research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 2-amino­pyridinium hydrogen phthalate

aDepartment of Physics, School of Advanced Sciences, Kalasalingam Academy of Research and Education, Krishnankoil - 626 126, India, bCondensed Matter Physics Laboratory, International Research Centre, Kalasalingam Academy of Research and Education, Krishnankoil - 626 126, India, cDepartment of Physics, Er. Perumal Manimekalai College of Engineering, Hosur 635 117, India, and dDepartment of Physics, University College of Engineering, Anna University, Nagercoil 629 004, India
*Correspondence e-mail: athi81s@yahoo.co.in

Edited by K. Fejfarova, Institute of Biotechnology CAS, Czech Republic (Received 27 August 2019; accepted 19 September 2019; online 8 October 2019)

Amino­pyridine and phthalic acid are well known synthons for supra­molecular architectures for the synthesis of new materials for optical applications. The 2-amino­pyridinium hydrogen phthalate title salt, C5H7N2+·C8H5O4, crystallizes in the non-centrosymmetric space group P21. The nitro­gen atom of the –NH2 group in the cation deviates from the fitted pyridine plane by 0.035 (7) Å. The plane of the pyridinium ring and phenyl ring of the anion are oriented at an angle of 80.5 (3)° to each other in the asymmetric unit. The anion features a strong intra­molecular O—H⋯O hydrogen bond, forming a self-associated S(7) ring motif. The crystal packing is dominated by inter­molecular N—H⋯O hydrogen bonds leading to the formation of 21 helices, with a C(11) chain motif. They propagate along the b axis and enclose R22(8) ring motifs. The helices are linked by C—H⋯O hydrogen bonds, forming layers parallel to the ab plane. Hirshfeld surface analysis and two-dimensional fingerprint plots were used to investigate and qu­antify the inter­molecular inter­actions in the crystal.

1. Chemical context

Crystal engineering and the design of supra­molecular architectures are of significant inter­est owing to the technological applications of the resulting materials in the electronics and optical industries. Supra­molecular inter­actions such as charge-assisted hydrogen bonds and ππ inter­actions play an important role in crystal engineering as they lead to directional mol­ecular recognition events between mol­ecules or ions, and therefore mediate self-assembly of well-defined supra­molecular networks (Guelmami et al., 2007[Guelmami, L., Guerfel, T. & Jouini, A. (2007). Mater. Res. Bull. 42, 446-455.]; Prakash et al., 2018[Prakash, S. M., Naveen, S., Lokanath, N. K., Suchetan, P. A. & Warad, I. (2018). Acta Cryst. E74, 1111-1116.]; Siva et al., 2017[Siva, V., Kumar, S. S., Shameem, A., Raja, M., Athimoolam, S. & Bahadur, S. A. (2017). J. Mater. Sci. Mater. Electron. 28, 12484-12496.]). Amine-based materials are part­ic­ularly important as they are synthesized by the condensation of the corresponding aldehydes and amines and exhibit strong inter­molecular hydrogen bonds between the electronegative acceptor and the N atom of the imine moiety. Pyridinium families are now considered to be potential materials for optical applications because of their flexibility in mol­ecular design, strength and thermal stability, which are derived from delocalized clouds of electrons. Another electronic field of research related to 2-amino­pyridinium salts is focused on their optical limiting and frequency-conversion applications (Liu et al., 2015[Liu, Z., Liu, Y., Wang, J. & Yang, G. (2015). Inorg. Chem. Commun. 61, 109-112.]; Siva et al., 2019[Siva, V., Bahadur, S. A., Shameem, A., Athimoolam, S., Lakshmi, K. U. & Vinitha, G. (2019). J. Mol. Struct. 1191, 110-117.]). The present work is a part of a structural study of new proton-transfer compounds of 2-amino­pyridine with phthalic acid and the corresponding hydrogen-bonding inter­actions. The hydrogen bonding present in the crystal of the title salt was substanti­ated by Hirshfeld surface analysis.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title salt is shown in Fig. 1[link]. Protonation on the N-atom site of the pyridine ring, atom N11, is confirmed by the elongated C—N bond distances [C11—N11 = 1.341 (8) Å and C15—N11 = 1.357 (9) Å] and the enlarged C11—N11—C15 bond angle of 122.3 (6)°. The nitro­gen atom of the –NH2 group in the cation deviates from the pyridine ring plane (r.m.s. deviation = 0.0062 Å) by 0.035 (7) Å. The planes of the pyridinium ring of the cation and the phenyl ring of the anion are oriented at a dihedral angle of 80.5 (3)° in the asymmetric unit. In the anion the twisting of the carboxyl planes out of the benzene ring is negligible [planes O21/O22/C27 and O23/O24/C28 are inclined to the benzene ring (C21–C26) by 1.3 (8) and 0.7 (7)°, respectively], because of the strong O22—H22A⋯O23 intra­molecular hydrogen bond (Fig. 1[link] and Table 1[link]), which makes a self-associated S(7) ring motif.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O22—H22A⋯O23 1.08 (10) 1.32 (10) 2.402 (7) 173 (9)
N11—H1N⋯O24i 0.93 (7) 1.78 (7) 2.705 (7) 180 (7)
N12—H12A⋯O23i 0.86 2.11 2.965 (7) 174
N12—H12B⋯O22ii 0.86 2.31 3.003 (8) 138
C12—H12⋯O23iii 0.93 2.53 3.374 (8) 151
C14—H14⋯O21iv 0.93 2.50 3.203 (9) 132
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+1]; (ii) x, y, z+1; (iii) x+1, y, z+1; (iv) [-x+2, y-{\script{1\over 2}}, -z+1].
[Figure 1]
Figure 1
The asymmetric unit of the title salt, with atom labelling and 50% probability displacement ellipsoids.

3. Supra­molecular features

2-Amino­pyridine and phthalic acid are known materials for structure-extension properties, which connect the mol­ecules in the supra­molecular assembly. These supra­molecular synthons are crystallized together not only to study the mol­ecular structure but also the crystal packing via inter­molecular inter­actions. This structure-extension property of the synthon mol­ecules is generally exploited for possible non-centrosymmetric materials, which are desired as they possess many applications. The structure extension of the mol­ecules is possible by linear (chain C motifs) and cyclic (ring R motifs) hydrogen-bonding associations. This was accomplished in the title compound, which exhibits non-linear optical (NLO) properties, because of the extensive inter­molecular inter­actions.

The packing of the ions in the crystal is dominated by N—H⋯O and C—H⋯O hydrogen bonds (Table 1[link]). A cation–anion hetero-synthon is formed via two N—H⋯O hydrogen bonds (N11—H1N⋯O24i and N12—H12A⋯O23i), that enclose an R22(8) ring motif (Fig. 2[link] and Table 1[link]). These hetero-synthons are linked by a further N—H⋯O hydrogen bond (N12—H12B⋯O22ii), to form 21 helices, with a C(11) chain motif, that propagate along the b-axis direction. The helices are linked by C—H⋯O hydrogen bonds, forming layers lying parallel to the ab plane (Fig. 3[link] and Table 1[link]). There are no significant C—H⋯π or ππ contacts present in the crystal (PLATON; Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

[Figure 2]
Figure 2
The crystal packing of the title salt viewed along the a axis. Hydrogen bonds are shown as dashed lines (Table 1[link]). For clarity, the C-bound H atoms have been omitted.
[Figure 3]
Figure 3
Packing of the title salt viewed along the c axis. Hydrogen bonds are shown as dashed lines (Table 1[link]). For clarity, H atoms not involved in hydrogen bonding have been omitted.

4. Hirshfeld surface analysis

The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) were performed with CrystalExplorer17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. http://hirshfeldsurface.net]). The Hirshfeld surface is colour-mapped with the normalized contact distance, dnorm, from red (distances shorter than the sum of the van der Waals radii) through white to blue (distances longer than the sum of the van der Waals radii).

The Hirshfeld surface (HS) of the title salt, mapped over dnorm in the colour range of −0.7098 to 1.1914 arbitrary units, is given in Fig. 4[link]. The short inter­atomic contacts, i.e. the donors and acceptors of the hydrogen bonds (Table 1[link]), are indicated by the red spots.

[Figure 4]
Figure 4
Hirshfeld surface for the title salt mapped over dnorm, in the colour range −0.7098 to 1.1914 au.

The two-dimensional fingerprint plots for the title salt, the cation and the anion are given in Fig. 5[link]. The relative percentage contributions of close contacts to the Hirshfeld surfaces of the title salt (Fig. 5[link]a), and the cation (Fig. 5[link]b) and anion (Fig. 5[link]c), are compared in Table 2[link].

Table 2
Relative percentage contributions of close contacts to the Hirshfeld surface for the title salt, the cation and the anion

Contact cation+anion cation anion
H⋯H 32.0 40.4 30.6
O⋯H/H⋯O 31.0 26.3 31.6
C⋯H/H⋯C 22.0 18.2 24.0
C⋯O 7.3 4.6 8.8
N⋯H/H⋯N 2.5 5.1 0.4
C⋯C 2.5 2.2 2.6
[Figure 5]
Figure 5
(a) The full two-dimensional fingerprint plot and the fingerprint plots delineated into H⋯H, O⋯H/H⋯O, C⋯H/H⋯C and C⋯O contacts for the title salt, (b) the full two-dimensional fingerprint plot and fingerprint plots delineated into H⋯H, O⋯H/H⋯O, C⋯H/H⋯C and C⋯O contacts for the cation, and (c) the full two-dimensional fingerprint plot and fingerprint plots delineated into H⋯H, O⋯H/H⋯O, C⋯H/H⋯C and C⋯O contacts for the anion (see Table 2[link] for further details).

For the title salt (Fig. 5[link]a), the most significant contributions to the HS are from H⋯H (32.0%), O⋯H/H⋯O (31.0%), C⋯H/H⋯C (22.0%) and C⋯O (7.3%) contacts. On examination of the contributions to the HS of the cation (Fig. 5[link]b) and anion (Fig. 5[link]c) individually, it can be seen that the cation makes the largest contribution to the H⋯H contacts (40.4%), while the anion makes the largest contributions to the O⋯H/H⋯O (31.6%), C⋯H/H⋯C(24.0%) and C⋯O (8.8%) contacts (see also Table 2[link]).

5. Database survey

A search of the Cambridge Structural Database (Version 5.40, last update May 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for 2-amino­pyridinium salts indicated that the crystal structures of more than 220 structures have been reported. A search for 2-amino­pyridinium benzoate salts gave 45 hits for 35 structures. The most significant in relation to the title salt are: 2-amino­pyridinium benzoate (LUPZOL; Odabaşoğlu et al., 2003[Odabasoǧlu, M., Büyükgüngör, O. & Lönnecke, P. (2003). Acta Cryst. C59, o51-o52.]), 2-amino­pyridinium 2′-carb­oxy­biphenyl-4-carboxyl­ate (DEZCOC; Wang et al., 2013[Wang, Z.-L., Wei, L.-H. & Li, M.-X. (2013). Chin. J. Struct. Chem. 32, 756-762.]), bis­(2-amino­pyridine) terephthalate (LAPMUL; Bis & Zaworotko), 2-amino­pyridinium isophthalate (Bis & Zaworotko, 2005[Bis, J. A. & Zaworotko, M. J. (2005). Cryst. Growth Des. 5, 1169-1179.]) and bis­(2-amino­pyridinium) 2,5-di­carb­oxy­benzene-1,4-di­carboxyl­ate (Rodrigues et al., 2012[Rodrigues, V. H., Hakimi, M. & Motieiyan, E. (2012). Acta Cryst. E68, o1524.]). In the crystals, the same hetero-synthon is formed via N—H⋯O hydrogen bonds. The CO2 groups in general lie close to the plane of the benzene ring in LUPZOL, LAQGOA and ZARHOR; the dihedral angle varies from 1.85–6.09°. However, the corresponding dihedral angles in DEZCOC and LAPMUL are considerably lager; ca 47.92 and 23.97° in DEZCOC and 17.37° in LAPMUK. While DEZCOC crystallizes in a chiral space group, P32, the other four compounds, LUPZOL, LAPMUL, LAQGOA and ZARHOR, crystallize in a centrosymmetric monoclinic space group (P21/c or P21/n) and hence do not exhibit NLO properties.

6. Synthesis and crystallization

A 1:1 mixture of 2-amino­pyridine and phthalic acid was heated to 313 K and stirred for 1 h before being poured into a petri dish and kept undisturbed for 25 days. Colourless block-shaped single crystals were obtained by the slow evaporation of a methanol and water (v:v = 20:80%) solution.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The OH and NH H atoms were located in a difference-Fourier map and refined freely. The NH2 and C-bound H atoms were included in calculated positions and treated as riding atoms: N—H = 0.86 Å, C—H = 0.93 Å with Uiso(H) = 1.2Ueq(N, C).

Table 3
Experimental details

Crystal data
Chemical formula C5H7N2+·C8H5O4
Mr 260.25
Crystal system, space group Monoclinic, P21
Temperature (K) 293
a, b, c (Å) 5.1593 (6), 8.6124 (9), 13.5745 (19)
β (°) 97.087 (4)
V3) 598.56 (13)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.11
Crystal size (mm) 0.26 × 0.24 × 0.20
 
Data collection
Diffractometer Bruker SMART APEX CCD area-detector
No. of measured, independent and observed [I > 2σ(I)] reflections 6704, 2099, 1972
Rint 0.023
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.186, 1.24
No. of reflections 2099
No. of parameters 180
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.35, −0.24
Absolute structure Flack x determined using 880 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.1 (4)
Computer programs: SMART and SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b) and PLATON (Spek, 2009).

2-Aminopyridinium hydrogen phthalate top
Crystal data top
C5H7N2+·C8H5O4F(000) = 272
Mr = 260.25Dx = 1.444 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 5.1593 (6) ÅCell parameters from 2425 reflections
b = 8.6124 (9) Åθ = 2.2–24.7°
c = 13.5745 (19) ŵ = 0.11 mm1
β = 97.087 (4)°T = 293 K
V = 598.56 (13) Å3Block, colourless
Z = 20.26 × 0.24 × 0.20 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
Rint = 0.023
Radiation source: fine-focus sealed tubeθmax = 25.0°, θmin = 1.5°
ω scansh = 66
6704 measured reflectionsk = 1010
2099 independent reflectionsl = 1614
1972 reflections with I > 2σ(I)
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.059H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.186 w = 1/[σ2(Fo2) + (0.0796P)2 + 0.5949P]
where P = (Fo2 + 2Fc2)/3
S = 1.24(Δ/σ)max < 0.001
2099 reflectionsΔρmax = 0.35 e Å3
180 parametersΔρmin = 0.24 e Å3
1 restraintAbsolute structure: Flack x determined using 880 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: dualAbsolute structure parameter: 0.1 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C110.5973 (12)0.4659 (7)0.8983 (5)0.0401 (14)
C120.7974 (14)0.3719 (9)0.9463 (6)0.0545 (19)
H120.82330.36571.01520.065*
C130.9516 (13)0.2908 (8)0.8913 (7)0.056 (2)
H131.08090.22680.92320.067*
C140.9221 (15)0.3005 (8)0.7882 (7)0.057 (2)
H141.03230.24660.75100.069*
C150.7263 (13)0.3915 (8)0.7440 (5)0.0489 (16)
H150.70020.39920.67510.059*
N110.5683 (10)0.4714 (6)0.7988 (4)0.0370 (12)
N120.4392 (12)0.5509 (8)0.9461 (4)0.0532 (16)
H12A0.32160.60790.91340.064*
H12B0.45420.54921.00990.064*
H1N0.448 (13)0.538 (8)0.764 (5)0.031 (15)*
C210.1288 (10)0.3445 (6)0.3331 (4)0.0302 (12)
C220.0707 (13)0.3464 (8)0.4303 (4)0.0421 (15)
H220.06150.28200.44720.050*
C230.1998 (15)0.4394 (9)0.5026 (5)0.0534 (18)
H230.15310.43850.56660.064*
C240.3968 (15)0.5326 (9)0.4797 (5)0.0514 (17)
H240.48500.59690.52780.062*
C250.4648 (13)0.5309 (8)0.3840 (5)0.0465 (15)
H250.60350.59250.36970.056*
C260.3347 (10)0.4413 (7)0.3089 (4)0.0333 (13)
C270.4332 (12)0.4634 (9)0.2093 (5)0.0431 (15)
C280.0455 (11)0.2378 (7)0.2648 (4)0.0335 (13)
O210.6142 (12)0.5515 (7)0.2021 (4)0.0696 (16)
O220.3306 (11)0.3890 (8)0.1326 (4)0.0627 (15)
O230.0154 (9)0.2241 (6)0.1742 (3)0.0469 (11)
O240.2148 (10)0.1635 (6)0.3020 (3)0.0488 (12)
H22A0.17 (2)0.320 (11)0.149 (7)0.08 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C110.039 (3)0.039 (3)0.043 (3)0.011 (3)0.004 (3)0.009 (3)
C120.052 (4)0.052 (4)0.055 (4)0.006 (3)0.014 (3)0.020 (3)
C130.034 (3)0.046 (4)0.083 (6)0.000 (3)0.008 (4)0.016 (4)
C140.046 (4)0.044 (4)0.084 (6)0.009 (3)0.014 (4)0.003 (4)
C150.046 (3)0.048 (4)0.052 (4)0.001 (3)0.002 (3)0.007 (3)
N110.034 (2)0.038 (3)0.038 (3)0.002 (2)0.002 (2)0.006 (2)
N120.059 (4)0.066 (4)0.036 (3)0.016 (3)0.010 (3)0.011 (3)
C210.029 (3)0.031 (3)0.030 (3)0.004 (2)0.003 (2)0.001 (2)
C220.046 (3)0.048 (4)0.032 (3)0.006 (3)0.006 (3)0.003 (3)
C230.068 (4)0.058 (4)0.033 (3)0.000 (4)0.001 (3)0.009 (3)
C240.056 (4)0.053 (4)0.042 (4)0.003 (3)0.006 (3)0.016 (3)
C250.039 (3)0.047 (4)0.051 (4)0.006 (3)0.001 (3)0.001 (3)
C260.031 (3)0.032 (3)0.036 (3)0.004 (2)0.003 (2)0.002 (2)
C270.040 (3)0.046 (3)0.044 (4)0.001 (3)0.007 (3)0.011 (3)
C280.038 (3)0.031 (3)0.031 (3)0.003 (3)0.001 (2)0.003 (2)
O210.067 (3)0.073 (4)0.075 (4)0.023 (3)0.033 (3)0.001 (3)
O220.065 (3)0.093 (4)0.033 (2)0.016 (3)0.015 (2)0.001 (3)
O230.056 (3)0.056 (3)0.028 (2)0.009 (2)0.0030 (19)0.006 (2)
O240.056 (3)0.055 (3)0.035 (2)0.021 (2)0.002 (2)0.004 (2)
Geometric parameters (Å, º) top
C11—N121.325 (9)C21—C281.519 (8)
C11—N111.341 (8)C22—C231.374 (10)
C11—C121.407 (9)C22—H220.9300
C12—C131.351 (11)C23—C241.361 (11)
C12—H120.9300C23—H230.9300
C13—C141.391 (12)C24—C251.387 (10)
C13—H130.9300C24—H240.9300
C14—C151.359 (10)C25—C261.385 (9)
C14—H140.9300C25—H250.9300
C15—N111.357 (9)C26—C271.514 (9)
C15—H150.9300C27—O211.216 (9)
N11—H1N0.93 (7)C27—O221.280 (9)
N12—H12A0.8600C28—O241.239 (7)
N12—H12B0.8600C28—O231.264 (7)
C21—C221.389 (8)O22—H22A1.08 (10)
C21—C261.421 (8)O23—H22A1.32 (11)
N12—C11—N11118.4 (6)C23—C22—C21122.9 (6)
N12—C11—C12123.5 (6)C23—C22—H22118.5
N11—C11—C12118.1 (7)C21—C22—H22118.5
C13—C12—C11119.3 (7)C24—C23—C22119.4 (7)
C13—C12—H12120.3C24—C23—H23120.3
C11—C12—H12120.3C22—C23—H23120.3
C12—C13—C14121.8 (7)C23—C24—C25119.3 (6)
C12—C13—H13119.1C23—C24—H24120.3
C14—C13—H13119.1C25—C24—H24120.3
C15—C14—C13117.5 (7)C26—C25—C24122.7 (7)
C15—C14—H14121.2C26—C25—H25118.7
C13—C14—H14121.2C24—C25—H25118.7
N11—C15—C14120.9 (7)C25—C26—C21117.8 (6)
N11—C15—H15119.5C25—C26—C27113.7 (6)
C14—C15—H15119.5C21—C26—C27128.5 (5)
C11—N11—C15122.3 (6)O21—C27—O22119.4 (6)
C11—N11—H1N121 (4)O21—C27—C26119.7 (6)
C15—N11—H1N117 (4)O22—C27—C26120.8 (6)
C11—N12—H12A120.0O24—C28—O23121.7 (5)
C11—N12—H12B120.0O24—C28—C21117.2 (5)
H12A—N12—H12B120.0O23—C28—C21121.1 (5)
C22—C21—C26117.9 (5)C27—O22—H22A112 (5)
C22—C21—C28114.0 (5)C28—O23—H22A112 (4)
C26—C21—C28128.1 (5)
N12—C11—C12—C13179.0 (6)C24—C25—C26—C27177.2 (7)
N11—C11—C12—C130.2 (9)C22—C21—C26—C250.2 (8)
C11—C12—C13—C141.6 (11)C28—C21—C26—C25179.0 (6)
C12—C13—C14—C151.9 (11)C22—C21—C26—C27178.7 (6)
C13—C14—C15—N110.9 (10)C28—C21—C26—C270.1 (9)
N12—C11—N11—C15178.1 (6)C25—C26—C27—O211.4 (9)
C12—C11—N11—C150.8 (9)C21—C26—C27—O21179.7 (6)
C14—C15—N11—C110.5 (10)C25—C26—C27—O22179.5 (7)
C26—C21—C22—C231.2 (10)C21—C26—C27—O220.6 (10)
C28—C21—C22—C23177.7 (6)C22—C21—C28—O241.0 (7)
C21—C22—C23—C241.1 (11)C26—C21—C28—O24179.9 (6)
C22—C23—C24—C250.6 (11)C22—C21—C28—O23179.9 (6)
C23—C24—C25—C262.1 (11)C26—C21—C28—O231.2 (8)
C24—C25—C26—C211.9 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O22—H22A···O231.08 (10)1.32 (10)2.402 (7)173 (9)
N11—H1N···O24i0.93 (7)1.78 (7)2.705 (7)180 (7)
N12—H12A···O23i0.862.112.965 (7)174
N12—H12B···O22ii0.862.313.003 (8)138
C12—H12···O23iii0.932.533.374 (8)151
C14—H14···O21iv0.932.503.203 (9)132
Symmetry codes: (i) x, y+1/2, z+1; (ii) x, y, z+1; (iii) x+1, y, z+1; (iv) x+2, y1/2, z+1.
Relative percentage contributions of close contacts to the Hirshfeld surface for the title salt, the cation and the anion top
Contactcation+anioncationanion
H···H32.040.430.6
O···H/H···O31.026.331.6
C···H/H···C22.018.224.0
C···O7.34.68.8
N···H/H···N2.55.10.4
C···C2.52.22.6
 

Acknowledgements

SAB and VS are thankful to the management, Kalasalingam Academy of Research and Education, Krishnankoil, for their support.

Funding information

Funding for this research was provided by: Council of Scientific and Industrial Research.

References

First citationBis, J. A. & Zaworotko, M. J. (2005). Cryst. Growth Des. 5, 1169–1179.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGuelmami, L., Guerfel, T. & Jouini, A. (2007). Mater. Res. Bull. 42, 446–455.  Web of Science CrossRef CAS Google Scholar
First citationLiu, Z., Liu, Y., Wang, J. & Yang, G. (2015). Inorg. Chem. Commun. 61, 109–112.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationOdabasoǧlu, M., Büyükgüngör, O. & Lönnecke, P. (2003). Acta Cryst. C59, o51–o52.  CrossRef IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPrakash, S. M., Naveen, S., Lokanath, N. K., Suchetan, P. A. & Warad, I. (2018). Acta Cryst. E74, 1111–1116.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRodrigues, V. H., Hakimi, M. & Motieiyan, E. (2012). Acta Cryst. E68, o1524.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSiva, V., Bahadur, S. A., Shameem, A., Athimoolam, S., Lakshmi, K. U. & Vinitha, G. (2019). J. Mol. Struct. 1191, 110–117.  Web of Science CSD CrossRef CAS Google Scholar
First citationSiva, V., Kumar, S. S., Shameem, A., Raja, M., Athimoolam, S. & Bahadur, S. A. (2017). J. Mater. Sci. Mater. Electron. 28, 12484–12496.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. http://hirshfeldsurface.net  Google Scholar
First citationWang, Z.-L., Wei, L.-H. & Li, M.-X. (2013). Chin. J. Struct. Chem. 32, 756–762.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds