research communications
and Hirshfeld surface analysis of 2-(4-nitrophenyl)-2-oxoethyl picolinate
aDepartment of Chemistry, Sri Siddhartha Academy of Higher Education, Tumkur 572 107, Karnataka, India, bDepartment of Chemistry, Vidya Vikas Institute of Engineering & Technology, Visvesvaraya Technological University, Alanahally, Mysuru 570 028, India, cDepartment of Physics, School of Engineering and Technology, Jain University, Bangalore 562 112, India, dDepartment of Chemistry, Sri Siddhartha Institute of Technology, Tumkur 572 105, Karnataka, India, eSchool of Chemical & Biomolecular Engineering, The University of Sydney, Sydney, NSW, Australia, and fDepartment of Chemistry, Science College, An-Najah National University, PO Box 7, Nablus, West Bank, Palestinian Territories
*Correspondence e-mail: s.naveen@jainuniversity.ac.in, khalil.i@najah.edu
2-(4-Nitrophenyl)-2-oxoethyl picolinate, C14H10N2O5, was synthesized under mild conditions. The chemical and molecular structures were confirmed by single-crystal X-ray The molecules are linked by inversion into centrosymmetric dimers via weak intermolecular C—H⋯O interactions, forming R22(10) ring motifs, and further strengthened by weak π–π interactions. Hirshfeld surface analyses, the dnorm surfaces, electrostatic potential and two-dimensional fingerprint (FP) plots were used to verify the contributions of the different intermolecular interactions within the supramolecular structure. The shape-index surface shows that two sides of the molecules are involved with the same contacts in neighbouring molecules and curvedness plots show flat surface patches that are characteristic of planar stacking.
1. Chemical context
Derivatives of phenacyl bromide have found significant application in the identification of organic acids (Rather & Reid, 1919). In organic chemistry, phenacyl benzoate is a derivative of an acid, formed by reaction between an acid and phenacyl bromide. The syntheses of phenacyl have many advantages in organic chemistry because they are usually solids and provide a useful means of characterizing acids and Phenacyl are useful for the photoremoval of protecting groups for carboxylic acids in organic synthesis and biochemistry. These compounds can be photolysed under neutral and mild conditions (Sheehan et al., 1973; Ruzicka et al., 2002; Literák et al., 2006). They also find application in the field of synthetic chemistry, such as in the synthesis of oxazoles and imidazoles (Huang et al., 1996), as well as with benzoxazepine (Gandhi et al., 1995). In continuation of our work on the synthesis of these ester derivaties (Kumar et al., 2014), we report herein the crystal and molecular structures of 2-(4-nitrophenyl)-2-oxoethyl picolinate.
2. Structural commentary
The molecular structure of the title compound is shown in Fig. 1, and bond lengths and angles are listed in Table 1. The compound is composed of two aromatic rings (4-nitrophenyl and pyridine) linked by C—C(=O)—O—C(=O) bonds forming a bridge. The unique molecular conformation of this compound is characterized by three torsion angles, viz. τ1 (N2—C10—C9—O3), τ2 (C7—C8—O1—C9) and τ3 (O2—C7—C6—C1), whereby τ1 [−6.1 (2)°] signifies the apparent coplanarity of the mean planes of the pyridine and adjacent carbonyl rings at the connecting bridge. The torsion angle value of τ2 = −147.02 (11)° between the two carbonyl groups indicates a –anticlinal conformation. Likewise, owing to a substitution on the the title compound experiences steric repulsion between the substituent and adjacent carbonyl groups, which can influence the torsion angle [τ3 = 2.4 (2)%] and resulting in a +synclinal conformation. The bond lengths and angles are normal and the molecular conformation is characterized by a dihedral angle of 31.58 (8)° between the mean planes of the two aromatic rings. The nitro group lies nearly in the plane of the phenyl ring, as indicated by the torsion angle values of −4.7 (2) and −5.1 (2)° for C4—C3—N1—O4 and C2—C3—N1—O5, respectively.
|
3. Supramolecular features
There are no classical hydrogen bonds in the structure. However, the structure is consolidated by weak C—H⋯O intermolecular interactions. Specifically, singular weak intermolecular C8—H8B⋯O3(−x, −y, −z) interactions stabilize the supramolecular architecture by forming (10) ring motifs and chains along [011] (Fig. 2). The molecular structure is also stabilized by weak intermolecular C—O⋯Cg, N—O⋯Cg and Cg⋯Cg interactions. The hydrogen-bond geometry and lone pair-π interactions are listed in Table 2. The molecule also exhibits Cg⋯Cg interactions, i.e. Cg1⋯Cg1 [Cg1 is the centroid of the N2/C10/C14–C11 ring; Cg⋯Cg distance = 4.6293 (10) Å, α = 0°, β = 42.1°, the perpendicular distance of Cg1 on itself = 3.4332 (7) Å (symmetry code: x − 1, y, z)] and Cg2⋯Cg2 [Cg2 is the centroid of the pyridine ring;; Cg⋯Cg distance = 4.6292 (10) Å, α = 0°, β = 40.3°, γ = 40.3° and the perpendicular distance of Cg2 on itself = 3.5322 (6) Å (symmetry code: x + 1, y, z)]. These weak intermolecular interactions link the molecules to form a one-dimensional chain along the c axis and the molecules exhibit layered stacking (Fig. 3).
4. Hirshfeld surface analysis
Hirshfeld surfaces and fingerprint plots (McKinnon et al., 2007) were generated for the title compound based on the (CIF) using CrystalExplorer (Wolff et al., 2012). Hirshfeld surfaces enable the visualization of intermolecular interactions by different colours and colour intensity, representing short or long contacts and indicating the relative strengths of the interactions. Figs. 4 and 5 show the Hirshfeld surfaces mapped over dnorm (−0.196 to 1.128 a.u.) and shape-index (−1.0 to 1.0 a.u.), respectively. The calculated volume inside the Hirshfeld surface is 311.97 Å3 in the area of 305.78 Å3.
In Fig. 4, the dark spots near the C and O atoms result from C—H⋯O interactions, which play a significant role in the molecular packing of the title compound. The Hirshfeld surfaces illustrated in Fig. 4 also reflect the involvement of different atoms in the intermolecular interactions through the appearance of blue and red regions around the participating atoms, which correspond to positive and negative electrostatic potential, respectively. The shape-index surface clearly shows that the two sides of the molecules are involved in the same contacts with neighbouring molecules and the curvedness plots show flat surface patches characteristic of planar stacking.
The overall two-dimensional fingerprint plot for the title compound and those delineated into O⋯H/H⋯H, H⋯H, C⋯H/H⋯C, C⋯O/O⋯C and N⋯H/H⋯N contacts are illustrated in Fig. 6; the percentage contributions from the different interatomic contacts to the Hirshfeld surfaces are as follows: O—H 38.9%, H—H 21.7%, C—H12%, C—O 10.2% and N—H 8.2%, as shown in the two-dimensional fingerprint plots, respectively, in Fig. 6. The percentage contributions for the other intermolecular contacts are less than 5% in the Hirshfeld surface mapping.
5. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.40, last update May 2019; Groom et al., 2016) using 2-oxo-2-phenylethyl benzoate as the main skeleton revealed the presence of a number structures containing a moiety similar to the title compound, but with different substituents on the terminal phenyl rings. These include the following: 2-oxo-2-phenylethyl benzoate, 2-(4-bromophenyl)-2-oxoethyl 4-methoxybenzoate, 2-(4-bromophenyl)-2-oxoethyl 4-chlorobenzoate, 2-(4-bromophenyl)-2-oxoethyl 4-bromobenzoate, 2-(4-chlorophenyl)-2-oxoethyl 2-methoxybenzoate, 2-(4-bromophenyl)-2-oxoethyl 2-methoxybenzoate, 2-(4-chlorophenyl)-2-oxoethyl 2,4-difluoro-benzoate, 2-(4-chlorophenyl)-2-oxoethyl 2,4-difluorobenzoate, 2-(4-chlorophenyl)-2-oxoethyl benzoate, 2-(4-chlorophenyl)-2-oxoethyl 4-hydroxybenzoate, 2-(4-bromophenyl)-2-oxoethyl 2-methylbenzoate, 2-(4-chlorophenyl)-2-oxoethyl 4-methylbenzoate, 2-(4-bromophenyl)-2-oxoethyl 4-hydroxybenzoate, 2-(4-bromophenyl)-2-oxoethyl 4-methylbenzoate, 2-(2,4-dichlorophenyl)-2-oxoethyl 4-methoxybenzoate, 2-(4-fluorophenyl)-2-oxoethyl 4-methoxybenzoate and 2-(4-chlorophenyl)-2-oxoethyl 3,4-dimethoxybenzoate (Fun et al., 2011a,b,c,d,e,f,g,h,i,j,k,l,m,n,o), 2-(4-fluorophenyl)-2-oxoethyl 2-methoxybenzoate (Isloor et al., 2012), 1-(4-bromophenyl)-2-(2-chlorophenoxy)ethanone (Shenvi et al., 2012) and 2,4-dichlorobenzyl 2-methoxybenzoate (Isloor et al., 2013). In these 19 compounds, the dihedral angles between the phenyl rings are in the range 3.2 (2)–85.92 (10)°. The difference may arise from the weak intermolecular interactions between adjacent molecules (Fig. 7).
6. Synthesis and crystallization
The title compound was synthesized as per the procedure of Kumar et al. (2014). A mixture of 2-bromo-1-(4-nitrophenyl)ethanone (0.2 g, 0.5 mmol), potassium carbonate (0.087 g, 0.63 mmol) and nicotinic acid (0.079 g, 0.65 mmol) in dimethylformamide (5 ml) was stirred at room temperature for 5 h. After completion of the reaction, the reaction mixture was poured into ice-cold water. The solid product obtained was filtered off, washed with water and recrystallized from ethanol [m.p. 407–410 K, determined with a Stuart Scientific (UK) apparatus].
7. Refinement
Crystal data, data collection and structure . H atoms on C atoms were positioned geometrically (C—H = 0.95–0.99 Å) and refined using a riding model, with Uiso(H) = 1.2 or 1.5Ueq(C).
details are summarized in Table 3
|
Supporting information
https://doi.org/10.1107/S2056989019014105/jj2216sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019014105/jj2216Isup2.hkl
Data collection: APEX2 (Bruker, 2012); cell
SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXL2015 (Sheldrick, 2015) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2015 (Sheldrick, 2015) and PLATON (Spek, 2009).C14H10N2O5 | Z = 2 |
Mr = 286.24 | F(000) = 296 |
Triclinic, P1 | Dx = 1.492 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 4.6292 (4) Å | Cell parameters from 2571 reflections |
b = 10.6563 (9) Å | θ = 1.6–29.4° |
c = 13.3592 (11) Å | µ = 0.12 mm−1 |
α = 99.136 (1)° | T = 297 K |
β = 93.426 (1)° | Rectangle, white |
γ = 100.556 (1)° | 0.41 × 0.27 × 0.16 mm |
V = 636.95 (9) Å3 |
Bruker APEXII DUO CCD area-detector diffractometer | 3496 independent reflections |
Radiation source: fine-focus sealed tube | 2571 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.022 |
Detector resolution: 18.4 pixels mm-1 | θmax = 29.4°, θmin = 1.6° |
φ and ω scans | h = −6→6 |
Absorption correction: multi-scan (SADABS; Bruker, 2012) | k = −14→14 |
Tmin = 0.953, Tmax = 0.981 | l = −18→18 |
21701 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.046 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.136 | H-atom parameters constrained |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0588P)2 + 0.1188P] where P = (Fo2 + 2Fc2)/3 |
3496 reflections | (Δ/σ)max < 0.001 |
190 parameters | Δρmax = 0.24 e Å−3 |
0 restraints | Δρmin = −0.18 e Å−3 |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > 2sigma(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.5089 (2) | 0.21852 (9) | 0.04455 (7) | 0.0528 (3) | |
O2 | 0.3481 (3) | 0.40340 (11) | 0.16679 (10) | 0.0824 (5) | |
O3 | 0.2932 (2) | 0.05168 (10) | −0.07629 (8) | 0.0578 (3) | |
O4 | −0.6315 (3) | 0.13249 (15) | 0.50999 (11) | 0.0961 (6) | |
O5 | −0.5484 (4) | 0.33778 (16) | 0.55148 (12) | 0.1149 (7) | |
N1 | −0.5128 (3) | 0.23923 (15) | 0.49895 (10) | 0.0653 (5) | |
N2 | 0.7107 (3) | 0.12934 (12) | −0.20395 (9) | 0.0563 (4) | |
C1 | −0.0180 (4) | 0.38578 (14) | 0.32225 (12) | 0.0581 (5) | |
C2 | −0.2018 (4) | 0.37345 (15) | 0.39938 (12) | 0.0614 (5) | |
C3 | −0.3152 (3) | 0.25177 (14) | 0.41686 (10) | 0.0493 (4) | |
C4 | −0.2565 (3) | 0.14168 (14) | 0.36073 (11) | 0.0547 (4) | |
C5 | −0.0737 (3) | 0.15511 (13) | 0.28293 (11) | 0.0512 (4) | |
C6 | 0.0465 (3) | 0.27660 (12) | 0.26370 (9) | 0.0426 (3) | |
C7 | 0.2433 (3) | 0.29607 (13) | 0.17993 (10) | 0.0466 (4) | |
C8 | 0.2962 (3) | 0.17779 (13) | 0.11235 (10) | 0.0491 (4) | |
C9 | 0.4795 (3) | 0.14691 (12) | −0.04857 (10) | 0.0435 (4) | |
C10 | 0.7087 (3) | 0.20214 (12) | −0.11282 (10) | 0.0442 (4) | |
C11 | 0.9099 (4) | 0.17721 (17) | −0.26372 (13) | 0.0659 (6) | |
C12 | 1.1060 (4) | 0.29307 (18) | −0.23613 (14) | 0.0707 (6) | |
C13 | 1.1009 (4) | 0.36515 (16) | −0.14264 (14) | 0.0675 (5) | |
C14 | 0.8961 (3) | 0.31902 (13) | −0.07891 (12) | 0.0536 (4) | |
H1A | 0.06280 | 0.46770 | 0.30960 | 0.0700* | |
H2A | −0.24750 | 0.44630 | 0.43860 | 0.0740* | |
H4A | −0.33680 | 0.06020 | 0.37440 | 0.0660* | |
H5A | −0.03160 | 0.08170 | 0.24340 | 0.0610* | |
H8A | 0.36960 | 0.12060 | 0.15300 | 0.0590* | |
H8B | 0.11330 | 0.13120 | 0.07380 | 0.0590* | |
H11A | 0.91590 | 0.12910 | −0.32780 | 0.0790* | |
H12A | 1.24020 | 0.32180 | −0.28060 | 0.0850* | |
H13A | 1.23200 | 0.44370 | −0.12200 | 0.0810* | |
H14A | 0.88590 | 0.36610 | −0.01480 | 0.0640* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0520 (5) | 0.0536 (5) | 0.0472 (5) | −0.0055 (4) | 0.0231 (4) | 0.0038 (4) |
O2 | 0.1022 (9) | 0.0475 (6) | 0.0962 (9) | −0.0035 (6) | 0.0567 (8) | 0.0123 (6) |
O3 | 0.0560 (6) | 0.0544 (6) | 0.0562 (6) | −0.0052 (4) | 0.0168 (4) | 0.0034 (4) |
O4 | 0.1105 (11) | 0.0952 (10) | 0.0910 (10) | 0.0128 (8) | 0.0615 (9) | 0.0306 (8) |
O5 | 0.1705 (16) | 0.0994 (11) | 0.0930 (10) | 0.0483 (11) | 0.0884 (11) | 0.0174 (9) |
N1 | 0.0719 (8) | 0.0818 (10) | 0.0506 (7) | 0.0243 (7) | 0.0280 (6) | 0.0176 (7) |
N2 | 0.0651 (7) | 0.0588 (7) | 0.0479 (6) | 0.0142 (6) | 0.0207 (5) | 0.0096 (5) |
C1 | 0.0717 (9) | 0.0420 (7) | 0.0613 (9) | 0.0079 (6) | 0.0242 (7) | 0.0080 (6) |
C2 | 0.0757 (10) | 0.0527 (8) | 0.0587 (9) | 0.0193 (7) | 0.0263 (7) | 0.0035 (7) |
C3 | 0.0501 (7) | 0.0608 (8) | 0.0394 (6) | 0.0129 (6) | 0.0150 (5) | 0.0098 (6) |
C4 | 0.0638 (8) | 0.0489 (7) | 0.0510 (7) | 0.0032 (6) | 0.0225 (6) | 0.0102 (6) |
C5 | 0.0617 (8) | 0.0416 (7) | 0.0489 (7) | 0.0045 (6) | 0.0223 (6) | 0.0035 (5) |
C6 | 0.0424 (6) | 0.0427 (6) | 0.0412 (6) | 0.0037 (5) | 0.0103 (5) | 0.0057 (5) |
C7 | 0.0451 (6) | 0.0453 (7) | 0.0479 (7) | 0.0010 (5) | 0.0143 (5) | 0.0089 (5) |
C8 | 0.0500 (7) | 0.0483 (7) | 0.0478 (7) | 0.0002 (5) | 0.0222 (5) | 0.0087 (5) |
C9 | 0.0437 (6) | 0.0432 (6) | 0.0456 (7) | 0.0082 (5) | 0.0143 (5) | 0.0102 (5) |
C10 | 0.0461 (6) | 0.0452 (6) | 0.0455 (7) | 0.0116 (5) | 0.0175 (5) | 0.0126 (5) |
C11 | 0.0812 (11) | 0.0742 (10) | 0.0521 (8) | 0.0272 (9) | 0.0313 (8) | 0.0170 (7) |
C12 | 0.0771 (10) | 0.0764 (11) | 0.0763 (11) | 0.0270 (9) | 0.0479 (9) | 0.0368 (9) |
C13 | 0.0670 (9) | 0.0548 (8) | 0.0852 (11) | 0.0043 (7) | 0.0367 (8) | 0.0236 (8) |
C14 | 0.0573 (8) | 0.0468 (7) | 0.0581 (8) | 0.0057 (6) | 0.0256 (6) | 0.0107 (6) |
O1—C8 | 1.4329 (17) | C7—C8 | 1.4973 (19) |
O1—C9 | 1.3374 (16) | C9—C10 | 1.4998 (19) |
O2—C7 | 1.2021 (18) | C10—C14 | 1.3737 (19) |
O3—C9 | 1.1969 (17) | C11—C12 | 1.375 (3) |
O4—N1 | 1.205 (2) | C12—C13 | 1.362 (3) |
O5—N1 | 1.211 (2) | C13—C14 | 1.387 (2) |
N1—C3 | 1.4761 (19) | C1—H1A | 0.9300 |
N2—C10 | 1.3372 (18) | C2—H2A | 0.9300 |
N2—C11 | 1.339 (2) | C4—H4A | 0.9300 |
C1—C2 | 1.382 (2) | C5—H5A | 0.9300 |
C1—C6 | 1.386 (2) | C8—H8A | 0.9700 |
C2—C3 | 1.369 (2) | C8—H8B | 0.9700 |
C3—C4 | 1.369 (2) | C11—H11A | 0.9300 |
C4—C5 | 1.387 (2) | C12—H12A | 0.9300 |
C5—C6 | 1.3822 (19) | C13—H13A | 0.9300 |
C6—C7 | 1.5006 (19) | C14—H14A | 0.9300 |
C8—O1—C9 | 116.39 (10) | N2—C11—C12 | 123.99 (16) |
O4—N1—O5 | 123.38 (16) | C11—C12—C13 | 119.00 (17) |
O4—N1—C3 | 118.83 (14) | C12—C13—C14 | 118.62 (16) |
O5—N1—C3 | 117.79 (15) | C10—C14—C13 | 118.39 (14) |
C10—N2—C11 | 115.93 (13) | C2—C1—H1A | 120.00 |
C2—C1—C6 | 120.27 (14) | C6—C1—H1A | 120.00 |
C1—C2—C3 | 118.56 (14) | C1—C2—H2A | 121.00 |
N1—C3—C2 | 118.29 (14) | C3—C2—H2A | 121.00 |
N1—C3—C4 | 118.83 (13) | C3—C4—H4A | 121.00 |
C2—C3—C4 | 122.88 (14) | C5—C4—H4A | 121.00 |
C3—C4—C5 | 118.09 (13) | C4—C5—H5A | 120.00 |
C4—C5—C6 | 120.56 (13) | C6—C5—H5A | 120.00 |
C1—C6—C5 | 119.64 (13) | O1—C8—H8A | 110.00 |
C1—C6—C7 | 117.81 (12) | O1—C8—H8B | 110.00 |
C5—C6—C7 | 122.54 (12) | C7—C8—H8A | 110.00 |
O2—C7—C6 | 120.57 (13) | C7—C8—H8B | 110.00 |
O2—C7—C8 | 121.71 (13) | H8A—C8—H8B | 108.00 |
C6—C7—C8 | 117.70 (12) | N2—C11—H11A | 118.00 |
O1—C8—C7 | 108.11 (11) | C12—C11—H11A | 118.00 |
O1—C9—O3 | 123.96 (13) | C11—C12—H12A | 120.00 |
O1—C9—C10 | 111.08 (11) | C13—C12—H12A | 121.00 |
O3—C9—C10 | 124.96 (12) | C12—C13—H13A | 121.00 |
N2—C10—C9 | 114.56 (12) | C14—C13—H13A | 121.00 |
N2—C10—C14 | 124.07 (13) | C10—C14—H14A | 121.00 |
C9—C10—C14 | 121.36 (12) | C13—C14—H14A | 121.00 |
C9—O1—C8—C7 | −147.02 (11) | C4—C5—C6—C1 | −0.5 (2) |
C8—O1—C9—O3 | −1.63 (19) | C4—C5—C6—C7 | −179.49 (13) |
C8—O1—C9—C10 | 178.12 (11) | C1—C6—C7—O2 | 2.4 (2) |
O4—N1—C3—C2 | 174.45 (15) | C1—C6—C7—C8 | −175.97 (13) |
O4—N1—C3—C4 | −4.7 (2) | C5—C6—C7—O2 | −178.60 (14) |
O5—N1—C3—C2 | −5.1 (2) | C5—C6—C7—C8 | 3.1 (2) |
O5—N1—C3—C4 | 175.83 (15) | O2—C7—C8—O1 | 6.80 (19) |
C11—N2—C10—C9 | 178.95 (13) | C6—C7—C8—O1 | −174.90 (11) |
C11—N2—C10—C14 | −0.4 (2) | O1—C9—C10—N2 | 174.17 (12) |
C10—N2—C11—C12 | 0.4 (3) | O1—C9—C10—C14 | −6.46 (18) |
C6—C1—C2—C3 | 0.6 (3) | O3—C9—C10—N2 | −6.1 (2) |
C2—C1—C6—C5 | −0.1 (2) | O3—C9—C10—C14 | 173.28 (14) |
C2—C1—C6—C7 | 178.99 (15) | N2—C10—C14—C13 | 0.0 (2) |
C1—C2—C3—N1 | −179.64 (15) | C9—C10—C14—C13 | −179.32 (14) |
C1—C2—C3—C4 | −0.6 (2) | N2—C11—C12—C13 | −0.1 (3) |
N1—C3—C4—C5 | 179.10 (13) | C11—C12—C13—C14 | −0.4 (3) |
C2—C3—C4—C5 | 0.0 (2) | C12—C13—C14—C10 | 0.4 (2) |
C3—C4—C5—C6 | 0.5 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5A···O3i | 0.93 | 2.55 | 3.2283 (18) | 130 |
C8—H8B···O3i | 0.97 | 2.45 | 3.2681 (17) | 141 |
C12—H12A···O5ii | 0.93 | 2.52 | 3.396 (3) | 157 |
C13—H13A···O2iii | 0.93 | 2.47 | 3.277 (2) | 146 |
C9—O3···Cg1 | 3.35 (1) | 3.4735 (16) | 86 (1) | |
C7—O2···Cg2 | 3.58 (1) | 3.8788 (15) | 67 (1) | |
N1—O4···Cg2 | 3.76 (1) | 3.5479 (16) | 71 (1) | |
N1—O5···Cg2 | 3.68 (1) | 3.5479 (16) | 74 (1) |
Symmetry codes: (i) −x, −y, −z; (ii) x+2, y, z−1; (iii) −x+2, −y+1, −z. |
Acknowledgements
CSCK extends his appreciation to Vidya Vikas Research & Development Centre for the facilities and encouragement. NS thanks Jain University for sanctioning research grants under minor project.
References
Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Fun, H.-K., Arshad, S., Garudachari, B., Isloor, A. M. & Satyanarayan, M. N. (2011a). Acta Cryst. E67, o1582–o1583. CrossRef IUCr Journals Google Scholar
Fun, H.-K., Arshad, S., Garudachari, B., Isloor, A. M. & Satyanarayan, M. N. (2011b). Acta Cryst. E67, o1599. CrossRef IUCr Journals Google Scholar
Fun, H.-K., Asik, S. I. J., Garudachari, B., Isloor, A. M. & Satyanarayan, M. N. (2011c). Acta Cryst. E67, o1687. CrossRef IUCr Journals Google Scholar
Fun, H.-K., Chia, T. S., Shenvi, S., Isloor, A. M. & Garudachari, B. (2011d). Acta Cryst. E67, o3379. CrossRef IUCr Journals Google Scholar
Fun, H.-K., Loh, W.-S., Garudachari, B., Isloor, A. M. & Satyanarayana, M. N. (2011e). Acta Cryst. E67, o2854. CrossRef IUCr Journals Google Scholar
Fun, H.-K., Loh, W.-S., Garudachari, B., Isloor, A. M. & Satyanarayana, M. N. (2011f). Acta Cryst. E67, o3030. CrossRef IUCr Journals Google Scholar
Fun, H.-K., Loh, W.-S., Garudachari, B., Isloor, A. M. & Satyanarayan, M. N. (2011g). Acta Cryst. E67, o1529. CrossRef IUCr Journals Google Scholar
Fun, H.-K., Loh, W.-S., Garudachari, B., Isloor, A. M. & Satyanarayan, M. N. (2011h). Acta Cryst. E67, o3456. CrossRef IUCr Journals Google Scholar
Fun, H.-K., Ooi, C. W., Garudachari, B., Isloor, A. M. & Satyanarayan, M. N. (2011i). Acta Cryst. E67, o3119. CrossRef IUCr Journals Google Scholar
Fun, H.-K., Quah, C. K., Garudachari, B., Isloor, A. M. & Satyanarayan, M. N. (2011j). Acta Cryst. E67, o1724. CrossRef IUCr Journals Google Scholar
Fun, H.-K., Quah, C. K., Vijesh, A. M., Isloor, A. M. & Arulmoli, T. (2011k). Acta Cryst. E67, o3351. CrossRef IUCr Journals Google Scholar
Fun, H.-K., Shahani, T., Garudachari, B., Isloor, A. M. & Satyanarayan, M. N. (2011l). Acta Cryst. E67, o3154. CrossRef IUCr Journals Google Scholar
Fun, H.-K., Shahani, T., Garudachari, B., Isloor, A. M. & Satyganarayan, M. N. (2011m). Acta Cryst. E67, o1802. CrossRef IUCr Journals Google Scholar
Fun, H.-K., Shahani, T., Garudachari, G., Isloor, A. M. & Shivananda, K. N. (2011n). Acta Cryst. E67, o2682. CrossRef IUCr Journals Google Scholar
Fun, H.-K., Yeap, C. S., Garudachari, B., Isloor, A. M. & Satyanarayan, M. N. (2011o). Acta Cryst. E67, o1723. CrossRef IUCr Journals Google Scholar
Gandhi, S. S., Bell, K. L. & Gibson, M. S. (1995). Tetrahedron, 51, 13301–13308. CrossRef CAS Web of Science Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Huang, W., Pei, J., Chen, B., Pei, W. & Ye, X. (1996). Tetrahedron, 52, 10131–10136. CrossRef CAS Google Scholar
Isloor, A. M., Garudachari, B., Gerber, T., Hosten, E. & Betz, R. (2013). Acta Cryst. E69, o509. CrossRef IUCr Journals Google Scholar
Isloor, A. M., Garudachari, B., Satyanarayan, M. N., Gerber, T., Hosten, E. & Betz, R. (2012). Acta Cryst. E68, o513. CrossRef IUCr Journals Google Scholar
Kumar, C. S. C., Chia, T. S., Ooi, C. W., Quah, C. K., Chandraju, S. & Fun, H. K. (2014). Z. Kristallogr. Cryst. Mater. 229, 328–342. CSD CrossRef Google Scholar
Literák, J., Dostálová, A. & Klán, P. (2006). J. Org. Chem. 71, 713–723. PubMed Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Rather, J. B. & Reid, E. (1919). J. Am. Chem. Soc. 41, 75–83. CrossRef CAS Google Scholar
Ruzicka, R., Zabadal, M. & Klán, P. (2002). Synth. Commun. 32, 2581–2590. CrossRef CAS Google Scholar
Sheehan, J. C. & Umezawa, K. (1973). J. Org. Chem. 38, 3771–3774. CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shenvi, S. S., Isloor, A. M., Gerber, T., Hosten, E. & Betz, R. (2012). Acta Cryst. E68, o3478. CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). CrystalExplorer. University of Western Australia. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.