research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra-n-butyl­ammonium orotate monohydrate: knowledge-based comparison of the results of accurate and lower-resolution analyses and a non-routine disorder refinement

aInstituto de Síntesis Quimica y Catálisis Homogénea (ISQCH), C.S.I.C.-University of Zaragoza, Departamento de Química Inorgánica, Pedro Cerbuna 12, E-50009 Zaragoza, Spain, bLaboratoire de Matériaux, Cristallochimie et Thermodynamique Appliquée, Département de Chimie, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092 El Manar II, Tunis, Tunisia, cUniversity of Zaragoza-C.S.I.C., Instituto de Ciencia de Materiales de Aragón (ICMA), Departamento de Química Inorgánica, E-50009 Zaragoza, Spain, and dUniversité de Sfax, Faculté de Sciences de Sfax, Route de la Soukra Km 4, Sfax 3038, Tunisia
*Correspondence e-mail: falvello@unizar.es

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 24 September 2019; accepted 30 September 2019; online 8 October 2019)

The title hydrated mol­ecular salt (systematic name: tetra-n-butyl­ammonium 2,6-dioxo-1,2,3,6-tetra­hydro­pyrimidine-4-carboxyl­ate monohydrate), C16H36N+·C5H3N2O4·H2O, crystallizes with N—H⋯O and O—H⋯O hydrogen-bonded double-stranded anti­parallel ribbons consisting of the hydro­philic orotate monoanions and water mol­ecules, separated by the bulky hydro­phobic cations. The hydro­phobic and hydro­philic regions of the structure are joined by weaker non-classical C—H⋯O hydrogen bonds. An accurate structure analysis conducted at T = 100 K is compared to a lower-resolution less accurate determination using data measured at T = 295 K. The results of both analyses are evaluated using a knowledge-based approach, and it is found that the less accurate room-temperature structure analysis provides geometric data that are similar to those derived from the accurate low-temperature analysis, with both sets of results consistent with previously analyzed structures. A minor disorder of one methyl group in the cation at low temperature was found to be slightly more complex at room temperature; while still involving a minor fraction of the structure, the disorder at room temperature was found to require a non-routine treatment, which is described in detail.

1. Chemical context

We report here the structure analysis at two temperatures (1 at 100 K and 2 at 295 K) of an organic salt formed by a bulky, hydro­phobic cation, nBu4N+, and the compact, hydro­philic anion C5H3N2O4, formed by single deprotonation of orotic acid. Crystals of this material are monohydrated, and the water mol­ecule plays an integral role in the structure.

[Scheme 1]

Orotic acid, 2,4-dioxo-1H-pyrimidine-6-carb­oxy­lic acid, C5H4N2O4, is important in a multitude of roles in biochemistry, among them as a precursor in the synthesis of uridine monophosphate (UMP) and thus of the pyrimidine nucleotides (Löffler et al., 2015[Löffler, M., Carrey, E. A. & Zameitat, E. (2015). J. Genet. Genomics, 42, 207-219.], 2016[Löffler, M., Carrey, E. A. & Zameitat, E. (2016). Nucleosides Nucleotides Nucleic Acids, 35, 566-577.], 2018[Löffler, M., Carrey, E. A. & Zameitat, E. (2018). Nucleosides Nucleotides Nucleic Acids, 37, 290-306.]).

Our own inter­est in orotic acid, and in the conjugate bases formed by single and double deprotonation of orotic acid, arises from the functional groups that they present to their surroundings, which endow them with the ability to bind to a transition metal while at the same time forming energetically significant, directed and possibly structure-directing, inter­actions with their environment in a crystal. We have encountered, for example, a system in which stereoisomer selection for a six-coordinate NiII complex is achieved by enabling or vitiating hydrogen-bond formation in crystals of the product (Falvello et al., 2007[Falvello, L. R., Ferrer, D., Piedrafita, M., Soler, T. & Tomás, M. (2007). CrystEngComm, 9, 852-855.]). In another study (Castro et al., 2017[Castro, M., Falvello, L. R., Forcén-Vázquez, E., Guerra, P., Al-Kenany, N. A., Martínez, G. & Tomás, M. (2017). Acta Cryst. C73, 731-742.]), it was found that the nBu4N+ salt of a CoIII orotate complex, namely (nBu4N)[Co(orot)2(bipy)]·3H2O, undergoes an order–disorder phase transition, which upon recycling and repeating suffers arrest, which leaves the sample in a two-domain, two-structure form (monoclinic/triclinic).

It is in the context of phase transitions that we find the simple cation tetra-n-butyl­ammonium, nBu4N+ or C16H36N+, to be of inter­est. It is known that the presence of even a single n-butyl group can be sufficient to incite an order–disorder transition when, for example, the temperature is varied (Willett et al., 2005[Willett, R. D., Gómez-García, C. J., Ramakrishna, B. L. & Twamley, B. (2005). Polyhedron, 24, 2232-2237.]).

While our inter­est in orotic acid and orotates stems from their utility in coordination chemistry, it is also pertinent to explore mol­ecular solids in which these fragments are present without metals. To date, six unique crystal structures have been analyzed of solids containing orotic acid in the absence of coordination compounds (ten analyses, including duplicates); and three analyses have been reported with orotic acid co-crystallized with orotate complexes of Co, Pr and Nd. Singly deprotonated orotate – Horot, deprotonated at the carboxyl­ate function – figures in some 46 previously reported structure analyses, 16 of which also have d-block elements and six of which are lanthanoid compounds. There is also one structure of a uranium complex of Horot. Some 15 Horot-containing structures have no metal atom present.

With this as background, we undertook the structure analysis of the monohydrate of tetra-n-butyl­ammonium 2,4-dioxo-1H-pyrimidine-6-carboxyl­ate, (nBu4N)(C5H3N2O4), at room temperature and at 100 K, to establish the structural organization adopted by this hydro­phobic–hydro­philic ion pair and to explore the possibility of an order–disorder phase transition, as is seen with some regularity in n-butyl-containing mol­ecular crystals.

2. Structural commentary

One of the motivations for this study was to observe the packing pattern adopted by a bulky hydro­phobic cation and a compact hydro­philic anion when crystallized together. In the event, there are no solvent-accessible voids, as calculated by PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); however, this full packing arrangement is achieved with the incorporation of one water mol­ecule per formula unit. Packing and scattering are more efficient at low temperature; we will discuss the structure first with reference to the analysis at T = 100 K; some comparisons between the two analyses will be presented at the end.

Displacement ellipsoid plots of the two structures are shown in Fig. 1[link] (100 K) and Fig. 2[link] (295 K). The two drawings have the same scale, and it is clear that, as expected, the lower-temperature structure has notably reduced displacement as compared to the structure at room temperature.

[Figure 1]
Figure 1
The asymmetric unit of 1 at 100 K. Non-hydrogen atoms are represented by their 50% probability displacement ellipsoids. Dashed red lines represent hydrogen bonds. C14A and C14B are the major and minor components of the disordered methyl group.
[Figure 2]
Figure 2
The asymmetric unit of 2 at 295 K. Non-hydrogen atoms are represented by their 50% probability displacement ellipsoids. Dashed red lines represent hydrogen bonds. C13A and C14A represent one component of a disordered ethyl fragment, whose other components are not shown.

2.1. Supra­molecular features

The structure is segregated into hydro­philic and hydro­phobic zones. Firstly, a network of N—H⋯O and O—H⋯O hydrogen bonds link the Horot anions and water mol­ecules into a ladder-like chain propagating in the a-axis direction and lying in the (011) plane (Table 1[link] for T = 100 and Table 2[link] for T = 295 K; Fig. 3[link]). Four different types of hydrogen-bonded rings form an uninter­rupted fused-ring system along the length of this chain. Symmetry relatives of the R22(10) ring at the center of the segment shown in Fig. 3[link] occupy inversion centers at (1/2 + n, 1/2, 1/2), where n is an integer. The chain is further propagated through an R44(12) ring whose congeners are on inversion centers at (n, 1/2, 1/2), with n an integer. The components of this chain are related by the 21 screw axis and the c-glide to the constituent fragments of chains – also parallel to the a axis of the cell but lying in (01[\overline{1}]) planes – passing through centers of inversion at (0, 0, 0), (1/2, 0, 0) and lattice-related positions.

Table 1
Hydrogen-bond geometry (Å, °) for 1[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O8i 0.860 (16) 1.924 (16) 2.7668 (12) 166.4 (14)
N3—H3⋯O1Wii 0.901 (17) 1.913 (17) 2.8081 (12) 171.8 (15)
C11—H11B⋯O7iii 0.99 2.25 3.1462 (15) 151
C19—H19A⋯O4iv 0.99 2.28 3.1878 (14) 151
C23—H23A⋯O2v 0.99 2.37 3.3305 (14) 164
C24—H24A⋯O4iv 0.99 2.34 3.3197 (19) 171
O1W—H1WA⋯O7 0.85 (2) 2.00 (2) 2.8396 (12) 169.2 (18)
O1W—H1WA⋯O8 0.85 (2) 2.64 (2) 3.1155 (12) 117.3 (15)
O1W—H1WB⋯O2i 0.87 (2) 2.01 (2) 2.8618 (13) 168.3 (19)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x+1, y, z; (iii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iv) [x-1, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (v) x-1, y, z.

Table 2
Hydrogen-bond geometry (Å, °) for 2[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O8i 0.866 (19) 1.96 (2) 2.800 (3) 162.1 (18)
N3—H3⋯O1Wii 0.86 (2) 1.96 (2) 2.807 (2) 170 (2)
C11—H11A⋯O7iii 0.97 2.26 3.168 (3) 155
C19—H19A⋯O4iv 0.97 2.28 3.226 (3) 164
C23—H23B⋯O2v 0.97 2.44 3.386 (3) 166
C24—H24B⋯O4iv 0.97 2.47 3.346 (4) 151
O1W—H1WA⋯O7 0.85 (2) 2.03 (2) 2.874 (2) 172 (2)
O1W—H1WA⋯O8 0.85 (2) 2.59 (3) 3.074 (2) 118 (2)
O1W—H1WB⋯O2i 0.76 (3) 2.15 (3) 2.895 (2) 164 (3)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x+1, y, z; (iii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iv) [x-1, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (v) x-1, y, z.
[Figure 3]
Figure 3
The ladder-like chain formed by the hydro­philic fragments, from the structure at T = 100 K. [Symmetry codes: (i) −x + 1, −y + 1, −z + 1; (ii) −x + 2, −y + 1, −z + 1.]

The hydro­phobic cations surround the orotate–water chains, filling in the remaining space in the structure (Fig. 4[link]). That the cell is efficiently filled can be seen in the Kitaigorodsky packing indices (KPI: percent filled space; Kitaigorodsky, 1973[Kitaigorodsky, A. I. (1973). Molecular Crystals and Molecules. New York: Academic Press.]) of 66.8 for 1 and 63.2 for 2. [In order to perform the calculation of the KPI using PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) it was necessary to create a structure model with only the principal components of disorder present.] For comparison purposes, we note that a structure consisting of close-packed spheres fills 74.0% of its FCC unit cell.

[Figure 4]
Figure 4
Packing of the nBu4N+ cations and Horot(-)–H2O chains in 1. Dashed red lines represent hydrogen bonds within the hydro­philic zones. The H atoms of the cations are represented by spheres with the van der Waals radius of 1.2 Å.

The hydro­phobic and hydro­philic sectors of the structure are not strictly separated, as there are favorable inter­actions between them (Table 1[link], Fig. 5[link]). Each orotate anion accepts a total of four non-classical hydrogen bonds from the methyl­ene groups of three surrounding nBu4N(+) cations. Fig. 5[link] shows a segment of the hydro­philic chain, with its hydrogen bonds in red, and three neighboring cations with the C—H⋯O inter­actions in blue. The flexibility of the butyl groups along with their capacity for forming directed inter­actions with the anions and dispersion-based inter­actions among themselves, is key to the ability of this material to form well-packed crystals.

[Figure 5]
Figure 5
Partial view of the packing in 1, showing hydrogen bonds within the hydro­philic chain (red dashed lines) and non-classical C—H⋯O hydrogen bonds (blue dashed lines) between methyl­ene H atoms of the cations and oxygen atoms of the orotate anions. [Symmetry codes: (i) −x + 1, −y + 1, −z + 1; (iii) x + 1, y, z; (iv): x + 1, −y + [{3\over 2}], z − [{1\over 2}]; (v) x, −y + [{3\over 2}], z − [{1\over 2}].] Butyl-group H atoms not involved in hydrogen bonds have been omitted. The minor congener of the terminal methyl group has been omitted.

The overall layout of the structure and the inter­actions that consolidate it are summarized graphically in the Hirshfeld surfaces (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]), which are presented here only for the low-temperature determination (Fig. 6[link]). Fig. 6[link]a shows the Hirshfeld surface for the anion from two viewpoints, within its crystalline surroundings. It is clear that its principal inter­actions lie within the hydro­philic zone. Fig. 6[link]b rounds out the picture, showing through the Hirshfeld surfaces that the major inter­actions of the water mol­ecules also lie within the hydro­philic sector of the structure. Fig. 6[link]c and 6d show the Hirshfeld surface of the cation from two opposite view directions. The scarce inter­actions consist of two non-classical hydrogen bonds on each side. Fingerprint calculations reveal that the close H(inter­nal)⋯O(external) inter­actions account for only 14.1% of the points on the surface. These can be compared to H(i)⋯O(e) and O(i)⋯H(e) values of 27.5% and 32.3%, respectively, for the water mol­ecule and 6.2% and 49.2% for the orotate anion.

[Figure 6]
Figure 6
Hirshfeld surfaces based on dnorm for (a) the orotate anion, seen from two viewpoints in the anti­parallel chains; (b) the water mol­ecule, seen from two angles; (c) and (d) the cation, viewed from two opposite sides.

3. Database survey: knowledge-based comparison of the analyses at two temperatures

The presence of bulky aliphatic groups clearly influences the diffraction from these crystals. The structure at room temperature suffers not only from a more complex disorder of one terminal ethyl group, but also produces weak diffraction, to the extent that from intensity statistics we estimate the effective resolution of the data to be about 1.0 Å. The data at T = 100 K are much stronger and give what in present times is regarded as an accurate result, which includes the observation of positive difference density at the centers of most of the bonds not involving H atoms.

It is thus instructive to compare the geometric parameters derived from the two analyses.

An overlay of all corresponding non-H atoms in the two structures, excluding the disordered Et fragment at C13 and C14, gives an r.m.s. deviation of 0.144 Å. As can be seen in Fig. 7[link], most of the deviation resides in the slightly different conformations of two of the terminal Et groups of the cation, namely C17/C18 (0.35, 0.21 Å deviation for C17 and C18, respectively) and C25/C26 (0.17, 0.18 Å for C25, C26, respectively).

[Figure 7]
Figure 7
Overlay of the asymmetric units for the analyses at T = 100 K (blue) and T = 295 K (red).

3.1. Mogul geometry check

Extending the geometric comparisons to the possible differences between these two determinations, on one hand, and prior analyses involving similar chemical fragments, on the other, we performed a Mogul geometry check, in which bond lengths and bond angles found in these structures are compared to those of fragments of the same chemical nature found in the CSD (Cambridge Structural Database; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). All results are compiled in the supporting information. Briefly, there are no gross outliers in these two analyses; however, the area of the carboxyl­ate group and its linkage to the ring of the anion shows an inter­esting trend in both analyses. A relevant fact in this regard is that the dihedral angle between the orotate ring and the pendant carboxyl­ate group is 23.14 (8)° at T = 100 K and 20.4 (2)° at room temperature. While the Mogul geometry check does not encounter any important outliers for either analysis, it does signal some slightly larger deviations from previous results, in the conjugated region where the ring and carboxyl­ate group are joined, in keeping with the torsion angle that reduces ππ overlap between C6 and C7. Thus, considering the mean and standard deviation σ of the bond distances found in previous structure analyses with chemically similar groups, at low temperature the two nominally delocalized C⋯O bonds C7—O7 and C7—O8 are 0.734 σ and 1.620 σ shorter than the mean; C5—C6 is 1.411 σ shorter; and C6—C7 is 1.985 σ longer. For T = 295 K the analogous deviations are 3.047 and 4.820 σ for C7—O7 and C7—O8, 3.065 σ for C5—C6 and 1.665 σ for C6—C7 – all in the expected direction from the mean. These variations are not extreme and might be taken as barely significant statistically. However, we consider it noteworthy that they stand out in comparison with the analogous values for the rest of the structure, and that similar results are obtained at both temperatures (Tables S1 and S2 in the supporting information).

If we consider the reported structures of Horot with alkali counter-ions, the Horot fragments in the anhydrous K+ and Rb+ salts (both: Bekiroglu & Kristiansson, 2002[Bekiroglu, S. & Kristiansson, O. (2002). J. Chem. Soc. Dalton Trans. pp. 1330-1335.]; K+: Clegg & Nichol, 2018a[Clegg, W. & Nichol, G. S. (2018a). CSD Communication (CCDC 1845396). CCDC, Cambridge, England.]; Rb+: Martínez et al., 2008[Martínez, G., Falvello, L. R., Tomás, M. & Mushale, N. A. (2008). CSD Communication (CCDC 707026). CCDC, Cambridge, England.]) are co-planar. However, for the hydrated compounds they are not coplanar, although the angles are smaller than in the NBu4+ compound. For K(Horot)·H2O the analogue of the O—C—C6—N1 torsion angle is −9.59° (CSD refcode MIJLUN, Yeşilel et al., 2007[Yeşilel, O. Z., Kaştaş, G. & Büyükgüngör, O. (2007). Inorg. Chem. Commun. 10, 936-939.]); and for three analyses of Li(Horot)·H2O, smaller values were found for the analogous torsion angle: SIMZOD 3.07° (Bach et al., 1990[Bach, I., Kumberger, O. & Schmidbaur, H. (1990). Chem. Ber. 123, 2267-2271.]); SIMZOD01 3.83°, (Lutz, 2001[Lutz, M. (2001). Acta Cryst. E57, m103-m105.]); SIMZOD02 3.82° (Clegg & Nichol, 2018b[Clegg, W. & Nichol, G. S. (2018b). CSD Communication (CCDC 1845404). CCDC, Cambridge, England.]).

4. Synthesis and crystallization

2 ml of a 1.5 M aqueous solution of NBu4OH (3 mmol) was added to a suspension of 0.7 g (4 mmol) of orotic acid monohydrate, H2Orot·H2O, in 2 ml of water. The suspension was stirred for 3 h at room temperature and then filtered through paper in order to remove the excess of H2Orot·H2O. Partial evaporation of the solution at 303 K produced colorless crystals of [NBu4][HOrot]·H2O, which were removed from the solution and dried with paper (0.643 g, 49.5% yield).

5. Refinement

Crystal data, data collection parameters and structure refinement residuals are given in Table 3[link]. Single-crystal diffraction data were gathered from two crystals, one at T = 100 K, 1, and the other at room temperature, 2. The structure was solved ab initio from each of the two data sets using iterative methods (SHELXT 2014/5; Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]) and refined using full-matrix least-squares analysis (SHELXL2018/1; Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]). For 1, one of the n-Bu groups of the cation, namely C11–C14, had its terminal CH3 group disordered over two sets of sites, whose occupancy ratio was refined to 0.698 (4)/0.302 (4). For 2, measured at room temperature, the same n-Bu group suffered a more complex disorder, with the γ-C atom, C13, disordered over two positions and the δ-C atom, C14, disordered over three positions. This disorder assembly was inter­preted as being composed of four disorder groups; the structure model was composed and refined so as to produce chemically sound stoichiometry for the individual disorder groups and for the assembly as a whole. The inter­ested reader is referred to the supporting information and the embedded, commented instruction file in the CIF for full details. The H atoms of methyl­ene groups in both structures were placed at idealized positions and refined as riding atoms. The H atoms of all methyl groups in 1 and of the ordered methyl groups in 2 were placed at positions derived from local Fourier calculations and permitted to rotate but not tilt in the refinement. The H atoms of disordered CH3 groups in 2 were placed at positions calculated to give staggered conformations about the local C—C bond and refined as riding atoms. For CH2 groups, Uiso(H) were set to 1.2Ueq of their respective bonding partners. For CH3, Uiso(H) were set to 1.5Ueq(C). The H atoms of the orotate anion and the water mol­ecule were located in difference Fourier maps for both analyses; their positions were refined freely and their Uiso were refined freely for 1 and set to 1.2Ueq of their respective bonding partners for 2.

Table 3
Experimental details

  1 2
Crystal data
Chemical formula C16H36N+·C5H3N2O4·H2O C16H36N+·C5H3N2O4·H2O
Mr 415.57 415.57
Crystal system, space group Monoclinic, P21/c Monoclinic, P21/c
Temperature (K) 100 295
a, b, c (Å) 10.0905 (5), 14.8664 (8), 16.1261 (9) 10.1335 (5), 14.6690 (7), 16.9205 (8)
β (°) 97.347 (5) 96.630 (4)
V3) 2399.2 (2) 2498.4 (2)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.08 0.08
Crystal size (mm) 0.31 × 0.18 × 0.16 0.55 × 0.23 × 0.09
 
Data collection
Diffractometer Bruker APEXII CCD Rigaku Oxford Diffraction Xcalibur, Sapphire3
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.])
Tmin, Tmax 0.632, 1.000 0.980, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 26211, 6560, 5274 27640, 4273, 1621
Rint 0.025 0.070
(sin θ/λ)max−1) 0.707 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.118, 1.03 0.047, 0.095, 1.04
No. of reflections 6560 4273
No. of parameters 297 307
No. of restraints 1 56
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.37, −0.36 0.26, −0.19
Computer programs: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]), CrysAlis PRO (Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]), DIAMOND (Brandenburg, 2007[Brandenburg, K. (2007). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and CrystalExplorer (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2005) for 100K; CrysAlis PRO (Rigaku OD, 2018) for 295K. For both structures, cell refinement: CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018). Program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a) for 100K; SIR92 (Altomare et al., 1994). for 295K. For both structures, program(s) used to refine structure: SHELXL2018/1 (Sheldrick, 2015b). Molecular graphics: DIAMOND (Brandenburg, 2007) and Mercury (Macrae et al., 2006) for 100K; DIAMOND (Brandenburg, 2007) for 295K. Software used to prepare material for publication: SHELXL2018/1 (Sheldrick, 2015b), WinGX (Farrugia, 2012), CrystalExplorer (Spackman & Jayatilaka, 2009) for 100K; SHELXL2018/1 (Sheldrick, 2015b) for 295K.

Tetra-n-butylammonium 2,6-dioxo-1,2,3,6-tetrahydropyrimidine-4-carboxylate monohydrate (100K) top
Crystal data top
C16H36N+·C5H3N2O4·H2OF(000) = 912
Mr = 415.57Dx = 1.150 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.0905 (5) ÅCell parameters from 17418 reflections
b = 14.8664 (8) Åθ = 2.0–30.2°
c = 16.1261 (9) ŵ = 0.08 mm1
β = 97.347 (5)°T = 100 K
V = 2399.2 (2) Å3Irregular, colourless
Z = 40.31 × 0.18 × 0.16 mm
Data collection top
Bruker APEXII CCD
diffractometer
6560 independent reflections
Radiation source: fine-focus sealed X-ray tube5274 reflections with I > 2σ(I)
Detector resolution: 7.9 pixels mm-1Rint = 0.025
φ and ω scansθmax = 30.1°, θmin = 1.9°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2018)
h = 1413
Tmin = 0.632, Tmax = 1.000k = 1920
26211 measured reflectionsl = 1922
Refinement top
Refinement on F2Primary atom site location: iterative
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: mixed
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0533P)2 + 0.9257P]
where P = (Fo2 + 2Fc2)/3
6560 reflections(Δ/σ)max < 0.001
297 parametersΔρmax = 0.37 e Å3
1 restraintΔρmin = 0.36 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.66470 (9)0.57393 (6)0.44839 (5)0.01392 (17)
H10.6305 (15)0.5427 (10)0.4853 (9)0.027 (4)*
C20.80132 (10)0.58337 (7)0.46003 (6)0.0153 (2)
O20.87264 (8)0.55019 (6)0.51914 (5)0.02277 (18)
N30.85324 (9)0.63250 (7)0.39951 (6)0.01872 (19)
H30.9431 (17)0.6356 (11)0.4049 (10)0.033 (4)*
C40.78097 (12)0.67160 (9)0.32996 (8)0.0257 (3)
O40.83964 (9)0.70891 (9)0.27739 (7)0.0466 (3)
C50.63733 (11)0.66355 (9)0.32642 (8)0.0234 (2)
H50.5824 (16)0.6918 (11)0.2842 (10)0.032 (4)*
C60.58455 (10)0.61536 (7)0.38472 (6)0.01468 (19)
C70.43431 (10)0.60106 (7)0.38434 (6)0.0162 (2)
O70.35897 (8)0.65773 (6)0.34528 (6)0.02556 (19)
O80.40227 (8)0.53413 (6)0.42361 (5)0.02183 (18)
N100.16527 (9)0.64890 (6)0.71583 (6)0.01999 (19)
C110.23130 (12)0.65152 (8)0.80568 (7)0.0252 (2)
H11A0.1627310.6669530.8420930.030*
H11B0.2987030.7002600.8112080.030*
C120.29905 (18)0.56466 (11)0.83718 (10)0.0440 (4)
H12A0.3618370.5448340.7984300.053*
H12B0.2312490.5169360.8396660.053*
C130.3754 (2)0.58039 (15)0.92478 (12)0.0700 (7)
H13A0.4202810.5235170.9439740.084*0.698 (4)
H13B0.4460690.6255800.9199950.084*0.698 (4)
H13C0.3123960.6126180.9565970.084*0.302 (4)
H13D0.3880450.5200480.9505430.084*0.302 (4)
C14A0.2987 (3)0.60960 (18)0.98669 (13)0.0476 (7)0.698 (4)
H14A0.2246740.5676210.9899420.071*0.698 (4)
H14B0.2630000.6697120.9723960.071*0.698 (4)
H14C0.3550990.6118021.0408520.071*0.698 (4)
C14B0.4798 (5)0.6179 (4)0.9408 (3)0.0421 (15)0.302 (4)
H14D0.4711160.6802810.9212000.063*0.302 (4)
H14E0.5477000.5870960.9128450.063*0.302 (4)
H14F0.5065070.6171441.0013500.063*0.302 (4)
C150.26768 (12)0.62951 (9)0.65638 (8)0.0259 (3)
H15A0.2978670.5664070.6646410.031*
H15B0.2229760.6349780.5982720.031*
C160.39030 (12)0.69031 (10)0.66631 (9)0.0332 (3)
H16A0.3618410.7537930.6697150.040*
H16B0.4476960.6752430.7189340.040*
C170.46970 (14)0.67900 (10)0.59284 (9)0.0347 (3)
H17A0.4925670.6146830.5874860.042*
H17B0.4132280.6972390.5408010.042*
C180.59751 (16)0.73424 (14)0.60233 (11)0.0524 (5)
H18A0.6563510.7139280.6518620.079*
H18B0.5757090.7979080.6086660.079*
H18C0.6428850.7265060.5525800.079*
C190.10337 (11)0.74153 (7)0.69748 (7)0.0201 (2)
H19A0.0439090.7549530.7402000.024*
H19B0.1758330.7868610.7034830.024*
C200.02375 (13)0.75215 (9)0.61164 (8)0.0276 (3)
H20A0.0565700.7133620.6074920.033*
H20B0.0788000.7326960.5682920.033*
C210.01832 (18)0.84942 (10)0.59638 (9)0.0409 (4)
H21A0.0621170.8881860.6032710.049*
H21B0.0759090.8678210.6387140.049*
C220.0936 (2)0.86374 (12)0.50956 (11)0.0526 (5)
H22A0.1756930.8277660.5033990.079*
H22B0.0373010.8451430.4674040.079*
H22C0.1164620.9275270.5018950.079*
C230.05896 (12)0.57558 (8)0.70357 (7)0.0238 (2)
H23A0.0154470.5777280.6449910.029*
H23B0.1033530.5163380.7123230.029*
C240.04814 (14)0.58272 (9)0.76131 (8)0.0301 (3)
H24A0.0839400.6447900.7593980.036*
H24B0.0081460.5701050.8194430.036*
C250.16213 (16)0.51665 (11)0.73614 (8)0.0388 (4)
H25A0.2001630.5280910.6774170.047*
H25B0.1266280.4544960.7396510.047*
C260.27213 (18)0.52528 (14)0.79220 (10)0.0524 (5)
H26A0.3094820.5861850.7874420.079*
H26B0.2348290.5137510.8503630.079*
H26C0.3428040.4814510.7748530.079*
O1W0.13336 (8)0.63464 (7)0.43187 (6)0.02528 (19)
H1WA0.193 (2)0.6418 (13)0.4002 (12)0.048 (5)*
H1WB0.144 (2)0.5788 (15)0.4471 (13)0.054 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0109 (4)0.0163 (4)0.0148 (4)0.0007 (3)0.0026 (3)0.0026 (3)
C20.0119 (4)0.0161 (5)0.0181 (5)0.0002 (4)0.0026 (4)0.0011 (4)
O20.0132 (4)0.0317 (4)0.0226 (4)0.0008 (3)0.0007 (3)0.0078 (3)
N30.0109 (4)0.0228 (5)0.0230 (5)0.0005 (3)0.0039 (3)0.0052 (4)
C40.0167 (5)0.0318 (6)0.0292 (6)0.0005 (5)0.0052 (4)0.0130 (5)
O40.0195 (4)0.0752 (8)0.0465 (6)0.0017 (5)0.0091 (4)0.0391 (6)
C50.0143 (5)0.0304 (6)0.0252 (5)0.0010 (4)0.0014 (4)0.0120 (5)
C60.0118 (4)0.0152 (4)0.0170 (5)0.0001 (4)0.0020 (4)0.0000 (4)
C70.0121 (4)0.0204 (5)0.0158 (5)0.0010 (4)0.0012 (4)0.0018 (4)
O70.0139 (4)0.0272 (4)0.0350 (5)0.0016 (3)0.0009 (3)0.0129 (4)
O80.0145 (4)0.0270 (4)0.0232 (4)0.0043 (3)0.0004 (3)0.0102 (3)
N100.0175 (4)0.0187 (4)0.0225 (5)0.0035 (4)0.0024 (3)0.0062 (4)
C110.0240 (6)0.0257 (6)0.0235 (6)0.0031 (5)0.0058 (4)0.0094 (5)
C120.0537 (9)0.0381 (8)0.0336 (7)0.0191 (7)0.0205 (7)0.0099 (6)
C130.0857 (15)0.0685 (13)0.0436 (10)0.0356 (12)0.0387 (10)0.0153 (9)
C14A0.0655 (16)0.0519 (14)0.0238 (10)0.0146 (12)0.0007 (10)0.0023 (9)
C14B0.030 (2)0.042 (3)0.047 (3)0.014 (2)0.022 (2)0.000 (2)
C150.0186 (5)0.0293 (6)0.0287 (6)0.0079 (5)0.0013 (4)0.0149 (5)
C160.0189 (5)0.0451 (8)0.0359 (7)0.0006 (5)0.0048 (5)0.0230 (6)
C170.0265 (6)0.0421 (8)0.0358 (7)0.0029 (6)0.0054 (5)0.0189 (6)
C180.0301 (7)0.0788 (13)0.0516 (9)0.0103 (8)0.0173 (7)0.0362 (9)
C190.0175 (5)0.0173 (5)0.0264 (5)0.0034 (4)0.0055 (4)0.0032 (4)
C200.0311 (6)0.0244 (6)0.0270 (6)0.0065 (5)0.0017 (5)0.0020 (5)
C210.0595 (10)0.0311 (7)0.0326 (7)0.0181 (7)0.0072 (7)0.0056 (6)
C220.0720 (12)0.0442 (9)0.0404 (9)0.0195 (9)0.0023 (8)0.0180 (7)
C230.0269 (6)0.0190 (5)0.0231 (5)0.0018 (4)0.0062 (4)0.0029 (4)
C240.0316 (7)0.0304 (6)0.0269 (6)0.0105 (5)0.0009 (5)0.0013 (5)
C250.0432 (8)0.0486 (9)0.0223 (6)0.0243 (7)0.0044 (5)0.0026 (6)
C260.0499 (9)0.0774 (13)0.0296 (7)0.0363 (9)0.0038 (7)0.0009 (8)
O1W0.0137 (4)0.0286 (5)0.0344 (5)0.0012 (3)0.0063 (3)0.0043 (4)
Geometric parameters (Å, º) top
N1—C61.3693 (13)C15—H15A0.9900
N1—C21.3745 (13)C15—H15B0.9900
N1—H10.860 (16)C16—C171.5220 (18)
C2—O21.2226 (13)C16—H16A0.9900
C2—N31.3751 (14)C16—H16B0.9900
N3—C41.3851 (15)C17—C181.520 (2)
N3—H30.901 (17)C17—H17A0.9900
C4—O41.2268 (14)C17—H17B0.9900
C4—C51.4482 (16)C18—H18A0.9800
C5—C61.3449 (15)C18—H18B0.9800
C5—H50.922 (16)C18—H18C0.9800
C6—C71.5301 (14)C19—C201.5173 (17)
C7—O81.2441 (13)C19—H19A0.9900
C7—O71.2498 (13)C19—H19B0.9900
N10—C111.5160 (15)C20—C211.5182 (18)
N10—C151.5243 (15)C20—H20A0.9900
N10—C231.5243 (15)C20—H20B0.9900
N10—C191.5254 (14)C21—C221.520 (2)
C11—C121.5177 (19)C21—H21A0.9900
C11—H11A0.9900C21—H21B0.9900
C11—H11B0.9900C22—H22A0.9800
C12—C131.538 (2)C22—H22B0.9800
C12—H12A0.9900C22—H22C0.9800
C12—H12B0.9900C23—C241.5177 (19)
C13—C14B1.191 (5)C23—H23A0.9900
C13—C14A1.408 (3)C23—H23B0.9900
C13—H13A0.9900C24—C251.5274 (18)
C13—H13B0.9900C24—H24A0.9900
C13—H13C0.9900C24—H24B0.9900
C13—H13D0.9900C25—C261.524 (2)
C14A—H14A0.9800C25—H25A0.9900
C14A—H14B0.9800C25—H25B0.9900
C14A—H14C0.9800C26—H26A0.9800
C14B—H14D0.9800C26—H26B0.9800
C14B—H14E0.9800C26—H26C0.9800
C14B—H14F0.9800O1W—H1WA0.85 (2)
C15—C161.5242 (18)O1W—H1WB0.87 (2)
C6—N1—C2122.84 (9)H15A—C15—H15B107.5
C6—N1—H1120.7 (10)C17—C16—C15110.72 (11)
C2—N1—H1116.4 (10)C17—C16—H16A109.5
O2—C2—N1123.05 (9)C15—C16—H16A109.5
O2—C2—N3121.87 (9)C17—C16—H16B109.5
N1—C2—N3115.07 (9)C15—C16—H16B109.5
C2—N3—C4126.07 (9)H16A—C16—H16B108.1
C2—N3—H3115.3 (10)C18—C17—C16112.72 (11)
C4—N3—H3118.5 (10)C18—C17—H17A109.0
O4—C4—N3119.91 (11)C16—C17—H17A109.0
O4—C4—C5125.39 (11)C18—C17—H17B109.0
N3—C4—C5114.69 (10)C16—C17—H17B109.0
C6—C5—C4120.02 (10)H17A—C17—H17B107.8
C6—C5—H5120.3 (10)C17—C18—H18A109.5
C4—C5—H5119.7 (10)C17—C18—H18B109.5
C5—C6—N1121.00 (10)H18A—C18—H18B109.5
C5—C6—C7123.50 (10)C17—C18—H18C109.5
N1—C6—C7115.49 (9)H18A—C18—H18C109.5
O8—C7—O7127.93 (10)H18B—C18—H18C109.5
O8—C7—C6115.52 (9)C20—C19—N10115.27 (9)
O7—C7—C6116.54 (9)C20—C19—H19A108.5
C11—N10—C15110.83 (9)N10—C19—H19A108.5
C11—N10—C23110.99 (9)C20—C19—H19B108.5
C15—N10—C23107.80 (9)N10—C19—H19B108.5
C11—N10—C19106.33 (8)H19A—C19—H19B107.5
C15—N10—C19110.03 (9)C19—C20—C21110.58 (11)
C23—N10—C19110.88 (9)C19—C20—H20A109.5
N10—C11—C12114.97 (10)C21—C20—H20A109.5
N10—C11—H11A108.5C19—C20—H20B109.5
C12—C11—H11A108.5C21—C20—H20B109.5
N10—C11—H11B108.5H20A—C20—H20B108.1
C12—C11—H11B108.5C20—C21—C22112.28 (13)
H11A—C11—H11B107.5C20—C21—H21A109.1
C11—C12—C13109.23 (13)C22—C21—H21A109.1
C11—C12—H12A109.8C20—C21—H21B109.1
C13—C12—H12A109.8C22—C21—H21B109.1
C11—C12—H12B109.8H21A—C21—H21B107.9
C13—C12—H12B109.8C21—C22—H22A109.5
H12A—C12—H12B108.3C21—C22—H22B109.5
C14B—C13—C12126.5 (4)H22A—C22—H22B109.5
C14A—C13—C12116.25 (19)C21—C22—H22C109.5
C14A—C13—H13A108.2H22A—C22—H22C109.5
C12—C13—H13A108.2H22B—C22—H22C109.5
C14A—C13—H13B108.2C24—C23—N10114.52 (10)
C12—C13—H13B108.2C24—C23—H23A108.6
H13A—C13—H13B107.4N10—C23—H23A108.6
C14B—C13—H13C105.7C24—C23—H23B108.6
C12—C13—H13C105.7N10—C23—H23B108.6
C14B—C13—H13D105.7H23A—C23—H23B107.6
C12—C13—H13D105.7C23—C24—C25111.29 (11)
H13C—C13—H13D106.1C23—C24—H24A109.4
C13—C14A—H14A109.5C25—C24—H24A109.4
C13—C14A—H14B109.5C23—C24—H24B109.4
H14A—C14A—H14B109.5C25—C24—H24B109.4
C13—C14A—H14C109.5H24A—C24—H24B108.0
H14A—C14A—H14C109.5C26—C25—C24111.66 (13)
H14B—C14A—H14C109.5C26—C25—H25A109.3
C13—C14B—H14D109.5C24—C25—H25A109.3
C13—C14B—H14E109.5C26—C25—H25B109.3
H14D—C14B—H14E109.5C24—C25—H25B109.3
C13—C14B—H14F109.5H25A—C25—H25B107.9
H14D—C14B—H14F109.5C25—C26—H26A109.5
H14E—C14B—H14F109.5C25—C26—H26B109.5
C16—C15—N10115.36 (9)H26A—C26—H26B109.5
C16—C15—H15A108.4C25—C26—H26C109.5
N10—C15—H15A108.4H26A—C26—H26C109.5
C16—C15—H15B108.4H26B—C26—H26C109.5
N10—C15—H15B108.4H1WA—O1W—H1WB102.7 (18)
C6—N1—C2—O2176.23 (10)N10—C11—C12—C13173.31 (15)
C6—N1—C2—N34.41 (15)C11—C12—C13—C14B76.8 (4)
O2—C2—N3—C4179.14 (12)C11—C12—C13—C14A59.0 (3)
N1—C2—N3—C40.22 (16)C11—N10—C15—C1652.03 (14)
C2—N3—C4—O4175.20 (13)C23—N10—C15—C16173.69 (11)
C2—N3—C4—C54.54 (18)C19—N10—C15—C1665.28 (13)
O4—C4—C5—C6175.13 (14)N10—C15—C16—C17167.64 (11)
N3—C4—C5—C64.60 (19)C15—C16—C17—C18176.63 (14)
C4—C5—C6—N10.54 (18)C11—N10—C19—C20176.33 (10)
C4—C5—C6—C7178.16 (11)C15—N10—C19—C2063.60 (12)
C2—N1—C6—C54.30 (16)C23—N10—C19—C2055.57 (13)
C2—N1—C6—C7176.90 (9)N10—C19—C20—C21173.01 (11)
C5—C6—C7—O8157.63 (11)C19—C20—C21—C22177.68 (13)
N1—C6—C7—O821.14 (14)C11—N10—C23—C2455.88 (13)
C5—C6—C7—O722.68 (16)C15—N10—C23—C24177.43 (10)
N1—C6—C7—O7158.55 (10)C19—N10—C23—C2462.08 (13)
C15—N10—C11—C1260.83 (15)N10—C23—C24—C25170.92 (11)
C23—N10—C11—C1258.93 (15)C23—C24—C25—C26178.31 (13)
C19—N10—C11—C12179.62 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O8i0.860 (16)1.924 (16)2.7668 (12)166.4 (14)
N3—H3···O1Wii0.901 (17)1.913 (17)2.8081 (12)171.8 (15)
C11—H11B···O7iii0.992.253.1462 (15)151
C19—H19A···O4iv0.992.283.1878 (14)151
C23—H23A···O2v0.992.373.3305 (14)164
C24—H24A···O4iv0.992.343.3197 (19)171
O1W—H1WA···O70.85 (2)2.00 (2)2.8396 (12)169.2 (18)
O1W—H1WA···O80.85 (2)2.64 (2)3.1155 (12)117.3 (15)
O1W—H1WB···O2i0.87 (2)2.01 (2)2.8618 (13)168.3 (19)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z; (iii) x, y+3/2, z+1/2; (iv) x1, y+3/2, z+1/2; (v) x1, y, z.
(295K) top
Crystal data top
C16H36N+·C5H3N2O4·H2OF(000) = 912
Mr = 415.57Dx = 1.105 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.1335 (5) ÅCell parameters from 3106 reflections
b = 14.6690 (7) Åθ = 3.0–21.2°
c = 16.9205 (8) ŵ = 0.08 mm1
β = 96.630 (4)°T = 295 K
V = 2498.4 (2) Å3Block, colourless
Z = 40.55 × 0.23 × 0.09 mm
Data collection top
Rigaku Oxford Diffraction Xcalibur, Sapphire3
diffractometer
4273 independent reflections
Radiation source: fine-focus sealed X-ray tube1621 reflections with I > 2σ(I)
Detector resolution: 16.3990 pixels mm-1Rint = 0.070
ω and φ scansθmax = 25.0°, θmin = 2.8°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2018)
h = 1212
Tmin = 0.980, Tmax = 1.000k = 1616
27640 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: mixed
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.030P)2]
where P = (Fo2 + 2Fc2)/3
4273 reflections(Δ/σ)max = 0.001
307 parametersΔρmax = 0.26 e Å3
56 restraintsΔρmin = 0.19 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Please see the Supporting Information for a full description of the refinement of the disorder assembly involving one of the n-butyl groups.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.65997 (17)0.57519 (13)0.44599 (11)0.0472 (5)
H10.6254 (18)0.5453 (13)0.4826 (12)0.057*
C20.7952 (2)0.58205 (16)0.45510 (17)0.0499 (6)
O20.86644 (14)0.55274 (11)0.51216 (10)0.0734 (6)
N30.84553 (18)0.62622 (13)0.39389 (14)0.0579 (6)
H30.931 (2)0.6305 (14)0.3974 (12)0.069*
C40.7732 (3)0.65988 (18)0.32579 (19)0.0774 (8)
O40.83182 (17)0.69171 (15)0.27272 (13)0.1322 (9)
C50.6322 (2)0.65389 (19)0.32529 (17)0.0718 (8)
H50.578 (2)0.6779 (14)0.2804 (13)0.086*
C60.5795 (2)0.61233 (15)0.38384 (15)0.0479 (6)
C70.4310 (2)0.60074 (19)0.38728 (16)0.0555 (7)
O70.35729 (15)0.65242 (12)0.34479 (11)0.0857 (6)
O80.39840 (14)0.54039 (12)0.43105 (10)0.0815 (6)
N100.14286 (19)0.65933 (14)0.70428 (12)0.0630 (6)
C110.2037 (3)0.66598 (19)0.79054 (16)0.0841 (9)
H11A0.2669900.7158120.7949990.101*
H11B0.1337510.6814760.8228080.101*
C120.2727 (3)0.5820 (2)0.82472 (19)0.1144 (11)
H12A0.2073270.5350900.8312150.137*0.55
H12B0.3318760.5592080.7880870.137*0.55
H12C0.3558500.5733720.8024510.137*0.45
H12D0.2173760.5287700.8122060.137*0.45
C13A0.3493 (13)0.6010 (10)0.9019 (6)0.193 (4)0.55
H13A0.4271920.6352040.8911780.232*0.2
H13B0.2958870.6417300.9303000.232*0.2
H13E0.4108710.5507970.9135050.232*0.35
H13F0.4023590.6549350.8954430.232*0.35
C14A0.2872 (13)0.6139 (10)0.9661 (6)0.180 (4)0.35
H14A0.3514580.6254371.0112690.270*0.35
H14B0.2283690.6651300.9576130.270*0.35
H14C0.2369330.5603660.9757830.270*0.35
C13B0.2992 (16)0.5948 (12)0.9159 (7)0.193 (4)0.45
H13C0.3297220.6566070.9271750.232*0.2
H13D0.2164110.5868890.9387310.232*0.2
H13G0.2409450.6404750.9345960.232*0.25
H13H0.2888460.5379570.9439090.232*0.25
C14B0.4340 (15)0.6244 (12)0.9250 (10)0.182 (4)0.25
H14D0.4627830.6348850.9803120.272*0.25
H14E0.4887440.5783620.9050090.272*0.25
H14F0.4412920.6799190.8957830.272*0.25
C14C0.3913 (10)0.5353 (6)0.9520 (6)0.180 (4)0.4
H14G0.4535630.4975100.9284560.270*0.2
H14H0.4338490.5615351.0003420.270*0.2
H14J0.3170660.4990290.9636130.270*0.2
H14K0.3476310.4805100.9659910.270*0.2
H14L0.4550480.5207620.9161230.270*0.2
H14M0.4358750.5628330.9991980.270*0.2
C150.2480 (2)0.63645 (16)0.65027 (15)0.0750 (8)
H15A0.2054100.6327490.5960070.090*
H15B0.2836810.5765910.6647030.090*
C160.3631 (3)0.70328 (19)0.65243 (17)0.0967 (9)
H16A0.3287480.7626900.6353520.116*
H16B0.4043310.7090570.7068540.116*
C170.4627 (3)0.6762 (2)0.6026 (2)0.1374 (13)
H17A0.4200440.6696330.5486020.165*
H17B0.4958560.6165950.6200480.165*
C180.5782 (3)0.7383 (2)0.60122 (19)0.1481 (14)
H18A0.6356290.7326140.6502130.178*
H18B0.5473270.8000370.5950350.178*
H18C0.6261820.7223480.5575100.178*
C190.0819 (2)0.75089 (16)0.68169 (16)0.0702 (8)
H19A0.0183450.7652890.7185330.084*
H19B0.1514860.7965790.6886430.084*
C200.0128 (3)0.75878 (18)0.59841 (18)0.0884 (9)
H20A0.0739230.7414750.5609170.106*
H20B0.0617200.7169150.5919220.106*
C210.0359 (3)0.8531 (2)0.58024 (19)0.1206 (12)
H21A0.0387870.8948270.5878420.145*
H21B0.0974240.8698880.6176500.145*
C220.1041 (4)0.8642 (2)0.4970 (2)0.1652 (16)
H22A0.1845830.8290570.4909780.198*
H22B0.0464350.8433030.4595750.198*
H22C0.1249510.9273600.4871890.198*
C230.0391 (2)0.58363 (15)0.69378 (15)0.0750 (8)
H23A0.0832080.5255820.7048890.090*
H23B0.0000890.5827720.6386660.090*
C240.0726 (3)0.5930 (2)0.7470 (2)0.1180 (12)
H24A0.0334220.5946110.8021020.142*
H24B0.1172410.6507790.7354940.142*
C250.1686 (3)0.5225 (2)0.7383 (2)0.1292 (12)
H25A0.1236360.4646600.7490590.155*
H25B0.2083970.5213950.6833140.155*
C260.2779 (3)0.5302 (2)0.79096 (19)0.1455 (14)
H26A0.3170420.5897740.7852990.175*
H26B0.2419440.5207750.8453540.175*
H26C0.3445290.4849420.7758530.175*
O1W0.12369 (17)0.63080 (13)0.42446 (14)0.0860 (7)
H1WA0.188 (2)0.6385 (17)0.3966 (15)0.103*
H1WB0.139 (3)0.5857 (19)0.4461 (17)0.103*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0313 (11)0.0604 (15)0.0514 (15)0.0036 (10)0.0107 (10)0.0089 (11)
C20.0380 (17)0.0521 (18)0.062 (2)0.0062 (13)0.0139 (14)0.0010 (15)
O20.0381 (9)0.1015 (14)0.0779 (13)0.0049 (9)0.0047 (9)0.0245 (11)
N30.0333 (11)0.0624 (14)0.0797 (16)0.0024 (11)0.0139 (13)0.0126 (13)
C40.054 (2)0.088 (2)0.093 (2)0.0012 (16)0.0212 (18)0.0369 (19)
O40.0754 (14)0.197 (2)0.131 (2)0.0048 (14)0.0396 (13)0.0974 (18)
C50.0474 (18)0.096 (2)0.073 (2)0.0019 (14)0.0113 (14)0.0428 (18)
C60.0376 (14)0.0489 (17)0.0566 (17)0.0033 (12)0.0027 (13)0.0102 (14)
C70.0401 (16)0.067 (2)0.0598 (19)0.0025 (14)0.0059 (13)0.0134 (15)
O70.0449 (10)0.0949 (14)0.1154 (16)0.0094 (9)0.0011 (10)0.0499 (12)
O80.0428 (10)0.1129 (15)0.0883 (14)0.0103 (10)0.0052 (9)0.0527 (12)
N100.0656 (13)0.0544 (15)0.0706 (16)0.0000 (12)0.0148 (12)0.0165 (12)
C110.095 (2)0.091 (2)0.066 (2)0.0159 (18)0.0094 (17)0.0229 (18)
C120.125 (3)0.107 (3)0.102 (3)0.001 (2)0.030 (2)0.001 (2)
C13A0.217 (10)0.237 (6)0.106 (5)0.034 (6)0.061 (6)0.041 (5)
C14A0.222 (9)0.196 (9)0.108 (5)0.028 (6)0.046 (6)0.025 (6)
C13B0.218 (10)0.237 (6)0.106 (5)0.035 (6)0.060 (6)0.042 (5)
C14B0.221 (9)0.197 (9)0.109 (6)0.029 (6)0.052 (6)0.025 (6)
C14C0.220 (9)0.194 (9)0.110 (5)0.026 (6)0.048 (6)0.032 (6)
C150.0656 (18)0.078 (2)0.082 (2)0.0122 (15)0.0130 (15)0.0291 (16)
C160.078 (2)0.116 (3)0.102 (2)0.0080 (19)0.0348 (18)0.030 (2)
C170.089 (2)0.171 (4)0.161 (3)0.008 (2)0.049 (2)0.056 (3)
C180.093 (2)0.212 (4)0.149 (3)0.030 (3)0.054 (2)0.055 (3)
C190.0719 (17)0.0452 (19)0.098 (2)0.0068 (14)0.0280 (16)0.0108 (17)
C200.087 (2)0.070 (2)0.109 (3)0.0185 (17)0.0141 (18)0.0040 (19)
C210.155 (3)0.092 (3)0.117 (3)0.033 (2)0.021 (2)0.016 (2)
C220.200 (4)0.135 (3)0.158 (4)0.048 (3)0.007 (3)0.046 (3)
C230.0700 (18)0.0534 (18)0.099 (2)0.0105 (15)0.0007 (16)0.0140 (16)
C240.086 (2)0.098 (2)0.177 (4)0.023 (2)0.043 (2)0.036 (2)
C250.117 (3)0.123 (3)0.150 (3)0.039 (2)0.028 (2)0.002 (2)
C260.115 (3)0.202 (4)0.125 (3)0.057 (3)0.039 (2)0.007 (3)
O1W0.0474 (11)0.0889 (17)0.125 (2)0.0066 (11)0.0233 (10)0.0163 (14)
Geometric parameters (Å, º) top
N1—C21.365 (2)C14C—H14G0.9600
N1—C61.367 (2)C14C—H14H0.9600
N1—H10.866 (19)C14C—H14J0.9600
C2—O21.215 (2)C14C—H14K0.9600
C2—N31.369 (3)C14C—H14L0.9600
N3—C41.384 (3)C14C—H14M0.9600
N3—H30.86 (2)C15—C161.520 (3)
C4—O41.225 (3)C15—H15A0.9700
C4—C51.430 (3)C15—H15B0.9700
C5—C61.327 (3)C16—C171.443 (3)
C5—H50.95 (2)C16—H16A0.9700
C6—C71.523 (3)C16—H16B0.9700
C7—O81.224 (2)C17—C181.485 (3)
C7—O71.235 (2)C17—H17A0.9700
N10—C191.509 (3)C17—H17B0.9700
N10—C151.519 (3)C18—H18A0.9600
N10—C111.520 (3)C18—H18B0.9600
N10—C231.526 (2)C18—H18C0.9600
C11—C121.500 (3)C19—C201.504 (3)
C11—H11A0.9700C19—H19A0.9700
C11—H11B0.9700C19—H19B0.9700
C12—C13A1.468 (9)C20—C211.490 (3)
C12—C13B1.547 (11)C20—H20A0.9700
C12—H12A0.9700C20—H20B0.9700
C12—H12B0.9700C21—C221.505 (4)
C12—H12C0.9700C21—H21A0.9700
C12—H12D0.9700C21—H21B0.9700
C13A—C14C1.321 (12)C22—H22A0.9600
C13A—C14A1.330 (13)C22—H22B0.9600
C13A—H13A0.9700C22—H22C0.9600
C13A—H13B0.9700C23—C241.532 (3)
C13A—H13E0.9700C23—H23A0.9700
C13A—H13F0.9700C23—H23B0.9700
C14A—H14A0.9600C24—C251.416 (3)
C14A—H14B0.9600C24—H24A0.9700
C14A—H14C0.9600C24—H24B0.9700
C13B—C14C1.369 (13)C25—C261.504 (4)
C13B—C14B1.425 (15)C25—H25A0.9700
C13B—H13C0.9700C25—H25B0.9700
C13B—H13D0.9700C26—H26A0.9600
C13B—H13G0.9700C26—H26B0.9600
C13B—H13H0.9700C26—H26C0.9600
C14B—H14D0.9600O1W—H1WA0.85 (2)
C14B—H14E0.9600O1W—H1WB0.76 (3)
C14B—H14F0.9600
C2—N1—C6124.0 (2)H14G—C14C—H14H109.5
C2—N1—H1116.2 (13)C13A—C14C—H14J109.5
C6—N1—H1119.8 (13)H14G—C14C—H14J109.5
O2—C2—N1124.1 (2)H14H—C14C—H14J109.5
O2—C2—N3122.0 (2)C13B—C14C—H14K109.5
N1—C2—N3114.0 (2)C13B—C14C—H14L109.5
C2—N3—C4126.2 (2)H14K—C14C—H14L109.5
C2—N3—H3116.1 (14)C13B—C14C—H14M109.5
C4—N3—H3117.6 (15)H14K—C14C—H14M109.5
O4—C4—N3119.4 (2)H14L—C14C—H14M109.5
O4—C4—C5126.0 (3)N10—C15—C16115.61 (19)
N3—C4—C5114.6 (3)N10—C15—H15A108.4
C6—C5—C4120.8 (2)C16—C15—H15A108.4
C6—C5—H5121.5 (13)N10—C15—H15B108.4
C4—C5—H5117.7 (13)C16—C15—H15B108.4
C5—C6—N1120.1 (2)H15A—C15—H15B107.4
C5—C6—C7124.4 (2)C17—C16—C15113.2 (2)
N1—C6—C7115.5 (2)C17—C16—H16A108.9
O8—C7—O7127.5 (2)C15—C16—H16A108.9
O8—C7—C6116.2 (2)C17—C16—H16B108.9
O7—C7—C6116.3 (2)C15—C16—H16B108.9
C19—N10—C15109.83 (19)H16A—C16—H16B107.7
C19—N10—C11107.1 (2)C16—C17—C18116.5 (3)
C15—N10—C11110.92 (18)C16—C17—H17A108.2
C19—N10—C23111.21 (17)C18—C17—H17A108.2
C15—N10—C23106.93 (18)C16—C17—H17B108.2
C11—N10—C23110.85 (19)C18—C17—H17B108.2
C12—C11—N10115.9 (2)H17A—C17—H17B107.3
C12—C11—H11A108.3C17—C18—H18A109.5
N10—C11—H11A108.3C17—C18—H18B109.5
C12—C11—H11B108.3H18A—C18—H18B109.5
N10—C11—H11B108.3C17—C18—H18C109.5
H11A—C11—H11B107.4H18A—C18—H18C109.5
C13A—C12—C11111.3 (6)H18B—C18—H18C109.5
C11—C12—C13B107.7 (6)C20—C19—N10116.0 (2)
C13A—C12—H12A109.4C20—C19—H19A108.3
C11—C12—H12A109.4N10—C19—H19A108.3
C13A—C12—H12B109.4C20—C19—H19B108.3
C11—C12—H12B109.4N10—C19—H19B108.3
H12A—C12—H12B108.0H19A—C19—H19B107.4
C11—C12—H12C110.2C21—C20—C19111.9 (2)
C13B—C12—H12C110.2C21—C20—H20A109.2
C11—C12—H12D110.2C19—C20—H20A109.2
C13B—C12—H12D110.2C21—C20—H20B109.2
H12C—C12—H12D108.5C19—C20—H20B109.2
C14C—C13A—C12122.0 (12)H20A—C20—H20B107.9
C14A—C13A—C12120.2 (12)C20—C21—C22113.5 (3)
C14C—C13A—H13A106.8C20—C21—H21A108.9
C12—C13A—H13A106.8C22—C21—H21A108.9
C14C—C13A—H13B106.8C20—C21—H21B108.9
C12—C13A—H13B106.8C22—C21—H21B108.9
H13A—C13A—H13B106.7H21A—C21—H21B107.7
C14A—C13A—H13E107.3C21—C22—H22A109.5
C12—C13A—H13E107.3C21—C22—H22B109.5
C14A—C13A—H13F107.3H22A—C22—H22B109.5
C12—C13A—H13F107.3C21—C22—H22C109.5
H13E—C13A—H13F106.9H22A—C22—H22C109.5
C13A—C14A—H14A109.5H22B—C22—H22C109.5
C13A—C14A—H14B109.5N10—C23—C24114.4 (2)
H14A—C14A—H14B109.5N10—C23—H23A108.7
C13A—C14A—H14C109.5C24—C23—H23A108.7
H14A—C14A—H14C109.5N10—C23—H23B108.7
H14B—C14A—H14C109.5C24—C23—H23B108.7
C14C—C13B—C12113.5 (12)H23A—C23—H23B107.6
C14B—C13B—C12101.4 (12)C25—C24—C23114.7 (3)
C14C—C13B—H13C108.9C25—C24—H24A108.6
C12—C13B—H13C108.9C23—C24—H24A108.6
C14C—C13B—H13D108.9C25—C24—H24B108.6
C12—C13B—H13D108.9C23—C24—H24B108.6
H13C—C13B—H13D107.7H24A—C24—H24B107.6
C14B—C13B—H13G111.5C24—C25—C26115.3 (3)
C12—C13B—H13G111.5C24—C25—H25A108.5
C14B—C13B—H13H111.5C26—C25—H25A108.5
C12—C13B—H13H111.5C24—C25—H25B108.5
H13G—C13B—H13H109.3C26—C25—H25B108.5
C13B—C14B—H14D109.5H25A—C25—H25B107.5
C13B—C14B—H14E109.5C25—C26—H26A109.5
H14D—C14B—H14E109.5C25—C26—H26B109.5
C13B—C14B—H14F109.5H26A—C26—H26B109.5
H14D—C14B—H14F109.5C25—C26—H26C109.5
H14E—C14B—H14F109.5H26A—C26—H26C109.5
C13A—C14C—H14G109.5H26B—C26—H26C109.5
C13A—C14C—H14H109.5H1WA—O1W—H1WB105 (3)
C6—N1—C2—O2176.4 (2)N10—C11—C12—C13B167.6 (7)
C6—N1—C2—N33.0 (3)C11—C12—C13A—C14C163.1 (11)
O2—C2—N3—C4178.3 (2)C11—C12—C13A—C14A73.6 (15)
N1—C2—N3—C42.2 (3)C11—C12—C13B—C14C163.6 (11)
C2—N3—C4—O4174.3 (3)C11—C12—C13B—C14B98.0 (12)
C2—N3—C4—C56.1 (4)C19—N10—C15—C1660.0 (3)
O4—C4—C5—C6175.4 (3)C11—N10—C15—C1658.2 (3)
N3—C4—C5—C65.0 (4)C23—N10—C15—C16179.2 (2)
C4—C5—C6—N10.5 (4)N10—C15—C16—C17177.5 (2)
C4—C5—C6—C7178.5 (2)C15—C16—C17—C18179.7 (3)
C2—N1—C6—C53.9 (3)C15—N10—C19—C2060.8 (3)
C2—N1—C6—C7177.1 (2)C11—N10—C19—C20178.6 (2)
C5—C6—C7—O8159.8 (3)C23—N10—C19—C2057.4 (3)
N1—C6—C7—O819.2 (3)N10—C19—C20—C21176.2 (2)
C5—C6—C7—O719.2 (4)C19—C20—C21—C22179.2 (3)
N1—C6—C7—O7161.7 (2)C19—N10—C23—C2462.8 (3)
C19—N10—C11—C12178.8 (2)C15—N10—C23—C24177.3 (2)
C15—N10—C11—C1258.9 (3)C11—N10—C23—C2456.3 (3)
C23—N10—C11—C1259.7 (3)N10—C23—C24—C25179.4 (3)
N10—C11—C12—C13A168.9 (7)C23—C24—C25—C26179.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O8i0.866 (19)1.96 (2)2.800 (3)162.1 (18)
N3—H3···O1Wii0.86 (2)1.96 (2)2.807 (2)170 (2)
C11—H11A···O7iii0.972.263.168 (3)155
C19—H19A···O4iv0.972.283.226 (3)164
C23—H23B···O2v0.972.443.386 (3)166
C24—H24B···O4iv0.972.473.346 (4)151
O1W—H1WA···O70.85 (2)2.03 (2)2.874 (2)172 (2)
O1W—H1WA···O80.85 (2)2.59 (3)3.074 (2)118 (2)
O1W—H1WB···O2i0.76 (3)2.15 (3)2.895 (2)164 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z; (iii) x, y+3/2, z+1/2; (iv) x1, y+3/2, z+1/2; (v) x1, y, z.
 

Funding information

Support from the Ministerio de Ciencia, Innovación y Universidades (Spain, Grants MAT2015–68200-C2–1-P and PGC2018–093451-B-I00), the European Union Regional Development Fund, FEDER), and the Diputación General de Aragón, Project M4, E11_17R is gratefully acknowledged.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBach, I., Kumberger, O. & Schmidbaur, H. (1990). Chem. Ber. 123, 2267–2271.  CSD CrossRef CAS Web of Science Google Scholar
First citationBekiroglu, S. & Kristiansson, O. (2002). J. Chem. Soc. Dalton Trans. pp. 1330–1335.  Web of Science CSD CrossRef Google Scholar
First citationBrandenburg, K. (2007). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCastro, M., Falvello, L. R., Forcén-Vázquez, E., Guerra, P., Al-Kenany, N. A., Martínez, G. & Tomás, M. (2017). Acta Cryst. C73, 731–742.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationClegg, W. & Nichol, G. S. (2018a). CSD Communication (CCDC 1845396). CCDC, Cambridge, England.  Google Scholar
First citationClegg, W. & Nichol, G. S. (2018b). CSD Communication (CCDC 1845404). CCDC, Cambridge, England.  Google Scholar
First citationFalvello, L. R., Ferrer, D., Piedrafita, M., Soler, T. & Tomás, M. (2007). CrystEngComm, 9, 852–855.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKitaigorodsky, A. I. (1973). Molecular Crystals and Molecules. New York: Academic Press.  Google Scholar
First citationLöffler, M., Carrey, E. A. & Zameitat, E. (2015). J. Genet. Genomics, 42, 207–219.  Web of Science PubMed Google Scholar
First citationLöffler, M., Carrey, E. A. & Zameitat, E. (2016). Nucleosides Nucleotides Nucleic Acids, 35, 566–577.  Web of Science PubMed Google Scholar
First citationLöffler, M., Carrey, E. A. & Zameitat, E. (2018). Nucleosides Nucleotides Nucleic Acids, 37, 290–306.  Web of Science PubMed Google Scholar
First citationLutz, M. (2001). Acta Cryst. E57, m103–m105.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMartínez, G., Falvello, L. R., Tomás, M. & Mushale, N. A. (2008). CSD Communication (CCDC 707026). CCDC, Cambridge, England.  Google Scholar
First citationRigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWillett, R. D., Gómez-García, C. J., Ramakrishna, B. L. & Twamley, B. (2005). Polyhedron, 24, 2232–2237.  Web of Science CSD CrossRef CAS Google Scholar
First citationYeşilel, O. Z., Kaştaş, G. & Büyükgüngör, O. (2007). Inorg. Chem. Commun. 10, 936–939.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds