research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and luminescence properties of 2-[(2′,6′-dimeth­­oxy-2,3′-bipyridin-6-yl)­­oxy]-9-(pyridin-2-yl)-9H-carbazole

aDepartment of Food and Nutrition, Kyungnam College of Information and Technology, Busan 47011, Republic of Korea, bResearch Institute of Natural Science, Gyeongsang National University, Jinju 52828, Republic of Korea, and cDivision of Science Education & Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
*Correspondence e-mail: kangy@kangwon.ac.kr

Edited by L. Fabian, University of East Anglia, England (Received 27 August 2019; accepted 4 October 2019; online 22 October 2019)

In the title com­pound, C29H22N4O3, the carbazole system forms a dihedral angle of 68.45 (3)° with the mean plane of the bi­pyridine ring system. The bi­pyridine ring system, with two meth­oxy substituents, is approximately planar (r.m.s. deviation = 0.0670 Å), with a dihedral angle of 7.91 (13)° between the planes of the two pyridine rings. Intra­molecular C—H⋯O/N hydrogen bonds may promote the planarity of the bipyridyl ring system. In the pyridyl-substituted carbazole fragment, the pyridine ring is tilted by 56.65 (4)° with respect to the mean plane of the carbazole system (r.m.s. deviation = 0.0191 Å). In the crystal, adjacent mol­ecules are connected via C—H⋯O/N hydrogen bonds and C—H⋯π inter­actions, resulting in the formation of a three-dimensional (3D) supra­molecular network. In addition, the 3D structure contains inter­molecular ππ stacking inter­actions, with centroid–centroid distances of 3.5634 (12) Å between pyridine rings. The title com­pound exhibits a high energy gap (3.48 eV) and triplet energy (2.64 eV), indicating that it could be a suitable host material in organic light-emitting diode (OLED) applications.

1. Chemical context

Carbazole-based organic small mol­ecules have recently attracted much inter­est as organic light-emitting diodes (OLEDs) because of their high stability to the redox process, as well as their high triplet energy (ET ≃ 3.0 eV) (Krucaite & Grigalevicius, 2019[Krucaite, G. & Grigalevicius, S. (2019). Synth. Met. 247, 90-108.]). In particular, organic com­pounds bearing a carbazole group have been widely used as host materials for phospho­rescent organic light-emitting diodes (PhOLEDs) due to their high thermal stability and excellent hole-transporting properties (Yang et al., 2018[Yang, T., Xu, H., Wang, K., Tao, P., Wang, F., Zhao, B., Wang, H. & Xu, B. (2018). Dyes Pigments, 153, 67-73.]). Moreover, a number of carbazole-based com­pounds have been developed as ligands to coordinate with heavy transition-metal ions, such as PdII and PtII (Fleetham et al., 2017[Fleetham, T., Li, G. & Li, J. (2017). Adv. Mater. 29, 1601861.]). Although there are a number of carbazole-based organic com­pounds, examples linking a bi­pyridine functional group to a carbazole unit are still rare. Based on previous reports, bi­pyridine also possesses a high triplet energy and a stable chelated coordination mode with respect to transition-metal ions, which makes it a suitable ligand for developing blue phospho­rescent metal com­plexes (Zaen et al., 2019[Zaen, R., Kim, M., Park, K.-M., Lee, K. H., Lee, J. Y. & Kang, Y. (2019). Dalton Trans. 48, 9734-9743.]). Despite this advantage, reports of crystal structures of carbazole derivatives are still scarce. This prompted us to investigate the crystal structure of carbazole derivatives bearing the bi­pyridine group. Herein, we describe the mol­ecular and crystal structures of 2-[(2′,6′-dimeth­oxy-2,3′-bipyridin-6-yl)­oxy]-9-(pyridin-2-yl)-9H-carbazole, which can act as a potential tetra­dentate ligand for various transition-metal ions. In addition, the luminescence properties of the title com­pound were examined via photophysical analysis.

[Scheme 1]

2. Structural commentary

Fig. 1[link] illustrates the mol­ecular structure of the title com­pound, in which the dihedral angle between the planes of the bi­pyridine (N3/C18–C27/N4) and carbazole (N2/C6–C17) moieties connected by atom O1 is 68.45 (3)°. In the pyridyl-substituted carbazole unit, the pyridine ring (N1/C1–C5) forms a dihedral angle of 56.65 (4)° with the carbazole ring system. The two pyridine rings in the bi­pyridine ring system, with two meth­oxy substituents, are approximately coplanar, making a dihedral angle of 7.91 (13)°. Short intra­molecular C—H⋯O and C—H⋯N contacts (Table 1[link]), forming S(6) and S(5) rings, respectively, may contribute to the planarity of the bipyridyl ring system (r.m.s. deviation = 0.0670 Å).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C12–C17 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O3i 0.95 2.50 3.429 (3) 165
C21—H21⋯O2 0.95 2.20 2.839 (3) 123
C27—H27⋯N3 0.95 2.35 2.720 (3) 102
C29—H29A⋯N1ii 0.98 2.54 3.442 (3) 154
C8—H8⋯Cg1iii 0.95 2.76 3.426 (2) 128
C28—H28CCg1iv 0.98 2.89 3.485 (3) 120
Symmetry codes: (i) [x+{\script{1\over 2}}, -y, z-1]; (ii) x-1, y, z+1; (iii) [x+{\script{1\over 2}}, -y, z]; (iv) [x-1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 1]
Figure 1
A view of the mol­ecular structure of the title com­pound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius and yellow dashed lines represent intra­molecular C—H⋯O contacts.

3. Supra­molecular features

In the crystal, adjacent mol­ecules are connected by weak C—H⋯O/N hydrogen bonds and C—H⋯π inter­actions (Table 1[link] and yellow and black dashed lines in Fig. 2[link]), forming a three-dimensional (3D) supra­molecular network. In addition, the 3D structure is stabilized by ππ stacking inter­actions (green dashed lines in Fig. 2[link]), with a centroid–centroid distance of 3.5634 (12) Å for Cg3⋯Cg4(x, −y + [{1\over 2}], z − [{1\over 2}]), where Cg3 and Cg4 are the centroids of the N3- and N4-containing pyridine rings, respectively.

[Figure 2]
Figure 2
The 3D supra­molecular network formed through inter­molecular C—H⋯O/N hydrogen bonds (yellow dashed lines), C—H⋯π inter­actions (black dashed lines) and ππ stacking inter­actions (green dashed lines). H atoms not involved in the inter­molecular inter­actions have been omitted for clarity.

4. Luminescence properties

The photophysical properties of the title com­pound were analyzed using UV–Vis and photoluminescence (PL) measurements. Fig. 3[link] shows the absorption, solution PL and low-temperature (77 K) PL spectra of the title com­pound. The com­pound showed a strong absorption of the carbazole unit above 300 nm and of the bi­pyridine unit connected to carbazole below 300 nm (Belletête et al., 2004[Belletête, M., Bédard, M., Leclerc, M. & Durocher, G. (2004). J. Mol. Struct. Theochem, 679, 9-15.]). The emission spectra were obtained under excitation at 280 nm. The title com­pound displays a narrow emission band, with λmax = 364 nm, at ambient temperature. However, a broad emission, with λmax = 470 nm, was observed at 77 K. The energy difference between the vibrationally relaxed ground and excited states, E0–0, which is defined as the crossing point of the appropriate absorption and emission spectra, is approximately 3.68 eV. The absorption edge of the UV–Vis spectrum was 356 nm, which corresponded to an energy gap at 3.48 eV. The triplet energy of the title com­pound was 2.64 eV, which could be calculated from the phospho­rescent emission maximum (470 nm) of the PL spectrum at 77 K. This value was high enough to suggest the use of the host material as a green phospho­rescent dopant. The triplet energy of the tris­(2-phenyl­pyridinato-κ2C2,N)iridium(III), or Ir(ppy)3, dopant is 2.40 eV and effective energy transfer from the title com­pound to the Ir(ppy)3 dopant is expected. Consequently, strong absorption and a high energy gap and triplet energy make the title com­pound a suitable host material in organic light-emitting diode (OLED) applications.

[Figure 3]
Figure 3
UV–Vis absorption and photoluminescence spectra of the title com­pound in CH2Cl2 solution.

5. Synthesis and crystallization

All experiments were performed under a dry N2 atmosphere using standard Schlenk techniques. All solvents used in this study were freshly distilled over appropriate drying reagents prior to use. All starting materials were commercially purchased and used without further purification. The 1H NMR spectrum was recorded on a JEOL 400 MHz spectrometer. The two starting materials, i.e. 6-bromo-2′,6′-dimeth­oxy-2,3′-bi­pyridine and 9-(pyridin-2-yl)-9H-carbazol-2-ol, were syn­the­sized according to a slight modification of a previous synthetic methodology reported by our group (Park et al., 2018[Park, K.-M., Moon, S.-H. & Kang, Y. (2018). Acta Cryst. E74, 1475-1479.]; Fleetham et al., 2016[Fleetham, T., Huang, L., Klimes, K., Brooks, J. & Li, J. (2016). Chem. Mater. 28, 3276-3282.]). Details of the synthetic procedures and reagents are presented in Fig. 4[link].

[Figure 4]
Figure 4
Synthetic route and reagents to obtain the title com­pound: (i) CuI (0.1 equiv.), picolinic acid (0.2 equiv.), K3PO4 (2 equiv.) and DMSO; 373 K and 72 h.

To a 100 ml Schlenk flask were added 9-(pyridin-2-yl)-9H-carbazol-2-ol (1.0 g, 3.84 mmol), 6-bromo-2′,6′-dimeth­oxy-2,3′-bi­pyridine (1.36 g, 4.61 mmol), CuI (0.073 mg, 0.384 mmol), 2-picolinic acid (0.094 g, 0.758 mmol) and K3PO4 (1.63 g, 7.68 mmol). The flask was evacuated and backfilled with nitro­gen and then dimethyl sulfoxide (DMSO; 15 ml) was then added under an N2 atmosphere. The reaction mixture was stirred at 368–378 K still under nitro­gen for 3 d. After cooling to room temperature, the mixture was poured into water (100 ml) and extracted with ethyl acetate (50 ml × 3). The combined organic layer was dried with anhydrous Na2SO4 and concentrated under reduced pressure. Purification by column chromatography (di­chloro­methane–hexane 1:10 and then 1:3 v/v) afforded the desired product as a white solid (yield 1.3 g, 72%). Colourless crystals of X-ray quality were obtained by slow evaporation of a di­chloro­methane–hexane solution (1:1 v/v) of the title com­pound. 1H NMR (400 MHz, CDCl3): δ 8.66 (ddd, J = 5.6, 2.0, 0.8 Hz, 1H), 8.21 (d, J = 8.0 Hz, 1H), 8.08 (s, 1H), 8.01 (s, 1H), 7.86 (td, J = 7.6, 1.6 Hz, 1H), 7.82 (d, J = 8.4 Hz, 1H), 7.79 (d, J = 8.0 Hz, 1H), 7.72 (d, J = 2.0 Hz, 1H), 7.67 (t, J = 8.0 Hz, 1H), 7.62 (dd, J = 8.0, 0.8 Hz, 1H), 7.42 (td, J = 7.6, 1.2 Hz, 1H), 7.32 (td, J = 7.6, 0.8 Hz, 1H), 7.27 (td, J = 5.0, 1.2 Hz, 1H), 7.15 (dd, J = 7.6, 1.6 Hz, 1H), 6.71 (d, J = 8.4 Hz, 1H), 6.30 (d, J = 8.8 Hz, 1H), 4.02 (s, 3H), 3.93 (s, 3H); 13C NMR (100 MHz, CDCl3): δ 163.4, 163.0, 160.1, 153.2, 152.2, 151.7, 149.7, 142.4, 140.4, 140.0, 139.8, 138.7, 125.9, 124.2, 121.5, 121.3, 121.2, 120.9, 120.0, 119.1, 118.3, 115.1, 113.4, 111.2, 108.3, 104.4, 101.8, 53.8, 53.6; HRMS (EI): found m/z 474.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C) for Csp2 H atoms, and with C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms.

Table 2
Experimental details

Crystal data
Chemical formula C29H22N4O3
Mr 474.50
Crystal system, space group Monoclinic, Ia
Temperature (K) 173
a, b, c (Å) 9.6979 (1), 23.6702 (3), 9.9229 (2)
β (°) 92.9125 (5)
V3) 2274.87 (6)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.53 × 0.46 × 0.12
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.710, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 10918, 5179, 4943
Rint 0.020
(sin θ/λ)max−1) 0.669
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.084, 1.06
No. of reflections 5179
No. of parameters 328
No. of restraints 2
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.21, −0.19
Computer programs: APEX2 (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

2-[(2',6'-Dimethoxy-2,3'-bipyridin-6-yl)oxy]-9-(pyridin-2-yl)-9H-carbazole top
Crystal data top
C29H22N4O3F(000) = 992
Mr = 474.50Dx = 1.385 Mg m3
Monoclinic, IaMo Kα radiation, λ = 0.71073 Å
a = 9.6979 (1) ÅCell parameters from 6053 reflections
b = 23.6702 (3) Åθ = 2.2–28.3°
c = 9.9229 (2) ŵ = 0.09 mm1
β = 92.9125 (5)°T = 173 K
V = 2274.87 (6) Å3Block, colourless
Z = 40.53 × 0.46 × 0.12 mm
Data collection top
Bruker APEXII CCD
diffractometer
4943 reflections with I > 2σ(I)
φ and ω scansRint = 0.020
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
θmax = 28.4°, θmin = 1.7°
Tmin = 0.710, Tmax = 0.746h = 1212
10918 measured reflectionsk = 3131
5179 independent reflectionsl = 1312
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.084 w = 1/[σ2(Fo2) + (0.0404P)2 + 0.7038P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
5179 reflectionsΔρmax = 0.21 e Å3
328 parametersΔρmin = 0.19 e Å3
2 restraintsExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0062 (6)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.16676 (16)0.24337 (6)0.28067 (15)0.0285 (3)
O20.27313 (17)0.33138 (6)0.70330 (18)0.0382 (4)
O30.43670 (17)0.15756 (6)0.82051 (17)0.0358 (4)
N10.3339 (2)0.06572 (7)0.02064 (19)0.0287 (4)
N20.30895 (18)0.04679 (7)0.24867 (18)0.0270 (4)
N30.00057 (17)0.25161 (7)0.43700 (18)0.0244 (3)
N40.35398 (18)0.24417 (7)0.75714 (19)0.0273 (4)
C10.3152 (3)0.05001 (10)0.1083 (2)0.0344 (5)
H10.35160.07370.17520.041*
C20.2465 (3)0.00167 (10)0.1504 (2)0.0360 (5)
H20.23990.00860.24310.043*
C30.1874 (3)0.03137 (10)0.0545 (3)0.0379 (5)
H30.13780.06460.08010.045*
C40.2016 (3)0.01536 (9)0.0794 (2)0.0353 (5)
H40.15940.03650.14750.042*
C50.2793 (2)0.03247 (8)0.1115 (2)0.0246 (4)
C60.3774 (2)0.01129 (8)0.3428 (2)0.0261 (4)
C70.4216 (2)0.04424 (9)0.3285 (2)0.0305 (4)
H70.40500.06420.24620.037*
C80.4904 (2)0.06934 (9)0.4381 (2)0.0331 (5)
H80.52080.10730.43110.040*
C90.5164 (3)0.04006 (10)0.5592 (2)0.0356 (5)
H90.56330.05840.63330.043*
C100.4742 (2)0.01540 (9)0.5717 (2)0.0319 (5)
H100.49370.03550.65340.038*
C110.4030 (2)0.04161 (8)0.4635 (2)0.0253 (4)
C120.3469 (2)0.09767 (8)0.44159 (19)0.0231 (4)
C130.3371 (2)0.14504 (8)0.5239 (2)0.0259 (4)
H130.37410.14430.61440.031*
C140.2730 (2)0.19313 (8)0.4724 (2)0.0263 (4)
H140.26480.22560.52770.032*
C150.2203 (2)0.19380 (8)0.3386 (2)0.0243 (4)
C160.2283 (2)0.14802 (8)0.2536 (2)0.0240 (4)
H160.19200.14930.16290.029*
C170.2923 (2)0.09974 (8)0.3073 (2)0.0232 (4)
C180.0820 (2)0.27662 (8)0.3548 (2)0.0239 (4)
C190.0883 (2)0.33456 (9)0.3325 (2)0.0309 (5)
H190.14910.35060.27080.037*
C200.0015 (2)0.36732 (9)0.4049 (2)0.0347 (5)
H200.00190.40720.39410.042*
C210.0865 (2)0.34265 (9)0.4935 (2)0.0299 (5)
H210.14610.36530.54400.036*
C220.0865 (2)0.28402 (8)0.5075 (2)0.0238 (4)
C230.1789 (2)0.25192 (8)0.5941 (2)0.0251 (4)
C240.2697 (2)0.27479 (8)0.6851 (2)0.0261 (4)
C250.3517 (2)0.18857 (9)0.7446 (2)0.0301 (4)
C260.2677 (3)0.16054 (10)0.6591 (3)0.0431 (6)
H260.26890.12050.65190.052*
C270.1815 (3)0.19309 (9)0.5844 (3)0.0374 (5)
H270.12220.17490.52450.045*
C280.3786 (3)0.35291 (10)0.7870 (3)0.0458 (6)
H28A0.36130.39300.80610.069*
H28B0.37700.33170.87190.069*
H28C0.46930.34860.73980.069*
C290.5206 (3)0.18868 (10)0.9090 (3)0.0366 (5)
H29A0.57240.16230.96340.055*
H29B0.58540.21250.85550.055*
H29C0.46160.21250.96860.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0366 (8)0.0230 (7)0.0266 (7)0.0077 (6)0.0087 (6)0.0039 (6)
O20.0429 (9)0.0230 (7)0.0510 (10)0.0008 (6)0.0243 (8)0.0039 (7)
O30.0361 (8)0.0275 (8)0.0446 (10)0.0009 (6)0.0100 (8)0.0102 (7)
N10.0347 (9)0.0247 (8)0.0272 (9)0.0012 (7)0.0062 (7)0.0023 (7)
N20.0367 (10)0.0195 (8)0.0249 (9)0.0020 (7)0.0032 (7)0.0003 (6)
N30.0248 (8)0.0212 (8)0.0275 (8)0.0015 (6)0.0032 (7)0.0005 (6)
N40.0247 (9)0.0268 (8)0.0306 (9)0.0009 (7)0.0032 (7)0.0034 (7)
C10.0435 (13)0.0330 (11)0.0272 (11)0.0016 (10)0.0085 (9)0.0003 (9)
C20.0410 (13)0.0362 (12)0.0303 (11)0.0063 (10)0.0024 (10)0.0106 (9)
C30.0409 (13)0.0272 (11)0.0448 (14)0.0027 (9)0.0062 (11)0.0101 (9)
C40.0420 (13)0.0277 (11)0.0364 (12)0.0074 (9)0.0034 (10)0.0005 (9)
C50.0278 (10)0.0206 (9)0.0254 (10)0.0023 (7)0.0025 (8)0.0029 (7)
C60.0282 (10)0.0245 (9)0.0262 (10)0.0008 (8)0.0072 (8)0.0032 (7)
C70.0367 (11)0.0240 (9)0.0314 (11)0.0010 (8)0.0094 (9)0.0002 (8)
C80.0342 (11)0.0248 (10)0.0413 (12)0.0050 (8)0.0116 (9)0.0054 (9)
C90.0386 (12)0.0349 (11)0.0337 (12)0.0095 (9)0.0047 (10)0.0104 (9)
C100.0346 (11)0.0351 (11)0.0265 (10)0.0070 (9)0.0055 (9)0.0045 (8)
C110.0247 (10)0.0254 (9)0.0264 (10)0.0022 (7)0.0078 (8)0.0023 (8)
C120.0227 (9)0.0248 (9)0.0222 (9)0.0009 (7)0.0048 (7)0.0019 (7)
C130.0276 (9)0.0288 (10)0.0215 (9)0.0012 (8)0.0034 (7)0.0012 (8)
C140.0291 (10)0.0236 (9)0.0268 (10)0.0007 (8)0.0064 (8)0.0039 (8)
C150.0238 (9)0.0217 (9)0.0283 (10)0.0009 (7)0.0088 (8)0.0019 (7)
C160.0249 (9)0.0243 (9)0.0231 (9)0.0010 (7)0.0043 (7)0.0006 (7)
C170.0248 (9)0.0220 (9)0.0233 (9)0.0024 (7)0.0058 (8)0.0015 (7)
C180.0256 (9)0.0227 (9)0.0235 (9)0.0039 (8)0.0016 (8)0.0004 (7)
C190.0330 (11)0.0242 (10)0.0364 (12)0.0018 (8)0.0099 (9)0.0067 (8)
C200.0398 (12)0.0203 (9)0.0448 (13)0.0048 (9)0.0109 (10)0.0036 (9)
C210.0297 (10)0.0243 (10)0.0364 (12)0.0059 (8)0.0096 (9)0.0003 (8)
C220.0223 (9)0.0221 (9)0.0269 (10)0.0016 (7)0.0002 (8)0.0006 (7)
C230.0226 (9)0.0228 (9)0.0300 (10)0.0025 (7)0.0018 (8)0.0030 (8)
C240.0246 (9)0.0242 (9)0.0294 (10)0.0011 (7)0.0014 (8)0.0016 (8)
C250.0270 (10)0.0275 (10)0.0359 (11)0.0003 (8)0.0025 (9)0.0070 (9)
C260.0481 (15)0.0218 (10)0.0613 (17)0.0015 (10)0.0208 (13)0.0050 (10)
C270.0407 (12)0.0241 (10)0.0489 (14)0.0037 (9)0.0182 (11)0.0004 (9)
C280.0540 (15)0.0298 (11)0.0565 (16)0.0028 (11)0.0298 (13)0.0055 (11)
C290.0359 (12)0.0377 (12)0.0370 (12)0.0085 (10)0.0090 (10)0.0034 (10)
Geometric parameters (Å, º) top
O1—C181.378 (2)C10—H100.9500
O1—C151.395 (2)C11—C121.446 (3)
O2—C241.352 (2)C12—C131.393 (3)
O2—C281.443 (3)C12—C171.409 (3)
O3—C251.360 (3)C13—C141.383 (3)
O3—C291.431 (3)C13—H130.9500
N1—C51.327 (3)C14—C151.398 (3)
N1—C11.335 (3)C14—H140.9500
N2—C171.395 (2)C15—C161.378 (3)
N2—C61.399 (3)C16—C171.393 (3)
N2—C51.417 (3)C16—H160.9500
N3—C181.312 (3)C18—C191.391 (3)
N3—C221.353 (3)C19—C201.373 (3)
N4—C251.322 (3)C19—H190.9500
N4—C241.328 (3)C20—C211.386 (3)
C1—C21.379 (3)C20—H200.9500
C1—H10.9500C21—C221.395 (3)
C2—C31.379 (4)C21—H210.9500
C2—H20.9500C22—C231.482 (3)
C3—C41.382 (3)C23—C271.396 (3)
C3—H30.9500C23—C241.402 (3)
C4—C51.388 (3)C25—C261.377 (3)
C4—H40.9500C26—C271.380 (3)
C6—C71.392 (3)C26—H260.9500
C6—C111.407 (3)C27—H270.9500
C7—C81.380 (3)C28—H28A0.9800
C7—H70.9500C28—H28B0.9800
C8—C91.399 (3)C28—H28C0.9800
C8—H80.9500C29—H29A0.9800
C9—C101.382 (3)C29—H29B0.9800
C9—H90.9500C29—H29C0.9800
C10—C111.393 (3)
C18—O1—C15118.70 (15)C16—C15—O1116.16 (18)
C24—O2—C28116.72 (17)C16—C15—C14122.88 (18)
C25—O3—C29116.20 (17)O1—C15—C14120.73 (17)
C5—N1—C1116.50 (19)C15—C16—C17116.67 (18)
C17—N2—C6108.79 (16)C15—C16—H16121.7
C17—N2—C5126.41 (16)C17—C16—H16121.7
C6—N2—C5124.30 (16)C16—C17—N2129.49 (18)
C18—N3—C22118.47 (17)C16—C17—C12121.93 (18)
C25—N4—C24118.63 (19)N2—C17—C12108.51 (16)
N1—C1—C2124.2 (2)N3—C18—O1118.27 (17)
N1—C1—H1117.9N3—C18—C19125.21 (19)
C2—C1—H1117.9O1—C18—C19116.49 (19)
C3—C2—C1118.2 (2)C20—C19—C18116.1 (2)
C3—C2—H2120.9C20—C19—H19121.9
C1—C2—H2120.9C18—C19—H19121.9
C2—C3—C4118.9 (2)C19—C20—C21120.5 (2)
C2—C3—H3120.5C19—C20—H20119.7
C4—C3—H3120.5C21—C20—H20119.7
C3—C4—C5118.1 (2)C20—C21—C22119.04 (19)
C3—C4—H4120.9C20—C21—H21120.5
C5—C4—H4120.9C22—C21—H21120.5
N1—C5—C4123.9 (2)N3—C22—C21120.63 (19)
N1—C5—N2116.24 (18)N3—C22—C23114.54 (16)
C4—C5—N2119.80 (19)C21—C22—C23124.80 (18)
C7—C6—N2129.6 (2)C27—C23—C24114.82 (19)
C7—C6—C11121.8 (2)C27—C23—C22118.74 (19)
N2—C6—C11108.61 (17)C24—C23—C22126.41 (18)
C8—C7—C6117.7 (2)N4—C24—O2116.67 (18)
C8—C7—H7121.1N4—C24—C23124.05 (18)
C6—C7—H7121.1O2—C24—C23119.27 (18)
C7—C8—C9121.5 (2)N4—C25—O3118.2 (2)
C7—C8—H8119.3N4—C25—C26123.4 (2)
C9—C8—H8119.3O3—C25—C26118.41 (19)
C10—C9—C8120.4 (2)C25—C26—C27117.1 (2)
C10—C9—H9119.8C25—C26—H26121.4
C8—C9—H9119.8C27—C26—H26121.4
C9—C10—C11119.4 (2)C26—C27—C23121.9 (2)
C9—C10—H10120.3C26—C27—H27119.0
C11—C10—H10120.3C23—C27—H27119.0
C10—C11—C6119.22 (19)O2—C28—H28A109.5
C10—C11—C12133.8 (2)O2—C28—H28B109.5
C6—C11—C12106.95 (17)H28A—C28—H28B109.5
C13—C12—C17119.52 (18)O2—C28—H28C109.5
C13—C12—C11133.37 (18)H28A—C28—H28C109.5
C17—C12—C11107.10 (17)H28B—C28—H28C109.5
C14—C13—C12119.24 (19)O3—C29—H29A109.5
C14—C13—H13120.4O3—C29—H29B109.5
C12—C13—H13120.4H29A—C29—H29B109.5
C13—C14—C15119.76 (18)O3—C29—H29C109.5
C13—C14—H14120.1H29A—C29—H29C109.5
C15—C14—H14120.1H29B—C29—H29C109.5
C5—N1—C1—C21.4 (3)C6—N2—C17—C16178.7 (2)
N1—C1—C2—C33.2 (4)C5—N2—C17—C169.2 (3)
C1—C2—C3—C41.1 (4)C6—N2—C17—C121.7 (2)
C2—C3—C4—C52.3 (4)C5—N2—C17—C12173.88 (18)
C1—N1—C5—C42.4 (3)C13—C12—C17—C160.0 (3)
C1—N1—C5—N2175.06 (19)C11—C12—C17—C16179.17 (18)
C3—C4—C5—N14.3 (3)C13—C12—C17—N2177.21 (18)
C3—C4—C5—N2173.1 (2)C11—C12—C17—N22.0 (2)
C17—N2—C5—N151.1 (3)C22—N3—C18—O1178.41 (17)
C6—N2—C5—N1119.9 (2)C22—N3—C18—C190.6 (3)
C17—N2—C5—C4131.3 (2)C15—O1—C18—N334.5 (3)
C6—N2—C5—C457.7 (3)C15—O1—C18—C19147.49 (19)
C17—N2—C6—C7177.0 (2)N3—C18—C19—C200.9 (3)
C5—N2—C6—C74.6 (3)O1—C18—C19—C20178.79 (19)
C17—N2—C6—C110.8 (2)C18—C19—C20—C210.4 (4)
C5—N2—C6—C11173.16 (18)C19—C20—C21—C220.4 (4)
N2—C6—C7—C8178.5 (2)C18—N3—C22—C210.3 (3)
C11—C6—C7—C81.0 (3)C18—N3—C22—C23178.03 (17)
C6—C7—C8—C90.6 (3)C20—C21—C22—N30.8 (3)
C7—C8—C9—C100.5 (4)C20—C21—C22—C23177.4 (2)
C8—C9—C10—C111.3 (4)N3—C22—C23—C277.2 (3)
C9—C10—C11—C61.0 (3)C21—C22—C23—C27171.1 (2)
C9—C10—C11—C12179.1 (2)N3—C22—C23—C24174.66 (18)
C7—C6—C11—C100.2 (3)C21—C22—C23—C247.0 (3)
N2—C6—C11—C10178.16 (18)C25—N4—C24—O2178.53 (19)
C7—C6—C11—C12178.39 (19)C25—N4—C24—C231.0 (3)
N2—C6—C11—C120.4 (2)C28—O2—C24—N46.9 (3)
C10—C11—C12—C134.2 (4)C28—O2—C24—C23173.6 (2)
C6—C11—C12—C13177.6 (2)C27—C23—C24—N40.6 (3)
C10—C11—C12—C17176.8 (2)C22—C23—C24—N4177.60 (19)
C6—C11—C12—C171.4 (2)C27—C23—C24—O2178.9 (2)
C17—C12—C13—C140.4 (3)C22—C23—C24—O22.9 (3)
C11—C12—C13—C14178.5 (2)C24—N4—C25—O3178.91 (18)
C12—C13—C14—C150.6 (3)C24—N4—C25—C261.0 (4)
C18—O1—C15—C16141.73 (19)C29—O3—C25—N40.6 (3)
C18—O1—C15—C1443.6 (3)C29—O3—C25—C26179.2 (2)
C13—C14—C15—C160.3 (3)N4—C25—C26—C270.5 (4)
C13—C14—C15—O1174.02 (18)O3—C25—C26—C27179.4 (2)
O1—C15—C16—C17174.71 (16)C25—C26—C27—C230.1 (4)
C14—C15—C16—C170.1 (3)C24—C23—C27—C260.1 (4)
C15—C16—C17—N2176.29 (19)C22—C23—C27—C26178.2 (2)
C15—C16—C17—C120.3 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C12–C17 ring.
D—H···AD—HH···AD···AD—H···A
C3—H3···O3i0.952.503.429 (3)165
C21—H21···O20.952.202.839 (3)123
C27—H27···N30.952.352.720 (3)102
C29—H29A···N1ii0.982.543.442 (3)154
C8—H8···Cg1iii0.952.763.426 (2)128
C28—H28C···Cg1iv0.982.893.485 (3)120
Symmetry codes: (i) x+1/2, y, z1; (ii) x1, y, z+1; (iii) x+1/2, y, z; (iv) x1, y+1/2, z+1/2.
 

Funding information

Funding for this research was provided by: Funding for this research was provided by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2016R1D1A1B01012630 and 2018R1D1A3A03000716). This study was also supported by 2018 Research Grant (PoINT) from Kangwon National University.

References

First citationBelletête, M., Bédard, M., Leclerc, M. & Durocher, G. (2004). J. Mol. Struct. Theochem, 679, 9–15.  Google Scholar
First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFleetham, T., Huang, L., Klimes, K., Brooks, J. & Li, J. (2016). Chem. Mater. 28, 3276–3282.  CrossRef CAS Google Scholar
First citationFleetham, T., Li, G. & Li, J. (2017). Adv. Mater. 29, 1601861.  CrossRef Google Scholar
First citationKrucaite, G. & Grigalevicius, S. (2019). Synth. Met. 247, 90–108.  Web of Science CrossRef CAS Google Scholar
First citationPark, K.-M., Moon, S.-H. & Kang, Y. (2018). Acta Cryst. E74, 1475–1479.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, T., Xu, H., Wang, K., Tao, P., Wang, F., Zhao, B., Wang, H. & Xu, B. (2018). Dyes Pigments, 153, 67–73.  CrossRef CAS Google Scholar
First citationZaen, R., Kim, M., Park, K.-M., Lee, K. H., Lee, J. Y. & Kang, Y. (2019). Dalton Trans. 48, 9734–9743.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds