research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

The first structural characterization of the proton­ated aza­cyclam ligand in catena-poly[[[(perchlorato)copper(II)]-μ-3-(3-carb­­oxy­prop­yl)-1,5,8,12-tetra­aza-3-azonia­cyclo­tetra­deca­ne] bis­­(per­chlorate)]

aL.V. Pisarzhevskii Institute of Physical Chemistry of the National Academy of Sciences of Ukraine, Prospekt Nauki 31, Kiev 03028, Ukraine, and bInstitute of Inorganic Chemistry of the University of Vienna, Wahringer Str. 42, 1090 Vienna, Austria
*Correspondence e-mail: lampeka@adamant.net

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 18 September 2019; accepted 9 October 2019; online 22 October 2019)

The asymmetric unit of the title com­pound, catena-poly[[[(perchlorato-κO)copper(II)]-μ-3-(3-carb­oxy­prop­yl)-1,5,8,12-tetra­aza-3-azonia­cyclo­tetra­decane-κ4N1,N5,N8,N12] bis­(per­chlorate)], {[Cu(C13H30N5O2)(ClO4)](ClO4)2}n, (I), consists of a macrocyclic cation, one coordinated per­chlorate anion and two per­chlorate ions as counter-anions. The metal ion is coordinated in a tetra­gonally distorted octa­hedral geometry by the four secondary N atoms of the macrocyclic ligand, the mutually trans O atoms of the per­chlorate anion and the carbonyl O atom of the protonated carb­oxy­lic acid group of a neighbouring cation. The average equatorial Cu—N bond lengths [2.01 (6) Å] are significantly shorter than the axial Cu—O bond lengths [2.379 (8) Å for carboxyl­ate and average 2.62 (7) Å for disordered per­chlorate]. The coordinated macrocyclic ligand in (I) adopts the most energetically favourable trans-III conformation with an equatorial orientation of the substituent at the protonated distal 3-position N atom in a six-membered chelate ring. The coordination of the carb­oxy­lic acid group of the cation to a neighbouring com­plex unit results in the formation of infinite chains running along the b-axis direction, which are cross­linked by N—H⋯O hydrogen bonds between the secondary amine groups of the macrocycle and O atoms of the per­chlorate counter-anions to form sheets lying parallel to the (001) plane. Additionally, the extended structure of (I) is consolidated by numerous intra- and interchain C—H⋯O contacts.

1. Chemical context

Because of their exceptionally high thermodynamic stability and kinetic inertness (Melson, 1979[Melson, G. A. (1979). Editor. Coordination Chemistry of Macrocyclic Compounds. New York: Plenum Press.]; Yatsimirskii & Lampeka, 1985[Yatsimirskii, K. B. & Lampeka, Ya. D. (1985). Physicochemistry of Metal Complexes with Macrocyclic Ligands, Kiev: Naukova Dumka.]), transition-metal com­plexes of the macrocycles 1,4,8,11-tetra­aza­cyclo­tetra­decane (cyclam), N3,N10-disubstituted 1,3,5,8,10,12-hexa­aza­cyclo­tetra­decane (di­aza­cyclam) and, to a lesser extent, N3-substituted 1,3,5,8,12-penta­aza­cyclo­tetra­decane (aza­cyclam) are popular building units for the assembly of metal–organic frameworks (MOFs), demonstrating many promising applications (Lampeka & Tsymbal, 2004[Lampeka, Ya. D. & Tsymbal, L. V. (2004). Theor. Exp. Chem. 40, 345-371.]; Suh & Moon, 2007[Suh, M. P. & Moon, H. R. (2007). Advances in Inorganic Chemistry, Vol. 59, edited by R. van Eldik & K. Bowman-James, pp. 39-79. San Diego: Academic Press.]; Suh et al., 2012[Suh, M. P., Park, H. J., Prasad, T. K. & Lim, D.-W. (2012). Chem. Rev. 112, 782-835.]; Stackhouse & Ma, 2018[Stackhouse, C. A. & Ma, S. (2018). Polyhedron, 145, 154-165.]). Two latter types of the CuII and NiII com­plexes are readily obtainable via template-directed Mannich condensation of bis­(ethyl­enedi­amine) or 3,7-di­aza­nonane-1,9-di­amine com­plexes, respectively, with formaldehyde and primary amines (Rosokha et al., 1993[Rosokha, S. V., Lampeka, Ya. D. & Maloshtan, I. M. (1993). J. Chem. Soc. Dalton Trans. pp. 631-636.]; Costisor & Linert, 2000[Costisor, O. & Linert, W. (2000). Rev. Inorg. Chem. 1, 63-126.]). The use of primary amines bearing a carb­oxy­lic acid function as locking fragments in these template reactions allows for the preparation of com­plexes of carboxyl-functionalized di­aza­cyclams, as was shown for the NiII and CuII com­plexes of di­aza­cyclam substituted with 3-carb­oxy­propyl groups (Lu et al., 2005[Lu, T.-B., Ou, G.-C., Jiang, L., Feng, X.-L. & Ji, L.-N. (2005). Inorg. Chim. Acta, 358, 3241-3245.]; Ou et al., 2005[Ou, G.-C., Su, C.-Y., Yao, J.-H. & Lu, T.-B. (2005). Inorg. Chem. Commun. 8, 421-424.]). Such com­pounds are of particular inter­est because they can self-polymerize due to the coordination of the donor group of the substituent to the metal ion of another mol­ecule, thus forming coordination polymers without using additional bridging ligands, the most popular of which are carboxyl­ates (Rao et al., 2004[Rao, C. N. R., Natarajan, S. & Vaidhyanathan, R. (2004). Angew. Chem. Int. Ed. 43, 1466-1496.]). Indeed, the CuII com­plex of this di­aza­cyclam ligand possesses a self-polymeric structure (Ou et al., 2005[Ou, G.-C., Su, C.-Y., Yao, J.-H. & Lu, T.-B. (2005). Inorg. Chem. Commun. 8, 421-424.]), whereas the NiII complex does not form a polymer (Lu et al., 2005[Lu, T.-B., Ou, G.-C., Jiang, L., Feng, X.-L. & Ji, L.-N. (2005). Inorg. Chim. Acta, 358, 3241-3245.]). Data on the polymeric com­pounds of the given type formed by the com­plexes of functionalized aza­cyclam are not available in the literature so far.

[Scheme 1]

Another issue of inter­est is the acid–base properties of the non­coordinated distal N atom present in the macrocyclic backbones of aza- and di­aza­cyclams. Its likely proton­ation was postulated first based on the solution properties of the NiII com­pounds (Rosokha et al., 1993[Rosokha, S. V., Lampeka, Ya. D. & Maloshtan, I. M. (1993). J. Chem. Soc. Dalton Trans. pp. 631-636.]; Tsymbal et al., 1995[Tsymbal, L. V., Rosokha, S. V. & Lampeka, Ya. D. (1995). J. Chem. Soc. Dalton Trans. pp. 2633-2637.]; Hay et al., 1997[Hay, R. W., Danby, A., Lightfoot, Ph. & Lampeka, Ya. D. (1997). Polyhedron, 16, 2777-2783.]) and was further confirmed by X-ray structural analysis of the diethyl-substituted NiII di­aza­cyclam com­plex (Jiang et al., 2006[Jiang, L., Lu, W.-G., Feng, X.-L., Xiang, H. & Lu, T.-B. (2006). Wuji Huaxue Xuebao (Chin.) (Chin. J. Inorg. Chem.), 22, 389-393.]), while such a possibility for the CuII com­plexes has not been reported yet.

Herein, we describe the synthesis and the crystal structure of the title CuII com­plex, (I)[link], with a protonated aza­cyclam ligand bearing a carb­oxy­lic acid group, namely, catena-poly[[[(perchlorato-κO)copper(II)]-μ-3-(3-carb­oxy­prop­yl)-1,5,8,12-tetra­aza-3-azonia­cyclo­tetra­decane-κ4N1,N5,N8,N12] bis­(per­chlorate)], {[Cu(H2L)(ClO4)](ClO4)2}n, which is the first example of aza­cyclam ligand with a carb­oxy­lic acid group.

2. Structural commentary

The CuII ion in the com­plex cation in (I)[link] is coordinated by four secondary amine N atoms of the aza­macrocyclic ligand in a square-planar fashion and by O atoms from the per­chlorate anion and the carb­oxy­lic acid group of a neighbouring cation in the axial positions, resulting in a tetra­gonally distorted octa­hedral geometry (Table 1[link] and Fig. 1[link]). The CuII ion is displaced by 0.075 Å from the mean plane of the N4 donor atoms (r.m.s. deviation = 0.005 Å) towards the O2 atom of the carboxyl­ate group. The equatorial Cu—N bond lengths are significantly shorter than the axial Cu—O bond lengths (Table 1[link]), which can be attributed to a large Jahn–Teller distortion.

Table 1
Selected bond lengths and angles (Å, °)

Distances   Bite angles    
Cu1—N1 2.005 (19) N1—Cu1—N2 84.4 (9)  
Cu1—N2 1.99 (2) N4—Cu1—N5 88.0 (9)  
Cu1—N4 2.071 (19) N1—Cu1—N5 93.9 (4)  
Cu1—N5 1.99 (2) N2—Cu1—N4 93.4 (4)  
Cu1—O2 2.379 (8)      
Cu1—O3 2.544 (16)      
Cu1—O3X 2.687 (18)      
[Figure 1]
Figure 1
View of the asymmetric unit of (I)[link], expanded to show the linking atoms O2i and Cu1ii forming the [010] polymeric chains, with displacement ellipsoids drawn at the 30% probability level. H atoms attached to C atoms have been omitted for clarity. The coordinated per­chlorate anion (Cl1O4) is equally disordered over two sets of sites and is shown in different shades; the minor-disorder com­ponents of the per­chlorate counter-anions with site occupancies of 20 (Cl2O4) and 22% (Cl3O4) have been omitted for clarity. Dashed lines represent hydrogen bonds. [Symmetry codes: (i) x, y + 1, z; (ii) x, y − 1, z.]

The macrocyclic ligand in (I)[link] adopts the most energetically favourable trans-III (R,R,S,S) conformation (Bosnich et al., 1965[Bosnich, B., Poon, C. K. & Tobe, M. C. (1965). Inorg. Chem. 4, 1102-1108.]), with the five-membered chelate rings in gauche [average bite angle = 86.2 (18)°] and the six-membered chelate rings in chair [average bite angle = 93.6 (2)°] conformations. The methyl­ene group of the substituent at the noncoordinated N3 atom in the six-membered chelate ring is oriented equatorially. Such an arrangement of the substituent, in contrast to an axial orientation, is relatively uncommon and only a few examples of such CuII com­plexes with aza- and di­aza­cyclam ligands have been described so far (Shin et al., 2010[Shin, J. W., Rowthu, S. R., Ryoo, J. J. & Min, K. S. (2010). Acta Cryst. E66, m919-m920.], 2012[Shin, J. W., Yeo, S. M. & Min, K. S. (2012). Inorg. Chem. Commun. 22, 162-166.]; Tsymbal et al., 2010[Tsymbal, L. V., Andriichuk, I. L., Lampeka, Ya. D. & Pritzkow, H. (2010). Russ. Chem. Bull. 59, 1572-1581.]; Husain et al., 2012[Husain, A., Moheman, A., Nami, S. A. A. & Siddiqi, K. S. (2012). Inorg. Chim. Acta, 384, 309-317.]; Xia et al., 2014[Xia, H., Jiang, X., Jiang, C. & Liao, G. (2014). Russ. J. Coord. Chem. 40, 93-99.]).

The formation of the azonia N3H+ group in (I)[link] leads to clear changes in the C—N—C angles com­pared to the nonprotonated ones. The sum of these angles in the latter case (345–354°) is much larger than the canonical value for an sp3-hybridized N atom (ca 327°), thus indicating their partial sp2 character (Tsymbal et al., 2010[Tsymbal, L. V., Andriichuk, I. L., Lampeka, Ya. D. & Pritzkow, H. (2010). Russ. Chem. Bull. 59, 1572-1581.]; Andriichuk et al., 2019[Andriichuk, I. L., Tsymbal, L. V., Arion, V. B. & Lampeka, Y. D. (2019). Acta Cryst. E75, 1015-1019.]), while in (I)[link] this parameter equals 335 (2)°, demonstrating an sp2-to-sp3 transformation of the noncoordinated N atom upon protonation.

The C—O bond lengths in the carb­oxy­lic acid group of the substituent differ considerably [1.318 (13) and 1.198 (13) Å for C13—O1 and C13—O2, respectively], thus confirming its protonated form and the lack of delocalization. Inter­estingly, it is coordinated to the CuII ion via O2, the carbonyl O atom, which is analogous to the situation observed in a bis­(3-carb­oxy­prop­yl)-substituted di­aza­cyclam polymeric com­plex (Ou et al., 2005[Ou, G.-C., Su, C.-Y., Yao, J.-H. & Lu, T.-B. (2005). Inorg. Chem. Commun. 8, 421-424.]).

Three disordered per­chlorate anions in the title com­pound counterbalance the charge of the com­plex cations. The Cl1O4 anion is com­pletely disordered over two positions with site occupancies of 50% and is weakly coordinated to the metal ion (Table 1[link]). Two remaining counter-anions are partially disordered with the retention of the positions of the central Cl atoms, with site occupancies of the major com­ponents of 80 (Cl2O4) and 78% (Cl3O4). Because of the low partial population, the minor com­ponents of these per­chlorate anions were not considered further in the analysis of the hydrogen-bonding network.

3. Supra­molecular features

The inter-cationic coordination of the carb­oxy­lic acid group of the substituent in the macrocycle to the metal ion results in the formation of one-dimensional polymeric chains running along the b-axis direction (Fig. 2[link]). These chains are further reinforced by hydrogen bonding between secondary amine groups of the macrocycle acting as proton donors and O atoms of the per­chlorate anions as proton acceptors [N2—H2⋯O8(Cl2) and N4—H4⋯O11(Cl3)]. Additionally, the azonia group of the macrocycle forms a bifurcated hydrogen bond with both non­coordinated per­chlorate anions [N3—H3+⋯O10(Cl2),O12(Cl3)], so that each per­chlorate anion is fixed in a chain in a ditopic manner (Fig. 2[link] and Table 2[link]). In addition, weak hydrogen bonding exists between the carb­oxy­lic acid group as the proton donor and an O atom of one of the per­chlorate ions [O1—H1C⋯O7(Cl2)(x, y − 1, z)], as well as between secondary amine groups of the macrocycle and an O atom of the carb­oxy­lic acid group as the proton acceptor [N2—H2(N4—H4)⋯O1(x, y + 1, z)]. Hydrogen bonding of the secondary amine groups of the macrocycle and the O atoms of per­chlorate anions not involved in above-mentioned intra­chain inter­actions [N1—H1⋯O7(Cl2)(x − [{1\over 2}], −y + [{1\over 2}], z) and N5—H5⋯O14(Cl3)(x − [{1\over 2}], −y + [{1\over 2}], z)] results in the formation of sheets lying parallel to the (001) plane (Fig. 2[link]), with a distance between them of 6.82 Å. There are also numerous intra- and inter­chain C—H⋯O contacts between methyl­ene groups of the macrocycle and the O atoms of the anions (Table 2[link]), and these latter inter­actions are responsible for the formation of the three-dimensional structure of (I)[link].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O8 1.00 2.35 3.15 (3) 136
N3—H3⋯O10 1.00 2.23 2.85 (2) 119
N3—H3⋯O12 1.00 2.43 2.99 (2) 115
N4—H4⋯O11 1.00 2.23 3.08 (3) 143
O1—H1C⋯O7i 0.84 2.39 3.13 (4) 147
N2—H2⋯O1ii 1.00 2.47 3.20 (3) 129
N4—H4⋯O1ii 1.00 2.43 3.13 (3) 126
N1—H1⋯O7iii 1.00 2.40 3.29 (3) 148
N5—H5⋯O14iii 1.00 2.35 3.26 (3) 151
C2—H2A⋯O3iii 0.99 2.63 3.15 (4) 113
C2—H2B⋯O8 0.99 2.64 3.26 (4) 120
C3—H3A⋯O3iii 0.99 2.65 3.23 (3) 118
C3—H3B⋯O11iv 0.99 2.57 3.42 (3) 144
C4—H4A⋯O4iii 0.99 2.44 3.40 (3) 163
C4—H4B⋯O8v 0.99 2.61 3.48 (3) 147
C5—H5B⋯O5v 0.99 2.65 3.29 (3) 122
C7—H7A⋯O2ii 0.99 2.64 3.23 (3) 118
C7—H7A⋯O4vi 0.99 2.65 3.26 (3) 120
C7—H7A⋯O9vii 0.99 2.64 3.44 (3) 138
C8—H8B⋯O5vi 0.99 2.65 3.56 (3) 153
C9—H9B⋯O2ii 0.99 2.58 3.20 (3) 120
C10—H10B⋯O10 0.99 2.60 3.15 (3) 115
C10—H10A⋯O12 0.99 2.56 3.18 (3) 121
C11—H11B⋯O9v 0.99 2.47 3.40 (4) 157
C11—H11A⋯O13iv 0.99 2.44 3.43 (3) 172
N1—H1⋯O6Xiii 1.00 2.46 3.36 (3) 149
N5—H5⋯O3Xiii 1.00 2.36 2.88 (3) 112
C3—H3A⋯O4Xiii 0.99 2.52 3.45 (4) 156
C4—H4A⋯O3Xiii 0.99 2.47 3.14 (3) 125
C5—H5A⋯O3Xiii 0.99 2.13 2.83 (4) 127
C6—H6B⋯O4Xv 0.99 2.61 3.48 (4) 147
C8—H8B⋯O5Xvi 0.99 2.65 3.59 (3) 157
C12—H12B⋯O5Xi 0.99 2.62 3.19 (3) 117
C12—H12A⋯O6Xi 0.99 2.52 3.25 (3) 130
Symmetry codes: (i) x, y-1, z; (ii) x, y+1, z; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z]; (iv) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z-{\script{1\over 2}}]; (v) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z+{\script{1\over 2}}]; (vi) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z]; (vii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
The packing in (I)[link], showing [010] polymeric chains crosslinked by N—H⋯O hydrogen bonds to form sheets lying parallel to the (001) plane. H atoms at C atoms of the macrocyclic ligands have been omitted, as has one disorder com­ponent of the per­chlorate anions coordinated to CuII and the minor-disorder com­ponents of the non­coordinated per­chlorate counter-anions. Intra- (blue) and inter­chain (purple) N—H⋯O hydrogen bonds are shown as dashed lines.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.40, last update February 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) indicated that among 76 CuII com­plexes of N3,N10-disubstituted di­aza­cyclam ligands, 37 com­pounds are formed by the ligands bearing alkyl substituents decorated with potentially coordinating groups (hy­droxy, imidazolyl, thienyl, amine, nitrile or carbox­yl) and many of them were investigated as building blocks for the construction of MOFs by using additional carboxyl­ate or metalocyanide linkers. At the same time, there are only two examples demonstrating self-polymerization (coordination of the substituent in the macrocycle with a neighbouring metal ion), namely, those with di­aza­cyclam ligands containing 2-propio­nitrile (refcode CAGHOI; Liu et al., 2002[Liu, J., Lu, T.-B., Xiang, H., Mao, Z.-W. & Ji, L.-N. (2002). CrystEngComm, 4, 64-67.]) or 3-carb­oxy­propyl (WAMWIR; Ou et al., 2005[Ou, G.-C., Su, C.-Y., Yao, J.-H. & Lu, T.-B. (2005). Inorg. Chem. Commun. 8, 421-424.]) donor groups. Among the CuII com­plexes of N3-substituted aza­cyclam ligands only one com­plex with the 3-picolyl substituent that is potentially able to coordinate has been described (NOLDAW; Andriichuk et al., 2019[Andriichuk, I. L., Tsymbal, L. V., Arion, V. B. & Lampeka, Y. D. (2019). Acta Cryst. E75, 1015-1019.]), thus the title com­pound (I)[link] is the second example of a [Cu(aza­cyclam)]2+ cation of this kind described so far.

5. Synthesis and crystallization

All chemicals and solvents used in this work were purchased from Sigma–Aldrich and were used without further purification. The starting CuII com­plexes with an open-chain tetra­amine, [Cu(2,3,2-tet)](ClO4)2 (2,3,2-tet = 3,7-di­aza­nonane-1,9-di­amine), was prepared according to a published method (Maloshtan & Lampeka, 1996[Maloshtan, I. M. & Lampeka, Ya. D. (1996). Russ. J. Inorg. Chem. 41, 1749-1753.]). Compound (I)[link] was prepared as follows. A mixture of [Cu(2,3,2-tet)](ClO4)2 (200 mg, 0.46 mmol), 4-amino­butanoic acid (49 mg, 0.47 mmol) and 30% aqueous formaldehyde (0.24 ml, 3.2 mmol) in methanol (40 ml) was refluxed for 24 h. After cooling and filtration, the solution was kept in a refrigerator overnight. The violet crystalline precipitate was filtered off, washed with methanol (5 ml) and recrystallized from a 1:1 (v/v) water–ethanol solvent mixture (10 ml) containing 0.5 M perchloric acid (yield 84 mg, 28%). Analysis calculated (%) for C13H30Cl3CuN5O14: C 24.01, H 4.65, N 10.76; found: C 24.17, H 4.51, N 10.92. Violet blocks of (I)[link] suitable for X-ray diffraction analysis were selected from the sample resulting from the synthesis.

Safety note: per­chlorate salts of metal com­plexes are potentially explosive and should be handled with care.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All H atoms in (I)[link] were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.99 Å, N—H = 1.00 Å and carboxyl­ate O—H = 0.84 Å, with Uiso(H) values of 1.2 or 1.5Ueq of the parent atoms. The crystal of (I)[link] chosen for data collection was found to crystallize as an inversion twin.

Table 3
Experimental details

Crystal data
Chemical formula [Cu(C13H30N5O2)(ClO4)](ClO4)2
Mr 650.31
Crystal system, space group Orthorhombic, Pna21
Temperature (K) 100
a, b, c (Å) 18.990 (4), 9.3640 (19), 13.636 (3)
V3) 2424.9 (8)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.31
Crystal size (mm) 0.18 × 0.14 × 0.12
 
Data collection
Diffractometer Bruker X8 APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.799, 0.859
No. of measured, independent and observed [I > 2σ(I)] reflections 60778, 4458, 2787
Rint 0.150
(sin θ/λ)max−1) 0.604
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.070, 0.215, 1.03
No. of reflections 4458
No. of parameters 315
No. of restraints 161
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.06, −1.45
Absolute structure Refined as an inversion twin
Absolute structure parameter 0.50 (9)
Computer programs: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

catena-Poly[[[(perchlorato-κκO)copper(II)]-µ-µ-3-(3-carboxypropyl)-1,5,8,12-tetraaza-3-azoniacyclotetradecane-κ4N1,N2,N4,N5] bis(perchlorate)] top
Crystal data top
[Cu(C13H30N5O2)(ClO4)](ClO4)2Dx = 1.781 Mg m3
Mr = 650.31Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21Cell parameters from 4345 reflections
a = 18.990 (4) Åθ = 2.1–24.5°
b = 9.3640 (19) ŵ = 1.31 mm1
c = 13.636 (3) ÅT = 100 K
V = 2424.9 (8) Å3Block, violet
Z = 40.18 × 0.14 × 0.12 mm
F(000) = 1340
Data collection top
Bruker X8 APEXII CCD
diffractometer
2787 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.150
φ and ω scansθmax = 25.4°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 2222
Tmin = 0.799, Tmax = 0.859k = 1111
60778 measured reflectionsl = 1616
4458 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.070 w = 1/[σ2(Fo2) + (0.1002P)2 + 10.5107P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.215(Δ/σ)max < 0.001
S = 1.03Δρmax = 1.06 e Å3
4458 reflectionsΔρmin = 1.44 e Å3
315 parametersAbsolute structure: Refined as an inversion twin
161 restraintsAbsolute structure parameter: 0.50 (9)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.08430 (6)0.21078 (13)0.8220 (4)0.0290 (4)
Cl30.3273 (4)0.1883 (8)1.0262 (4)0.068 (3)
Cl20.3260 (4)0.1803 (8)0.6130 (4)0.059 (2)
O70.3630 (8)0.3036 (16)0.6503 (11)0.068 (3)0.8
O80.2596 (8)0.224 (2)0.5737 (13)0.068 (3)0.8
O90.3677 (8)0.1169 (16)0.5374 (11)0.068 (3)0.8
O100.3152 (10)0.0807 (18)0.6902 (10)0.068 (3)0.8
O7X0.3906 (14)0.238 (5)0.578 (3)0.068 (3)0.2
O8X0.275 (2)0.292 (4)0.622 (4)0.068 (3)0.2
O9X0.300 (3)0.076 (4)0.543 (3)0.068 (3)0.2
O10X0.335 (2)0.112 (5)0.7053 (19)0.068 (3)0.2
O110.2616 (8)0.2416 (19)1.0611 (13)0.067 (3)0.78
O120.3169 (9)0.0676 (17)0.9647 (11)0.067 (3)0.78
O130.3769 (7)0.1662 (17)1.1023 (10)0.067 (3)0.78
O140.3598 (8)0.2996 (16)0.9616 (10)0.067 (3)0.78
O11X0.2692 (17)0.281 (4)1.051 (3)0.067 (3)0.22
O12X0.311 (2)0.114 (4)0.937 (2)0.067 (3)0.22
O13X0.336 (2)0.085 (4)1.104 (2)0.067 (3)0.22
O14X0.3902 (16)0.271 (4)1.016 (3)0.067 (3)0.22
N40.1446 (10)0.116 (2)0.9306 (14)0.028 (4)
H40.18680.17690.94360.033*
N50.0237 (12)0.291 (2)0.9273 (17)0.039 (6)
H50.01960.23000.93020.047*
N10.0240 (11)0.2873 (19)0.7134 (16)0.030 (5)
H10.01940.22680.71060.036*
N20.1386 (11)0.1191 (19)0.7138 (16)0.031 (5)
H20.18000.18290.70230.038*
N30.2112 (4)0.0353 (9)0.8184 (18)0.027 (2)
H30.24410.04790.81840.033*
C50.0944 (15)0.124 (3)1.0203 (19)0.041 (7)
H5A0.05660.05121.01390.049*
H5B0.12090.10401.08140.049*
C60.0638 (16)0.267 (3)1.0239 (17)0.042 (7)
H6A0.10140.33931.03120.051*
H6B0.03130.27521.08030.051*
C70.0001 (15)0.442 (3)0.914 (2)0.039 (6)
H7A0.04130.50580.91230.046*
H7B0.03040.47010.96940.046*
C80.0406 (6)0.4551 (12)0.819 (3)0.040 (3)
H8A0.07900.38340.81970.047*
H8B0.06290.55060.81770.047*
C90.0008 (17)0.436 (3)0.726 (2)0.044 (7)
H9A0.02870.46470.66950.053*
H9B0.04250.49970.72770.053*
C10.0607 (16)0.268 (3)0.622 (2)0.051 (9)
H1A0.09510.34670.61260.061*
H1B0.02680.27060.56680.061*
C20.0999 (17)0.121 (3)0.625 (2)0.045 (8)
H2A0.06560.04100.62280.054*
H2B0.13200.11140.56770.054*
C30.1686 (14)0.026 (3)0.728 (2)0.036 (6)
H3A0.12970.09670.73190.043*
H3B0.19830.05130.67110.043*
C40.1670 (14)0.027 (2)0.9140 (17)0.031 (6)
H4A0.12540.09030.90830.037*
H4B0.19570.06030.97010.037*
C100.2553 (5)0.1691 (11)0.821 (3)0.034 (3)
H10A0.28490.16780.88080.041*
H10B0.28710.16970.76350.041*
C110.2116 (6)0.3044 (11)0.820 (3)0.037 (3)
H11A0.18240.30730.76040.045*
H11B0.17970.30480.87780.045*
Cl10.4733 (6)0.6298 (13)0.8275 (11)0.049 (2)0.5
O50.4266 (13)0.681 (3)0.7565 (17)0.092 (3)0.5
O40.5273 (11)0.731 (2)0.8438 (19)0.092 (3)0.5
O30.5054 (7)0.5048 (18)0.7937 (18)0.092 (3)0.5
O60.4378 (13)0.605 (2)0.9148 (16)0.092 (3)0.5
Cl1X0.4594 (6)0.5922 (13)0.8170 (11)0.049 (2)0.5
O5X0.4124 (13)0.682 (3)0.8729 (18)0.092 (3)0.5
O6X0.4188 (12)0.494 (2)0.7562 (18)0.092 (3)0.5
O3X0.5033 (7)0.507 (2)0.8825 (18)0.092 (3)0.5
O4X0.5041 (13)0.679 (2)0.7532 (18)0.092 (3)0.5
O20.1552 (4)0.5798 (9)0.819 (2)0.052 (2)
O10.2542 (5)0.6903 (9)0.823 (3)0.085 (5)
H1C0.29350.67750.79580.128*
C130.2181 (6)0.5702 (11)0.821 (3)0.037 (3)
C120.2587 (6)0.4350 (12)0.824 (3)0.041 (3)
H12A0.29150.43240.76750.049*
H12B0.28710.43230.88470.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0320 (7)0.0255 (7)0.0296 (7)0.0037 (5)0.0012 (18)0.0012 (18)
Cl30.045 (5)0.090 (6)0.069 (5)0.014 (5)0.011 (4)0.046 (5)
Cl20.050 (5)0.071 (4)0.057 (5)0.008 (4)0.009 (4)0.027 (4)
O70.060 (7)0.072 (7)0.071 (6)0.002 (5)0.015 (5)0.023 (5)
O80.060 (7)0.072 (7)0.071 (6)0.002 (5)0.015 (5)0.023 (5)
O90.060 (7)0.072 (7)0.071 (6)0.002 (5)0.015 (5)0.023 (5)
O100.060 (7)0.072 (7)0.071 (6)0.002 (5)0.015 (5)0.023 (5)
O7X0.060 (7)0.072 (7)0.071 (6)0.002 (5)0.015 (5)0.023 (5)
O8X0.060 (7)0.072 (7)0.071 (6)0.002 (5)0.015 (5)0.023 (5)
O9X0.060 (7)0.072 (7)0.071 (6)0.002 (5)0.015 (5)0.023 (5)
O10X0.060 (7)0.072 (7)0.071 (6)0.002 (5)0.015 (5)0.023 (5)
O110.046 (5)0.080 (7)0.074 (6)0.006 (5)0.004 (4)0.037 (5)
O120.046 (5)0.080 (7)0.074 (6)0.006 (5)0.004 (4)0.037 (5)
O130.046 (5)0.080 (7)0.074 (6)0.006 (5)0.004 (4)0.037 (5)
O140.046 (5)0.080 (7)0.074 (6)0.006 (5)0.004 (4)0.037 (5)
O11X0.046 (5)0.080 (7)0.074 (6)0.006 (5)0.004 (4)0.037 (5)
O12X0.046 (5)0.080 (7)0.074 (6)0.006 (5)0.004 (4)0.037 (5)
O13X0.046 (5)0.080 (7)0.074 (6)0.006 (5)0.004 (4)0.037 (5)
O14X0.046 (5)0.080 (7)0.074 (6)0.006 (5)0.004 (4)0.037 (5)
N40.025 (9)0.038 (11)0.020 (8)0.006 (9)0.003 (8)0.003 (8)
N50.033 (13)0.046 (17)0.039 (12)0.002 (10)0.007 (11)0.009 (11)
N10.031 (13)0.017 (12)0.041 (12)0.007 (8)0.009 (10)0.006 (9)
N20.034 (11)0.017 (9)0.043 (11)0.004 (8)0.007 (9)0.004 (9)
N30.027 (4)0.024 (5)0.031 (5)0.000 (4)0.002 (11)0.010 (11)
C50.053 (16)0.048 (17)0.022 (14)0.013 (13)0.016 (11)0.004 (12)
C60.064 (19)0.048 (17)0.015 (11)0.004 (14)0.005 (11)0.012 (10)
C70.036 (15)0.026 (14)0.054 (16)0.000 (13)0.009 (13)0.015 (12)
C80.033 (6)0.028 (6)0.057 (8)0.011 (5)0.008 (17)0.015 (16)
C90.040 (17)0.032 (15)0.061 (17)0.008 (14)0.005 (15)0.001 (13)
C10.042 (16)0.046 (17)0.06 (2)0.020 (13)0.021 (14)0.008 (14)
C20.052 (16)0.043 (17)0.039 (18)0.021 (13)0.003 (12)0.006 (14)
C30.033 (15)0.031 (14)0.044 (15)0.001 (13)0.000 (12)0.003 (12)
C40.036 (15)0.026 (14)0.030 (13)0.010 (13)0.009 (11)0.007 (11)
C100.029 (5)0.022 (5)0.052 (7)0.007 (4)0.015 (16)0.002 (17)
C110.035 (6)0.027 (6)0.050 (7)0.001 (5)0.006 (17)0.017 (15)
Cl10.045 (4)0.057 (6)0.045 (3)0.018 (4)0.009 (6)0.015 (7)
O50.089 (6)0.080 (7)0.106 (9)0.026 (6)0.000 (8)0.004 (7)
O40.089 (6)0.080 (7)0.106 (9)0.026 (6)0.000 (8)0.004 (7)
O30.089 (6)0.080 (7)0.106 (9)0.026 (6)0.000 (8)0.004 (7)
O60.089 (6)0.080 (7)0.106 (9)0.026 (6)0.000 (8)0.004 (7)
Cl1X0.045 (4)0.057 (6)0.045 (3)0.018 (4)0.009 (6)0.015 (7)
O5X0.089 (6)0.080 (7)0.106 (9)0.026 (6)0.000 (8)0.004 (7)
O6X0.089 (6)0.080 (7)0.106 (9)0.026 (6)0.000 (8)0.004 (7)
O3X0.089 (6)0.080 (7)0.106 (9)0.026 (6)0.000 (8)0.004 (7)
O4X0.089 (6)0.080 (7)0.106 (9)0.026 (6)0.000 (8)0.004 (7)
O20.029 (4)0.032 (5)0.093 (7)0.006 (4)0.010 (14)0.007 (13)
O10.046 (5)0.026 (5)0.184 (14)0.005 (4)0.035 (18)0.014 (17)
C130.044 (7)0.020 (6)0.045 (7)0.003 (5)0.018 (16)0.013 (15)
C120.025 (6)0.035 (6)0.063 (8)0.002 (5)0.017 (16)0.008 (17)
Geometric parameters (Å, º) top
Cu1—N51.99 (2)C6—H6A0.9900
Cu1—N21.99 (2)C6—H6B0.9900
Cu1—N12.005 (19)C7—C81.51 (4)
Cu1—N42.071 (19)C7—H7A0.9900
Cu1—O2i2.379 (8)C7—H7B0.9900
Cl3—O131.417 (12)C8—C91.50 (5)
Cl3—O121.422 (12)C8—H8A0.9900
Cl3—O111.426 (12)C8—H8B0.9900
Cl3—O14X1.429 (15)C9—H9A0.9900
Cl3—O12X1.435 (15)C9—H9B0.9900
Cl3—O11X1.446 (14)C1—C21.57 (4)
Cl3—O13X1.447 (15)C1—H1A0.9900
Cl3—O141.497 (13)C1—H1B0.9900
Cl2—O101.421 (13)C2—H2A0.9900
Cl2—O7X1.424 (15)C2—H2B0.9900
Cl2—O10X1.424 (15)C3—H3A0.9900
Cl2—O91.430 (13)C3—H3B0.9900
Cl2—O81.431 (13)C4—H4A0.9900
Cl2—O8X1.437 (15)C4—H4B0.9900
Cl2—O71.443 (13)C10—C111.514 (14)
Cl2—O9X1.448 (15)C10—H10A0.9900
N4—C41.42 (3)C10—H10B0.9900
N4—C51.55 (3)C11—C121.515 (15)
N4—H41.0000C11—H11A0.9900
N5—C71.50 (3)C11—H11B0.9900
N5—C61.54 (3)Cl1—O61.387 (17)
N5—H51.0000Cl1—O31.398 (17)
N1—C11.44 (4)Cl1—O51.399 (17)
N1—C91.47 (3)Cl1—O41.411 (17)
N1—H11.0000Cl1X—O5X1.446 (19)
N2—C21.42 (3)Cl1X—O3X1.456 (19)
N2—C31.49 (3)Cl1X—O6X1.461 (19)
N2—H21.0000Cl1X—O4X1.463 (19)
N3—C31.47 (3)O2—C131.198 (13)
N3—C101.507 (13)O2—Cu1ii2.379 (8)
N3—C41.55 (3)O1—C131.318 (13)
N3—H31.0000O1—H1C0.8400
C5—C61.46 (4)C13—C121.483 (16)
C5—H5A0.9900C12—H12A0.9900
C5—H5B0.9900C12—H12B0.9900
N5—Cu1—N2175.2 (9)N5—C7—H7A109.7
N5—Cu1—N193.9 (4)C8—C7—H7A109.7
N2—Cu1—N184.4 (9)N5—C7—H7B109.7
N5—Cu1—N488.0 (9)C8—C7—H7B109.7
N2—Cu1—N493.4 (4)H7A—C7—H7B108.2
N1—Cu1—N4175.6 (8)C9—C8—C7116.4 (10)
N5—Cu1—O2i91.8 (9)C9—C8—H8A108.2
N2—Cu1—O2i92.8 (8)C7—C8—H8A108.2
N1—Cu1—O2i90.8 (8)C9—C8—H8B108.2
N4—Cu1—O2i93.1 (8)C7—C8—H8B108.2
O13—Cl3—O12114.1 (7)H8A—C8—H8B107.3
O13—Cl3—O11112.8 (7)N1—C9—C8112 (2)
O12—Cl3—O11110.7 (7)N1—C9—H9A109.3
O14X—Cl3—O12X110.8 (9)C8—C9—H9A109.3
O14X—Cl3—O11X109.5 (9)N1—C9—H9B109.3
O12X—Cl3—O11X109.1 (9)C8—C9—H9B109.3
O14X—Cl3—O13X109.6 (9)H9A—C9—H9B108.0
O12X—Cl3—O13X109.0 (9)N1—C1—C2109 (2)
O11X—Cl3—O13X108.7 (9)N1—C1—H1A110.0
O13—Cl3—O14105.1 (7)C2—C1—H1A110.0
O12—Cl3—O14105.3 (7)N1—C1—H1B110.0
O11—Cl3—O14108.3 (7)C2—C1—H1B110.0
O7X—Cl2—O10X111.1 (9)H1A—C1—H1B108.3
O10—Cl2—O9110.0 (7)N2—C2—C1106 (2)
O10—Cl2—O8109.8 (7)N2—C2—H2A110.6
O9—Cl2—O8109.7 (7)C1—C2—H2A110.6
O7X—Cl2—O8X109.7 (9)N2—C2—H2B110.6
O10X—Cl2—O8X110.0 (9)C1—C2—H2B110.6
O10—Cl2—O7109.5 (7)H2A—C2—H2B108.7
O9—Cl2—O7108.5 (7)N3—C3—N2111.8 (18)
O8—Cl2—O7109.4 (7)N3—C3—H3A109.2
O7X—Cl2—O9X108.9 (9)N2—C3—H3A109.2
O10X—Cl2—O9X108.6 (9)N3—C3—H3B109.2
O8X—Cl2—O9X108.4 (9)N2—C3—H3B109.2
C4—N4—C5110.6 (19)H3A—C3—H3B107.9
C4—N4—Cu1117.0 (15)N4—C4—N3110.0 (17)
C5—N4—Cu1101.8 (14)N4—C4—H4A109.7
C4—N4—H4109.0N3—C4—H4A109.7
C5—N4—H4109.0N4—C4—H4B109.7
Cu1—N4—H4109.0N3—C4—H4B109.7
C7—N5—C6113 (2)H4A—C4—H4B108.2
C7—N5—Cu1116.2 (19)N3—C10—C11113.0 (8)
C6—N5—Cu1106.1 (15)N3—C10—H10A109.0
C7—N5—H5107.0C11—C10—H10A109.0
C6—N5—H5107.0N3—C10—H10B109.0
Cu1—N5—H5107.0C11—C10—H10B109.0
C1—N1—C9111 (2)H10A—C10—H10B107.8
C1—N1—Cu1108.6 (16)C10—C11—C12110.6 (9)
C9—N1—Cu1115.0 (19)C10—C11—H11A109.5
C1—N1—H1107.2C12—C11—H11A109.5
C9—N1—H1107.2C10—C11—H11B109.5
Cu1—N1—H1107.2C12—C11—H11B109.5
C2—N2—C3108.6 (19)H11A—C11—H11B108.1
C2—N2—Cu1111.3 (16)O6—Cl1—O3110.9 (9)
C3—N2—Cu1119.6 (17)O6—Cl1—O5110.0 (8)
C2—N2—H2105.4O3—Cl1—O5109.7 (9)
C3—N2—H2105.4O6—Cl1—O4109.2 (9)
Cu1—N2—H2105.4O3—Cl1—O4107.1 (8)
C3—N3—C10112 (2)O5—Cl1—O4109.8 (8)
C3—N3—C4113.6 (8)O5X—Cl1X—O3X110.4 (8)
C10—N3—C4109 (2)O5X—Cl1X—O6X110.0 (8)
C3—N3—H3107.4O3X—Cl1X—O6X107.8 (8)
C10—N3—H3107.4O5X—Cl1X—O4X110.3 (8)
C4—N3—H3107.4O3X—Cl1X—O4X109.7 (8)
C6—C5—N4108 (2)O6X—Cl1X—O4X108.7 (8)
C6—C5—H5A110.1C13—O2—Cu1ii128.7 (7)
N4—C5—H5A110.1C13—O1—H1C109.5
C6—C5—H5B110.1O2—C13—O1117.1 (10)
N4—C5—H5B110.1O2—C13—C12125.7 (10)
H5A—C5—H5B108.4O1—C13—C12117.2 (10)
C5—C6—N5108 (2)C13—C12—C11112.4 (9)
C5—C6—H6A110.2C13—C12—H12A109.1
N5—C6—H6A110.2C11—C12—H12A109.1
C5—C6—H6B110.2C13—C12—H12B109.1
N5—C6—H6B110.2C11—C12—H12B109.1
H6A—C6—H6B108.5H12A—C12—H12B107.8
N5—C7—C8110 (2)
C4—N4—C5—C6171 (2)C10—N3—C3—N2166.3 (16)
Cu1—N4—C5—C645 (2)C4—N3—C3—N270.0 (19)
N4—C5—C6—N560 (3)C2—N2—C3—N3178 (2)
C7—N5—C6—C5170 (2)Cu1—N2—C3—N352 (2)
Cu1—N5—C6—C542 (3)C5—N4—C4—N3174.6 (18)
C6—N5—C7—C8178 (2)Cu1—N4—C4—N359 (2)
Cu1—N5—C7—C858 (3)C3—N3—C4—N475.1 (19)
N5—C7—C8—C968 (2)C10—N3—C4—N4159.7 (17)
C1—N1—C9—C8177 (2)C3—N3—C10—C1162 (3)
Cu1—N1—C9—C859 (3)C4—N3—C10—C1164 (3)
C7—C8—C9—N169 (2)N3—C10—C11—C12180 (3)
C9—N1—C1—C2166 (2)Cu1ii—O2—C13—O12 (6)
Cu1—N1—C1—C238 (3)Cu1ii—O2—C13—C12177 (3)
C3—N2—C2—C1172 (2)O2—C13—C12—C112 (6)
Cu1—N2—C2—C138 (3)O1—C13—C12—C11179 (3)
N1—C1—C2—N251 (3)C10—C11—C12—C13179 (3)
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O81.002.353.15 (3)136
N3—H3···O101.002.232.85 (2)119
N3—H3···O121.002.432.99 (2)115
N4—H4···O111.002.233.08 (3)143
O1—H1C···O7ii0.842.393.13 (4)147
N2—H2···O1i1.002.473.20 (3)129
N4—H4···O1i1.002.433.13 (3)126
N1—H1···O7iii1.002.403.29 (3)148
N5—H5···O14iii1.002.353.26 (3)151
C2—H2A···O3iii0.992.633.15 (4)113
C2—H2B···O80.992.643.26 (4)120
C3—H3A···O3iii0.992.653.23 (3)118
C3—H3B···O11iv0.992.573.42 (3)144
C4—H4A···O4iii0.992.443.40 (3)163
C4—H4B···O8v0.992.613.48 (3)147
C5—H5B···O5v0.992.653.29 (3)122
C7—H7A···O2i0.992.643.23 (3)118
C7—H7A···O4vi0.992.653.26 (3)120
C7—H7A···O9vii0.992.643.44 (3)138
C8—H8B···O5vi0.992.653.56 (3)153
C9—H9B···O2i0.992.583.20 (3)120
C10—H10B···O100.992.603.15 (3)115
C10—H10A···O120.992.563.18 (3)121
C11—H11B···O9v0.992.473.40 (4)157
C11—H11A···O13iv0.992.443.43 (3)172
N1—H1···O6Xiii1.002.463.36 (3)149
N5—H5···O3Xiii1.002.362.88 (3)112
C3—H3A···O4Xiii0.992.523.45 (4)156
C4—H4A···O3Xiii0.992.473.14 (3)125
C5—H5A···O3Xiii0.992.132.83 (4)127
C6—H6B···O4Xv0.992.613.48 (4)147
C8—H8B···O5Xvi0.992.653.59 (3)157
C12—H12B···O5Xii0.992.623.19 (3)117
C12—H12A···O6Xii0.992.523.25 (3)130
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z; (iii) x1/2, y+1/2, z; (iv) x+1/2, y1/2, z1/2; (v) x+1/2, y1/2, z+1/2; (vi) x1/2, y+3/2, z; (vii) x+1/2, y+1/2, z+1/2.
Selected bond lengths and angles (Å, °) top
DistancesBite angles
Cu1—N12.005 (19)N1—Cu1—N284.4 (9)
Cu1—N21.99 (2)N4—Cu1—N588.0 (9)
Cu1—N42.071 (19)N1—Cu1—N593.9 (4)
Cu1—N51.99 (2)N2—Cu1—N493.4 (4)
Cu1—O22.379 (8)
Cu1—O32.544 (16)
Cu1—O3X2.687 (18)
 

References

First citationAndriichuk, I. L., Tsymbal, L. V., Arion, V. B. & Lampeka, Y. D. (2019). Acta Cryst. E75, 1015–1019.  CSD CrossRef IUCr Journals Google Scholar
First citationBosnich, B., Poon, C. K. & Tobe, M. C. (1965). Inorg. Chem. 4, 1102–1108.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCostisor, O. & Linert, W. (2000). Rev. Inorg. Chem. 1, 63–126.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHay, R. W., Danby, A., Lightfoot, Ph. & Lampeka, Ya. D. (1997). Polyhedron, 16, 2777–2783.  CSD CrossRef CAS Google Scholar
First citationHusain, A., Moheman, A., Nami, S. A. A. & Siddiqi, K. S. (2012). Inorg. Chim. Acta, 384, 309–317.  CSD CrossRef CAS Google Scholar
First citationJiang, L., Lu, W.-G., Feng, X.-L., Xiang, H. & Lu, T.-B. (2006). Wuji Huaxue Xuebao (Chin.) (Chin. J. Inorg. Chem.), 22, 389–393.  CAS Google Scholar
First citationLampeka, Ya. D. & Tsymbal, L. V. (2004). Theor. Exp. Chem. 40, 345–371.  CrossRef CAS Google Scholar
First citationLiu, J., Lu, T.-B., Xiang, H., Mao, Z.-W. & Ji, L.-N. (2002). CrystEngComm, 4, 64–67.  CSD CrossRef Google Scholar
First citationLu, T.-B., Ou, G.-C., Jiang, L., Feng, X.-L. & Ji, L.-N. (2005). Inorg. Chim. Acta, 358, 3241–3245.  CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMaloshtan, I. M. & Lampeka, Ya. D. (1996). Russ. J. Inorg. Chem. 41, 1749–1753.  Google Scholar
First citationMelson, G. A. (1979). Editor. Coordination Chemistry of Macrocyclic Compounds. New York: Plenum Press.  Google Scholar
First citationOu, G.-C., Su, C.-Y., Yao, J.-H. & Lu, T.-B. (2005). Inorg. Chem. Commun. 8, 421–424.  CSD CrossRef CAS Google Scholar
First citationRao, C. N. R., Natarajan, S. & Vaidhyanathan, R. (2004). Angew. Chem. Int. Ed. 43, 1466–1496.  Web of Science CrossRef CAS Google Scholar
First citationRosokha, S. V., Lampeka, Ya. D. & Maloshtan, I. M. (1993). J. Chem. Soc. Dalton Trans. pp. 631–636.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShin, J. W., Rowthu, S. R., Ryoo, J. J. & Min, K. S. (2010). Acta Cryst. E66, m919–m920.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShin, J. W., Yeo, S. M. & Min, K. S. (2012). Inorg. Chem. Commun. 22, 162–166.  CSD CrossRef CAS Google Scholar
First citationStackhouse, C. A. & Ma, S. (2018). Polyhedron, 145, 154–165.  Web of Science CrossRef CAS Google Scholar
First citationSuh, M. P. & Moon, H. R. (2007). Advances in Inorganic Chemistry, Vol. 59, edited by R. van Eldik & K. Bowman-James, pp. 39–79. San Diego: Academic Press.  Google Scholar
First citationSuh, M. P., Park, H. J., Prasad, T. K. & Lim, D.-W. (2012). Chem. Rev. 112, 782–835.  Web of Science CrossRef CAS PubMed Google Scholar
First citationTsymbal, L. V., Andriichuk, I. L., Lampeka, Ya. D. & Pritzkow, H. (2010). Russ. Chem. Bull. 59, 1572–1581.  Web of Science CrossRef CAS Google Scholar
First citationTsymbal, L. V., Rosokha, S. V. & Lampeka, Ya. D. (1995). J. Chem. Soc. Dalton Trans. pp. 2633–2637.  CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXia, H., Jiang, X., Jiang, C. & Liao, G. (2014). Russ. J. Coord. Chem. 40, 93–99.  CrossRef CAS Google Scholar
First citationYatsimirskii, K. B. & Lampeka, Ya. D. (1985). Physicochemistry of Metal Complexes with Macrocyclic Ligands, Kiev: Naukova Dumka.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds