research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of a 1:1 cocrystal of nicotinamide with 2-chloro-5-nitro­benzoic acid

aDepartment of Chemistry, Visvesvaraya National Institute of Technology, Nagpur 440 010, Maharashtra, India, bDepartment of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal 462 066, Madhya Pradesh, India, cDepartment of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Kingdom of Saudi Arabia, and dDepartment of Biotechnology and Food Technology, Durban University of Technology, Durban 4001, South Africa
*Correspondence e-mail: kvenugopala@kfu.edu.sa, sknayak@chm.vnit.ac.in

Edited by E. V. Boldyreva, Russian Academy of Sciences, Russia (Received 20 August 2019; accepted 10 October 2019; online 22 October 2019)

In the title 1:1 cocrystal, C7H4ClNO4·C6H6N2O, nicotinamide (NIC) and 2-chloro-5-nitro­benzoic acid (CNBA) cocrystallize with one mol­ecule each of NIC and CNBA in the asymmetric unit. In this structure, CNBA and NIC form hydrogen bonds through O—H⋯N, N—H⋯O and C—H⋯O inter­actions along with N—H⋯O dimer hydrogen bonds of NIC. Further additional weak ππ inter­actions stabilize the mol­ecular assembly of this cocrystal.

1. Chemical context

Nicotinamide (NIC) derivatives are used in various applications, for example, in the prevention of type 1 diabetes (Elliott et al., 1993[Elliott, R., Pilcher, C., Stewart, A., Fergusson, D. & McGregor, M. (1993). Ann. N. Y. Acad. Sci. 696, 333-341.]) and nicotinamide cofactors are also used in preparative enzymatic synthesis (Chenault & Whitesides, 1987[Chenault, H. K. & Whitesides, G. M. (1987). Appl. Biochem. Biotechnol. 14, 147-197.]). The nicotinamide formulation has also been used for treatment in palliative radiotherapy (Horsman et al., 1993[Horsman, M. R., Hoyer, M., Honess, D. J., Dennis, I. F. & Overgaard, J. (1993). Radiother. Oncol. 27, 131-139.]). The pharmacological result for the active pharmaceutical ingredient (API) will increase if it becomes cocrystallized with a coformer or other active com­ponent (Schultheiss & Newman, 2009[Schultheiss, N. & Newman, A. (2009). Cryst. Growth Des. 9, 2950-2967.]; Lemmerer et al., 2010[Lemmerer, A., Esterhuysen, C. & Bernstein, J. (2010). J. Pharm. Sci. 99, 4054-4071.]). Chloro­benzoic acid derivatives are widely used in the pharmaceutical industry. 2-Chloro-4-nitro­benzoic acid is used for immunodeficiency diseases as an anti­viral and anti­cancer agent (Lemmerer et al., 2010[Lemmerer, A., Esterhuysen, C. & Bernstein, J. (2010). J. Pharm. Sci. 99, 4054-4071.]). In the title com­pound, NIC is cocrystallized with the CNBA coformer as it acts as an excellent candidate for cocrystallization because of the hydrogen-bond acceptor and donor parts (Dragovic et al., 1995[Dragovic, J., Kim, S. H., Brown, S. L. & Kim, J. H. (1995). Radiother. Oncol. 36, 225-228.]).

2. Structural commentary

The title com­pound CNBA–NIC (1:1) crystallizes in the monoclinic space group P21/c with four mol­ecules of NIC and CNBA in the unit cell. The dihedral angle between the amide plane with the mean plane of the phenyl part in NIC is 23.87 (1)°, and the dihedral angles of the carboxyl and nitro groups with the chloro­phenyl ring in CNBA are 24.92 (1) and 3.56 (1)°, respectively. In the asymmetric unit, an (CNBA)O–H⋯N inter­action plays a prime role in the mol­ecular recognition of this cocrystal (Fig. 1[link]).

[Figure 1]
Figure 1
The asymmetric unit of the title com­pound, showing 50% probability ellipsoids, the atom labelling and hydrogen bonding with dotted lines.

3. Supra­molecular features

In the crystal structure of the title cocrystal, a strong (CNBA)O—H⋯N(NIC) hydrogen bond and additional (NIC)N—H⋯O(CNBA) and (NIC)C—H⋯O(CNBA) hydrogen bonds are observed (Fig. 2[link] and Table 1[link]). In this cocrystal, the NIC mol­ecule forms a dimer with itself having an R22(8) graph-set motif (Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]). These dimers are further connected via C—H⋯O hydrogen bonding and form a tetra­meric ring with two mol­ecules each of NIC and CNBA with R22(10) graph-set motifs (Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]) (Fig. 2[link]). Furthermore, weak ππ inter­actions are observed for both NIC [3.68 (7) Å] and CNBA [3.73 (7) Å] which stabilize the mol­ecular assembly along the bc plane (Fig. 3[link]).

[Scheme 1]

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1 0.90 (2) 2.005 (19) 2.9004 (15) 171.4 (14)
N1—H1B⋯O3 0.873 (19) 2.116 (19) 2.9715 (14) 166.6 (16)
O2—H2⋯N2 1.07 (2) 1.49 (2) 2.5543 (13) 172 (2)
C3—H3⋯O4 0.986 (15) 2.516 (15) 3.4505 (16) 158.2 (12)
C4—H4⋯O5 0.979 (14) 2.442 (15) 3.3256 (17) 149.9 (12)
C5—H5⋯O5 0.956 (15) 2.450 (16) 3.0878 (17) 124.0 (11)
C6—H6⋯O3 0.959 (15) 2.608 (15) 3.452 (1) 147.0 (11)
C10—H10⋯O4 0.955 (15) 2.599 (16) 3.5010 (18) 157.6 (15)
[Figure 2]
Figure 2
Hydrogen bonds in the title com­pound showing the dimer formation through N—H⋯O inter­actions and tetra­mer formation through C—H⋯O inter­actions.
[Figure 3]
Figure 3
Weak ππ inter­actions stabilize the mol­ecular assembly of both mol­ecules in the crystal.

4. Hirshfeld surface analysis

To understand the role of inter­molecular inter­actions, we have utilized the Hirshfeld surface analysis visualizing tool (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]). The Hirshfeld surfaces and two-dimensional fingerprint plots developed using CrystalExplorer (Version 3.1; Wolff et al., 2012[Wolff, S., Grimwood, D., McKinnon, J., Turner, M., Jayatilaka, D. & Spackman, M. (2012). CrystalExplorer. The University of Western Australia.]) are shown in Fig. 4[link]. The red spot on the surface represents a strong inter­action through O—H⋯N and N—H⋯O hydrogen bonding, whereas the blue color represents a lack of inter­action. The dnorm map of the title com­pound NIC·CNBA and its pure com­ponents is shown in Fig. 4[link], where individual mol­ecular inter­actions were estimated. The fingerprint plot shows that O⋯H/H⋯O and H⋯H contribute the major part of the inter­action in all com­pounds (Fig. 4[link]). The O⋯H/H⋯O contact contributes 40% to the cocrystal NIC mol­ecule (Fig. 5[link]) and 20.5% to the pure NIC mol­ecule (NICOAM01; Miwa et al., 1999[Miwa, Y., Mizuno, T., Tsuchida, K., Taga, T. & Iwata, Y. (1999). Acta Cryst. B55, 78-84.]) (Fig. 6[link]), and H⋯H contributes 22% to the cocrystal NIC mol­ecule and 41% to the pure NIC mol­ecule. Similarly, O⋯H/H⋯O contacts contribute 33% to the cocrystal CNBA mol­ecule (Fig. 7[link]) and 36.6% to the pure CNBA mol­ecule (CLNBZA; Ferguson & Sim, 1962[Ferguson, G. & Sim, G. (1962). J. Chem. Soc. pp. 1767-1775.]) (Fig. 8[link]), and H⋯H contributes 15.2% to the cocrystal CNBA mol­ecule and 17.7% to the pure NIC mol­ecule.

[Figure 4]
Figure 4
Hirshfeld surfaces developed on (i) dnorm mapped over the pure NIC mol­ecule, (ii) dnorm mapped over the NIC mol­ecule in title com­pound, (iii) dnorm mapped over the pure CNBA mol­ecule and (iv) dnorm mapped over the CNBA mol­ecule in title com­pound.
[Figure 5]
Figure 5
Two-dimensional fingerprint plots and relative contributions of various inter­actions to the Hirshfeld surface of the NIC cocrystal mol­ecule.
[Figure 6]
Figure 6
Two-dimensional fingerprint plots and relative contributions of various inter­actions to the Hirshfeld surface of the pure NIC mol­ecule.
[Figure 7]
Figure 7
Two-dimensional fingerprint plots and relative contributions of various inter­actions to the Hirshfeld surface of the CNBA cocrystal mol­ecule.
[Figure 8]
Figure 8
Two-dimensional fingerprint plots and relative contributions of various inter­actions to the Hirshfeld surface of the pure CNBA mol­ecule

5. Database survey

A search for the title cocrystal in the Cambridge Structural Database (CSD, Version 5.40, update of February 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) found no hits. However, searches for NIC and CNBA gave 237 and 9 hits, respectively. A search for the NIC mol­ecule showed that the N atom on the phenyl ring forms strong O—H⋯N hydrogen bonds with a carboxyl H atom in the most of the cocrystals [ABULIU (Lou & Hu, 2011[Lou, B. & Hu, S. (2011). J. Chem. Crystallogr. 41, 1663-1668.]), BICQAH (Aitipamula et al., 2013[Aitipamula, S., Wong, A. B., Chow, P. S. & Tan, R. B. (2013). CrystEngComm, 15, 5877-5887.]), BICQEL (Aitipamula et al., 2013[Aitipamula, S., Wong, A. B., Chow, P. S. & Tan, R. B. (2013). CrystEngComm, 15, 5877-5887.]), BOBQUG (Zhang et al., 2013[Zhang, S.-W., Harasimowicz, M. T., de Villiers, M. M. & Yu, L. (2013). J. Am. Chem. Soc. 135, 18981-18989.]), CUYXUQ (Lemmerer & Bernstein, 2010[Lemmerer, A. & Bernstein, J. (2010). CrystEngComm, 12, 2029-2033.]), DINRUP (Lemmerer et al., 2013[Lemmerer, A., Adsmond, D. A., Esterhuysen, C. & Bernstein, J. (2013). Cryst. Growth Des. 13, 3935-3952.]), DINSEA (Lemmerer et al., 2013[Lemmerer, A., Adsmond, D. A., Esterhuysen, C. & Bernstein, J. (2013). Cryst. Growth Des. 13, 3935-3952.]), EDAPOQ (Orola & Veidis, 2009[Orola, L. & Veidis, M. V. (2009). CrystEngComm, 11, 415-417.]) etc]. For the CNBA search, two structures were found similar to the title com­pound where strong hydrogen bonding is formed by the carboxyl H atom with a pyridine N atom [AJIWIA (Gotoh & Ishida, 2009[Gotoh, K. & Ishida, H. (2009). Acta Cryst. C65, o534-o538.]) and OCAZAT (Ishida et al., 2001[Ishida, H., Rahman, B. & Kashino, S. (2001). Acta Cryst. C57, 876-879.])]. AJIWIA also shows halogen bonds through C—O⋯Cl bonding and forms a dimer through C—H⋯O hydrogen bonding.

6. Synthesis and crystallization

All the chemicals used for the synthesis were purchased from Alfa Aesar and used without further purification. A stock solution was prepared from an equimolar mixture of 2-chloro-5 nitro­benzoic acid (82.44 mg, 0.409 mmol) and nicotinamide (50 mg, 0.409 mmol) in a minimum amount of ethanol and made up to a volume of 10 ml. Ten different combinations of the mixture were prepared using ethanol–hexane as the solvent mixture over the ratio range 1:1 to 1:10. The mixture was kept in a 5 ml beaker and covered with parafilm, with four to five small holes in it. These solutions were allowed to evaporate slowly at room temperature (27 °C) over several days to obtain single crystals. After a few days, colourless crystals were obtained from ethanol–hexane solutions with concentration ratios of 1:10, 1:2 and 1:4. The melting point of the obtained crystal was 159.7 °C.

7. Refinement

Crystal data, data collection, and structure refinement details are summarized in Table 2[link]. All H atoms were found in a difference Fourier maps and were refind freely.

Table 2
Experimental details

Crystal data
Chemical formula C7H4ClNO4·C6H6N2O
Mr 323.69
Crystal system, space group Monoclinic, P21/c
Temperature (K) 123
a, b, c (Å) 7.4897 (1), 26.3607 (5), 7.0623 (1)
β (°) 96.356 (1)
V3) 1385.77 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.31
Crystal size (mm) 0.28 × 0.22 × 0.15
 
Data collection
Diffractometer Bruker Kappa APEXII DUO
Absorption correction Multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.874, 0.908
No. of measured, independent and observed [I > 2σ(I)] reflections 29950, 4123, 3316
Rint 0.037
(sin θ/λ)max−1) 0.708
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.094, 1.08
No. of reflections 4123
No. of parameters 239
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.30, −0.26
Computer programs: APEX2 (Bruker, 2012[Bruker (2012). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2012[Bruker (2012). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS18 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), SHELXL2018 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS18 (Sheldrick, 2015); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and PLATON (Spek, 2009).

2-Chloro-5-nitrobenzoic acid–nicotinamide (1/1) top
Crystal data top
C7H4ClNO4·C6H6N2ODx = 1.551 Mg m3
Mr = 323.69Melting point: 159.7 K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.4897 (1) ÅCell parameters from 4123 reflections
b = 26.3607 (5) Åθ = 1.5–30.2°
c = 7.0623 (1) ŵ = 0.31 mm1
β = 96.356 (1)°T = 123 K
V = 1385.77 (4) Å3Block, colorless
Z = 40.28 × 0.22 × 0.15 mm
F(000) = 664
Data collection top
Bruker Kappa APEXII DUO
diffractometer
4123 independent reflections
Radiation source: fine-focus sealed tube3316 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ω scansθmax = 30.2°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1010
Tmin = 0.874, Tmax = 0.908k = 3737
29950 measured reflectionsl = 99
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038All H-atom parameters refined
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.0394P)2 + 0.4303P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
4123 reflectionsΔρmax = 0.30 e Å3
239 parametersΔρmin = 0.26 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Single-crystal X-ray diffraction data were collected on a Bruker KAPPA APEX II DUO diffractometer using graphite-monochromated Mo-Kα radiation (λ = 0.71073Å)(Bruker, 2012). The data collection was performed at 153 (2) K. The temperature was monitored by an Oxford Cryostream cooling system (Oxford Cryostat). the program SAINT (Bruker, 2012) were used for cell refinement and data reduction. The data were scaled and absorption correction performed using SADABS(Bruker, 2001). The structure was solved by direct methods using SHELXS-18(Sheldrick, 2015) and refined by full-matrix least-squares methods based on F2 using SHELXL-2018/3(Sheldrick, 2015). The computing , Mercury(Macrae et al., 2008) and PLATON (Spek, 2009) were used for molecular graphics and molecular interactions. All non-hydrogen atoms were refined anisotropically.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.18141 (5)0.18331 (2)0.33099 (6)0.04137 (12)
O20.39368 (12)0.16413 (3)0.29015 (14)0.0267 (2)
O10.87918 (13)0.45197 (3)1.35865 (13)0.0268 (2)
O50.29333 (16)0.39338 (4)0.38136 (16)0.0381 (3)
O30.16833 (14)0.13103 (3)0.43221 (14)0.0308 (2)
O40.50015 (15)0.34087 (4)0.32242 (18)0.0417 (3)
N10.87836 (15)0.53606 (4)1.29452 (16)0.0226 (2)
N20.57395 (14)0.41744 (4)0.85619 (15)0.0208 (2)
N30.34615 (16)0.35059 (4)0.35149 (16)0.0262 (2)
C60.75383 (15)0.50921 (4)0.89924 (17)0.0189 (2)
C10.83945 (15)0.48801 (4)1.24921 (17)0.0193 (2)
C20.74506 (15)0.47734 (4)1.05512 (16)0.0172 (2)
C120.21719 (17)0.30889 (4)0.35036 (17)0.0209 (2)
C40.59051 (17)0.44720 (5)0.70484 (18)0.0221 (2)
C130.28144 (16)0.25993 (4)0.35032 (17)0.0193 (2)
C50.67736 (17)0.49327 (5)0.72106 (18)0.0217 (2)
C90.02066 (17)0.23039 (5)0.34499 (19)0.0243 (3)
C30.65244 (16)0.43172 (4)1.02733 (17)0.0201 (2)
C80.16239 (16)0.21927 (4)0.35036 (16)0.0191 (2)
C100.08225 (18)0.28024 (5)0.3432 (2)0.0291 (3)
C70.24078 (17)0.16659 (4)0.36051 (17)0.0205 (2)
C110.03681 (19)0.32024 (5)0.34746 (19)0.0261 (3)
H30.639 (2)0.4084 (6)1.134 (2)0.022 (4)*
H60.813 (2)0.5415 (6)0.909 (2)0.022 (4)*
H130.404 (2)0.2537 (6)0.352 (2)0.028 (4)*
H40.540 (2)0.4339 (6)0.581 (2)0.025 (4)*
H50.691 (2)0.5138 (6)0.612 (2)0.026 (4)*
H1A0.947 (2)0.5426 (6)1.405 (3)0.035 (4)*
H1B0.850 (2)0.5613 (7)1.216 (3)0.038 (5)*
H110.006 (2)0.3550 (7)0.346 (3)0.040 (5)*
H100.208 (3)0.2870 (7)0.338 (3)0.042 (5)*
H20.462 (3)0.1292 (9)0.326 (3)0.074 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.02685 (18)0.0403 (2)0.0562 (3)0.01523 (14)0.00135 (15)0.00272 (16)
O20.0251 (5)0.0190 (4)0.0362 (5)0.0037 (3)0.0040 (4)0.0050 (4)
O10.0362 (5)0.0207 (4)0.0216 (5)0.0011 (4)0.0050 (4)0.0024 (3)
O50.0529 (7)0.0147 (4)0.0430 (6)0.0008 (4)0.0109 (5)0.0029 (4)
O30.0424 (6)0.0172 (4)0.0346 (5)0.0037 (4)0.0115 (4)0.0017 (4)
O40.0345 (6)0.0268 (5)0.0654 (8)0.0094 (4)0.0126 (5)0.0039 (5)
N10.0265 (5)0.0186 (5)0.0213 (5)0.0006 (4)0.0040 (4)0.0017 (4)
N20.0211 (5)0.0163 (5)0.0243 (5)0.0016 (4)0.0008 (4)0.0014 (4)
N30.0357 (6)0.0165 (5)0.0253 (6)0.0031 (4)0.0022 (4)0.0021 (4)
C60.0196 (5)0.0151 (5)0.0220 (6)0.0004 (4)0.0022 (4)0.0009 (4)
C10.0187 (5)0.0192 (6)0.0200 (6)0.0007 (4)0.0023 (4)0.0015 (4)
C20.0167 (5)0.0164 (5)0.0184 (5)0.0018 (4)0.0015 (4)0.0014 (4)
C120.0275 (6)0.0164 (5)0.0184 (6)0.0018 (4)0.0006 (4)0.0000 (4)
C40.0247 (6)0.0197 (6)0.0207 (6)0.0010 (5)0.0022 (5)0.0025 (4)
C130.0209 (5)0.0183 (5)0.0186 (6)0.0003 (4)0.0011 (4)0.0004 (4)
C50.0268 (6)0.0184 (6)0.0194 (6)0.0004 (4)0.0006 (5)0.0017 (4)
C90.0216 (6)0.0256 (6)0.0257 (6)0.0044 (5)0.0025 (5)0.0000 (5)
C30.0216 (5)0.0173 (5)0.0212 (6)0.0002 (4)0.0015 (4)0.0001 (4)
C80.0216 (5)0.0177 (5)0.0177 (6)0.0017 (4)0.0012 (4)0.0002 (4)
C100.0217 (6)0.0320 (7)0.0335 (7)0.0045 (5)0.0027 (5)0.0004 (5)
C70.0266 (6)0.0167 (5)0.0174 (6)0.0019 (4)0.0011 (4)0.0008 (4)
C110.0305 (7)0.0218 (6)0.0255 (7)0.0061 (5)0.0010 (5)0.0004 (5)
Geometric parameters (Å, º) top
Cl1—C91.7244 (13)C1—C21.4977 (16)
O2—C71.2994 (15)C2—C31.3913 (16)
O2—H21.07 (2)C12—C131.3774 (16)
O1—C11.2399 (14)C12—C111.3816 (18)
O5—N31.2215 (15)C4—C51.3766 (17)
O3—C71.2208 (14)C4—H40.977 (16)
O4—N31.2209 (16)C13—C81.3941 (16)
N1—C11.3307 (16)C13—H130.932 (16)
N1—H1A0.901 (19)C5—H50.957 (16)
N1—H1B0.876 (18)C9—C101.3921 (19)
N2—C31.3383 (16)C9—C81.3984 (17)
N2—C41.3426 (16)C3—H30.984 (15)
N3—C121.4626 (16)C8—C71.5064 (16)
C6—C51.3887 (17)C10—C111.379 (2)
C6—C21.3922 (16)C10—H100.955 (18)
C6—H60.959 (15)C11—H110.971 (18)
C7—O2—H2111.9 (13)C12—C13—H13120.6 (9)
C1—N1—H1A118.6 (11)C8—C13—H13119.6 (9)
C1—N1—H1B122.7 (12)C4—C5—C6119.08 (11)
H1A—N1—H1B118.4 (16)C4—C5—H5121.5 (9)
C3—N2—C4118.98 (10)C6—C5—H5119.4 (9)
O4—N3—O5123.56 (12)C10—C9—C8121.40 (11)
O4—N3—C12118.49 (11)C10—C9—Cl1116.76 (10)
O5—N3—C12117.95 (12)C8—C9—Cl1121.80 (10)
C5—C6—C2118.89 (11)N2—C3—C2122.20 (11)
C5—C6—H6118.5 (9)N2—C3—H3116.1 (9)
C2—C6—H6122.6 (9)C2—C3—H3121.7 (9)
O1—C1—N1123.25 (11)C13—C8—C9117.65 (11)
O1—C1—C2118.88 (10)C13—C8—C7117.57 (10)
N1—C1—C2117.87 (11)C9—C8—C7124.77 (11)
C3—C2—C6118.46 (11)C11—C10—C9120.57 (12)
C3—C2—C1117.96 (10)C11—C10—H10119.3 (11)
C6—C2—C1123.47 (10)C9—C10—H10120.1 (11)
C13—C12—C11122.95 (11)O3—C7—O2124.84 (11)
C13—C12—N3118.27 (11)O3—C7—C8122.60 (11)
C11—C12—N3118.78 (11)O2—C7—C8112.54 (10)
N2—C4—C5122.26 (11)C10—C11—C12117.62 (12)
N2—C4—H4116.2 (9)C10—C11—H11120.6 (11)
C5—C4—H4121.6 (9)C12—C11—H11121.8 (11)
C12—C13—C8119.79 (11)
C5—C6—C2—C32.96 (17)C1—C2—C3—N2175.60 (10)
C5—C6—C2—C1173.20 (11)C12—C13—C8—C91.77 (17)
O1—C1—C2—C321.57 (16)C12—C13—C8—C7176.93 (11)
N1—C1—C2—C3159.19 (11)C10—C9—C8—C131.15 (19)
O1—C1—C2—C6154.61 (12)Cl1—C9—C8—C13176.29 (9)
N1—C1—C2—C624.63 (17)C10—C9—C8—C7177.44 (12)
O4—N3—C12—C1311.29 (17)Cl1—C9—C8—C75.12 (18)
O5—N3—C12—C13168.81 (12)C8—C9—C10—C110.3 (2)
O4—N3—C12—C11168.07 (12)Cl1—C9—C10—C11177.83 (11)
O5—N3—C12—C1111.83 (17)C13—C8—C7—O3151.23 (12)
C3—N2—C4—C53.55 (18)C9—C8—C7—O327.36 (19)
C11—C12—C13—C81.03 (19)C13—C8—C7—O226.97 (15)
N3—C12—C13—C8179.64 (11)C9—C8—C7—O2154.44 (12)
N2—C4—C5—C61.33 (19)C9—C10—C11—C121.0 (2)
C2—C6—C5—C41.97 (17)C13—C12—C11—C100.4 (2)
C4—N2—C3—C22.47 (17)N3—C12—C11—C10178.92 (12)
C6—C2—C3—N20.78 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.90 (2)2.005 (19)2.9004 (15)171.4 (14)
N1—H1B···O30.873 (19)2.116 (19)2.9715 (14)166.6 (16)
O2—H2···N21.07 (2)1.49 (2)2.5543 (13)172 (2)
C3—H3···O40.986 (15)2.516 (15)3.4505 (16)158.2 (12)
C4—H4···O50.979 (14)2.442 (15)3.3256 (17)149.9 (12)
C5—H5···O50.956 (15)2.450 (16)3.0878 (17)124.0 (11)
C6—H6···O30.959 (15)2.608 (15)3.452 (1)147.0 (11)
C10—H10···O40.955 (15)2.599 (16)3.5010 (18)157.6 (15)
 

Acknowledgements

The authors are thankful to IISER, Bhopal, for the single-crystal X-ray data collection.

Funding information

Funding for this research was provided by: National Research Foundation and Durban University of Technology, South Africa (grant Nos. 96807 and 98884), and SERB, DST India (grant No. ECR/2016/001820) for research support and instrument facilities.

References

First citationAitipamula, S., Wong, A. B., Chow, P. S. & Tan, R. B. (2013). CrystEngComm, 15, 5877–5887.  CSD CrossRef CAS Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2012). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChenault, H. K. & Whitesides, G. M. (1987). Appl. Biochem. Biotechnol. 14, 147–197.  CrossRef CAS PubMed Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDragovic, J., Kim, S. H., Brown, S. L. & Kim, J. H. (1995). Radiother. Oncol. 36, 225–228.  CrossRef CAS PubMed Google Scholar
First citationElliott, R., Pilcher, C., Stewart, A., Fergusson, D. & McGregor, M. (1993). Ann. N. Y. Acad. Sci. 696, 333–341.  CrossRef CAS PubMed Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationFerguson, G. & Sim, G. (1962). J. Chem. Soc. pp. 1767–1775.  CSD CrossRef Google Scholar
First citationGotoh, K. & Ishida, H. (2009). Acta Cryst. C65, o534–o538.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHorsman, M. R., Hoyer, M., Honess, D. J., Dennis, I. F. & Overgaard, J. (1993). Radiother. Oncol. 27, 131–139.  CrossRef CAS PubMed Google Scholar
First citationIshida, H., Rahman, B. & Kashino, S. (2001). Acta Cryst. C57, 876–879.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLemmerer, A., Adsmond, D. A., Esterhuysen, C. & Bernstein, J. (2013). Cryst. Growth Des. 13, 3935–3952.  Web of Science CSD CrossRef CAS Google Scholar
First citationLemmerer, A. & Bernstein, J. (2010). CrystEngComm, 12, 2029–2033.  Web of Science CSD CrossRef CAS Google Scholar
First citationLemmerer, A., Esterhuysen, C. & Bernstein, J. (2010). J. Pharm. Sci. 99, 4054–4071.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationLou, B. & Hu, S. (2011). J. Chem. Crystallogr. 41, 1663–1668.  CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMiwa, Y., Mizuno, T., Tsuchida, K., Taga, T. & Iwata, Y. (1999). Acta Cryst. B55, 78–84.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOrola, L. & Veidis, M. V. (2009). CrystEngComm, 11, 415–417.  Web of Science CSD CrossRef CAS Google Scholar
First citationSchultheiss, N. & Newman, A. (2009). Cryst. Growth Des. 9, 2950–2967.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWolff, S., Grimwood, D., McKinnon, J., Turner, M., Jayatilaka, D. & Spackman, M. (2012). CrystalExplorer. The University of Western Australia.  Google Scholar
First citationZhang, S.-W., Harasimowicz, M. T., de Villiers, M. M. & Yu, L. (2013). J. Am. Chem. Soc. 135, 18981–18989.  CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds