.02520.11020.28740.036*
C160.05996 (12)0.1944 (2)0.41403 (10)0.0288 (4)
C170.11421 (14)0.1427 (2)0.49975 (10)0.0327 (4)
H170.11380.22370.54660.039*
C180.16847 (13)0.0273 (2)0.51552 (10)0.0320 (4)
H180.20400.06300.57380.038*
C190.00015 (13)0.3676 (2)0.39548 (10)0.0308 (4)
N10.05047 (12)0.5036 (2)0.37711 (9)0.0374 (4)
O10.36770 (11)0.63971 (17)0.52639 (7)0.0376 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0239 (8)0.0341 (9)0.0233 (8)0.0023 (6)0.0002 (6)0.0017 (6)
C20.0235 (7)0.0299 (8)0.0234 (8)0.0018 (6)0.0028 (6)0.0020 (6)
C30.0228 (7)0.0306 (8)0.0273 (8)0.0001 (6)0.0020 (6)0.0004 (6)
C40.0263 (8)0.0345 (9)0.0243 (8)0.0036 (6)0.0030 (6)0.0032 (6)
C50.0256 (8)0.0356 (9)0.0231 (8)0.0009 (6)0.0009 (6)0.0006 (6)
C60.0248 (8)0.0304 (8)0.0264 (8)0.0042 (6)0.0034 (6)0.0011 (6)
C70.0278 (8)0.0311 (8)0.0307 (9)0.0048 (6)0.0054 (7)0.0001 (6)
C80.0314 (8)0.0286 (8)0.0375 (9)0.0031 (6)0.0122 (7)0.0008 (6)
C90.0244 (8)0.0305 (8)0.0391 (9)0.0001 (6)0.0065 (7)0.0044 (7)
C100.0254 (8)0.0307 (8)0.0317 (9)0.0019 (6)0.0016 (6)0.0038 (6)
C110.0235 (7)0.0288 (8)0.0292 (8)0.0015 (6)0.0035 (6)0.0021 (6)
C120.0272 (8)0.0323 (8)0.0243 (8)0.0018 (6)0.0002 (6)0.0001 (6)
C130.0236 (8)0.0321 (9)0.0277 (8)0.0015 (6)0.0042 (6)0.0011 (6)
C140.0274 (8)0.0340 (9)0.0257 (8)0.0011 (6)0.0009 (6)0.0060 (6)
C150.0263 (8)0.0354 (9)0.0248 (8)0.0013 (6)0.0006 (6)0.0005 (6)
C160.0239 (7)0.0300 (8)0.0294 (8)0.0004 (6)0.0025 (6)0.0006 (6)
C170.0332 (8)0.0359 (9)0.0256 (8)0.0014 (7)0.0027 (7)0.0045 (6)
C180.0312 (8)0.0371 (9)0.0245 (8)0.0022 (7)0.0024 (6)0.0005 (6)
C190.0300 (8)0.0339 (9)0.0259 (8)0.0023 (7)0.0033 (6)0.0036 (6)
N10.0377 (8)0.0359 (9)0.0338 (8)0.0053 (6)0.0018 (6)0.0021 (6)
O10.0426 (7)0.0412 (7)0.0259 (6)0.0094 (5)0.0042 (5)0.0047 (5)
Geometric parameters (Å, º) top
C1—O11.2199 (19)C8—H80.9500
C1—C111.502 (2)C9—C101.380 (2)
C1—C21.510 (2)C9—H90.9500
C2—C121.337 (2)C10—C111.399 (2)
C2—C31.509 (2)C10—H100.9500
C3—C41.540 (2)C12—C131.476 (2)
C3—H3A0.9900C12—H120.9500
C3—H3B0.9900C13—C181.396 (2)
C4—C51.531 (2)C13—C141.402 (2)
C4—H4A0.9900C14—C151.381 (2)
C4—H4B0.9900C14—H140.9500
C5—C61.506 (2)C15—C161.393 (2)
C5—H5A0.9900C15—H150.9500
C5—H5B0.9900C16—C171.400 (2)
C6—C71.388 (2)C16—C191.439 (2)
C6—C111.410 (2)C17—C181.383 (2)
C7—C81.391 (2)C17—H170.9500
C7—H70.9500C18—H180.9500
C8—C91.393 (2)C19—N11.153 (2)
O1—C1—C11120.38 (14)C9—C8—H8120.2
O1—C1—C2121.05 (14)C10—C9—C8119.53 (15)
C11—C1—C2118.52 (13)C10—C9—H9120.2
C12—C2—C3125.92 (15)C8—C9—H9120.2
C12—C2—C1117.85 (14)C9—C10—C11121.29 (14)
C3—C2—C1116.04 (13)C9—C10—H10119.4
C2—C3—C4114.54 (13)C11—C10—H10119.4
C2—C3—H3A108.6C10—C11—C6119.32 (14)
C4—C3—H3A108.6C10—C11—C1117.50 (14)
C2—C3—H3B108.6C6—C11—C1123.17 (14)
C4—C3—H3B108.6C2—C12—C13126.19 (14)
H3A—C3—H3B107.6C2—C12—H12116.9
C5—C4—C3111.96 (12)C13—C12—H12116.9
C5—C4—H4A109.2C18—C13—C14117.97 (14)
C3—C4—H4A109.2C18—C13—C12120.39 (14)
C5—C4—H4B109.2C14—C13—C12121.63 (14)
C3—C4—H4B109.2C15—C14—C13121.18 (14)
H4A—C4—H4B107.9C15—C14—H14119.4
C6—C5—C4111.51 (12)C13—C14—H14119.4
C6—C5—H5A109.3C14—C15—C16119.93 (14)
C4—C5—H5A109.3C14—C15—H15120.0
C6—C5—H5B109.3C16—C15—H15120.0
C4—C5—H5B109.3C15—C16—C17119.88 (15)
H5A—C5—H5B108.0C15—C16—C19119.24 (14)
C7—C6—C11118.67 (14)C17—C16—C19120.86 (14)
C7—C6—C5119.49 (13)C18—C17—C16119.40 (15)
C11—C6—C5121.83 (14)C18—C17—H17120.3
C6—C7—C8121.55 (15)C16—C17—H17120.3
C6—C7—H7119.2C17—C18—C13121.62 (14)
C8—C7—H7119.2C17—C18—H18119.2
C7—C8—C9119.64 (15)C13—C18—H18119.2
C7—C8—H8120.2N1—C19—C16177.09 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17···N1i0.952.543.438 (2)157
C3—H3A···Cg1ii0.992.843.6730 (16)142
C8—H8···Cg1iii0.952.883.7868 (17)161
Symmetry codes: (i) x, y1, z+1; (ii) x, y1, z; (iii) x+1, y+1/2, z+1/2.
Fingerprint contact percentages for (I) and VENQUA top
Contact type(I)VENQUA
H···H54.855.3
C···H/H···C28.129.2
O—H/H···O15.314.5
C···C1.10.0
C···O/O···C0.80.8
O···O0.00.2
Summary of the C—H···O and C—H···N hydrogen bonds and packing motifs for 2-(benzylidene)benzosuberone derivatives top
Code/refcodeSubstituent(s)Space groupφDonor atom(s)Packing motif
(I)4-OMeP21/c23.79 (3)C15C(8) chain
(II)4-OEtP21/c24.60 (4)C18R22(14) loop
(III)4-OBzP133.72 (4)C15C(8) chain
(IV)4-ClP21/n29.93 (8)C10R22(10) loop
(V)4-CNP21/c21.81 (7)C17R22(10) loop
VENQOU4-MeP21/n29.72 (11)C10R22(10) loop
VENQUA4-OMeP21/n35.88 (11)C10R22(10) loop
VENSIQ4-NMe2P21/n29.43 (11)C10R22(10) loop
XUGXOM2-NO2P21/a27.56 (6)C17C(5) chain
VENREL3-NO2P118.54 (9)C7,C14,C16double chain
VENRIP4-NO2P145.32 (9)C9,C15sheet
XUGYED2-ClP21/c28.40 (19)C14C(7) chain
XUGXUS3,4-ClP21/c39.01 (16)C15C(8) chain
XUGYAZ2,4-ClP21/c30.54 (12)C14C(7) chain
XUGYUT2-OMeP2125.82 (17)None
XUGYON3,4-OMeP123.48 (9)C8,C15sheet
XUGYIH3,4,5-OMeP21/n35.08 (10)C7C(6) chain
Packing analyses carried out using PLATON (Spek, 2009); φ is the dihedral angle between the C6–C11 and C13–C18 benzene rings; for the `VEN' refcode family, see Dimmock et al. (1999); for the `XUG' family, see Dimmock et al. (2002); the donor atom labels correspond to our atom numbering scheme.
 

Acknowledgements

We thank the EPSRC National Crystallography Service (University of Southampton) for the X-ray data collections and Edward Tiekink for assistance with the overlay plot.

References

First citationAl-Nakib, T. M., Perjesi, P., Varghese, R. & Meegan, M. J. (1997). Med. Princ. Pract. 6, 14–21.  Google Scholar
First citationBaddeley, T. C., Gomes, L. R., Low, J. N., Turner, A. B., Wardell, J. L. & Watson, G. J. R. (2017a). Z. Kristallogr. 232, 317–334.  CAS Google Scholar
First citationBaddeley, T. C., Gomes, L. R., Low, J. N., Turner, A. B., Wardell, J. L. & Watson, G. J. R. (2017b). Z. Kristallogr 232, 697–718.  CAS Google Scholar
First citationDimmock, J. R., Kandepu, N. M., Nazarali, A. J., Kowalchuk, T. P., Motaganahalli, N., Quail, J. W., Mykytiuk, P., Audette, G. F., Prasad, L., Perjési, P., Allen, T. M., Santos, C. L., Szydlowski, J., De Clercq, E. & Balzarini, J. (1999). J. Med. Chem. 42, 1358–1366.  CrossRef PubMed CAS Google Scholar
First citationDimmock, J. R., Zello, G. A., Oloo, E. O., Quail, J. W., Kraatz, H.-B., Perjési, P., Aradi, F., Takács-Novák, K., Allen, T. M., Santos, C. L., Balzarini, J., De Clercq, E. & Stables, J. P. (2002). J. Med. Chem. 45, 3103–3111.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFodor, K., Tomescova, V., Kőszegi, T., Kron, I. & Perjési, P. (2011). Monatsh. Chem. 142, 463–468.  CrossRef CAS Google Scholar
First citationGans, J. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557–9, 609.  Google Scholar
First citationGautam, Y., Dwivedi, S., Srivastava, A., Hamidullah, H., Singh, A., Chanda, D., Singh, J., Rai, S., Konwar, R. & Negi, A. S. (2016). RSC Adv. 6, 33369–33379.  CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGupta, D. & Jain, D. K. (2015). J. Adv. Pharm. Technol. Res. 6, 114–117.  CrossRef CAS PubMed Google Scholar
First citationKitaigorodskii, A. I. (1961). In Organic Chemical Crystallography. New York: Consultants Bureau.  Google Scholar
First citationLo Presti, L. (2018). CrystEngComm, 20, 5976–5989.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (2017). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. http://hirshfeldsurface.netGoogle Scholar
First citationWatson, G. J. R., Turner, A. B. & Allen, S. (1993). Organic Materials for Non-linear Optics III, edited by G. J. Ashwell & D. Bloor. RSC Special Publication No. 137, pp. 112–117. Cambridge: Royal Society of Chemistry.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds