research communications
Tetra-n-butylammonium orotate monohydrate: knowledge-based comparison of the results of accurate and lower-resolution analyses and a non-routine disorder refinement
aInstituto de Síntesis Quimica y Catálisis Homogénea (ISQCH), C.S.I.C.-University of Zaragoza, Departamento de Química Inorgánica, Pedro Cerbuna 12, E-50009 Zaragoza, Spain, bLaboratoire de Matériaux, Cristallochimie et Thermodynamique Appliquée, Département de Chimie, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092 El Manar II, Tunis, Tunisia, cUniversity of Zaragoza-C.S.I.C., Instituto de Ciencia de Materiales de Aragón (ICMA), Departamento de Química Inorgánica, E-50009 Zaragoza, Spain, and dUniversité de Sfax, Faculté de Sciences de Sfax, Route de la Soukra Km 4, Sfax 3038, Tunisia
*Correspondence e-mail: falvello@unizar.es
The title hydrated molecular salt (systematic name: tetra-n-butylammonium 2,6-dioxo-1,2,3,6-tetrahydropyrimidine-4-carboxylate monohydrate), C16H36N+·C5H3N2O4−·H2O, crystallizes with N—H⋯O and O—H⋯O hydrogen-bonded double-stranded antiparallel ribbons consisting of the hydrophilic orotate monoanions and water molecules, separated by the bulky hydrophobic cations. The hydrophobic and hydrophilic regions of the structure are joined by weaker non-classical C—H⋯O hydrogen bonds. An accurate structure analysis conducted at T = 100 K is compared to a lower-resolution less accurate determination using data measured at T = 295 K. The results of both analyses are evaluated using a knowledge-based approach, and it is found that the less accurate room-temperature structure analysis provides geometric data that are similar to those derived from the accurate low-temperature analysis, with both sets of results consistent with previously analyzed structures. A minor disorder of one methyl group in the cation at low temperature was found to be slightly more complex at room temperature; while still involving a minor fraction of the structure, the disorder at room temperature was found to require a non-routine treatment, which is described in detail.
1. Chemical context
We report here the structure analysis at two temperatures (1 at 100 K and 2 at 295 K) of an organic salt formed by a bulky, hydrophobic cation, nBu4N+, and the compact, hydrophilic anion C5H3N2O4−, formed by single deprotonation of orotic acid. Crystals of this material are monohydrated, and the water molecule plays an integral role in the structure.
Orotic acid, 2,4-dioxo-1H-pyrimidine-6-carboxylic acid, C5H4N2O4, is important in a multitude of roles in biochemistry, among them as a precursor in the synthesis of uridine monophosphate (UMP) and thus of the pyrimidine (Löffler et al., 2015, 2016, 2018).
Our own interest in orotic acid, and in the conjugate bases formed by single and double deprotonation of orotic acid, arises from the functional groups that they present to their surroundings, which endow them with the ability to bind to a transition metal while at the same time forming energetically significant, directed and possibly structure-directing, interactions with their environment in a crystal. We have encountered, for example, a system in which stereoisomer selection for a six-coordinate NiII complex is achieved by enabling or vitiating hydrogen-bond formation in crystals of the product (Falvello et al., 2007). In another study (Castro et al., 2017), it was found that the nBu4N+ salt of a CoIII orotate complex, namely (nBu4N)[Co(orot)2(bipy)]·3H2O, undergoes an order–disorder which upon recycling and repeating suffers arrest, which leaves the sample in a two-domain, two-structure form (monoclinic/triclinic).
It is in the context of phase transitions that we find the simple cation tetra-n-butylammonium, nBu4N+ or C16H36N+, to be of interest. It is known that the presence of even a single n-butyl group can be sufficient to incite an order–disorder transition when, for example, the temperature is varied (Willett et al., 2005).
While our interest in orotic acid and orotates stems from their utility in coordination chemistry, it is also pertinent to explore molecular solids in which these fragments are present without metals. To date, six unique crystal structures have been analyzed of solids containing orotic acid in the absence of coordination compounds (ten analyses, including duplicates); and three analyses have been reported with orotic acid co-crystallized with orotate complexes of Co, Pr and Nd. Singly deprotonated orotate – Horot−, deprotonated at the carboxylate function – figures in some 46 previously reported structure analyses, 16 of which also have d-block elements and six of which are lanthanoid compounds. There is also one structure of a uranium complex of Horot−. Some 15 Horot−-containing structures have no metal atom present.
With this as background, we undertook the structure analysis of the monohydrate of tetra-n-butylammonium 2,4-dioxo-1H-pyrimidine-6-carboxylate, (nBu4N)(C5H3N2O4), at room temperature and at 100 K, to establish the structural organization adopted by this hydrophobic–hydrophilic and to explore the possibility of an order–disorder as is seen with some regularity in n-butyl-containing molecular crystals.
2. Structural commentary
One of the motivations for this study was to observe the packing pattern adopted by a bulky hydrophobic cation and a compact hydrophilic anion when crystallized together. In the event, there are no solvent-accessible voids, as calculated by PLATON (Spek, 2009); however, this full packing arrangement is achieved with the incorporation of one water molecule per formula unit. Packing and scattering are more efficient at low temperature; we will discuss the structure first with reference to the analysis at T = 100 K; some comparisons between the two analyses will be presented at the end.
Displacement ellipsoid plots of the two structures are shown in Fig. 1 (100 K) and Fig. 2 (295 K). The two drawings have the same scale, and it is clear that, as expected, the lower-temperature structure has notably reduced displacement as compared to the structure at room temperature.
2.1. Supramolecular features
The structure is segregated into hydrophilic and hydrophobic zones. Firstly, a network of N—H⋯O and O—H⋯O hydrogen bonds link the Horot− anions and water molecules into a ladder-like chain propagating in the a-axis direction and lying in the (011) plane (Table 1 for T = 100 and Table 2 for T = 295 K; Fig. 3). Four different types of hydrogen-bonded rings form an uninterrupted fused-ring system along the length of this chain. Symmetry relatives of the R22(10) ring at the center of the segment shown in Fig. 3 occupy inversion centers at (1/2 + n, 1/2, 1/2), where n is an integer. The chain is further propagated through an R44(12) ring whose congeners are on inversion centers at (n, 1/2, 1/2), with n an integer. The components of this chain are related by the 21 screw axis and the c-glide to the constituent fragments of chains – also parallel to the a axis of the cell but lying in (01) planes – passing through centers of inversion at (0, 0, 0), (1/2, 0, 0) and lattice-related positions.
|
The hydrophobic cations surround the orotate–water chains, filling in the remaining space in the structure (Fig. 4). That the cell is efficiently filled can be seen in the Kitaigorodsky packing indices (KPI: percent filled space; Kitaigorodsky, 1973) of 66.8 for 1 and 63.2 for 2. [In order to perform the calculation of the KPI using PLATON (Spek, 2009) it was necessary to create a structure model with only the principal components of disorder present.] For comparison purposes, we note that a structure consisting of close-packed spheres fills 74.0% of its FCC unit cell.
The hydrophobic and hydrophilic sectors of the structure are not strictly separated, as there are favorable interactions between them (Table 1, Fig. 5). Each orotate anion accepts a total of four non-classical hydrogen bonds from the methylene groups of three surrounding nBu4N(+) cations. Fig. 5 shows a segment of the hydrophilic chain, with its hydrogen bonds in red, and three neighboring cations with the C—H⋯O interactions in blue. The flexibility of the butyl groups along with their capacity for forming directed interactions with the anions and dispersion-based interactions among themselves, is key to the ability of this material to form well-packed crystals.
The overall layout of the structure and the interactions that consolidate it are summarized graphically in the Hirshfeld surfaces (Spackman & Jayatilaka, 2009), which are presented here only for the low-temperature determination (Fig. 6). Fig. 6a shows the Hirshfeld surface for the anion from two viewpoints, within its crystalline surroundings. It is clear that its principal interactions lie within the hydrophilic zone. Fig. 6b rounds out the picture, showing through the Hirshfeld surfaces that the major interactions of the water molecules also lie within the hydrophilic sector of the structure. Fig. 6c and 6d show the Hirshfeld surface of the cation from two opposite view directions. The scarce interactions consist of two non-classical hydrogen bonds on each side. Fingerprint calculations reveal that the close H(internal)⋯O(external) interactions account for only 14.1% of the points on the surface. These can be compared to H(i)⋯O(e) and O(i)⋯H(e) values of 27.5% and 32.3%, respectively, for the water molecule and 6.2% and 49.2% for the orotate anion.
3. Database survey: knowledge-based comparison of the analyses at two temperatures
The presence of bulky aliphatic groups clearly influences the diffraction from these crystals. The structure at room temperature suffers not only from a more complex disorder of one terminal ethyl group, but also produces weak diffraction, to the extent that from intensity statistics we estimate the effective resolution of the data to be about 1.0 Å. The data at T = 100 K are much stronger and give what in present times is regarded as an accurate result, which includes the observation of positive difference density at the centers of most of the bonds not involving H atoms.
It is thus instructive to compare the geometric parameters derived from the two analyses.
An overlay of all corresponding non-H atoms in the two structures, excluding the disordered Et fragment at C13 and C14, gives an r.m.s. deviation of 0.144 Å. As can be seen in Fig. 7, most of the deviation resides in the slightly different conformations of two of the terminal Et groups of the cation, namely C17/C18 (0.35, 0.21 Å deviation for C17 and C18, respectively) and C25/C26 (0.17, 0.18 Å for C25, C26, respectively).
3.1. Mogul geometry check
Extending the geometric comparisons to the possible differences between these two determinations, on one hand, and prior analyses involving similar chemical fragments, on the other, we performed a Mogul geometry check, in which bond lengths and bond angles found in these structures are compared to those of fragments of the same chemical nature found in the CSD (Cambridge Structural Database; Groom et al., 2016). All results are compiled in the supporting information. Briefly, there are no gross outliers in these two analyses; however, the area of the carboxylate group and its linkage to the ring of the anion shows an interesting trend in both analyses. A relevant fact in this regard is that the dihedral angle between the orotate ring and the pendant carboxylate group is 23.14 (8)° at T = 100 K and 20.4 (2)° at room temperature. While the Mogul geometry check does not encounter any important outliers for either analysis, it does signal some slightly larger deviations from previous results, in the conjugated region where the ring and carboxylate group are joined, in keeping with the torsion angle that reduces π–π overlap between C6 and C7. Thus, considering the mean and standard deviation σ of the bond distances found in previous structure analyses with chemically similar groups, at low temperature the two nominally delocalized C⋯O bonds C7—O7 and C7—O8 are 0.734 σ and 1.620 σ shorter than the mean; C5—C6 is 1.411 σ shorter; and C6—C7 is 1.985 σ longer. For T = 295 K the analogous deviations are 3.047 and 4.820 σ for C7—O7 and C7—O8, 3.065 σ for C5—C6 and 1.665 σ for C6—C7 – all in the expected direction from the mean. These variations are not extreme and might be taken as barely significant statistically. However, we consider it noteworthy that they stand out in comparison with the analogous values for the rest of the structure, and that similar results are obtained at both temperatures (Tables S1 and S2 in the supporting information).
If we consider the reported structures of Horot− with alkali counter-ions, the Horot fragments in the anhydrous K+ and Rb+ salts (both: Bekiroglu & Kristiansson, 2002; K+: Clegg & Nichol, 2018a; Rb+: Martínez et al., 2008) are co-planar. However, for the hydrated compounds they are not coplanar, although the angles are smaller than in the NBu4+ compound. For K(Horot)·H2O the analogue of the O—C—C6—N1 torsion angle is −9.59° (CSD refcode MIJLUN, Yeşilel et al., 2007); and for three analyses of Li(Horot)·H2O, smaller values were found for the analogous torsion angle: SIMZOD 3.07° (Bach et al., 1990); SIMZOD01 3.83°, (Lutz, 2001); SIMZOD02 3.82° (Clegg & Nichol, 2018b).
4. Synthesis and crystallization
2 ml of a 1.5 M aqueous solution of NBu4OH (3 mmol) was added to a suspension of 0.7 g (4 mmol) of orotic acid monohydrate, H2Orot·H2O, in 2 ml of water. The suspension was stirred for 3 h at room temperature and then filtered through paper in order to remove the excess of H2Orot·H2O. Partial evaporation of the solution at 303 K produced colorless crystals of [NBu4][HOrot]·H2O, which were removed from the solution and dried with paper (0.643 g, 49.5% yield).
5. Refinement
Crystal data, data collection parameters and structure . Single-crystal diffraction data were gathered from two crystals, one at T = 100 K, 1, and the other at room temperature, 2. The structure was solved ab initio from each of the two data sets using iterative methods (SHELXT 2014/5; Sheldrick, 2015a) and refined using full-matrix least-squares analysis (SHELXL2018/1; Sheldrick, 2015b). For 1, one of the n-Bu groups of the cation, namely C11–C14, had its terminal CH3 group disordered over two sets of sites, whose occupancy ratio was refined to 0.698 (4)/0.302 (4). For 2, measured at room temperature, the same n-Bu group suffered a more complex disorder, with the γ-C atom, C13, disordered over two positions and the δ-C atom, C14, disordered over three positions. This disorder assembly was interpreted as being composed of four disorder groups; the structure model was composed and refined so as to produce chemically sound stoichiometry for the individual disorder groups and for the assembly as a whole. The interested reader is referred to the supporting information and the embedded, commented instruction file in the for full details. The H atoms of methylene groups in both structures were placed at idealized positions and refined as riding atoms. The H atoms of all methyl groups in 1 and of the ordered methyl groups in 2 were placed at positions derived from local Fourier calculations and permitted to rotate but not tilt in the The H atoms of disordered CH3 groups in 2 were placed at positions calculated to give staggered conformations about the local C—C bond and refined as riding atoms. For CH2 groups, Uiso(H) were set to 1.2Ueq of their respective bonding partners. For CH3, Uiso(H) were set to 1.5Ueq(C). The H atoms of the orotate anion and the water molecule were located in difference Fourier maps for both analyses; their positions were refined freely and their Uiso were refined freely for 1 and set to 1.2Ueq of their respective bonding partners for 2.
residuals are given in Table 3
|
Supporting information
https://doi.org/10.1107/S2056989019013380/hb7858sup1.cif
contains datablocks 100K, 295K, global. DOI:Structure factors: contains datablock 100K. DOI: https://doi.org/10.1107/S2056989019013380/hb7858100Ksup2.hkl
Structure factors: contains datablock 295K. DOI: https://doi.org/10.1107/S2056989019013380/hb7858295Ksup3.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989019013380/hb7858100Ksup4.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989019013380/hb7858sup5.pdf
Data collection: APEX2 (Bruker, 2005) for 100K; CrysAlis PRO (Rigaku OD, 2018) for 295K. For both structures, cell
CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018). Program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a) for 100K; SIR92 (Altomare et al., 1994). for 295K. For both structures, program(s) used to refine structure: SHELXL2018/1 (Sheldrick, 2015b). Molecular graphics: DIAMOND (Brandenburg, 2007) and Mercury (Macrae et al., 2006) for 100K; DIAMOND (Brandenburg, 2007) for 295K. Software used to prepare material for publication: SHELXL2018/1 (Sheldrick, 2015b), WinGX (Farrugia, 2012), CrystalExplorer (Spackman & Jayatilaka, 2009) for 100K; SHELXL2018/1 (Sheldrick, 2015b) for 295K.C16H36N+·C5H3N2O4−·H2O | F(000) = 912 |
Mr = 415.57 | Dx = 1.150 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 10.0905 (5) Å | Cell parameters from 17418 reflections |
b = 14.8664 (8) Å | θ = 2.0–30.2° |
c = 16.1261 (9) Å | µ = 0.08 mm−1 |
β = 97.347 (5)° | T = 100 K |
V = 2399.2 (2) Å3 | Irregular, colourless |
Z = 4 | 0.31 × 0.18 × 0.16 mm |
Bruker APEXII CCD diffractometer | 6560 independent reflections |
Radiation source: fine-focus sealed X-ray tube | 5274 reflections with I > 2σ(I) |
Detector resolution: 7.9 pixels mm-1 | Rint = 0.025 |
φ and ω scans | θmax = 30.1°, θmin = 1.9° |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2018) | h = −14→13 |
Tmin = 0.632, Tmax = 1.000 | k = −19→20 |
26211 measured reflections | l = −19→22 |
Refinement on F2 | Primary atom site location: iterative |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.046 | Hydrogen site location: mixed |
wR(F2) = 0.118 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0533P)2 + 0.9257P] where P = (Fo2 + 2Fc2)/3 |
6560 reflections | (Δ/σ)max < 0.001 |
297 parameters | Δρmax = 0.37 e Å−3 |
1 restraint | Δρmin = −0.36 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
N1 | 0.66470 (9) | 0.57393 (6) | 0.44839 (5) | 0.01392 (17) | |
H1 | 0.6305 (15) | 0.5427 (10) | 0.4853 (9) | 0.027 (4)* | |
C2 | 0.80132 (10) | 0.58337 (7) | 0.46003 (6) | 0.0153 (2) | |
O2 | 0.87264 (8) | 0.55019 (6) | 0.51914 (5) | 0.02277 (18) | |
N3 | 0.85324 (9) | 0.63250 (7) | 0.39951 (6) | 0.01872 (19) | |
H3 | 0.9431 (17) | 0.6356 (11) | 0.4049 (10) | 0.033 (4)* | |
C4 | 0.78097 (12) | 0.67160 (9) | 0.32996 (8) | 0.0257 (3) | |
O4 | 0.83964 (9) | 0.70891 (9) | 0.27739 (7) | 0.0466 (3) | |
C5 | 0.63733 (11) | 0.66355 (9) | 0.32642 (8) | 0.0234 (2) | |
H5 | 0.5824 (16) | 0.6918 (11) | 0.2842 (10) | 0.032 (4)* | |
C6 | 0.58455 (10) | 0.61536 (7) | 0.38472 (6) | 0.01468 (19) | |
C7 | 0.43431 (10) | 0.60106 (7) | 0.38434 (6) | 0.0162 (2) | |
O7 | 0.35897 (8) | 0.65773 (6) | 0.34528 (6) | 0.02556 (19) | |
O8 | 0.40227 (8) | 0.53413 (6) | 0.42361 (5) | 0.02183 (18) | |
N10 | 0.16527 (9) | 0.64890 (6) | 0.71583 (6) | 0.01999 (19) | |
C11 | 0.23130 (12) | 0.65152 (8) | 0.80568 (7) | 0.0252 (2) | |
H11A | 0.162731 | 0.666953 | 0.842093 | 0.030* | |
H11B | 0.298703 | 0.700260 | 0.811208 | 0.030* | |
C12 | 0.29905 (18) | 0.56466 (11) | 0.83718 (10) | 0.0440 (4) | |
H12A | 0.361837 | 0.544834 | 0.798430 | 0.053* | |
H12B | 0.231249 | 0.516936 | 0.839666 | 0.053* | |
C13 | 0.3754 (2) | 0.58039 (15) | 0.92478 (12) | 0.0700 (7) | |
H13A | 0.420281 | 0.523517 | 0.943974 | 0.084* | 0.698 (4) |
H13B | 0.446069 | 0.625580 | 0.919995 | 0.084* | 0.698 (4) |
H13C | 0.312396 | 0.612618 | 0.956597 | 0.084* | 0.302 (4) |
H13D | 0.388045 | 0.520048 | 0.950543 | 0.084* | 0.302 (4) |
C14A | 0.2987 (3) | 0.60960 (18) | 0.98669 (13) | 0.0476 (7) | 0.698 (4) |
H14A | 0.224674 | 0.567621 | 0.989942 | 0.071* | 0.698 (4) |
H14B | 0.263000 | 0.669712 | 0.972396 | 0.071* | 0.698 (4) |
H14C | 0.355099 | 0.611802 | 1.040852 | 0.071* | 0.698 (4) |
C14B | 0.4798 (5) | 0.6179 (4) | 0.9408 (3) | 0.0421 (15) | 0.302 (4) |
H14D | 0.471116 | 0.680281 | 0.921200 | 0.063* | 0.302 (4) |
H14E | 0.547700 | 0.587096 | 0.912845 | 0.063* | 0.302 (4) |
H14F | 0.506507 | 0.617144 | 1.001350 | 0.063* | 0.302 (4) |
C15 | 0.26768 (12) | 0.62951 (9) | 0.65638 (8) | 0.0259 (3) | |
H15A | 0.297867 | 0.566407 | 0.664641 | 0.031* | |
H15B | 0.222976 | 0.634978 | 0.598272 | 0.031* | |
C16 | 0.39030 (12) | 0.69031 (10) | 0.66631 (9) | 0.0332 (3) | |
H16A | 0.361841 | 0.753793 | 0.669715 | 0.040* | |
H16B | 0.447696 | 0.675243 | 0.718934 | 0.040* | |
C17 | 0.46970 (14) | 0.67900 (10) | 0.59284 (9) | 0.0347 (3) | |
H17A | 0.492567 | 0.614683 | 0.587486 | 0.042* | |
H17B | 0.413228 | 0.697239 | 0.540801 | 0.042* | |
C18 | 0.59751 (16) | 0.73424 (14) | 0.60233 (11) | 0.0524 (5) | |
H18A | 0.656351 | 0.713928 | 0.651862 | 0.079* | |
H18B | 0.575709 | 0.797908 | 0.608666 | 0.079* | |
H18C | 0.642885 | 0.726506 | 0.552580 | 0.079* | |
C19 | 0.10337 (11) | 0.74153 (7) | 0.69748 (7) | 0.0201 (2) | |
H19A | 0.043909 | 0.754953 | 0.740200 | 0.024* | |
H19B | 0.175833 | 0.786861 | 0.703483 | 0.024* | |
C20 | 0.02375 (13) | 0.75215 (9) | 0.61164 (8) | 0.0276 (3) | |
H20A | −0.056570 | 0.713362 | 0.607492 | 0.033* | |
H20B | 0.078800 | 0.732696 | 0.568292 | 0.033* | |
C21 | −0.01832 (18) | 0.84942 (10) | 0.59638 (9) | 0.0409 (4) | |
H21A | 0.062117 | 0.888186 | 0.603271 | 0.049* | |
H21B | −0.075909 | 0.867821 | 0.638714 | 0.049* | |
C22 | −0.0936 (2) | 0.86374 (12) | 0.50956 (11) | 0.0526 (5) | |
H22A | −0.175693 | 0.827766 | 0.503399 | 0.079* | |
H22B | −0.037301 | 0.845143 | 0.467404 | 0.079* | |
H22C | −0.116462 | 0.927527 | 0.501895 | 0.079* | |
C23 | 0.05896 (12) | 0.57558 (8) | 0.70357 (7) | 0.0238 (2) | |
H23A | 0.015447 | 0.577728 | 0.644991 | 0.029* | |
H23B | 0.103353 | 0.516338 | 0.712323 | 0.029* | |
C24 | −0.04814 (14) | 0.58272 (9) | 0.76131 (8) | 0.0301 (3) | |
H24A | −0.083940 | 0.644790 | 0.759398 | 0.036* | |
H24B | −0.008146 | 0.570105 | 0.819443 | 0.036* | |
C25 | −0.16213 (16) | 0.51665 (11) | 0.73614 (8) | 0.0388 (4) | |
H25A | −0.200163 | 0.528091 | 0.677417 | 0.047* | |
H25B | −0.126628 | 0.454496 | 0.739651 | 0.047* | |
C26 | −0.27213 (18) | 0.52528 (14) | 0.79220 (10) | 0.0524 (5) | |
H26A | −0.309482 | 0.586185 | 0.787442 | 0.079* | |
H26B | −0.234829 | 0.513751 | 0.850363 | 0.079* | |
H26C | −0.342804 | 0.481451 | 0.774853 | 0.079* | |
O1W | 0.13336 (8) | 0.63464 (7) | 0.43187 (6) | 0.02528 (19) | |
H1WA | 0.193 (2) | 0.6418 (13) | 0.4002 (12) | 0.048 (5)* | |
H1WB | 0.144 (2) | 0.5788 (15) | 0.4471 (13) | 0.054 (6)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0109 (4) | 0.0163 (4) | 0.0148 (4) | −0.0007 (3) | 0.0026 (3) | 0.0026 (3) |
C2 | 0.0119 (4) | 0.0161 (5) | 0.0181 (5) | −0.0002 (4) | 0.0026 (4) | −0.0011 (4) |
O2 | 0.0132 (4) | 0.0317 (4) | 0.0226 (4) | −0.0008 (3) | −0.0007 (3) | 0.0078 (3) |
N3 | 0.0109 (4) | 0.0228 (5) | 0.0230 (5) | −0.0005 (3) | 0.0039 (3) | 0.0052 (4) |
C4 | 0.0167 (5) | 0.0318 (6) | 0.0292 (6) | −0.0005 (5) | 0.0052 (4) | 0.0130 (5) |
O4 | 0.0195 (4) | 0.0752 (8) | 0.0465 (6) | −0.0017 (5) | 0.0091 (4) | 0.0391 (6) |
C5 | 0.0143 (5) | 0.0304 (6) | 0.0252 (5) | 0.0010 (4) | 0.0014 (4) | 0.0120 (5) |
C6 | 0.0118 (4) | 0.0152 (4) | 0.0170 (5) | 0.0001 (4) | 0.0020 (4) | 0.0000 (4) |
C7 | 0.0121 (4) | 0.0204 (5) | 0.0158 (5) | −0.0010 (4) | 0.0012 (4) | 0.0018 (4) |
O7 | 0.0139 (4) | 0.0272 (4) | 0.0350 (5) | 0.0016 (3) | 0.0009 (3) | 0.0129 (4) |
O8 | 0.0145 (4) | 0.0270 (4) | 0.0232 (4) | −0.0043 (3) | −0.0004 (3) | 0.0102 (3) |
N10 | 0.0175 (4) | 0.0187 (4) | 0.0225 (5) | 0.0035 (4) | −0.0024 (3) | −0.0062 (4) |
C11 | 0.0240 (6) | 0.0257 (6) | 0.0235 (6) | 0.0031 (5) | −0.0058 (4) | −0.0094 (5) |
C12 | 0.0537 (9) | 0.0381 (8) | 0.0336 (7) | 0.0191 (7) | −0.0205 (7) | −0.0099 (6) |
C13 | 0.0857 (15) | 0.0685 (13) | 0.0436 (10) | 0.0356 (12) | −0.0387 (10) | −0.0153 (9) |
C14A | 0.0655 (16) | 0.0519 (14) | 0.0238 (10) | −0.0146 (12) | −0.0007 (10) | 0.0023 (9) |
C14B | 0.030 (2) | 0.042 (3) | 0.047 (3) | −0.014 (2) | −0.022 (2) | 0.000 (2) |
C15 | 0.0186 (5) | 0.0293 (6) | 0.0287 (6) | 0.0079 (5) | −0.0013 (4) | −0.0149 (5) |
C16 | 0.0189 (5) | 0.0451 (8) | 0.0359 (7) | 0.0006 (5) | 0.0048 (5) | −0.0230 (6) |
C17 | 0.0265 (6) | 0.0421 (8) | 0.0358 (7) | 0.0029 (6) | 0.0054 (5) | −0.0189 (6) |
C18 | 0.0301 (7) | 0.0788 (13) | 0.0516 (9) | −0.0103 (8) | 0.0173 (7) | −0.0362 (9) |
C19 | 0.0175 (5) | 0.0173 (5) | 0.0264 (5) | 0.0034 (4) | 0.0055 (4) | −0.0032 (4) |
C20 | 0.0311 (6) | 0.0244 (6) | 0.0270 (6) | 0.0065 (5) | 0.0017 (5) | 0.0020 (5) |
C21 | 0.0595 (10) | 0.0311 (7) | 0.0326 (7) | 0.0181 (7) | 0.0072 (7) | 0.0056 (6) |
C22 | 0.0720 (12) | 0.0442 (9) | 0.0404 (9) | 0.0195 (9) | 0.0023 (8) | 0.0180 (7) |
C23 | 0.0269 (6) | 0.0190 (5) | 0.0231 (5) | −0.0018 (4) | −0.0062 (4) | −0.0029 (4) |
C24 | 0.0316 (7) | 0.0304 (6) | 0.0269 (6) | −0.0105 (5) | −0.0009 (5) | −0.0013 (5) |
C25 | 0.0432 (8) | 0.0486 (9) | 0.0223 (6) | −0.0243 (7) | −0.0044 (5) | 0.0026 (6) |
C26 | 0.0499 (9) | 0.0774 (13) | 0.0296 (7) | −0.0363 (9) | 0.0038 (7) | −0.0009 (8) |
O1W | 0.0137 (4) | 0.0286 (5) | 0.0344 (5) | 0.0012 (3) | 0.0063 (3) | 0.0043 (4) |
N1—C6 | 1.3693 (13) | C15—H15A | 0.9900 |
N1—C2 | 1.3745 (13) | C15—H15B | 0.9900 |
N1—H1 | 0.860 (16) | C16—C17 | 1.5220 (18) |
C2—O2 | 1.2226 (13) | C16—H16A | 0.9900 |
C2—N3 | 1.3751 (14) | C16—H16B | 0.9900 |
N3—C4 | 1.3851 (15) | C17—C18 | 1.520 (2) |
N3—H3 | 0.901 (17) | C17—H17A | 0.9900 |
C4—O4 | 1.2268 (14) | C17—H17B | 0.9900 |
C4—C5 | 1.4482 (16) | C18—H18A | 0.9800 |
C5—C6 | 1.3449 (15) | C18—H18B | 0.9800 |
C5—H5 | 0.922 (16) | C18—H18C | 0.9800 |
C6—C7 | 1.5301 (14) | C19—C20 | 1.5173 (17) |
C7—O8 | 1.2441 (13) | C19—H19A | 0.9900 |
C7—O7 | 1.2498 (13) | C19—H19B | 0.9900 |
N10—C11 | 1.5160 (15) | C20—C21 | 1.5182 (18) |
N10—C15 | 1.5243 (15) | C20—H20A | 0.9900 |
N10—C23 | 1.5243 (15) | C20—H20B | 0.9900 |
N10—C19 | 1.5254 (14) | C21—C22 | 1.520 (2) |
C11—C12 | 1.5177 (19) | C21—H21A | 0.9900 |
C11—H11A | 0.9900 | C21—H21B | 0.9900 |
C11—H11B | 0.9900 | C22—H22A | 0.9800 |
C12—C13 | 1.538 (2) | C22—H22B | 0.9800 |
C12—H12A | 0.9900 | C22—H22C | 0.9800 |
C12—H12B | 0.9900 | C23—C24 | 1.5177 (19) |
C13—C14B | 1.191 (5) | C23—H23A | 0.9900 |
C13—C14A | 1.408 (3) | C23—H23B | 0.9900 |
C13—H13A | 0.9900 | C24—C25 | 1.5274 (18) |
C13—H13B | 0.9900 | C24—H24A | 0.9900 |
C13—H13C | 0.9900 | C24—H24B | 0.9900 |
C13—H13D | 0.9900 | C25—C26 | 1.524 (2) |
C14A—H14A | 0.9800 | C25—H25A | 0.9900 |
C14A—H14B | 0.9800 | C25—H25B | 0.9900 |
C14A—H14C | 0.9800 | C26—H26A | 0.9800 |
C14B—H14D | 0.9800 | C26—H26B | 0.9800 |
C14B—H14E | 0.9800 | C26—H26C | 0.9800 |
C14B—H14F | 0.9800 | O1W—H1WA | 0.85 (2) |
C15—C16 | 1.5242 (18) | O1W—H1WB | 0.87 (2) |
C6—N1—C2 | 122.84 (9) | H15A—C15—H15B | 107.5 |
C6—N1—H1 | 120.7 (10) | C17—C16—C15 | 110.72 (11) |
C2—N1—H1 | 116.4 (10) | C17—C16—H16A | 109.5 |
O2—C2—N1 | 123.05 (9) | C15—C16—H16A | 109.5 |
O2—C2—N3 | 121.87 (9) | C17—C16—H16B | 109.5 |
N1—C2—N3 | 115.07 (9) | C15—C16—H16B | 109.5 |
C2—N3—C4 | 126.07 (9) | H16A—C16—H16B | 108.1 |
C2—N3—H3 | 115.3 (10) | C18—C17—C16 | 112.72 (11) |
C4—N3—H3 | 118.5 (10) | C18—C17—H17A | 109.0 |
O4—C4—N3 | 119.91 (11) | C16—C17—H17A | 109.0 |
O4—C4—C5 | 125.39 (11) | C18—C17—H17B | 109.0 |
N3—C4—C5 | 114.69 (10) | C16—C17—H17B | 109.0 |
C6—C5—C4 | 120.02 (10) | H17A—C17—H17B | 107.8 |
C6—C5—H5 | 120.3 (10) | C17—C18—H18A | 109.5 |
C4—C5—H5 | 119.7 (10) | C17—C18—H18B | 109.5 |
C5—C6—N1 | 121.00 (10) | H18A—C18—H18B | 109.5 |
C5—C6—C7 | 123.50 (10) | C17—C18—H18C | 109.5 |
N1—C6—C7 | 115.49 (9) | H18A—C18—H18C | 109.5 |
O8—C7—O7 | 127.93 (10) | H18B—C18—H18C | 109.5 |
O8—C7—C6 | 115.52 (9) | C20—C19—N10 | 115.27 (9) |
O7—C7—C6 | 116.54 (9) | C20—C19—H19A | 108.5 |
C11—N10—C15 | 110.83 (9) | N10—C19—H19A | 108.5 |
C11—N10—C23 | 110.99 (9) | C20—C19—H19B | 108.5 |
C15—N10—C23 | 107.80 (9) | N10—C19—H19B | 108.5 |
C11—N10—C19 | 106.33 (8) | H19A—C19—H19B | 107.5 |
C15—N10—C19 | 110.03 (9) | C19—C20—C21 | 110.58 (11) |
C23—N10—C19 | 110.88 (9) | C19—C20—H20A | 109.5 |
N10—C11—C12 | 114.97 (10) | C21—C20—H20A | 109.5 |
N10—C11—H11A | 108.5 | C19—C20—H20B | 109.5 |
C12—C11—H11A | 108.5 | C21—C20—H20B | 109.5 |
N10—C11—H11B | 108.5 | H20A—C20—H20B | 108.1 |
C12—C11—H11B | 108.5 | C20—C21—C22 | 112.28 (13) |
H11A—C11—H11B | 107.5 | C20—C21—H21A | 109.1 |
C11—C12—C13 | 109.23 (13) | C22—C21—H21A | 109.1 |
C11—C12—H12A | 109.8 | C20—C21—H21B | 109.1 |
C13—C12—H12A | 109.8 | C22—C21—H21B | 109.1 |
C11—C12—H12B | 109.8 | H21A—C21—H21B | 107.9 |
C13—C12—H12B | 109.8 | C21—C22—H22A | 109.5 |
H12A—C12—H12B | 108.3 | C21—C22—H22B | 109.5 |
C14B—C13—C12 | 126.5 (4) | H22A—C22—H22B | 109.5 |
C14A—C13—C12 | 116.25 (19) | C21—C22—H22C | 109.5 |
C14A—C13—H13A | 108.2 | H22A—C22—H22C | 109.5 |
C12—C13—H13A | 108.2 | H22B—C22—H22C | 109.5 |
C14A—C13—H13B | 108.2 | C24—C23—N10 | 114.52 (10) |
C12—C13—H13B | 108.2 | C24—C23—H23A | 108.6 |
H13A—C13—H13B | 107.4 | N10—C23—H23A | 108.6 |
C14B—C13—H13C | 105.7 | C24—C23—H23B | 108.6 |
C12—C13—H13C | 105.7 | N10—C23—H23B | 108.6 |
C14B—C13—H13D | 105.7 | H23A—C23—H23B | 107.6 |
C12—C13—H13D | 105.7 | C23—C24—C25 | 111.29 (11) |
H13C—C13—H13D | 106.1 | C23—C24—H24A | 109.4 |
C13—C14A—H14A | 109.5 | C25—C24—H24A | 109.4 |
C13—C14A—H14B | 109.5 | C23—C24—H24B | 109.4 |
H14A—C14A—H14B | 109.5 | C25—C24—H24B | 109.4 |
C13—C14A—H14C | 109.5 | H24A—C24—H24B | 108.0 |
H14A—C14A—H14C | 109.5 | C26—C25—C24 | 111.66 (13) |
H14B—C14A—H14C | 109.5 | C26—C25—H25A | 109.3 |
C13—C14B—H14D | 109.5 | C24—C25—H25A | 109.3 |
C13—C14B—H14E | 109.5 | C26—C25—H25B | 109.3 |
H14D—C14B—H14E | 109.5 | C24—C25—H25B | 109.3 |
C13—C14B—H14F | 109.5 | H25A—C25—H25B | 107.9 |
H14D—C14B—H14F | 109.5 | C25—C26—H26A | 109.5 |
H14E—C14B—H14F | 109.5 | C25—C26—H26B | 109.5 |
C16—C15—N10 | 115.36 (9) | H26A—C26—H26B | 109.5 |
C16—C15—H15A | 108.4 | C25—C26—H26C | 109.5 |
N10—C15—H15A | 108.4 | H26A—C26—H26C | 109.5 |
C16—C15—H15B | 108.4 | H26B—C26—H26C | 109.5 |
N10—C15—H15B | 108.4 | H1WA—O1W—H1WB | 102.7 (18) |
C6—N1—C2—O2 | 176.23 (10) | N10—C11—C12—C13 | 173.31 (15) |
C6—N1—C2—N3 | −4.41 (15) | C11—C12—C13—C14B | −76.8 (4) |
O2—C2—N3—C4 | 179.14 (12) | C11—C12—C13—C14A | 59.0 (3) |
N1—C2—N3—C4 | −0.22 (16) | C11—N10—C15—C16 | −52.03 (14) |
C2—N3—C4—O4 | −175.20 (13) | C23—N10—C15—C16 | −173.69 (11) |
C2—N3—C4—C5 | 4.54 (18) | C19—N10—C15—C16 | 65.28 (13) |
O4—C4—C5—C6 | 175.13 (14) | N10—C15—C16—C17 | −167.64 (11) |
N3—C4—C5—C6 | −4.60 (19) | C15—C16—C17—C18 | −176.63 (14) |
C4—C5—C6—N1 | 0.54 (18) | C11—N10—C19—C20 | −176.33 (10) |
C4—C5—C6—C7 | −178.16 (11) | C15—N10—C19—C20 | 63.60 (12) |
C2—N1—C6—C5 | 4.30 (16) | C23—N10—C19—C20 | −55.57 (13) |
C2—N1—C6—C7 | −176.90 (9) | N10—C19—C20—C21 | −173.01 (11) |
C5—C6—C7—O8 | 157.63 (11) | C19—C20—C21—C22 | 177.68 (13) |
N1—C6—C7—O8 | −21.14 (14) | C11—N10—C23—C24 | 55.88 (13) |
C5—C6—C7—O7 | −22.68 (16) | C15—N10—C23—C24 | 177.43 (10) |
N1—C6—C7—O7 | 158.55 (10) | C19—N10—C23—C24 | −62.08 (13) |
C15—N10—C11—C12 | −60.83 (15) | N10—C23—C24—C25 | 170.92 (11) |
C23—N10—C11—C12 | 58.93 (15) | C23—C24—C25—C26 | −178.31 (13) |
C19—N10—C11—C12 | 179.62 (12) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O8i | 0.860 (16) | 1.924 (16) | 2.7668 (12) | 166.4 (14) |
N3—H3···O1Wii | 0.901 (17) | 1.913 (17) | 2.8081 (12) | 171.8 (15) |
C11—H11B···O7iii | 0.99 | 2.25 | 3.1462 (15) | 151 |
C19—H19A···O4iv | 0.99 | 2.28 | 3.1878 (14) | 151 |
C23—H23A···O2v | 0.99 | 2.37 | 3.3305 (14) | 164 |
C24—H24A···O4iv | 0.99 | 2.34 | 3.3197 (19) | 171 |
O1W—H1WA···O7 | 0.85 (2) | 2.00 (2) | 2.8396 (12) | 169.2 (18) |
O1W—H1WA···O8 | 0.85 (2) | 2.64 (2) | 3.1155 (12) | 117.3 (15) |
O1W—H1WB···O2i | 0.87 (2) | 2.01 (2) | 2.8618 (13) | 168.3 (19) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x+1, y, z; (iii) x, −y+3/2, z+1/2; (iv) x−1, −y+3/2, z+1/2; (v) x−1, y, z. |
C16H36N+·C5H3N2O4−·H2O | F(000) = 912 |
Mr = 415.57 | Dx = 1.105 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 10.1335 (5) Å | Cell parameters from 3106 reflections |
b = 14.6690 (7) Å | θ = 3.0–21.2° |
c = 16.9205 (8) Å | µ = 0.08 mm−1 |
β = 96.630 (4)° | T = 295 K |
V = 2498.4 (2) Å3 | Block, colourless |
Z = 4 | 0.55 × 0.23 × 0.09 mm |
Rigaku Oxford Diffraction Xcalibur, Sapphire3 diffractometer | 4273 independent reflections |
Radiation source: fine-focus sealed X-ray tube | 1621 reflections with I > 2σ(I) |
Detector resolution: 16.3990 pixels mm-1 | Rint = 0.070 |
ω and φ scans | θmax = 25.0°, θmin = 2.8° |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2018) | h = −12→12 |
Tmin = 0.980, Tmax = 1.000 | k = −16→16 |
27640 measured reflections | l = −20→20 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.047 | Hydrogen site location: mixed |
wR(F2) = 0.095 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | w = 1/[σ2(Fo2) + (0.030P)2] where P = (Fo2 + 2Fc2)/3 |
4273 reflections | (Δ/σ)max = 0.001 |
307 parameters | Δρmax = 0.26 e Å−3 |
56 restraints | Δρmin = −0.19 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Please see the Supporting Information for a full description of the refinement of the disorder assembly involving one of the n-butyl groups. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
N1 | 0.65997 (17) | 0.57519 (13) | 0.44599 (11) | 0.0472 (5) | |
H1 | 0.6254 (18) | 0.5453 (13) | 0.4826 (12) | 0.057* | |
C2 | 0.7952 (2) | 0.58205 (16) | 0.45510 (17) | 0.0499 (6) | |
O2 | 0.86644 (14) | 0.55274 (11) | 0.51216 (10) | 0.0734 (6) | |
N3 | 0.84553 (18) | 0.62622 (13) | 0.39389 (14) | 0.0579 (6) | |
H3 | 0.931 (2) | 0.6305 (14) | 0.3974 (12) | 0.069* | |
C4 | 0.7732 (3) | 0.65988 (18) | 0.32579 (19) | 0.0774 (8) | |
O4 | 0.83182 (17) | 0.69171 (15) | 0.27272 (13) | 0.1322 (9) | |
C5 | 0.6322 (2) | 0.65389 (19) | 0.32529 (17) | 0.0718 (8) | |
H5 | 0.578 (2) | 0.6779 (14) | 0.2804 (13) | 0.086* | |
C6 | 0.5795 (2) | 0.61233 (15) | 0.38384 (15) | 0.0479 (6) | |
C7 | 0.4310 (2) | 0.60074 (19) | 0.38728 (16) | 0.0555 (7) | |
O7 | 0.35729 (15) | 0.65242 (12) | 0.34479 (11) | 0.0857 (6) | |
O8 | 0.39840 (14) | 0.54039 (12) | 0.43105 (10) | 0.0815 (6) | |
N10 | 0.14286 (19) | 0.65933 (14) | 0.70428 (12) | 0.0630 (6) | |
C11 | 0.2037 (3) | 0.66598 (19) | 0.79054 (16) | 0.0841 (9) | |
H11A | 0.266990 | 0.715812 | 0.794999 | 0.101* | |
H11B | 0.133751 | 0.681476 | 0.822808 | 0.101* | |
C12 | 0.2727 (3) | 0.5820 (2) | 0.82472 (19) | 0.1144 (11) | |
H12A | 0.207327 | 0.535090 | 0.831215 | 0.137* | 0.55 |
H12B | 0.331876 | 0.559208 | 0.788087 | 0.137* | 0.55 |
H12C | 0.355850 | 0.573372 | 0.802451 | 0.137* | 0.45 |
H12D | 0.217376 | 0.528770 | 0.812206 | 0.137* | 0.45 |
C13A | 0.3493 (13) | 0.6010 (10) | 0.9019 (6) | 0.193 (4) | 0.55 |
H13A | 0.427192 | 0.635204 | 0.891178 | 0.232* | 0.2 |
H13B | 0.295887 | 0.641730 | 0.930300 | 0.232* | 0.2 |
H13E | 0.410871 | 0.550797 | 0.913505 | 0.232* | 0.35 |
H13F | 0.402359 | 0.654935 | 0.895443 | 0.232* | 0.35 |
C14A | 0.2872 (13) | 0.6139 (10) | 0.9661 (6) | 0.180 (4) | 0.35 |
H14A | 0.351458 | 0.625437 | 1.011269 | 0.270* | 0.35 |
H14B | 0.228369 | 0.665130 | 0.957613 | 0.270* | 0.35 |
H14C | 0.236933 | 0.560366 | 0.975783 | 0.270* | 0.35 |
C13B | 0.2992 (16) | 0.5948 (12) | 0.9159 (7) | 0.193 (4) | 0.45 |
H13C | 0.329722 | 0.656607 | 0.927175 | 0.232* | 0.2 |
H13D | 0.216411 | 0.586889 | 0.938731 | 0.232* | 0.2 |
H13G | 0.240945 | 0.640475 | 0.934596 | 0.232* | 0.25 |
H13H | 0.288846 | 0.537957 | 0.943909 | 0.232* | 0.25 |
C14B | 0.4340 (15) | 0.6244 (12) | 0.9250 (10) | 0.182 (4) | 0.25 |
H14D | 0.462783 | 0.634885 | 0.980312 | 0.272* | 0.25 |
H14E | 0.488744 | 0.578362 | 0.905009 | 0.272* | 0.25 |
H14F | 0.441292 | 0.679919 | 0.895783 | 0.272* | 0.25 |
C14C | 0.3913 (10) | 0.5353 (6) | 0.9520 (6) | 0.180 (4) | 0.4 |
H14G | 0.453563 | 0.497510 | 0.928456 | 0.270* | 0.2 |
H14H | 0.433849 | 0.561535 | 1.000342 | 0.270* | 0.2 |
H14J | 0.317066 | 0.499029 | 0.963613 | 0.270* | 0.2 |
H14K | 0.347631 | 0.480510 | 0.965991 | 0.270* | 0.2 |
H14L | 0.455048 | 0.520762 | 0.916123 | 0.270* | 0.2 |
H14M | 0.435875 | 0.562833 | 0.999198 | 0.270* | 0.2 |
C15 | 0.2480 (2) | 0.63645 (16) | 0.65027 (15) | 0.0750 (8) | |
H15A | 0.205410 | 0.632749 | 0.596007 | 0.090* | |
H15B | 0.283681 | 0.576591 | 0.664703 | 0.090* | |
C16 | 0.3631 (3) | 0.70328 (19) | 0.65243 (17) | 0.0967 (9) | |
H16A | 0.328748 | 0.762690 | 0.635352 | 0.116* | |
H16B | 0.404331 | 0.709057 | 0.706854 | 0.116* | |
C17 | 0.4627 (3) | 0.6762 (2) | 0.6026 (2) | 0.1374 (13) | |
H17A | 0.420044 | 0.669633 | 0.548602 | 0.165* | |
H17B | 0.495856 | 0.616595 | 0.620048 | 0.165* | |
C18 | 0.5782 (3) | 0.7383 (2) | 0.60122 (19) | 0.1481 (14) | |
H18A | 0.635629 | 0.732614 | 0.650213 | 0.178* | |
H18B | 0.547327 | 0.800037 | 0.595035 | 0.178* | |
H18C | 0.626182 | 0.722348 | 0.557510 | 0.178* | |
C19 | 0.0819 (2) | 0.75089 (16) | 0.68169 (16) | 0.0702 (8) | |
H19A | 0.018345 | 0.765289 | 0.718533 | 0.084* | |
H19B | 0.151486 | 0.796579 | 0.688643 | 0.084* | |
C20 | 0.0128 (3) | 0.75878 (18) | 0.59841 (18) | 0.0884 (9) | |
H20A | 0.073923 | 0.741475 | 0.560917 | 0.106* | |
H20B | −0.061720 | 0.716915 | 0.591922 | 0.106* | |
C21 | −0.0359 (3) | 0.8531 (2) | 0.58024 (19) | 0.1206 (12) | |
H21A | 0.038787 | 0.894827 | 0.587842 | 0.145* | |
H21B | −0.097424 | 0.869888 | 0.617650 | 0.145* | |
C22 | −0.1041 (4) | 0.8642 (2) | 0.4970 (2) | 0.1652 (16) | |
H22A | −0.184583 | 0.829057 | 0.490978 | 0.198* | |
H22B | −0.046435 | 0.843303 | 0.459575 | 0.198* | |
H22C | −0.124951 | 0.927360 | 0.487189 | 0.198* | |
C23 | 0.0391 (2) | 0.58363 (15) | 0.69378 (15) | 0.0750 (8) | |
H23A | 0.083208 | 0.525582 | 0.704889 | 0.090* | |
H23B | 0.000089 | 0.582772 | 0.638666 | 0.090* | |
C24 | −0.0726 (3) | 0.5930 (2) | 0.7470 (2) | 0.1180 (12) | |
H24A | −0.033422 | 0.594611 | 0.802102 | 0.142* | |
H24B | −0.117241 | 0.650779 | 0.735494 | 0.142* | |
C25 | −0.1686 (3) | 0.5225 (2) | 0.7383 (2) | 0.1292 (12) | |
H25A | −0.123636 | 0.464660 | 0.749059 | 0.155* | |
H25B | −0.208397 | 0.521395 | 0.683314 | 0.155* | |
C26 | −0.2779 (3) | 0.5302 (2) | 0.79096 (19) | 0.1455 (14) | |
H26A | −0.317042 | 0.589774 | 0.785299 | 0.175* | |
H26B | −0.241944 | 0.520775 | 0.845354 | 0.175* | |
H26C | −0.344529 | 0.484942 | 0.775853 | 0.175* | |
O1W | 0.12369 (17) | 0.63080 (13) | 0.42446 (14) | 0.0860 (7) | |
H1WA | 0.188 (2) | 0.6385 (17) | 0.3966 (15) | 0.103* | |
H1WB | 0.139 (3) | 0.5857 (19) | 0.4461 (17) | 0.103* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0313 (11) | 0.0604 (15) | 0.0514 (15) | −0.0036 (10) | 0.0107 (10) | 0.0089 (11) |
C2 | 0.0380 (17) | 0.0521 (18) | 0.062 (2) | −0.0062 (13) | 0.0139 (14) | −0.0010 (15) |
O2 | 0.0381 (9) | 0.1015 (14) | 0.0779 (13) | −0.0049 (9) | −0.0047 (9) | 0.0245 (11) |
N3 | 0.0333 (11) | 0.0624 (14) | 0.0797 (16) | −0.0024 (11) | 0.0139 (13) | 0.0126 (13) |
C4 | 0.054 (2) | 0.088 (2) | 0.093 (2) | −0.0012 (16) | 0.0212 (18) | 0.0369 (19) |
O4 | 0.0754 (14) | 0.197 (2) | 0.131 (2) | −0.0048 (14) | 0.0396 (13) | 0.0974 (18) |
C5 | 0.0474 (18) | 0.096 (2) | 0.073 (2) | −0.0019 (14) | 0.0113 (14) | 0.0428 (18) |
C6 | 0.0376 (14) | 0.0489 (17) | 0.0566 (17) | 0.0033 (12) | 0.0027 (13) | 0.0102 (14) |
C7 | 0.0401 (16) | 0.067 (2) | 0.0598 (19) | −0.0025 (14) | 0.0059 (13) | 0.0134 (15) |
O7 | 0.0449 (10) | 0.0949 (14) | 0.1154 (16) | 0.0094 (9) | 0.0011 (10) | 0.0499 (12) |
O8 | 0.0428 (10) | 0.1129 (15) | 0.0883 (14) | −0.0103 (10) | 0.0052 (9) | 0.0527 (12) |
N10 | 0.0656 (13) | 0.0544 (15) | 0.0706 (16) | 0.0000 (12) | 0.0148 (12) | −0.0165 (12) |
C11 | 0.095 (2) | 0.091 (2) | 0.066 (2) | −0.0159 (18) | 0.0094 (17) | −0.0229 (18) |
C12 | 0.125 (3) | 0.107 (3) | 0.102 (3) | −0.001 (2) | −0.030 (2) | 0.001 (2) |
C13A | 0.217 (10) | 0.237 (6) | 0.106 (5) | −0.034 (6) | −0.061 (6) | 0.041 (5) |
C14A | 0.222 (9) | 0.196 (9) | 0.108 (5) | −0.028 (6) | −0.046 (6) | 0.025 (6) |
C13B | 0.218 (10) | 0.237 (6) | 0.106 (5) | −0.035 (6) | −0.060 (6) | 0.042 (5) |
C14B | 0.221 (9) | 0.197 (9) | 0.109 (6) | −0.029 (6) | −0.052 (6) | 0.025 (6) |
C14C | 0.220 (9) | 0.194 (9) | 0.110 (5) | −0.026 (6) | −0.048 (6) | 0.032 (6) |
C15 | 0.0656 (18) | 0.078 (2) | 0.082 (2) | 0.0122 (15) | 0.0130 (15) | −0.0291 (16) |
C16 | 0.078 (2) | 0.116 (3) | 0.102 (2) | −0.0080 (19) | 0.0348 (18) | −0.030 (2) |
C17 | 0.089 (2) | 0.171 (4) | 0.161 (3) | −0.008 (2) | 0.049 (2) | −0.056 (3) |
C18 | 0.093 (2) | 0.212 (4) | 0.149 (3) | −0.030 (3) | 0.054 (2) | −0.055 (3) |
C19 | 0.0719 (17) | 0.0452 (19) | 0.098 (2) | 0.0068 (14) | 0.0280 (16) | −0.0108 (17) |
C20 | 0.087 (2) | 0.070 (2) | 0.109 (3) | 0.0185 (17) | 0.0141 (18) | 0.0040 (19) |
C21 | 0.155 (3) | 0.092 (3) | 0.117 (3) | 0.033 (2) | 0.021 (2) | 0.016 (2) |
C22 | 0.200 (4) | 0.135 (3) | 0.158 (4) | 0.048 (3) | 0.007 (3) | 0.046 (3) |
C23 | 0.0700 (18) | 0.0534 (18) | 0.099 (2) | −0.0105 (15) | 0.0007 (16) | −0.0140 (16) |
C24 | 0.086 (2) | 0.098 (2) | 0.177 (4) | −0.023 (2) | 0.043 (2) | −0.036 (2) |
C25 | 0.117 (3) | 0.123 (3) | 0.150 (3) | −0.039 (2) | 0.028 (2) | −0.002 (2) |
C26 | 0.115 (3) | 0.202 (4) | 0.125 (3) | −0.057 (3) | 0.039 (2) | −0.007 (3) |
O1W | 0.0474 (11) | 0.0889 (17) | 0.125 (2) | 0.0066 (11) | 0.0233 (10) | 0.0163 (14) |
N1—C2 | 1.365 (2) | C14C—H14G | 0.9600 |
N1—C6 | 1.367 (2) | C14C—H14H | 0.9600 |
N1—H1 | 0.866 (19) | C14C—H14J | 0.9600 |
C2—O2 | 1.215 (2) | C14C—H14K | 0.9600 |
C2—N3 | 1.369 (3) | C14C—H14L | 0.9600 |
N3—C4 | 1.384 (3) | C14C—H14M | 0.9600 |
N3—H3 | 0.86 (2) | C15—C16 | 1.520 (3) |
C4—O4 | 1.225 (3) | C15—H15A | 0.9700 |
C4—C5 | 1.430 (3) | C15—H15B | 0.9700 |
C5—C6 | 1.327 (3) | C16—C17 | 1.443 (3) |
C5—H5 | 0.95 (2) | C16—H16A | 0.9700 |
C6—C7 | 1.523 (3) | C16—H16B | 0.9700 |
C7—O8 | 1.224 (2) | C17—C18 | 1.485 (3) |
C7—O7 | 1.235 (2) | C17—H17A | 0.9700 |
N10—C19 | 1.509 (3) | C17—H17B | 0.9700 |
N10—C15 | 1.519 (3) | C18—H18A | 0.9600 |
N10—C11 | 1.520 (3) | C18—H18B | 0.9600 |
N10—C23 | 1.526 (2) | C18—H18C | 0.9600 |
C11—C12 | 1.500 (3) | C19—C20 | 1.504 (3) |
C11—H11A | 0.9700 | C19—H19A | 0.9700 |
C11—H11B | 0.9700 | C19—H19B | 0.9700 |
C12—C13A | 1.468 (9) | C20—C21 | 1.490 (3) |
C12—C13B | 1.547 (11) | C20—H20A | 0.9700 |
C12—H12A | 0.9700 | C20—H20B | 0.9700 |
C12—H12B | 0.9700 | C21—C22 | 1.505 (4) |
C12—H12C | 0.9700 | C21—H21A | 0.9700 |
C12—H12D | 0.9700 | C21—H21B | 0.9700 |
C13A—C14C | 1.321 (12) | C22—H22A | 0.9600 |
C13A—C14A | 1.330 (13) | C22—H22B | 0.9600 |
C13A—H13A | 0.9700 | C22—H22C | 0.9600 |
C13A—H13B | 0.9700 | C23—C24 | 1.532 (3) |
C13A—H13E | 0.9700 | C23—H23A | 0.9700 |
C13A—H13F | 0.9700 | C23—H23B | 0.9700 |
C14A—H14A | 0.9600 | C24—C25 | 1.416 (3) |
C14A—H14B | 0.9600 | C24—H24A | 0.9700 |
C14A—H14C | 0.9600 | C24—H24B | 0.9700 |
C13B—C14C | 1.369 (13) | C25—C26 | 1.504 (4) |
C13B—C14B | 1.425 (15) | C25—H25A | 0.9700 |
C13B—H13C | 0.9700 | C25—H25B | 0.9700 |
C13B—H13D | 0.9700 | C26—H26A | 0.9600 |
C13B—H13G | 0.9700 | C26—H26B | 0.9600 |
C13B—H13H | 0.9700 | C26—H26C | 0.9600 |
C14B—H14D | 0.9600 | O1W—H1WA | 0.85 (2) |
C14B—H14E | 0.9600 | O1W—H1WB | 0.76 (3) |
C14B—H14F | 0.9600 | ||
C2—N1—C6 | 124.0 (2) | H14G—C14C—H14H | 109.5 |
C2—N1—H1 | 116.2 (13) | C13A—C14C—H14J | 109.5 |
C6—N1—H1 | 119.8 (13) | H14G—C14C—H14J | 109.5 |
O2—C2—N1 | 124.1 (2) | H14H—C14C—H14J | 109.5 |
O2—C2—N3 | 122.0 (2) | C13B—C14C—H14K | 109.5 |
N1—C2—N3 | 114.0 (2) | C13B—C14C—H14L | 109.5 |
C2—N3—C4 | 126.2 (2) | H14K—C14C—H14L | 109.5 |
C2—N3—H3 | 116.1 (14) | C13B—C14C—H14M | 109.5 |
C4—N3—H3 | 117.6 (15) | H14K—C14C—H14M | 109.5 |
O4—C4—N3 | 119.4 (2) | H14L—C14C—H14M | 109.5 |
O4—C4—C5 | 126.0 (3) | N10—C15—C16 | 115.61 (19) |
N3—C4—C5 | 114.6 (3) | N10—C15—H15A | 108.4 |
C6—C5—C4 | 120.8 (2) | C16—C15—H15A | 108.4 |
C6—C5—H5 | 121.5 (13) | N10—C15—H15B | 108.4 |
C4—C5—H5 | 117.7 (13) | C16—C15—H15B | 108.4 |
C5—C6—N1 | 120.1 (2) | H15A—C15—H15B | 107.4 |
C5—C6—C7 | 124.4 (2) | C17—C16—C15 | 113.2 (2) |
N1—C6—C7 | 115.5 (2) | C17—C16—H16A | 108.9 |
O8—C7—O7 | 127.5 (2) | C15—C16—H16A | 108.9 |
O8—C7—C6 | 116.2 (2) | C17—C16—H16B | 108.9 |
O7—C7—C6 | 116.3 (2) | C15—C16—H16B | 108.9 |
C19—N10—C15 | 109.83 (19) | H16A—C16—H16B | 107.7 |
C19—N10—C11 | 107.1 (2) | C16—C17—C18 | 116.5 (3) |
C15—N10—C11 | 110.92 (18) | C16—C17—H17A | 108.2 |
C19—N10—C23 | 111.21 (17) | C18—C17—H17A | 108.2 |
C15—N10—C23 | 106.93 (18) | C16—C17—H17B | 108.2 |
C11—N10—C23 | 110.85 (19) | C18—C17—H17B | 108.2 |
C12—C11—N10 | 115.9 (2) | H17A—C17—H17B | 107.3 |
C12—C11—H11A | 108.3 | C17—C18—H18A | 109.5 |
N10—C11—H11A | 108.3 | C17—C18—H18B | 109.5 |
C12—C11—H11B | 108.3 | H18A—C18—H18B | 109.5 |
N10—C11—H11B | 108.3 | C17—C18—H18C | 109.5 |
H11A—C11—H11B | 107.4 | H18A—C18—H18C | 109.5 |
C13A—C12—C11 | 111.3 (6) | H18B—C18—H18C | 109.5 |
C11—C12—C13B | 107.7 (6) | C20—C19—N10 | 116.0 (2) |
C13A—C12—H12A | 109.4 | C20—C19—H19A | 108.3 |
C11—C12—H12A | 109.4 | N10—C19—H19A | 108.3 |
C13A—C12—H12B | 109.4 | C20—C19—H19B | 108.3 |
C11—C12—H12B | 109.4 | N10—C19—H19B | 108.3 |
H12A—C12—H12B | 108.0 | H19A—C19—H19B | 107.4 |
C11—C12—H12C | 110.2 | C21—C20—C19 | 111.9 (2) |
C13B—C12—H12C | 110.2 | C21—C20—H20A | 109.2 |
C11—C12—H12D | 110.2 | C19—C20—H20A | 109.2 |
C13B—C12—H12D | 110.2 | C21—C20—H20B | 109.2 |
H12C—C12—H12D | 108.5 | C19—C20—H20B | 109.2 |
C14C—C13A—C12 | 122.0 (12) | H20A—C20—H20B | 107.9 |
C14A—C13A—C12 | 120.2 (12) | C20—C21—C22 | 113.5 (3) |
C14C—C13A—H13A | 106.8 | C20—C21—H21A | 108.9 |
C12—C13A—H13A | 106.8 | C22—C21—H21A | 108.9 |
C14C—C13A—H13B | 106.8 | C20—C21—H21B | 108.9 |
C12—C13A—H13B | 106.8 | C22—C21—H21B | 108.9 |
H13A—C13A—H13B | 106.7 | H21A—C21—H21B | 107.7 |
C14A—C13A—H13E | 107.3 | C21—C22—H22A | 109.5 |
C12—C13A—H13E | 107.3 | C21—C22—H22B | 109.5 |
C14A—C13A—H13F | 107.3 | H22A—C22—H22B | 109.5 |
C12—C13A—H13F | 107.3 | C21—C22—H22C | 109.5 |
H13E—C13A—H13F | 106.9 | H22A—C22—H22C | 109.5 |
C13A—C14A—H14A | 109.5 | H22B—C22—H22C | 109.5 |
C13A—C14A—H14B | 109.5 | N10—C23—C24 | 114.4 (2) |
H14A—C14A—H14B | 109.5 | N10—C23—H23A | 108.7 |
C13A—C14A—H14C | 109.5 | C24—C23—H23A | 108.7 |
H14A—C14A—H14C | 109.5 | N10—C23—H23B | 108.7 |
H14B—C14A—H14C | 109.5 | C24—C23—H23B | 108.7 |
C14C—C13B—C12 | 113.5 (12) | H23A—C23—H23B | 107.6 |
C14B—C13B—C12 | 101.4 (12) | C25—C24—C23 | 114.7 (3) |
C14C—C13B—H13C | 108.9 | C25—C24—H24A | 108.6 |
C12—C13B—H13C | 108.9 | C23—C24—H24A | 108.6 |
C14C—C13B—H13D | 108.9 | C25—C24—H24B | 108.6 |
C12—C13B—H13D | 108.9 | C23—C24—H24B | 108.6 |
H13C—C13B—H13D | 107.7 | H24A—C24—H24B | 107.6 |
C14B—C13B—H13G | 111.5 | C24—C25—C26 | 115.3 (3) |
C12—C13B—H13G | 111.5 | C24—C25—H25A | 108.5 |
C14B—C13B—H13H | 111.5 | C26—C25—H25A | 108.5 |
C12—C13B—H13H | 111.5 | C24—C25—H25B | 108.5 |
H13G—C13B—H13H | 109.3 | C26—C25—H25B | 108.5 |
C13B—C14B—H14D | 109.5 | H25A—C25—H25B | 107.5 |
C13B—C14B—H14E | 109.5 | C25—C26—H26A | 109.5 |
H14D—C14B—H14E | 109.5 | C25—C26—H26B | 109.5 |
C13B—C14B—H14F | 109.5 | H26A—C26—H26B | 109.5 |
H14D—C14B—H14F | 109.5 | C25—C26—H26C | 109.5 |
H14E—C14B—H14F | 109.5 | H26A—C26—H26C | 109.5 |
C13A—C14C—H14G | 109.5 | H26B—C26—H26C | 109.5 |
C13A—C14C—H14H | 109.5 | H1WA—O1W—H1WB | 105 (3) |
C6—N1—C2—O2 | 176.4 (2) | N10—C11—C12—C13B | −167.6 (7) |
C6—N1—C2—N3 | −3.0 (3) | C11—C12—C13A—C14C | 163.1 (11) |
O2—C2—N3—C4 | 178.3 (2) | C11—C12—C13A—C14A | 73.6 (15) |
N1—C2—N3—C4 | −2.2 (3) | C11—C12—C13B—C14C | −163.6 (11) |
C2—N3—C4—O4 | −174.3 (3) | C11—C12—C13B—C14B | −98.0 (12) |
C2—N3—C4—C5 | 6.1 (4) | C19—N10—C15—C16 | 60.0 (3) |
O4—C4—C5—C6 | 175.4 (3) | C11—N10—C15—C16 | −58.2 (3) |
N3—C4—C5—C6 | −5.0 (4) | C23—N10—C15—C16 | −179.2 (2) |
C4—C5—C6—N1 | 0.5 (4) | N10—C15—C16—C17 | 177.5 (2) |
C4—C5—C6—C7 | −178.5 (2) | C15—C16—C17—C18 | 179.7 (3) |
C2—N1—C6—C5 | 3.9 (3) | C15—N10—C19—C20 | 60.8 (3) |
C2—N1—C6—C7 | −177.1 (2) | C11—N10—C19—C20 | −178.6 (2) |
C5—C6—C7—O8 | 159.8 (3) | C23—N10—C19—C20 | −57.4 (3) |
N1—C6—C7—O8 | −19.2 (3) | N10—C19—C20—C21 | −176.2 (2) |
C5—C6—C7—O7 | −19.2 (4) | C19—C20—C21—C22 | 179.2 (3) |
N1—C6—C7—O7 | 161.7 (2) | C19—N10—C23—C24 | −62.8 (3) |
C19—N10—C11—C12 | −178.8 (2) | C15—N10—C23—C24 | 177.3 (2) |
C15—N10—C11—C12 | −58.9 (3) | C11—N10—C23—C24 | 56.3 (3) |
C23—N10—C11—C12 | 59.7 (3) | N10—C23—C24—C25 | −179.4 (3) |
N10—C11—C12—C13A | 168.9 (7) | C23—C24—C25—C26 | 179.3 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O8i | 0.866 (19) | 1.96 (2) | 2.800 (3) | 162.1 (18) |
N3—H3···O1Wii | 0.86 (2) | 1.96 (2) | 2.807 (2) | 170 (2) |
C11—H11A···O7iii | 0.97 | 2.26 | 3.168 (3) | 155 |
C19—H19A···O4iv | 0.97 | 2.28 | 3.226 (3) | 164 |
C23—H23B···O2v | 0.97 | 2.44 | 3.386 (3) | 166 |
C24—H24B···O4iv | 0.97 | 2.47 | 3.346 (4) | 151 |
O1W—H1WA···O7 | 0.85 (2) | 2.03 (2) | 2.874 (2) | 172 (2) |
O1W—H1WA···O8 | 0.85 (2) | 2.59 (3) | 3.074 (2) | 118 (2) |
O1W—H1WB···O2i | 0.76 (3) | 2.15 (3) | 2.895 (2) | 164 (3) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x+1, y, z; (iii) x, −y+3/2, z+1/2; (iv) x−1, −y+3/2, z+1/2; (v) x−1, y, z. |
Funding information
Support from the Ministerio de Ciencia, Innovación y Universidades (Spain, Grants MAT2015–68200-C2–1-P and PGC2018–093451-B-I00), the European Union Regional Development Fund, FEDER), and the Diputación General de Aragón, Project M4, E11_17R is gratefully acknowledged.
References
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Bach, I., Kumberger, O. & Schmidbaur, H. (1990). Chem. Ber. 123, 2267–2271. CSD CrossRef CAS Web of Science Google Scholar
Bekiroglu, S. & Kristiansson, O. (2002). J. Chem. Soc. Dalton Trans. pp. 1330–1335. Web of Science CSD CrossRef Google Scholar
Brandenburg, K. (2007). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Castro, M., Falvello, L. R., Forcén-Vázquez, E., Guerra, P., Al-Kenany, N. A., Martínez, G. & Tomás, M. (2017). Acta Cryst. C73, 731–742. Web of Science CSD CrossRef IUCr Journals Google Scholar
Clegg, W. & Nichol, G. S. (2018a). CSD Communication (CCDC 1845396). CCDC, Cambridge, England. Google Scholar
Clegg, W. & Nichol, G. S. (2018b). CSD Communication (CCDC 1845404). CCDC, Cambridge, England. Google Scholar
Falvello, L. R., Ferrer, D., Piedrafita, M., Soler, T. & Tomás, M. (2007). CrystEngComm, 9, 852–855. Web of Science CSD CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Kitaigorodsky, A. I. (1973). Molecular Crystals and Molecules. New York: Academic Press. Google Scholar
Löffler, M., Carrey, E. A. & Zameitat, E. (2015). J. Genet. Genomics, 42, 207–219. Web of Science PubMed Google Scholar
Löffler, M., Carrey, E. A. & Zameitat, E. (2016). Nucleosides Nucleotides Nucleic Acids, 35, 566–577. Web of Science PubMed Google Scholar
Löffler, M., Carrey, E. A. & Zameitat, E. (2018). Nucleosides Nucleotides Nucleic Acids, 37, 290–306. Web of Science PubMed Google Scholar
Lutz, M. (2001). Acta Cryst. E57, m103–m105. Web of Science CSD CrossRef IUCr Journals Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Martínez, G., Falvello, L. R., Tomás, M. & Mushale, N. A. (2008). CSD Communication (CCDC 707026). CCDC, Cambridge, England. Google Scholar
Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Willett, R. D., Gómez-García, C. J., Ramakrishna, B. L. & Twamley, B. (2005). Polyhedron, 24, 2232–2237. Web of Science CSD CrossRef CAS Google Scholar
Yeşilel, O. Z., Kaştaş, G. & Büyükgüngör, O. (2007). Inorg. Chem. Commun. 10, 936–939. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.