research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 2-(4-nitro­phen­yl)-2-oxo­ethyl picolinate

aDepartment of Chemistry, Sri Siddhartha Academy of Higher Education, Tumkur 572 107, Karnataka, India, bDepartment of Chemistry, Vidya Vikas Institute of Engineering & Technology, Visvesvaraya Technological University, Alanahally, Mysuru 570 028, India, cDepartment of Physics, School of Engineering and Technology, Jain University, Bangalore 562 112, India, dDepartment of Chemistry, Sri Siddhartha Institute of Technology, Tumkur 572 105, Karnataka, India, eSchool of Chemical & Biomolecular Engineering, The University of Sydney, Sydney, NSW, Australia, and fDepartment of Chemistry, Science College, An-Najah National University, PO Box 7, Nablus, West Bank, Palestinian Territories
*Correspondence e-mail: s.naveen@jainuniversity.ac.in, khalil.i@najah.edu

Edited by J. Jasinsk, Keene State College, USA (Received 19 August 2019; accepted 16 October 2019; online 29 October 2019)

2-(4-Nitro­phen­yl)-2-oxoethyl picolinate, C14H10N2O5, was synthesized under mild conditions. The chemical and mol­ecular structures were confirmed by single-crystal X-ray diffraction analysis. The mol­ecules are linked by inversion into centrosymmetric dimers via weak inter­molecular C—H⋯O inter­actions, forming R22(10) ring motifs, and further strengthened by weak ππ inter­actions. Hirshfeld surface analyses, the dnorm surfaces, electrostatic potential and two-dimensional fingerprint (FP) plots were used to verify the contributions of the different inter­molecular inter­actions within the supra­molecular structure. The shape-index surface shows that two sides of the mol­ecules are involved with the same contacts in neighbouring mol­ecules and curvedness plots show flat surface patches that are characteristic of planar stacking.

1. Chemical context

Derivatives of phenacyl bromide have found significant application in the identification of organic acids (Rather & Reid, 1919[Rather, J. B. & Reid, E. (1919). J. Am. Chem. Soc. 41, 75-83.]). In organic chemistry, phenacyl benzoate is a derivative of an acid, formed by reaction between an acid and phenacyl bromide. The syntheses of phenacyl esters have many advantages in organic chemistry because they are usually solids and provide a useful means of characterizing acids and phenols. Phenacyl esters are useful for the photoremoval of protecting groups for carb­oxy­lic acids in organic synthesis and biochemistry. These com­pounds can be photolysed under neutral and mild conditions (Sheehan et al., 1973[Sheehan, J. C. & Umezawa, K. (1973). J. Org. Chem. 38, 3771-3774.]; Ruzicka et al., 2002[Ruzicka, R., Zabadal, M. & Klán, P. (2002). Synth. Commun. 32, 2581-2590.]; Literák et al., 2006[Literák, J., Dostálová, A. & Klán, P. (2006). J. Org. Chem. 71, 713-723.]). They also find application in the field of synthetic chemistry, such as in the synthesis of oxazoles and imidazoles (Huang et al., 1996[Huang, W., Pei, J., Chen, B., Pei, W. & Ye, X. (1996). Tetrahedron, 52, 10131-10136.]), as well as with benzoxazepine (Gandhi et al., 1995[Gandhi, S. S., Bell, K. L. & Gibson, M. S. (1995). Tetrahedron, 51, 13301-13308.]). In continuation of our work on the synthesis of these ester derivaties (Kumar et al., 2014[Kumar, C. S. C., Chia, T. S., Ooi, C. W., Quah, C. K., Chandraju, S. & Fun, H. K. (2014). Z. Kristallogr. Cryst. Mater. 229, 328-342.]), we report herein the crystal and mol­ecular structures of 2-(4-nitro­phen­yl)-2-oxoethyl picolinate.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title com­pound is shown in Fig. 1[link], and bond lengths and angles are listed in Table 1[link]. The com­pound is com­posed of two aromatic rings (4-­nitro­phenyl and pyridine) linked by C—C(=O)—O—C(=O) bonds forming a bridge. The unique mol­ecular conformation of this com­pound is characterized by three torsion angles, viz. τ1 (N2—C10—C9—O3), τ2 (C7—C8—O1—C9) and τ3 (O2—C7—C6—C1), whereby τ1 [−6.1 (2)°] signifies the apparent co­planarity of the mean planes of the pyridine and adjacent carbonyl rings at the connecting bridge. The torsion angle value of τ2 = −147.02 (11)° between the two carbonyl groups indicates a –anti­clinal conformation. Likewise, owing to a substitution on the functional group, the title com­pound experiences steric repulsion between the substituent and adjacent carbonyl groups, which can influence the torsion angle [τ3 = 2.4 (2)%] and resulting in a +synclinal conformation. The bond lengths and angles are normal and the mol­ecular conformation is characterized by a dihedral angle of 31.58 (8)° between the mean planes of the two aromatic rings. The nitro group lies nearly in the plane of the phenyl ring, as indicated by the torsion angle values of −4.7 (2) and −5.1 (2)° for C4—C3—N1—O4 and C2—C3—N1—O5, respectively.

Table 1
Selected geometric parameters (Å, °)

O1—C8 1.4329 (17) O5—N1 1.211 (2)
O1—C9 1.3374 (16) N1—C3 1.4761 (19)
O2—C7 1.2021 (18) N2—C10 1.3372 (18)
O3—C9 1.1969 (17) N2—C11 1.339 (2)
O4—N1 1.205 (2)    
       
C8—O1—C9 116.39 (10) O2—C7—C8 121.71 (13)
O4—N1—O5 123.38 (16) O1—C8—C7 108.11 (11)
O4—N1—C3 118.83 (14) O1—C9—O3 123.96 (13)
O5—N1—C3 117.79 (15) O1—C9—C10 111.08 (11)
C10—N2—C11 115.93 (13) O3—C9—C10 124.96 (12)
N1—C3—C2 118.29 (14) N2—C10—C9 114.56 (12)
N1—C3—C4 118.83 (13) N2—C10—C14 124.07 (13)
O2—C7—C6 120.57 (13) N2—C11—C12 123.99 (16)
[Figure 1]
Figure 1
The mol­ecular structure of the title com­pound, indicating the atom-numbering scheme and with displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features

There are no classical hydrogen bonds in the structure. However, the structure is consolidated by weak C—H⋯O inter­molecular inter­actions. Specifically, singular weak inter­molecular C8—H8B⋯O3(−x, −y, −z) inter­actions stabilize the supra­molecular architecture by forming [R_{2}^{2}](10) ring motifs and chains along [011] (Fig. 2[link]). The mol­ecular structure is also stabilized by weak inter­molecular C—O⋯Cg, N—O⋯Cg and CgCg inter­actions. The hydrogen-bond geometry and lone pair-π inter­actions are listed in Table 2[link]. The mol­ecule also exhibits CgCg inter­actions, i.e. Cg1⋯Cg1 [Cg1 is the centroid of the N2/C10/C14–C11 ring; CgCg distance = 4.6293 (10) Å, α = 0°, β = 42.1°, the perpendicular distance of Cg1 on itself = 3.4332 (7) Å (symmetry code: x − 1, y, z)] and Cg2⋯Cg2 [Cg2 is the centroid of the pyridine ring;; CgCg distance = 4.6292 (10) Å, α = 0°, β = 40.3°, γ = 40.3° and the perpendicular distance of Cg2 on itself = 3.5322 (6) Å (symmetry code: x + 1, y, z)]. These weak inter­molecular inter­actions link the mol­ecules to form a one-dimensional chain along the c axis and the mol­ecules exhibit layered stacking (Fig. 3[link]).

Table 2
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the pyridine and nitrophenyl rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5A⋯O3i 0.93 2.55 3.2283 (18) 130
C8—H8B⋯O3i 0.97 2.45 3.2681 (17) 141
C12—H12A⋯O5ii 0.93 2.52 3.396 (3) 157
C13—H13A⋯O2iii 0.93 2.47 3.277 (2) 146
C9—O3⋯Cg1   3.35 (1) 3.4735 (16) 86 (1)
C7—O2⋯Cg2   3.58 (1) 3.8788 (15) 67 (1)
N1—O4⋯Cg2   3.76 (1) 3.5479 (16) 71 (1)
N1—O5⋯Cg2   3.68 (1) 3.5479 (16) 74 (1)
Symmetry codes: (i) -x, -y, -z; (ii) x+2, y, z-1; (iii) -x+2, -y+1, -z.
[Figure 2]
Figure 2
A view of two mol­ecules of the title com­pound linked by inversion into centrosymmetric dimers by weak C8—H8B⋯O3 inter­molecular inter­actions forming an [R_{2}^{2}](10) ring motif. [See Note 1]
[Figure 3]
Figure 3
The packing of mol­ecules of the title com­pound in the ab plane, viewed along the c axis. Cyan dashed lines indicate weak inter­molecular C—H⋯O inter­actions forming [R_{2}^{2}](10) ring motifs.

4. Hirshfeld surface analysis

Hirshfeld surfaces and fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) were generated for the title com­pound based on the crystallographic information file (CIF) using CrystalExplorer (Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). CrystalExplorer. University of Western Australia.]). Hirshfeld surfaces enable the visualization of inter­molecular inter­actions by different colours and colour intensity, representing short or long contacts and indicating the relative strengths of the inter­actions. Figs. 4[link] and 5[link] show the Hirshfeld surfaces mapped over dnorm (−0.196 to 1.128 a.u.) and shape-index (−1.0 to 1.0 a.u.), respectively. The calculated volume inside the Hirshfeld surface is 311.97 Å3 in the area of 305.78 Å3.

[Figure 4]
Figure 4
A view of the three-dimensional Hirshfeld surface of the title com­pound mapped over dnorm.
[Figure 5]
Figure 5
Hirshfeld surface of the title com­pound mapped with shape-index and curvedness.

In Fig. 4[link], the dark spots near the C and O atoms result from C—H⋯O inter­actions, which play a significant role in the mol­ecular packing of the title com­pound. The Hirshfeld surfaces illustrated in Fig. 4[link] also reflect the involvement of different atoms in the inter­molecular inter­actions through the appearance of blue and red regions around the participating atoms, which correspond to positive and negative electrostatic potential, respectively. The shape-index surface clearly shows that the two sides of the mol­ecules are involved in the same contacts with neighbouring mol­ecules and the curvedness plots show flat surface patches characteristic of planar stacking.

The overall two-dimensional fingerprint plot for the title com­pound and those delineated into O⋯H/H⋯H, H⋯H, C⋯H/H⋯C, C⋯O/O⋯C and N⋯H/H⋯N contacts are illustrated in Fig. 6[link]; the percentage contributions from the different inter­atomic contacts to the Hirshfeld surfaces are as follows: O—H 38.9%, H—H 21.7%, C—H12%, C—O 10.2% and N—H 8.2%, as shown in the two-dimensional fingerprint plots, respectively, in Fig. 6[link]. The percentage contributions for the other inter­molecular contacts are less than 5% in the Hirshfeld surface mapping.

[Figure 6]
Figure 6
Two-dimensional fingerprint plots of the title com­pound, showing the percentage contributions of all inter­actions, and the individual types of inter­actions.

5. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.40, last update May 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) using 2-oxo-2-phenyl­ethyl benzoate as the main skeleton revealed the presence of a number structures containing a moiety similar to the title com­pound, but with different substituents on the terminal phenyl rings. These include the following: 2-oxo-2-phenyl­ethyl benzoate, 2-(4-bromo­phen­yl)-2-oxoethyl 4-meth­oxy­benzoate, 2-(4-bromo­phen­yl)-2-oxoethyl 4-chloro­benzoate, 2-(4-bromo­phen­yl)-2-oxoethyl 4-bromo­benzoate, 2-(4-chloro­phen­yl)-2-oxoethyl 2-meth­oxy­benzoate, 2-(4-bromo­phen­yl)-2-oxoethyl 2-meth­oxy­benzoate, 2-(4-chloro­phen­yl)-2-oxoethyl 2,4-di­fluoro-benzoate, 2-(4-chloro­phen­yl)-2-oxoethyl 2,4-di­fluoro­benzoate, 2-(4-chloro­phen­yl)-2-oxoethyl benzoate, 2-(4-chloro­phen­yl)-2-oxoethyl 4-hy­droxy­benzoate, 2-(4-bromo­phen­yl)-2-oxoethyl 2-methyl­benzoate, 2-(4-chloro­phen­yl)-2-oxoethyl 4-methyl­benzoate, 2-(4-bromo­phen­yl)-2-oxoethyl 4-hy­droxy­benzoate, 2-(4-bromo­phen­yl)-2-oxoethyl 4-methyl­benzoate, 2-(2,4-di­chloro­phen­yl)-2-oxoethyl 4-meth­oxy­benzoate, 2-(4-fluoro­phen­yl)-2-oxoethyl 4-meth­oxy­benzoate and 2-(4-chloro­phen­yl)-2-oxoethyl 3,4-di­meth­oxy­benzoate (Fun et al., 2011a[Fun, H.-K., Arshad, S., Garudachari, B., Isloor, A. M. & Satyanarayan, M. N. (2011a). Acta Cryst. E67, o1582-o1583.],b[Fun, H.-K., Arshad, S., Garudachari, B., Isloor, A. M. & Satyanarayan, M. N. (2011b). Acta Cryst. E67, o1599.],c[Fun, H.-K., Asik, S. I. J., Garudachari, B., Isloor, A. M. & Satyanarayan, M. N. (2011c). Acta Cryst. E67, o1687.],d[Fun, H.-K., Chia, T. S., Shenvi, S., Isloor, A. M. & Garudachari, B. (2011d). Acta Cryst. E67, o3379.],e[Fun, H.-K., Loh, W.-S., Garudachari, B., Isloor, A. M. & Satyanarayana, M. N. (2011e). Acta Cryst. E67, o2854.],f[Fun, H.-K., Loh, W.-S., Garudachari, B., Isloor, A. M. & Satyanarayana, M. N. (2011f). Acta Cryst. E67, o3030.],g[Fun, H.-K., Loh, W.-S., Garudachari, B., Isloor, A. M. & Satyanarayan, M. N. (2011g). Acta Cryst. E67, o1529.],h[Fun, H.-K., Loh, W.-S., Garudachari, B., Isloor, A. M. & Satyanarayan, M. N. (2011h). Acta Cryst. E67, o3456.],i[Fun, H.-K., Ooi, C. W., Garudachari, B., Isloor, A. M. & Satyanarayan, M. N. (2011i). Acta Cryst. E67, o3119.],j[Fun, H.-K., Quah, C. K., Garudachari, B., Isloor, A. M. & Satyanarayan, M. N. (2011j). Acta Cryst. E67, o1724.],k[Fun, H.-K., Quah, C. K., Vijesh, A. M., Isloor, A. M. & Arulmoli, T. (2011k). Acta Cryst. E67, o3351.],l[Fun, H.-K., Shahani, T., Garudachari, B., Isloor, A. M. & Satyanarayan, M. N. (2011l). Acta Cryst. E67, o3154.],m[Fun, H.-K., Shahani, T., Garudachari, B., Isloor, A. M. & Satyganarayan, M. N. (2011m). Acta Cryst. E67, o1802.],n[Fun, H.-K., Shahani, T., Garudachari, G., Isloor, A. M. & Shivananda, K. N. (2011n). Acta Cryst. E67, o2682.],o[Fun, H.-K., Yeap, C. S., Garudachari, B., Isloor, A. M. & Satyanarayan, M. N. (2011o). Acta Cryst. E67, o1723.]), 2-(4-fluoro­phen­yl)-2-oxoethyl 2-meth­oxy­benzoate (Isloor et al., 2012[Isloor, A. M., Garudachari, B., Satyanarayan, M. N., Gerber, T., Hosten, E. & Betz, R. (2012). Acta Cryst. E68, o513.]), 1-(4-bromo­phen­yl)-2-(2-chloro­phen­oxy)ethanone (Shenvi et al., 2012[Shenvi, S. S., Isloor, A. M., Gerber, T., Hosten, E. & Betz, R. (2012). Acta Cryst. E68, o3478.]) and 2,4-di­chloro­benzyl 2-meth­oxy­benzoate (Isloor et al., 2013[Isloor, A. M., Garudachari, B., Gerber, T., Hosten, E. & Betz, R. (2013). Acta Cryst. E69, o509.]). In these 19 com­pounds, the dihedral angles between the phenyl rings are in the range 3.2 (2)–85.92 (10)°. The difference may arise from the weak inter­molecular inter­actions between adjacent mol­ecules (Fig. 7[link]).

[Figure 7]
Figure 7
Packing of the molecules when viewed down along the a axis. The dashed lines represent C—H⋯O hydrogen bonds.

6. Synthesis and crystallization

The title com­pound was synthesized as per the procedure of Kumar et al. (2014[Kumar, C. S. C., Chia, T. S., Ooi, C. W., Quah, C. K., Chandraju, S. & Fun, H. K. (2014). Z. Kristallogr. Cryst. Mater. 229, 328-342.]). A mixture of 2-bromo-1-(4-nitro­phen­yl)ethanone (0.2 g, 0.5 mmol), potassium carbonate (0.087 g, 0.63 mmol) and nicotinic acid (0.079 g, 0.65 mmol) in di­methyl­formamide (5 ml) was stirred at room temperature for 5 h. After com­pletion of the reaction, the reaction mixture was poured into ice-cold water. The solid product obtained was filtered off, washed with water and recrystallized from ethanol [m.p. 407–410 K, determined with a Stuart Scientific (UK) apparatus].

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. H atoms on C atoms were positioned geometrically (C—H = 0.95–0.99 Å) and refined using a riding model, with Uiso(H) = 1.2 or 1.5Ueq(C).

Table 3
Experimental details

Crystal data
Chemical formula C14H10N2O5
Mr 286.24
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 297
a, b, c (Å) 4.6292 (4), 10.6563 (9), 13.3592 (11)
α, β, γ (°) 99.136 (1), 93.426 (1), 100.556 (1)
V3) 636.95 (9)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.12
Crystal size (mm) 0.41 × 0.27 × 0.16
 
Data collection
Diffractometer Bruker APEXII DUO CCD area-detector
Absorption correction Multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.953, 0.981
No. of measured, independent and observed [I > 2σ(I)] reflections 21701, 3496, 2571
Rint 0.022
(sin θ/λ)max−1) 0.690
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.136, 1.07
No. of reflections 3496
No. of parameters 190
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.24, −0.19
Computer programs: APEX2 (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), SHELXL2015 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXL2015 (Sheldrick, 2015) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2015 (Sheldrick, 2015) and PLATON (Spek, 2009).

2-(4-Nitrophenyl)-2-oxoethyl picolinate top
Crystal data top
C14H10N2O5Z = 2
Mr = 286.24F(000) = 296
Triclinic, P1Dx = 1.492 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 4.6292 (4) ÅCell parameters from 2571 reflections
b = 10.6563 (9) Åθ = 1.6–29.4°
c = 13.3592 (11) ŵ = 0.12 mm1
α = 99.136 (1)°T = 297 K
β = 93.426 (1)°Rectangle, white
γ = 100.556 (1)°0.41 × 0.27 × 0.16 mm
V = 636.95 (9) Å3
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
3496 independent reflections
Radiation source: fine-focus sealed tube2571 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 18.4 pixels mm-1θmax = 29.4°, θmin = 1.6°
φ and ω scansh = 66
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
k = 1414
Tmin = 0.953, Tmax = 0.981l = 1818
21701 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0588P)2 + 0.1188P]
where P = (Fo2 + 2Fc2)/3
3496 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.18 e Å3
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > 2sigma(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.5089 (2)0.21852 (9)0.04455 (7)0.0528 (3)
O20.3481 (3)0.40340 (11)0.16679 (10)0.0824 (5)
O30.2932 (2)0.05168 (10)0.07629 (8)0.0578 (3)
O40.6315 (3)0.13249 (15)0.50999 (11)0.0961 (6)
O50.5484 (4)0.33778 (16)0.55148 (12)0.1149 (7)
N10.5128 (3)0.23923 (15)0.49895 (10)0.0653 (5)
N20.7107 (3)0.12934 (12)0.20395 (9)0.0563 (4)
C10.0180 (4)0.38578 (14)0.32225 (12)0.0581 (5)
C20.2018 (4)0.37345 (15)0.39938 (12)0.0614 (5)
C30.3152 (3)0.25177 (14)0.41686 (10)0.0493 (4)
C40.2565 (3)0.14168 (14)0.36073 (11)0.0547 (4)
C50.0737 (3)0.15511 (13)0.28293 (11)0.0512 (4)
C60.0465 (3)0.27660 (12)0.26370 (9)0.0426 (3)
C70.2433 (3)0.29607 (13)0.17993 (10)0.0466 (4)
C80.2962 (3)0.17779 (13)0.11235 (10)0.0491 (4)
C90.4795 (3)0.14691 (12)0.04857 (10)0.0435 (4)
C100.7087 (3)0.20214 (12)0.11282 (10)0.0442 (4)
C110.9099 (4)0.17721 (17)0.26372 (13)0.0659 (6)
C121.1060 (4)0.29307 (18)0.23613 (14)0.0707 (6)
C131.1009 (4)0.36515 (16)0.14264 (14)0.0675 (5)
C140.8961 (3)0.31902 (13)0.07891 (12)0.0536 (4)
H1A0.062800.467700.309600.0700*
H2A0.247500.446300.438600.0740*
H4A0.336800.060200.374400.0660*
H5A0.031600.081700.243400.0610*
H8A0.369600.120600.153000.0590*
H8B0.113300.131200.073800.0590*
H11A0.915900.129100.327800.0790*
H12A1.240200.321800.280600.0850*
H13A1.232000.443700.122000.0810*
H14A0.885900.366100.014800.0640*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0520 (5)0.0536 (5)0.0472 (5)0.0055 (4)0.0231 (4)0.0038 (4)
O20.1022 (9)0.0475 (6)0.0962 (9)0.0035 (6)0.0567 (8)0.0123 (6)
O30.0560 (6)0.0544 (6)0.0562 (6)0.0052 (4)0.0168 (4)0.0034 (4)
O40.1105 (11)0.0952 (10)0.0910 (10)0.0128 (8)0.0615 (9)0.0306 (8)
O50.1705 (16)0.0994 (11)0.0930 (10)0.0483 (11)0.0884 (11)0.0174 (9)
N10.0719 (8)0.0818 (10)0.0506 (7)0.0243 (7)0.0280 (6)0.0176 (7)
N20.0651 (7)0.0588 (7)0.0479 (6)0.0142 (6)0.0207 (5)0.0096 (5)
C10.0717 (9)0.0420 (7)0.0613 (9)0.0079 (6)0.0242 (7)0.0080 (6)
C20.0757 (10)0.0527 (8)0.0587 (9)0.0193 (7)0.0263 (7)0.0035 (7)
C30.0501 (7)0.0608 (8)0.0394 (6)0.0129 (6)0.0150 (5)0.0098 (6)
C40.0638 (8)0.0489 (7)0.0510 (7)0.0032 (6)0.0225 (6)0.0102 (6)
C50.0617 (8)0.0416 (7)0.0489 (7)0.0045 (6)0.0223 (6)0.0035 (5)
C60.0424 (6)0.0427 (6)0.0412 (6)0.0037 (5)0.0103 (5)0.0057 (5)
C70.0451 (6)0.0453 (7)0.0479 (7)0.0010 (5)0.0143 (5)0.0089 (5)
C80.0500 (7)0.0483 (7)0.0478 (7)0.0002 (5)0.0222 (5)0.0087 (5)
C90.0437 (6)0.0432 (6)0.0456 (7)0.0082 (5)0.0143 (5)0.0102 (5)
C100.0461 (6)0.0452 (6)0.0455 (7)0.0116 (5)0.0175 (5)0.0126 (5)
C110.0812 (11)0.0742 (10)0.0521 (8)0.0272 (9)0.0313 (8)0.0170 (7)
C120.0771 (10)0.0764 (11)0.0763 (11)0.0270 (9)0.0479 (9)0.0368 (9)
C130.0670 (9)0.0548 (8)0.0852 (11)0.0043 (7)0.0367 (8)0.0236 (8)
C140.0573 (8)0.0468 (7)0.0581 (8)0.0057 (6)0.0256 (6)0.0107 (6)
Geometric parameters (Å, º) top
O1—C81.4329 (17)C7—C81.4973 (19)
O1—C91.3374 (16)C9—C101.4998 (19)
O2—C71.2021 (18)C10—C141.3737 (19)
O3—C91.1969 (17)C11—C121.375 (3)
O4—N11.205 (2)C12—C131.362 (3)
O5—N11.211 (2)C13—C141.387 (2)
N1—C31.4761 (19)C1—H1A0.9300
N2—C101.3372 (18)C2—H2A0.9300
N2—C111.339 (2)C4—H4A0.9300
C1—C21.382 (2)C5—H5A0.9300
C1—C61.386 (2)C8—H8A0.9700
C2—C31.369 (2)C8—H8B0.9700
C3—C41.369 (2)C11—H11A0.9300
C4—C51.387 (2)C12—H12A0.9300
C5—C61.3822 (19)C13—H13A0.9300
C6—C71.5006 (19)C14—H14A0.9300
C8—O1—C9116.39 (10)N2—C11—C12123.99 (16)
O4—N1—O5123.38 (16)C11—C12—C13119.00 (17)
O4—N1—C3118.83 (14)C12—C13—C14118.62 (16)
O5—N1—C3117.79 (15)C10—C14—C13118.39 (14)
C10—N2—C11115.93 (13)C2—C1—H1A120.00
C2—C1—C6120.27 (14)C6—C1—H1A120.00
C1—C2—C3118.56 (14)C1—C2—H2A121.00
N1—C3—C2118.29 (14)C3—C2—H2A121.00
N1—C3—C4118.83 (13)C3—C4—H4A121.00
C2—C3—C4122.88 (14)C5—C4—H4A121.00
C3—C4—C5118.09 (13)C4—C5—H5A120.00
C4—C5—C6120.56 (13)C6—C5—H5A120.00
C1—C6—C5119.64 (13)O1—C8—H8A110.00
C1—C6—C7117.81 (12)O1—C8—H8B110.00
C5—C6—C7122.54 (12)C7—C8—H8A110.00
O2—C7—C6120.57 (13)C7—C8—H8B110.00
O2—C7—C8121.71 (13)H8A—C8—H8B108.00
C6—C7—C8117.70 (12)N2—C11—H11A118.00
O1—C8—C7108.11 (11)C12—C11—H11A118.00
O1—C9—O3123.96 (13)C11—C12—H12A120.00
O1—C9—C10111.08 (11)C13—C12—H12A121.00
O3—C9—C10124.96 (12)C12—C13—H13A121.00
N2—C10—C9114.56 (12)C14—C13—H13A121.00
N2—C10—C14124.07 (13)C10—C14—H14A121.00
C9—C10—C14121.36 (12)C13—C14—H14A121.00
C9—O1—C8—C7147.02 (11)C4—C5—C6—C10.5 (2)
C8—O1—C9—O31.63 (19)C4—C5—C6—C7179.49 (13)
C8—O1—C9—C10178.12 (11)C1—C6—C7—O22.4 (2)
O4—N1—C3—C2174.45 (15)C1—C6—C7—C8175.97 (13)
O4—N1—C3—C44.7 (2)C5—C6—C7—O2178.60 (14)
O5—N1—C3—C25.1 (2)C5—C6—C7—C83.1 (2)
O5—N1—C3—C4175.83 (15)O2—C7—C8—O16.80 (19)
C11—N2—C10—C9178.95 (13)C6—C7—C8—O1174.90 (11)
C11—N2—C10—C140.4 (2)O1—C9—C10—N2174.17 (12)
C10—N2—C11—C120.4 (3)O1—C9—C10—C146.46 (18)
C6—C1—C2—C30.6 (3)O3—C9—C10—N26.1 (2)
C2—C1—C6—C50.1 (2)O3—C9—C10—C14173.28 (14)
C2—C1—C6—C7178.99 (15)N2—C10—C14—C130.0 (2)
C1—C2—C3—N1179.64 (15)C9—C10—C14—C13179.32 (14)
C1—C2—C3—C40.6 (2)N2—C11—C12—C130.1 (3)
N1—C3—C4—C5179.10 (13)C11—C12—C13—C140.4 (3)
C2—C3—C4—C50.0 (2)C12—C13—C14—C100.4 (2)
C3—C4—C5—C60.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···O3i0.932.553.2283 (18)130
C8—H8B···O3i0.972.453.2681 (17)141
C12—H12A···O5ii0.932.523.396 (3)157
C13—H13A···O2iii0.932.473.277 (2)146
C9—O3···Cg13.35 (1)3.4735 (16)86 (1)
C7—O2···Cg23.58 (1)3.8788 (15)67 (1)
N1—O4···Cg23.76 (1)3.5479 (16)71 (1)
N1—O5···Cg23.68 (1)3.5479 (16)74 (1)
Symmetry codes: (i) x, y, z; (ii) x+2, y, z1; (iii) x+2, y+1, z.
 

Acknowledgements

CSCK extends his appreciation to Vidya Vikas Research & Development Centre for the facilities and encouragement. NS thanks Jain University for sanctioning research grants under minor project.

References

First citationBruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFun, H.-K., Arshad, S., Garudachari, B., Isloor, A. M. & Satyanarayan, M. N. (2011a). Acta Cryst. E67, o1582–o1583.  CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Arshad, S., Garudachari, B., Isloor, A. M. & Satyanarayan, M. N. (2011b). Acta Cryst. E67, o1599.  CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Asik, S. I. J., Garudachari, B., Isloor, A. M. & Satyanarayan, M. N. (2011c). Acta Cryst. E67, o1687.  CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Chia, T. S., Shenvi, S., Isloor, A. M. & Garudachari, B. (2011d). Acta Cryst. E67, o3379.  CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Loh, W.-S., Garudachari, B., Isloor, A. M. & Satyanarayana, M. N. (2011e). Acta Cryst. E67, o2854.  CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Loh, W.-S., Garudachari, B., Isloor, A. M. & Satyanarayana, M. N. (2011f). Acta Cryst. E67, o3030.  CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Loh, W.-S., Garudachari, B., Isloor, A. M. & Satyanarayan, M. N. (2011g). Acta Cryst. E67, o1529.  CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Loh, W.-S., Garudachari, B., Isloor, A. M. & Satyanarayan, M. N. (2011h). Acta Cryst. E67, o3456.  CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Ooi, C. W., Garudachari, B., Isloor, A. M. & Satyanarayan, M. N. (2011i). Acta Cryst. E67, o3119.  CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Garudachari, B., Isloor, A. M. & Satyanarayan, M. N. (2011j). Acta Cryst. E67, o1724.  CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Vijesh, A. M., Isloor, A. M. & Arulmoli, T. (2011k). Acta Cryst. E67, o3351.  CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Shahani, T., Garudachari, B., Isloor, A. M. & Satyanarayan, M. N. (2011l). Acta Cryst. E67, o3154.  CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Shahani, T., Garudachari, B., Isloor, A. M. & Satyganarayan, M. N. (2011m). Acta Cryst. E67, o1802.  CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Shahani, T., Garudachari, G., Isloor, A. M. & Shivananda, K. N. (2011n). Acta Cryst. E67, o2682.  CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Yeap, C. S., Garudachari, B., Isloor, A. M. & Satyanarayan, M. N. (2011o). Acta Cryst. E67, o1723.  CrossRef IUCr Journals Google Scholar
First citationGandhi, S. S., Bell, K. L. & Gibson, M. S. (1995). Tetrahedron, 51, 13301–13308.  CrossRef CAS Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHuang, W., Pei, J., Chen, B., Pei, W. & Ye, X. (1996). Tetrahedron, 52, 10131–10136.  CrossRef CAS Google Scholar
First citationIsloor, A. M., Garudachari, B., Gerber, T., Hosten, E. & Betz, R. (2013). Acta Cryst. E69, o509.  CrossRef IUCr Journals Google Scholar
First citationIsloor, A. M., Garudachari, B., Satyanarayan, M. N., Gerber, T., Hosten, E. & Betz, R. (2012). Acta Cryst. E68, o513.  CrossRef IUCr Journals Google Scholar
First citationKumar, C. S. C., Chia, T. S., Ooi, C. W., Quah, C. K., Chandraju, S. & Fun, H. K. (2014). Z. Kristallogr. Cryst. Mater. 229, 328–342.  CSD CrossRef Google Scholar
First citationLiterák, J., Dostálová, A. & Klán, P. (2006). J. Org. Chem. 71, 713–723.  PubMed Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationRather, J. B. & Reid, E. (1919). J. Am. Chem. Soc. 41, 75–83.  CrossRef CAS Google Scholar
First citationRuzicka, R., Zabadal, M. & Klán, P. (2002). Synth. Commun. 32, 2581–2590.  CrossRef CAS Google Scholar
First citationSheehan, J. C. & Umezawa, K. (1973). J. Org. Chem. 38, 3771–3774.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShenvi, S. S., Isloor, A. M., Gerber, T., Hosten, E. & Betz, R. (2012). Acta Cryst. E68, o3478.  CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). CrystalExplorer. University of Western Australia.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds