research communications
The first structural characterization of the protonated azacyclam ligand in catena-poly[[[(perchlorato)copper(II)]-μ-3-(3-carboxypropyl)-1,5,8,12-tetraaza-3-azoniacyclotetradecane] bis(perchlorate)]
aL.V. Pisarzhevskii Institute of Physical Chemistry of the National Academy of Sciences of Ukraine, Prospekt Nauki 31, Kiev 03028, Ukraine, and bInstitute of Inorganic Chemistry of the University of Vienna, Wahringer Str. 42, 1090 Vienna, Austria
*Correspondence e-mail: lampeka@adamant.net
The catena-poly[[[(perchlorato-κO)copper(II)]-μ-3-(3-carboxypropyl)-1,5,8,12-tetraaza-3-azoniacyclotetradecane-κ4N1,N5,N8,N12] bis(perchlorate)], {[Cu(C13H30N5O2)(ClO4)](ClO4)2}n, (I), consists of a macrocyclic cation, one coordinated perchlorate anion and two perchlorate ions as counter-anions. The metal ion is coordinated in a tetragonally distorted octahedral geometry by the four secondary N atoms of the macrocyclic ligand, the mutually trans O atoms of the perchlorate anion and the carbonyl O atom of the protonated carboxylic acid group of a neighbouring cation. The average equatorial Cu—N bond lengths [2.01 (6) Å] are significantly shorter than the axial Cu—O bond lengths [2.379 (8) Å for carboxylate and average 2.62 (7) Å for disordered perchlorate]. The coordinated macrocyclic ligand in (I) adopts the most energetically favourable trans-III conformation with an equatorial orientation of the substituent at the protonated distal 3-position N atom in a six-membered chelate ring. The coordination of the carboxylic acid group of the cation to a neighbouring complex unit results in the formation of infinite chains running along the b-axis direction, which are crosslinked by N—H⋯O hydrogen bonds between the secondary amine groups of the macrocycle and O atoms of the perchlorate counter-anions to form sheets lying parallel to the (001) plane. Additionally, the extended structure of (I) is consolidated by numerous intra- and interchain C—H⋯O contacts.
of the title compound,1. Chemical context
Because of their exceptionally high thermodynamic stability and kinetic inertness (Melson, 1979; Yatsimirskii & Lampeka, 1985), transition-metal complexes of the macrocycles 1,4,8,11-tetraazacyclotetradecane (cyclam), N3,N10-disubstituted 1,3,5,8,10,12-hexaazacyclotetradecane (diazacyclam) and, to a lesser extent, N3-substituted 1,3,5,8,12-pentaazacyclotetradecane (azacyclam) are popular building units for the assembly of metal–organic frameworks (MOFs), demonstrating many promising applications (Lampeka & Tsymbal, 2004; Suh & Moon, 2007; Suh et al., 2012; Stackhouse & Ma, 2018). Two latter types of the CuII and NiII complexes are readily obtainable via template-directed Mannich condensation of bis(ethylenediamine) or 3,7-diazanonane-1,9-diamine complexes, respectively, with formaldehyde and primary (Rosokha et al., 1993; Costisor & Linert, 2000). The use of primary bearing a carboxylic acid function as locking fragments in these template reactions allows for the preparation of complexes of carboxyl-functionalized diazacyclams, as was shown for the NiII and CuII complexes of diazacyclam substituted with 3-carboxypropyl groups (Lu et al., 2005; Ou et al., 2005). Such compounds are of particular interest because they can self-polymerize due to the coordination of the donor group of the substituent to the metal ion of another molecule, thus forming coordination polymers without using additional bridging ligands, the most popular of which are carboxylates (Rao et al., 2004). Indeed, the CuII complex of this diazacyclam ligand possesses a self-polymeric structure (Ou et al., 2005), whereas the NiII complex does not form a polymer (Lu et al., 2005). Data on the polymeric compounds of the given type formed by the complexes of functionalized azacyclam are not available in the literature so far.
Another issue of interest is the acid–base properties of the noncoordinated distal N atom present in the macrocyclic backbones of aza- and diazacyclams. Its likely protonation was postulated first based on the solution properties of the NiII compounds (Rosokha et al., 1993; Tsymbal et al., 1995; Hay et al., 1997) and was further confirmed by X-ray structural analysis of the diethyl-substituted NiII diazacyclam complex (Jiang et al., 2006), while such a possibility for the CuII complexes has not been reported yet.
Herein, we describe the synthesis and the II complex, (I), with a protonated azacyclam ligand bearing a carboxylic acid group, namely, catena-poly[[[(perchlorato-κO)copper(II)]-μ-3-(3-carboxypropyl)-1,5,8,12-tetraaza-3-azoniacyclotetradecane-κ4N1,N5,N8,N12] bis(perchlorate)], {[Cu(H2L)(ClO4)](ClO4)2}n, which is the first example of azacyclam ligand with a carboxylic acid group.
of the title Cu2. Structural commentary
The CuII ion in the complex cation in (I) is coordinated by four secondary amine N atoms of the azamacrocyclic ligand in a square-planar fashion and by O atoms from the perchlorate anion and the carboxylic acid group of a neighbouring cation in the axial positions, resulting in a tetragonally distorted octahedral geometry (Table 1 and Fig. 1). The CuII ion is displaced by 0.075 Å from the mean plane of the N4 donor atoms (r.m.s. deviation = 0.005 Å) towards the O2 atom of the carboxylate group. The equatorial Cu—N bond lengths are significantly shorter than the axial Cu—O bond lengths (Table 1), which can be attributed to a large Jahn–Teller distortion.
|
The macrocyclic ligand in (I) adopts the most energetically favourable trans-III (R,R,S,S) conformation (Bosnich et al., 1965), with the five-membered chelate rings in gauche [average bite angle = 86.2 (18)°] and the six-membered chelate rings in chair [average bite angle = 93.6 (2)°] conformations. The methylene group of the substituent at the noncoordinated N3 atom in the six-membered chelate ring is oriented equatorially. Such an arrangement of the substituent, in contrast to an axial orientation, is relatively uncommon and only a few examples of such CuII complexes with aza- and diazacyclam ligands have been described so far (Shin et al., 2010, 2012; Tsymbal et al., 2010; Husain et al., 2012; Xia et al., 2014).
The formation of the azonia N3H+ group in (I) leads to clear changes in the C—N—C angles compared to the nonprotonated ones. The sum of these angles in the latter case (345–354°) is much larger than the canonical value for an sp3-hybridized N atom (ca 327°), thus indicating their partial sp2 character (Tsymbal et al., 2010; Andriichuk et al., 2019), while in (I) this parameter equals 335 (2)°, demonstrating an sp2-to-sp3 transformation of the noncoordinated N atom upon protonation.
The C—O bond lengths in the carboxylic acid group of the substituent differ considerably [1.318 (13) and 1.198 (13) Å for C13—O1 and C13—O2, respectively], thus confirming its protonated form and the lack of delocalization. Interestingly, it is coordinated to the CuII ion via O2, the carbonyl O atom, which is analogous to the situation observed in a bis(3-carboxypropyl)-substituted diazacyclam polymeric complex (Ou et al., 2005).
Three disordered perchlorate anions in the title compound counterbalance the charge of the complex cations. The Cl1O4 anion is completely disordered over two positions with site occupancies of 50% and is weakly coordinated to the metal ion (Table 1). Two remaining counter-anions are partially disordered with the retention of the positions of the central Cl atoms, with site occupancies of the major components of 80 (Cl2O4) and 78% (Cl3O4). Because of the low partial population, the minor components of these perchlorate anions were not considered further in the analysis of the hydrogen-bonding network.
3. Supramolecular features
The inter-cationic coordination of the carboxylic acid group of the substituent in the macrocycle to the metal ion results in the formation of one-dimensional polymeric chains running along the b-axis direction (Fig. 2). These chains are further reinforced by hydrogen bonding between secondary amine groups of the macrocycle acting as proton donors and O atoms of the perchlorate anions as proton acceptors [N2—H2⋯O8(Cl2) and N4—H4⋯O11(Cl3)]. Additionally, the azonia group of the macrocycle forms a bifurcated hydrogen bond with both noncoordinated perchlorate anions [N3—H3+⋯O10(Cl2),O12(Cl3)], so that each perchlorate anion is fixed in a chain in a ditopic manner (Fig. 2 and Table 2). In addition, weak hydrogen bonding exists between the carboxylic acid group as the proton donor and an O atom of one of the perchlorate ions [O1—H1C⋯O7(Cl2)(x, y − 1, z)], as well as between secondary amine groups of the macrocycle and an O atom of the carboxylic acid group as the proton acceptor [N2—H2(N4—H4)⋯O1(x, y + 1, z)]. Hydrogen bonding of the secondary amine groups of the macrocycle and the O atoms of perchlorate anions not involved in above-mentioned intrachain interactions [N1—H1⋯O7(Cl2)(x − , −y + , z) and N5—H5⋯O14(Cl3)(x − , −y + , z)] results in the formation of sheets lying parallel to the (001) plane (Fig. 2), with a distance between them of 6.82 Å. There are also numerous intra- and interchain C—H⋯O contacts between methylene groups of the macrocycle and the O atoms of the anions (Table 2), and these latter interactions are responsible for the formation of the three-dimensional structure of (I).
4. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.40, last update February 2019; Groom et al., 2016) indicated that among 76 CuII complexes of N3,N10-disubstituted diazacyclam ligands, 37 compounds are formed by the ligands bearing alkyl substituents decorated with potentially coordinating groups (hydroxy, imidazolyl, thienyl, amine, nitrile or carboxyl) and many of them were investigated as building blocks for the construction of MOFs by using additional carboxylate or metalocyanide linkers. At the same time, there are only two examples demonstrating self-polymerization (coordination of the substituent in the macrocycle with a neighbouring metal ion), namely, those with diazacyclam ligands containing 2-propionitrile (refcode CAGHOI; Liu et al., 2002) or 3-carboxypropyl (WAMWIR; Ou et al., 2005) donor groups. Among the CuII complexes of N3-substituted azacyclam ligands only one complex with the 3-picolyl substituent that is potentially able to coordinate has been described (NOLDAW; Andriichuk et al., 2019), thus the title compound (I) is the second example of a [Cu(azacyclam)]2+ cation of this kind described so far.
5. Synthesis and crystallization
All chemicals and solvents used in this work were purchased from Sigma–Aldrich and were used without further purification. The starting CuII complexes with an open-chain tetraamine, [Cu(2,3,2-tet)](ClO4)2 (2,3,2-tet = 3,7-diazanonane-1,9-diamine), was prepared according to a published method (Maloshtan & Lampeka, 1996). Compound (I) was prepared as follows. A mixture of [Cu(2,3,2-tet)](ClO4)2 (200 mg, 0.46 mmol), 4-aminobutanoic acid (49 mg, 0.47 mmol) and 30% aqueous formaldehyde (0.24 ml, 3.2 mmol) in methanol (40 ml) was refluxed for 24 h. After cooling and filtration, the solution was kept in a refrigerator overnight. The violet crystalline precipitate was filtered off, washed with methanol (5 ml) and recrystallized from a 1:1 (v/v) water–ethanol solvent mixture (10 ml) containing 0.5 M perchloric acid (yield 84 mg, 28%). Analysis calculated (%) for C13H30Cl3CuN5O14: C 24.01, H 4.65, N 10.76; found: C 24.17, H 4.51, N 10.92. Violet blocks of (I) suitable for X-ray were selected from the sample resulting from the synthesis.
Safety note: perchlorate salts of metal complexes are potentially explosive and should be handled with care.
6. Refinement
Crystal data, data collection and structure . All H atoms in (I) were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.99 Å, N—H = 1.00 Å and carboxylate O—H = 0.84 Å, with Uiso(H) values of 1.2 or 1.5Ueq of the parent atoms. The crystal of (I) chosen for data collection was found to crystallize as an inversion twin.
details are summarized in Table 3
|
Supporting information
https://doi.org/10.1107/S205698901901377X/hb7857sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S205698901901377X/hb7857Isup2.hkl
Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).[Cu(C13H30N5O2)(ClO4)](ClO4)2 | Dx = 1.781 Mg m−3 |
Mr = 650.31 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pna21 | Cell parameters from 4345 reflections |
a = 18.990 (4) Å | θ = 2.1–24.5° |
b = 9.3640 (19) Å | µ = 1.31 mm−1 |
c = 13.636 (3) Å | T = 100 K |
V = 2424.9 (8) Å3 | Block, violet |
Z = 4 | 0.18 × 0.14 × 0.12 mm |
F(000) = 1340 |
Bruker X8 APEXII CCD diffractometer | 2787 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.150 |
φ and ω scans | θmax = 25.4°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Bruker, 2007) | h = −22→22 |
Tmin = 0.799, Tmax = 0.859 | k = −11→11 |
60778 measured reflections | l = −16→16 |
4458 independent reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.070 | w = 1/[σ2(Fo2) + (0.1002P)2 + 10.5107P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.215 | (Δ/σ)max < 0.001 |
S = 1.03 | Δρmax = 1.06 e Å−3 |
4458 reflections | Δρmin = −1.44 e Å−3 |
315 parameters | Absolute structure: Refined as an inversion twin |
161 restraints | Absolute structure parameter: 0.50 (9) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a 2-component inversion twin |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cu1 | 0.08430 (6) | 0.21078 (13) | 0.8220 (4) | 0.0290 (4) | |
Cl3 | 0.3273 (4) | 0.1883 (8) | 1.0262 (4) | 0.068 (3) | |
Cl2 | 0.3260 (4) | 0.1803 (8) | 0.6130 (4) | 0.059 (2) | |
O7 | 0.3630 (8) | 0.3036 (16) | 0.6503 (11) | 0.068 (3) | 0.8 |
O8 | 0.2596 (8) | 0.224 (2) | 0.5737 (13) | 0.068 (3) | 0.8 |
O9 | 0.3677 (8) | 0.1169 (16) | 0.5374 (11) | 0.068 (3) | 0.8 |
O10 | 0.3152 (10) | 0.0807 (18) | 0.6902 (10) | 0.068 (3) | 0.8 |
O7X | 0.3906 (14) | 0.238 (5) | 0.578 (3) | 0.068 (3) | 0.2 |
O8X | 0.275 (2) | 0.292 (4) | 0.622 (4) | 0.068 (3) | 0.2 |
O9X | 0.300 (3) | 0.076 (4) | 0.543 (3) | 0.068 (3) | 0.2 |
O10X | 0.335 (2) | 0.112 (5) | 0.7053 (19) | 0.068 (3) | 0.2 |
O11 | 0.2616 (8) | 0.2416 (19) | 1.0611 (13) | 0.067 (3) | 0.78 |
O12 | 0.3169 (9) | 0.0676 (17) | 0.9647 (11) | 0.067 (3) | 0.78 |
O13 | 0.3769 (7) | 0.1662 (17) | 1.1023 (10) | 0.067 (3) | 0.78 |
O14 | 0.3598 (8) | 0.2996 (16) | 0.9616 (10) | 0.067 (3) | 0.78 |
O11X | 0.2692 (17) | 0.281 (4) | 1.051 (3) | 0.067 (3) | 0.22 |
O12X | 0.311 (2) | 0.114 (4) | 0.937 (2) | 0.067 (3) | 0.22 |
O13X | 0.336 (2) | 0.085 (4) | 1.104 (2) | 0.067 (3) | 0.22 |
O14X | 0.3902 (16) | 0.271 (4) | 1.016 (3) | 0.067 (3) | 0.22 |
N4 | 0.1446 (10) | 0.116 (2) | 0.9306 (14) | 0.028 (4) | |
H4 | 0.1868 | 0.1769 | 0.9436 | 0.033* | |
N5 | 0.0237 (12) | 0.291 (2) | 0.9273 (17) | 0.039 (6) | |
H5 | −0.0196 | 0.2300 | 0.9302 | 0.047* | |
N1 | 0.0240 (11) | 0.2873 (19) | 0.7134 (16) | 0.030 (5) | |
H1 | −0.0194 | 0.2268 | 0.7106 | 0.036* | |
N2 | 0.1386 (11) | 0.1191 (19) | 0.7138 (16) | 0.031 (5) | |
H2 | 0.1800 | 0.1829 | 0.7023 | 0.038* | |
N3 | 0.2112 (4) | −0.0353 (9) | 0.8184 (18) | 0.027 (2) | |
H3 | 0.2441 | 0.0479 | 0.8184 | 0.033* | |
C5 | 0.0944 (15) | 0.124 (3) | 1.0203 (19) | 0.041 (7) | |
H5A | 0.0566 | 0.0512 | 1.0139 | 0.049* | |
H5B | 0.1209 | 0.1040 | 1.0814 | 0.049* | |
C6 | 0.0638 (16) | 0.267 (3) | 1.0239 (17) | 0.042 (7) | |
H6A | 0.1014 | 0.3393 | 1.0312 | 0.051* | |
H6B | 0.0313 | 0.2752 | 1.0803 | 0.051* | |
C7 | −0.0001 (15) | 0.442 (3) | 0.914 (2) | 0.039 (6) | |
H7A | 0.0413 | 0.5058 | 0.9123 | 0.046* | |
H7B | −0.0304 | 0.4701 | 0.9694 | 0.046* | |
C8 | −0.0406 (6) | 0.4551 (12) | 0.819 (3) | 0.040 (3) | |
H8A | −0.0790 | 0.3834 | 0.8197 | 0.047* | |
H8B | −0.0629 | 0.5506 | 0.8177 | 0.047* | |
C9 | 0.0008 (17) | 0.436 (3) | 0.726 (2) | 0.044 (7) | |
H9A | −0.0287 | 0.4647 | 0.6695 | 0.053* | |
H9B | 0.0425 | 0.4997 | 0.7277 | 0.053* | |
C1 | 0.0607 (16) | 0.268 (3) | 0.622 (2) | 0.051 (9) | |
H1A | 0.0951 | 0.3467 | 0.6126 | 0.061* | |
H1B | 0.0268 | 0.2706 | 0.5668 | 0.061* | |
C2 | 0.0999 (17) | 0.121 (3) | 0.625 (2) | 0.045 (8) | |
H2A | 0.0656 | 0.0410 | 0.6228 | 0.054* | |
H2B | 0.1320 | 0.1114 | 0.5677 | 0.054* | |
C3 | 0.1686 (14) | −0.026 (3) | 0.728 (2) | 0.036 (6) | |
H3A | 0.1297 | −0.0967 | 0.7319 | 0.043* | |
H3B | 0.1983 | −0.0513 | 0.6711 | 0.043* | |
C4 | 0.1670 (14) | −0.027 (2) | 0.9140 (17) | 0.031 (6) | |
H4A | 0.1254 | −0.0903 | 0.9083 | 0.037* | |
H4B | 0.1957 | −0.0603 | 0.9701 | 0.037* | |
C10 | 0.2553 (5) | −0.1691 (11) | 0.821 (3) | 0.034 (3) | |
H10A | 0.2849 | −0.1678 | 0.8808 | 0.041* | |
H10B | 0.2871 | −0.1697 | 0.7635 | 0.041* | |
C11 | 0.2116 (6) | −0.3044 (11) | 0.820 (3) | 0.037 (3) | |
H11A | 0.1824 | −0.3073 | 0.7604 | 0.045* | |
H11B | 0.1797 | −0.3048 | 0.8778 | 0.045* | |
Cl1 | 0.4733 (6) | 0.6298 (13) | 0.8275 (11) | 0.049 (2) | 0.5 |
O5 | 0.4266 (13) | 0.681 (3) | 0.7565 (17) | 0.092 (3) | 0.5 |
O4 | 0.5273 (11) | 0.731 (2) | 0.8438 (19) | 0.092 (3) | 0.5 |
O3 | 0.5054 (7) | 0.5048 (18) | 0.7937 (18) | 0.092 (3) | 0.5 |
O6 | 0.4378 (13) | 0.605 (2) | 0.9148 (16) | 0.092 (3) | 0.5 |
Cl1X | 0.4594 (6) | 0.5922 (13) | 0.8170 (11) | 0.049 (2) | 0.5 |
O5X | 0.4124 (13) | 0.682 (3) | 0.8729 (18) | 0.092 (3) | 0.5 |
O6X | 0.4188 (12) | 0.494 (2) | 0.7562 (18) | 0.092 (3) | 0.5 |
O3X | 0.5033 (7) | 0.507 (2) | 0.8825 (18) | 0.092 (3) | 0.5 |
O4X | 0.5041 (13) | 0.679 (2) | 0.7532 (18) | 0.092 (3) | 0.5 |
O2 | 0.1552 (4) | −0.5798 (9) | 0.819 (2) | 0.052 (2) | |
O1 | 0.2542 (5) | −0.6903 (9) | 0.823 (3) | 0.085 (5) | |
H1C | 0.2935 | −0.6775 | 0.7958 | 0.128* | |
C13 | 0.2181 (6) | −0.5702 (11) | 0.821 (3) | 0.037 (3) | |
C12 | 0.2587 (6) | −0.4350 (12) | 0.824 (3) | 0.041 (3) | |
H12A | 0.2915 | −0.4324 | 0.7675 | 0.049* | |
H12B | 0.2871 | −0.4323 | 0.8847 | 0.049* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0320 (7) | 0.0255 (7) | 0.0296 (7) | 0.0037 (5) | 0.0012 (18) | 0.0012 (18) |
Cl3 | 0.045 (5) | 0.090 (6) | 0.069 (5) | 0.014 (5) | −0.011 (4) | −0.046 (5) |
Cl2 | 0.050 (5) | 0.071 (4) | 0.057 (5) | 0.008 (4) | 0.009 (4) | 0.027 (4) |
O7 | 0.060 (7) | 0.072 (7) | 0.071 (6) | 0.002 (5) | 0.015 (5) | 0.023 (5) |
O8 | 0.060 (7) | 0.072 (7) | 0.071 (6) | 0.002 (5) | 0.015 (5) | 0.023 (5) |
O9 | 0.060 (7) | 0.072 (7) | 0.071 (6) | 0.002 (5) | 0.015 (5) | 0.023 (5) |
O10 | 0.060 (7) | 0.072 (7) | 0.071 (6) | 0.002 (5) | 0.015 (5) | 0.023 (5) |
O7X | 0.060 (7) | 0.072 (7) | 0.071 (6) | 0.002 (5) | 0.015 (5) | 0.023 (5) |
O8X | 0.060 (7) | 0.072 (7) | 0.071 (6) | 0.002 (5) | 0.015 (5) | 0.023 (5) |
O9X | 0.060 (7) | 0.072 (7) | 0.071 (6) | 0.002 (5) | 0.015 (5) | 0.023 (5) |
O10X | 0.060 (7) | 0.072 (7) | 0.071 (6) | 0.002 (5) | 0.015 (5) | 0.023 (5) |
O11 | 0.046 (5) | 0.080 (7) | 0.074 (6) | −0.006 (5) | 0.004 (4) | −0.037 (5) |
O12 | 0.046 (5) | 0.080 (7) | 0.074 (6) | −0.006 (5) | 0.004 (4) | −0.037 (5) |
O13 | 0.046 (5) | 0.080 (7) | 0.074 (6) | −0.006 (5) | 0.004 (4) | −0.037 (5) |
O14 | 0.046 (5) | 0.080 (7) | 0.074 (6) | −0.006 (5) | 0.004 (4) | −0.037 (5) |
O11X | 0.046 (5) | 0.080 (7) | 0.074 (6) | −0.006 (5) | 0.004 (4) | −0.037 (5) |
O12X | 0.046 (5) | 0.080 (7) | 0.074 (6) | −0.006 (5) | 0.004 (4) | −0.037 (5) |
O13X | 0.046 (5) | 0.080 (7) | 0.074 (6) | −0.006 (5) | 0.004 (4) | −0.037 (5) |
O14X | 0.046 (5) | 0.080 (7) | 0.074 (6) | −0.006 (5) | 0.004 (4) | −0.037 (5) |
N4 | 0.025 (9) | 0.038 (11) | 0.020 (8) | 0.006 (9) | −0.003 (8) | −0.003 (8) |
N5 | 0.033 (13) | 0.046 (17) | 0.039 (12) | 0.002 (10) | −0.007 (11) | 0.009 (11) |
N1 | 0.031 (13) | 0.017 (12) | 0.041 (12) | 0.007 (8) | −0.009 (10) | 0.006 (9) |
N2 | 0.034 (11) | 0.017 (9) | 0.043 (11) | −0.004 (8) | −0.007 (9) | −0.004 (9) |
N3 | 0.027 (4) | 0.024 (5) | 0.031 (5) | 0.000 (4) | −0.002 (11) | 0.010 (11) |
C5 | 0.053 (16) | 0.048 (17) | 0.022 (14) | 0.013 (13) | 0.016 (11) | 0.004 (12) |
C6 | 0.064 (19) | 0.048 (17) | 0.015 (11) | 0.004 (14) | −0.005 (11) | −0.012 (10) |
C7 | 0.036 (15) | 0.026 (14) | 0.054 (16) | 0.000 (13) | 0.009 (13) | −0.015 (12) |
C8 | 0.033 (6) | 0.028 (6) | 0.057 (8) | 0.011 (5) | −0.008 (17) | 0.015 (16) |
C9 | 0.040 (17) | 0.032 (15) | 0.061 (17) | 0.008 (14) | −0.005 (15) | −0.001 (13) |
C1 | 0.042 (16) | 0.046 (17) | 0.06 (2) | 0.020 (13) | −0.021 (14) | −0.008 (14) |
C2 | 0.052 (16) | 0.043 (17) | 0.039 (18) | 0.021 (13) | −0.003 (12) | −0.006 (14) |
C3 | 0.033 (15) | 0.031 (14) | 0.044 (15) | 0.001 (13) | 0.000 (12) | −0.003 (12) |
C4 | 0.036 (15) | 0.026 (14) | 0.030 (13) | 0.010 (13) | 0.009 (11) | 0.007 (11) |
C10 | 0.029 (5) | 0.022 (5) | 0.052 (7) | 0.007 (4) | 0.015 (16) | 0.002 (17) |
C11 | 0.035 (6) | 0.027 (6) | 0.050 (7) | −0.001 (5) | −0.006 (17) | −0.017 (15) |
Cl1 | 0.045 (4) | 0.057 (6) | 0.045 (3) | 0.018 (4) | −0.009 (6) | −0.015 (7) |
O5 | 0.089 (6) | 0.080 (7) | 0.106 (9) | 0.026 (6) | 0.000 (8) | −0.004 (7) |
O4 | 0.089 (6) | 0.080 (7) | 0.106 (9) | 0.026 (6) | 0.000 (8) | −0.004 (7) |
O3 | 0.089 (6) | 0.080 (7) | 0.106 (9) | 0.026 (6) | 0.000 (8) | −0.004 (7) |
O6 | 0.089 (6) | 0.080 (7) | 0.106 (9) | 0.026 (6) | 0.000 (8) | −0.004 (7) |
Cl1X | 0.045 (4) | 0.057 (6) | 0.045 (3) | 0.018 (4) | −0.009 (6) | −0.015 (7) |
O5X | 0.089 (6) | 0.080 (7) | 0.106 (9) | 0.026 (6) | 0.000 (8) | −0.004 (7) |
O6X | 0.089 (6) | 0.080 (7) | 0.106 (9) | 0.026 (6) | 0.000 (8) | −0.004 (7) |
O3X | 0.089 (6) | 0.080 (7) | 0.106 (9) | 0.026 (6) | 0.000 (8) | −0.004 (7) |
O4X | 0.089 (6) | 0.080 (7) | 0.106 (9) | 0.026 (6) | 0.000 (8) | −0.004 (7) |
O2 | 0.029 (4) | 0.032 (5) | 0.093 (7) | −0.006 (4) | −0.010 (14) | 0.007 (13) |
O1 | 0.046 (5) | 0.026 (5) | 0.184 (14) | 0.005 (4) | −0.035 (18) | 0.014 (17) |
C13 | 0.044 (7) | 0.020 (6) | 0.045 (7) | 0.003 (5) | 0.018 (16) | 0.013 (15) |
C12 | 0.025 (6) | 0.035 (6) | 0.063 (8) | 0.002 (5) | 0.017 (16) | 0.008 (17) |
Cu1—N5 | 1.99 (2) | C6—H6A | 0.9900 |
Cu1—N2 | 1.99 (2) | C6—H6B | 0.9900 |
Cu1—N1 | 2.005 (19) | C7—C8 | 1.51 (4) |
Cu1—N4 | 2.071 (19) | C7—H7A | 0.9900 |
Cu1—O2i | 2.379 (8) | C7—H7B | 0.9900 |
Cl3—O13 | 1.417 (12) | C8—C9 | 1.50 (5) |
Cl3—O12 | 1.422 (12) | C8—H8A | 0.9900 |
Cl3—O11 | 1.426 (12) | C8—H8B | 0.9900 |
Cl3—O14X | 1.429 (15) | C9—H9A | 0.9900 |
Cl3—O12X | 1.435 (15) | C9—H9B | 0.9900 |
Cl3—O11X | 1.446 (14) | C1—C2 | 1.57 (4) |
Cl3—O13X | 1.447 (15) | C1—H1A | 0.9900 |
Cl3—O14 | 1.497 (13) | C1—H1B | 0.9900 |
Cl2—O10 | 1.421 (13) | C2—H2A | 0.9900 |
Cl2—O7X | 1.424 (15) | C2—H2B | 0.9900 |
Cl2—O10X | 1.424 (15) | C3—H3A | 0.9900 |
Cl2—O9 | 1.430 (13) | C3—H3B | 0.9900 |
Cl2—O8 | 1.431 (13) | C4—H4A | 0.9900 |
Cl2—O8X | 1.437 (15) | C4—H4B | 0.9900 |
Cl2—O7 | 1.443 (13) | C10—C11 | 1.514 (14) |
Cl2—O9X | 1.448 (15) | C10—H10A | 0.9900 |
N4—C4 | 1.42 (3) | C10—H10B | 0.9900 |
N4—C5 | 1.55 (3) | C11—C12 | 1.515 (15) |
N4—H4 | 1.0000 | C11—H11A | 0.9900 |
N5—C7 | 1.50 (3) | C11—H11B | 0.9900 |
N5—C6 | 1.54 (3) | Cl1—O6 | 1.387 (17) |
N5—H5 | 1.0000 | Cl1—O3 | 1.398 (17) |
N1—C1 | 1.44 (4) | Cl1—O5 | 1.399 (17) |
N1—C9 | 1.47 (3) | Cl1—O4 | 1.411 (17) |
N1—H1 | 1.0000 | Cl1X—O5X | 1.446 (19) |
N2—C2 | 1.42 (3) | Cl1X—O3X | 1.456 (19) |
N2—C3 | 1.49 (3) | Cl1X—O6X | 1.461 (19) |
N2—H2 | 1.0000 | Cl1X—O4X | 1.463 (19) |
N3—C3 | 1.47 (3) | O2—C13 | 1.198 (13) |
N3—C10 | 1.507 (13) | O2—Cu1ii | 2.379 (8) |
N3—C4 | 1.55 (3) | O1—C13 | 1.318 (13) |
N3—H3 | 1.0000 | O1—H1C | 0.8400 |
C5—C6 | 1.46 (4) | C13—C12 | 1.483 (16) |
C5—H5A | 0.9900 | C12—H12A | 0.9900 |
C5—H5B | 0.9900 | C12—H12B | 0.9900 |
N5—Cu1—N2 | 175.2 (9) | N5—C7—H7A | 109.7 |
N5—Cu1—N1 | 93.9 (4) | C8—C7—H7A | 109.7 |
N2—Cu1—N1 | 84.4 (9) | N5—C7—H7B | 109.7 |
N5—Cu1—N4 | 88.0 (9) | C8—C7—H7B | 109.7 |
N2—Cu1—N4 | 93.4 (4) | H7A—C7—H7B | 108.2 |
N1—Cu1—N4 | 175.6 (8) | C9—C8—C7 | 116.4 (10) |
N5—Cu1—O2i | 91.8 (9) | C9—C8—H8A | 108.2 |
N2—Cu1—O2i | 92.8 (8) | C7—C8—H8A | 108.2 |
N1—Cu1—O2i | 90.8 (8) | C9—C8—H8B | 108.2 |
N4—Cu1—O2i | 93.1 (8) | C7—C8—H8B | 108.2 |
O13—Cl3—O12 | 114.1 (7) | H8A—C8—H8B | 107.3 |
O13—Cl3—O11 | 112.8 (7) | N1—C9—C8 | 112 (2) |
O12—Cl3—O11 | 110.7 (7) | N1—C9—H9A | 109.3 |
O14X—Cl3—O12X | 110.8 (9) | C8—C9—H9A | 109.3 |
O14X—Cl3—O11X | 109.5 (9) | N1—C9—H9B | 109.3 |
O12X—Cl3—O11X | 109.1 (9) | C8—C9—H9B | 109.3 |
O14X—Cl3—O13X | 109.6 (9) | H9A—C9—H9B | 108.0 |
O12X—Cl3—O13X | 109.0 (9) | N1—C1—C2 | 109 (2) |
O11X—Cl3—O13X | 108.7 (9) | N1—C1—H1A | 110.0 |
O13—Cl3—O14 | 105.1 (7) | C2—C1—H1A | 110.0 |
O12—Cl3—O14 | 105.3 (7) | N1—C1—H1B | 110.0 |
O11—Cl3—O14 | 108.3 (7) | C2—C1—H1B | 110.0 |
O7X—Cl2—O10X | 111.1 (9) | H1A—C1—H1B | 108.3 |
O10—Cl2—O9 | 110.0 (7) | N2—C2—C1 | 106 (2) |
O10—Cl2—O8 | 109.8 (7) | N2—C2—H2A | 110.6 |
O9—Cl2—O8 | 109.7 (7) | C1—C2—H2A | 110.6 |
O7X—Cl2—O8X | 109.7 (9) | N2—C2—H2B | 110.6 |
O10X—Cl2—O8X | 110.0 (9) | C1—C2—H2B | 110.6 |
O10—Cl2—O7 | 109.5 (7) | H2A—C2—H2B | 108.7 |
O9—Cl2—O7 | 108.5 (7) | N3—C3—N2 | 111.8 (18) |
O8—Cl2—O7 | 109.4 (7) | N3—C3—H3A | 109.2 |
O7X—Cl2—O9X | 108.9 (9) | N2—C3—H3A | 109.2 |
O10X—Cl2—O9X | 108.6 (9) | N3—C3—H3B | 109.2 |
O8X—Cl2—O9X | 108.4 (9) | N2—C3—H3B | 109.2 |
C4—N4—C5 | 110.6 (19) | H3A—C3—H3B | 107.9 |
C4—N4—Cu1 | 117.0 (15) | N4—C4—N3 | 110.0 (17) |
C5—N4—Cu1 | 101.8 (14) | N4—C4—H4A | 109.7 |
C4—N4—H4 | 109.0 | N3—C4—H4A | 109.7 |
C5—N4—H4 | 109.0 | N4—C4—H4B | 109.7 |
Cu1—N4—H4 | 109.0 | N3—C4—H4B | 109.7 |
C7—N5—C6 | 113 (2) | H4A—C4—H4B | 108.2 |
C7—N5—Cu1 | 116.2 (19) | N3—C10—C11 | 113.0 (8) |
C6—N5—Cu1 | 106.1 (15) | N3—C10—H10A | 109.0 |
C7—N5—H5 | 107.0 | C11—C10—H10A | 109.0 |
C6—N5—H5 | 107.0 | N3—C10—H10B | 109.0 |
Cu1—N5—H5 | 107.0 | C11—C10—H10B | 109.0 |
C1—N1—C9 | 111 (2) | H10A—C10—H10B | 107.8 |
C1—N1—Cu1 | 108.6 (16) | C10—C11—C12 | 110.6 (9) |
C9—N1—Cu1 | 115.0 (19) | C10—C11—H11A | 109.5 |
C1—N1—H1 | 107.2 | C12—C11—H11A | 109.5 |
C9—N1—H1 | 107.2 | C10—C11—H11B | 109.5 |
Cu1—N1—H1 | 107.2 | C12—C11—H11B | 109.5 |
C2—N2—C3 | 108.6 (19) | H11A—C11—H11B | 108.1 |
C2—N2—Cu1 | 111.3 (16) | O6—Cl1—O3 | 110.9 (9) |
C3—N2—Cu1 | 119.6 (17) | O6—Cl1—O5 | 110.0 (8) |
C2—N2—H2 | 105.4 | O3—Cl1—O5 | 109.7 (9) |
C3—N2—H2 | 105.4 | O6—Cl1—O4 | 109.2 (9) |
Cu1—N2—H2 | 105.4 | O3—Cl1—O4 | 107.1 (8) |
C3—N3—C10 | 112 (2) | O5—Cl1—O4 | 109.8 (8) |
C3—N3—C4 | 113.6 (8) | O5X—Cl1X—O3X | 110.4 (8) |
C10—N3—C4 | 109 (2) | O5X—Cl1X—O6X | 110.0 (8) |
C3—N3—H3 | 107.4 | O3X—Cl1X—O6X | 107.8 (8) |
C10—N3—H3 | 107.4 | O5X—Cl1X—O4X | 110.3 (8) |
C4—N3—H3 | 107.4 | O3X—Cl1X—O4X | 109.7 (8) |
C6—C5—N4 | 108 (2) | O6X—Cl1X—O4X | 108.7 (8) |
C6—C5—H5A | 110.1 | C13—O2—Cu1ii | 128.7 (7) |
N4—C5—H5A | 110.1 | C13—O1—H1C | 109.5 |
C6—C5—H5B | 110.1 | O2—C13—O1 | 117.1 (10) |
N4—C5—H5B | 110.1 | O2—C13—C12 | 125.7 (10) |
H5A—C5—H5B | 108.4 | O1—C13—C12 | 117.2 (10) |
C5—C6—N5 | 108 (2) | C13—C12—C11 | 112.4 (9) |
C5—C6—H6A | 110.2 | C13—C12—H12A | 109.1 |
N5—C6—H6A | 110.2 | C11—C12—H12A | 109.1 |
C5—C6—H6B | 110.2 | C13—C12—H12B | 109.1 |
N5—C6—H6B | 110.2 | C11—C12—H12B | 109.1 |
H6A—C6—H6B | 108.5 | H12A—C12—H12B | 107.8 |
N5—C7—C8 | 110 (2) | ||
C4—N4—C5—C6 | −171 (2) | C10—N3—C3—N2 | −166.3 (16) |
Cu1—N4—C5—C6 | −45 (2) | C4—N3—C3—N2 | 70.0 (19) |
N4—C5—C6—N5 | 60 (3) | C2—N2—C3—N3 | 178 (2) |
C7—N5—C6—C5 | −170 (2) | Cu1—N2—C3—N3 | −52 (2) |
Cu1—N5—C6—C5 | −42 (3) | C5—N4—C4—N3 | 174.6 (18) |
C6—N5—C7—C8 | −178 (2) | Cu1—N4—C4—N3 | 59 (2) |
Cu1—N5—C7—C8 | 58 (3) | C3—N3—C4—N4 | −75.1 (19) |
N5—C7—C8—C9 | −68 (2) | C10—N3—C4—N4 | 159.7 (17) |
C1—N1—C9—C8 | 177 (2) | C3—N3—C10—C11 | −62 (3) |
Cu1—N1—C9—C8 | −59 (3) | C4—N3—C10—C11 | 64 (3) |
C7—C8—C9—N1 | 69 (2) | N3—C10—C11—C12 | −180 (3) |
C9—N1—C1—C2 | 166 (2) | Cu1ii—O2—C13—O1 | 2 (6) |
Cu1—N1—C1—C2 | 38 (3) | Cu1ii—O2—C13—C12 | −177 (3) |
C3—N2—C2—C1 | 172 (2) | O2—C13—C12—C11 | −2 (6) |
Cu1—N2—C2—C1 | 38 (3) | O1—C13—C12—C11 | 179 (3) |
N1—C1—C2—N2 | −51 (3) | C10—C11—C12—C13 | −179 (3) |
Symmetry codes: (i) x, y+1, z; (ii) x, y−1, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···O8 | 1.00 | 2.35 | 3.15 (3) | 136 |
N3—H3···O10 | 1.00 | 2.23 | 2.85 (2) | 119 |
N3—H3···O12 | 1.00 | 2.43 | 2.99 (2) | 115 |
N4—H4···O11 | 1.00 | 2.23 | 3.08 (3) | 143 |
O1—H1C···O7ii | 0.84 | 2.39 | 3.13 (4) | 147 |
N2—H2···O1i | 1.00 | 2.47 | 3.20 (3) | 129 |
N4—H4···O1i | 1.00 | 2.43 | 3.13 (3) | 126 |
N1—H1···O7iii | 1.00 | 2.40 | 3.29 (3) | 148 |
N5—H5···O14iii | 1.00 | 2.35 | 3.26 (3) | 151 |
C2—H2A···O3iii | 0.99 | 2.63 | 3.15 (4) | 113 |
C2—H2B···O8 | 0.99 | 2.64 | 3.26 (4) | 120 |
C3—H3A···O3iii | 0.99 | 2.65 | 3.23 (3) | 118 |
C3—H3B···O11iv | 0.99 | 2.57 | 3.42 (3) | 144 |
C4—H4A···O4iii | 0.99 | 2.44 | 3.40 (3) | 163 |
C4—H4B···O8v | 0.99 | 2.61 | 3.48 (3) | 147 |
C5—H5B···O5v | 0.99 | 2.65 | 3.29 (3) | 122 |
C7—H7A···O2i | 0.99 | 2.64 | 3.23 (3) | 118 |
C7—H7A···O4vi | 0.99 | 2.65 | 3.26 (3) | 120 |
C7—H7A···O9vii | 0.99 | 2.64 | 3.44 (3) | 138 |
C8—H8B···O5vi | 0.99 | 2.65 | 3.56 (3) | 153 |
C9—H9B···O2i | 0.99 | 2.58 | 3.20 (3) | 120 |
C10—H10B···O10 | 0.99 | 2.60 | 3.15 (3) | 115 |
C10—H10A···O12 | 0.99 | 2.56 | 3.18 (3) | 121 |
C11—H11B···O9v | 0.99 | 2.47 | 3.40 (4) | 157 |
C11—H11A···O13iv | 0.99 | 2.44 | 3.43 (3) | 172 |
N1—H1···O6Xiii | 1.00 | 2.46 | 3.36 (3) | 149 |
N5—H5···O3Xiii | 1.00 | 2.36 | 2.88 (3) | 112 |
C3—H3A···O4Xiii | 0.99 | 2.52 | 3.45 (4) | 156 |
C4—H4A···O3Xiii | 0.99 | 2.47 | 3.14 (3) | 125 |
C5—H5A···O3Xiii | 0.99 | 2.13 | 2.83 (4) | 127 |
C6—H6B···O4Xv | 0.99 | 2.61 | 3.48 (4) | 147 |
C8—H8B···O5Xvi | 0.99 | 2.65 | 3.59 (3) | 157 |
C12—H12B···O5Xii | 0.99 | 2.62 | 3.19 (3) | 117 |
C12—H12A···O6Xii | 0.99 | 2.52 | 3.25 (3) | 130 |
Symmetry codes: (i) x, y+1, z; (ii) x, y−1, z; (iii) x−1/2, −y+1/2, z; (iv) −x+1/2, y−1/2, z−1/2; (v) −x+1/2, y−1/2, z+1/2; (vi) x−1/2, −y+3/2, z; (vii) −x+1/2, y+1/2, z+1/2. |
Distances | Bite angles | |||
Cu1—N1 | 2.005 (19) | N1—Cu1—N2 | 84.4 (9) | |
Cu1—N2 | 1.99 (2) | N4—Cu1—N5 | 88.0 (9) | |
Cu1—N4 | 2.071 (19) | N1—Cu1—N5 | 93.9 (4) | |
Cu1—N5 | 1.99 (2) | N2—Cu1—N4 | 93.4 (4) | |
Cu1—O2 | 2.379 (8) | |||
Cu1—O3 | 2.544 (16) | |||
Cu1—O3X | 2.687 (18) |
References
Andriichuk, I. L., Tsymbal, L. V., Arion, V. B. & Lampeka, Y. D. (2019). Acta Cryst. E75, 1015–1019. CSD CrossRef IUCr Journals Google Scholar
Bosnich, B., Poon, C. K. & Tobe, M. C. (1965). Inorg. Chem. 4, 1102–1108. CrossRef CAS Web of Science Google Scholar
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Costisor, O. & Linert, W. (2000). Rev. Inorg. Chem. 1, 63–126. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hay, R. W., Danby, A., Lightfoot, Ph. & Lampeka, Ya. D. (1997). Polyhedron, 16, 2777–2783. CSD CrossRef CAS Google Scholar
Husain, A., Moheman, A., Nami, S. A. A. & Siddiqi, K. S. (2012). Inorg. Chim. Acta, 384, 309–317. CSD CrossRef CAS Google Scholar
Jiang, L., Lu, W.-G., Feng, X.-L., Xiang, H. & Lu, T.-B. (2006). Wuji Huaxue Xuebao (Chin.) (Chin. J. Inorg. Chem.), 22, 389–393. CAS Google Scholar
Lampeka, Ya. D. & Tsymbal, L. V. (2004). Theor. Exp. Chem. 40, 345–371. CrossRef CAS Google Scholar
Liu, J., Lu, T.-B., Xiang, H., Mao, Z.-W. & Ji, L.-N. (2002). CrystEngComm, 4, 64–67. CSD CrossRef Google Scholar
Lu, T.-B., Ou, G.-C., Jiang, L., Feng, X.-L. & Ji, L.-N. (2005). Inorg. Chim. Acta, 358, 3241–3245. CSD CrossRef CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Maloshtan, I. M. & Lampeka, Ya. D. (1996). Russ. J. Inorg. Chem. 41, 1749–1753. Google Scholar
Melson, G. A. (1979). Editor. Coordination Chemistry of Macrocyclic Compounds. New York: Plenum Press. Google Scholar
Ou, G.-C., Su, C.-Y., Yao, J.-H. & Lu, T.-B. (2005). Inorg. Chem. Commun. 8, 421–424. CSD CrossRef CAS Google Scholar
Rao, C. N. R., Natarajan, S. & Vaidhyanathan, R. (2004). Angew. Chem. Int. Ed. 43, 1466–1496. Web of Science CrossRef CAS Google Scholar
Rosokha, S. V., Lampeka, Ya. D. & Maloshtan, I. M. (1993). J. Chem. Soc. Dalton Trans. pp. 631–636. CrossRef Web of Science Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shin, J. W., Rowthu, S. R., Ryoo, J. J. & Min, K. S. (2010). Acta Cryst. E66, m919–m920. Web of Science CSD CrossRef IUCr Journals Google Scholar
Shin, J. W., Yeo, S. M. & Min, K. S. (2012). Inorg. Chem. Commun. 22, 162–166. CSD CrossRef CAS Google Scholar
Stackhouse, C. A. & Ma, S. (2018). Polyhedron, 145, 154–165. Web of Science CrossRef CAS Google Scholar
Suh, M. P. & Moon, H. R. (2007). Advances in Inorganic Chemistry, Vol. 59, edited by R. van Eldik & K. Bowman-James, pp. 39–79. San Diego: Academic Press. Google Scholar
Suh, M. P., Park, H. J., Prasad, T. K. & Lim, D.-W. (2012). Chem. Rev. 112, 782–835. Web of Science CrossRef CAS PubMed Google Scholar
Tsymbal, L. V., Andriichuk, I. L., Lampeka, Ya. D. & Pritzkow, H. (2010). Russ. Chem. Bull. 59, 1572–1581. Web of Science CrossRef CAS Google Scholar
Tsymbal, L. V., Rosokha, S. V. & Lampeka, Ya. D. (1995). J. Chem. Soc. Dalton Trans. pp. 2633–2637. CrossRef Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Xia, H., Jiang, X., Jiang, C. & Liao, G. (2014). Russ. J. Coord. Chem. 40, 93–99. CrossRef CAS Google Scholar
Yatsimirskii, K. B. & Lampeka, Ya. D. (1985). Physicochemistry of Metal Complexes with Macrocyclic Ligands, Kiev: Naukova Dumka. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.