research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

The crystal structures of two novel polymorphs of bis­­(oxonium) ethane-1,2-di­sulfonate

CROSSMARK_Color_square_no_text.svg

aArdena, Solid State Research Services, Meibergdreef 31, 1105 AZ Amsterdam, The Netherlands
*Correspondence e-mail: jaroslaw.mazurek@ardena.com

Edited by A. J. Lough, University of Toronto, Canada (Received 3 September 2019; accepted 30 September 2019; online 3 October 2019)

Two novel crystal forms of bis­(oxonium) ethane-1,2-di­sulfonate, 2H3O·C2H4O6S22−, are reported. Polymorph II has monoclinic (P21/n) symmetry, while the symmetry of form III is triclinic (P[\overline{1}]). Both structures display extensive networks of O—H⋯O hydrogen bonds. While this network in Form II is similar to that observed for the previously reported Form I [Mootz & Wunderlich (1970[Mootz, D. & Wunderlich, H. (1970). Acta Cryst. B26, 1820-1825.]). Acta Cryst. B26, 1820–1825; Sartori et al. (1994[Sartori, P., Jüschke, R., Boese, R. & Bläser, D. (1994). Z. Naturforsch. 49, 1467-1472.]). Z. Naturforsch. 49, 1467–1472] and extends in all directions, in Form III it differs significantly, forming layers parallel to the ab plane. The sulfonate mol­ecule in all three forms adopts a nearly identical geometry. The other observed differences between the forms, apart from the hydrogen-bonding network, are observed in the crystal density and packing index.

1. Chemical context

Sulfonic acids are commonly used in salt formation in the pharmaceutical industry, especially for poorly or non soluble in water drugs (Neau & Loka, 2018[Neau, S. H. & Loka, N. C. (2018). 15 Pharmaceutical Salts. In Water-Insoluble Drug Formulation, edited by R. Liu, pp. 451-469. Boca Raton: CRC Press.]). Salts of ethane-1,2-di­sulfonic acid account for 0.38% of all the FDA-approved commercially marketed salts (Steele & Talbir, 2016[Steele, G. & Talbir, A. (2016). In Pharmaceutical preformulation and formulation, edited by M. Gibson, pp. 29-140. Boca Raton: CRC Press.]) and therefore its toxicology, dosage (Saal & Becker, 2013[Saal, C. & Becker, A. (2013). Eur. J. Pharm. Sci. 49, 614-623.]) and various physico-chemical properties are widely studied (Black et al., 2007[Black, S. N., Collier, E. A., Davey, R. J. & Roberts, R. J. (2007). J. Pharm. Sci. 96, 1053-1068.]; Elder et al., 2010[Elder, D. P., Delaney, E. D., Teasdale, A., Eyley, S., Reif, V. D., Jacq, K., Facchine, K. L., Oestrich, R. S., Sandra, P. & David, F. (2010). J. Pharm. Sci. 99, 2948-2961.]). In our laboratory, ethane-1,2-di­sulfonic acid is commonly used in the salt screening for increasing solubility as well as improving the crystallinity of various researched active pharmaceutical ingredients (APIs).

[Scheme 1]

2. Structural commentary

The sulfonate anion in all polymorphs, including the previously determined form (Mootz & Wunderlich, 1970[Mootz, D. & Wunderlich, H. (1970). Acta Cryst. B26, 1820-1825.], refcode HOEDSO; Sartori et al., 1994[Sartori, P., Jüschke, R., Boese, R. & Bläser, D. (1994). Z. Naturforsch. 49, 1467-1472.], refcode HOEDSO01) has a nearly identical geometry. In all cases, the center of the C—C bond is located on an inversion center, and the C—S and C—O distances in all cases are within 3σ. The sulfonate group adopts the geometry of an open umbrella with the C—S—O bond angles of 106.51 (6), 105.82 (6), 107.23 (6)° for Form II (Fig. 1[link]) and 106.16 (11), 106.21 (10), 107.20 (12)° for Form III (Fig. 2[link]). The values of all O—S—O angles are above 110° [112.91 (7), 111.48 (7), 112.37 (7)° for Form II and 111.31 (11), 113.45 (11), 112.00 (12)° for Form III]. In this way, the mol­ecular symmetry of the sulfonate group becomes slightly distorted C3V. In all crystals, the oxonium cations have a pyramidal geometry with slightly elongated O—H distances for one H atom. This is most likely an effect of the fast exchange of a proton (H atom) between the sulfonate group and the water mol­ecules.

[Figure 1]
Figure 1
The mol­ecular structure of an anion–cation pair of Form II, with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and hydrogen bonds are shown in torquoise. Unlabelled atoms are related to labelled ones by the symmetry operator (−x + 1, −y + 1, −z + 1).
[Figure 2]
Figure 2
The mol­ecular structure of anion cation pair of Form III, with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and hydrogen bonds are shown in torquoise. Unlabelled atoms are related to labelled ones by the symmetry operator (−x + 1, −y + 1, −z + 1).

The biggest differences between forms are observed in the density of the crystal, as well as in the packing coefficient (Kitajgorodskij, 1973[Kitajgorodskij, A. I. (1973). Molecular Crystals and Molecules. New York: Academic Press.]). The lowest values of both parameters are attributed to Form III (1.60 g cm−3 and 0.67, respectively), which suggests that this polymorph is the least stable. Form II presented here has a slightly better packing index than previously reported for Form I (Mootz & Wunderlich, 1970[Mootz, D. & Wunderlich, H. (1970). Acta Cryst. B26, 1820-1825.]; Sartori et al., 1994[Sartori, P., Jüschke, R., Boese, R. & Bläser, D. (1994). Z. Naturforsch. 49, 1467-1472.]) 0.75 versus 0.73. On the other hand, the density is lower: 1.78 versus 1.82 g cm−3, respectively.

3. Supra­molecular features

The hydrogen bonds between the oxonium cations and sulfonate anions in the crystal of Form II (Table 1[link], Fig. 3[link]) extend in all directions forming a three-dimensional network similar to that observed for Form I (Mootz & Wunderlich, 1970[Mootz, D. & Wunderlich, H. (1970). Acta Cryst. B26, 1820-1825.]; Sartori et al., 1994[Sartori, P., Jüschke, R., Boese, R. & Bläser, D. (1994). Z. Naturforsch. 49, 1467-1472.]). However, contrary to the previously reported form, where the hydrogen-bond network is built from alternate anion–cations layers, in Form II such layers could not be distinguished. The supra­molecular behaviour of Form III is significantly different. In this case (Table 2[link] and Fig. 4[link]), the anion–cation hydrogen-bond network forms separate layers parallel to the ab plane built from sulfonate anions surrounded by oxonium cations with no inter­actions between the planes.

Table 1
Hydrogen-bond geometry (Å, °) for Form II[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H63⋯O2 0.99 (2) 2.62 (2) 3.1795 (17) 116 (2)
O6—H61⋯O2i 1.00 (2) 2.02 (3) 2.9312 (16) 150 (3)
O6—H62⋯O3 1.06 (2) 1.92 (3) 2.9141 (16) 154 (3)
O6—H61⋯O3ii 1.00 (2) 2.60 (3) 2.9857 (16) 103 (2)
O6—H63⋯O1iii 0.99 (2) 2.14 (2) 3.0266 (18) 148 (2)
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y+2, -z+1; (iii) x+1, y, z.

Table 2
Hydrogen-bond geometry (Å, °) for Form III[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H61⋯O1i 1.07 (4) 1.93 (4) 2.991 (3) 170 (4)
O6—H62⋯O2ii 1.02 (4) 2.52 (3) 3.002 (3) 108 (2)
O6—H62⋯O3 1.02 (4) 1.97 (4) 2.945 (3) 158 (3)
O6—H63⋯O1iii 1.02 (4) 1.89 (4) 2.899 (3) 173 (3)
Symmetry codes: (i) x, y-1, z; (ii) x-1, y, z; (iii) x-1, y-1, z.
[Figure 3]
Figure 3
The crystal packing of Form II, viewed along the a axis. The ethane-1,2-di­sulfonate dianions are coloured in green, while oxonium cations are red and hydrogen bonds are shown in torquoise.
[Figure 4]
Figure 4
The crystal packing of Form III, viewed along the a axis. The ethane-1,2-di­sulfonate dianions are coloured in green, while oxonium cations are red and hydrogen bonds are shown in turquoise.

4. Database survey

As mentioned above, the crystal structure of a different polymorphic form of oxonium ethane-1,2-di­sulfonate has been previously reported (Mootz, & Wunderlich, 1970[Mootz, D. & Wunderlich, H. (1970). Acta Cryst. B26, 1820-1825.], refcode HOEDSO; Sartori et al., 1994[Sartori, P., Jüschke, R., Boese, R. & Bläser, D. (1994). Z. Naturforsch. 49, 1467-1472.], refcode HOEDSO01). Apart from these structures, there are 12 hits for ethane-1,2-di­sulfonate salts in the Cambridge Structural Database (CSD, Version 5.40; ConQuest 2.02; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), one of which is disordered. The geometry of the sulfonate group in all of the anions is nearly the same, with slightly distorted C3v mol­ecular symmetry for the open-umbrella geometry. The average values of the C—S—O and O—S—O bond angles are very close to those reported in this paper: 105.9±0.8 and 112.8±0.9°, respectively.

5. Synthesis and crystallization

Both crystals were obtained from an aqueous solution during unsuccessful salt formation with an unnamed free base (API) in water. Firstly, columnar crystals of Form III that appeared to be unstable were grown from the thick oil and within time transformed into prismatic crystals of Form II.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All H atoms were found in difference-Fourier maps and refined with isotropic displacement parameters. The DFIX 0.98 0.03 O6 H61, O6 H62 and O6 H63 instruction in SHELXL2014/7 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) was used to restrain the oxonium O—H distance in Form II. All of the oxonium H atoms in Form III were refined independently without any restraints.

Table 3
Experimental details

  Form II Form III
Crystal data
Chemical formula 2H3O+·C2H4O6S22− 2H3O+·C2H4O6S22−
Mr 226.22 226.22
Crystal system, space group Monoclinic, P21/n Triclinic, P[\overline{1}]
Temperature (K) 296 296
a, b, c (Å) 5.8050 (3), 8.3566 (6), 8.7433 (6) 5.0371 (3), 5.5424 (2), 8.8188 (4)
α, β, γ (°) 90, 95.148 (4), 90 98.426 (5), 104.511 (3), 91.663 (4)
V3) 422.43 (5) 235.22 (2)
Z 2 1
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.64 0.58
Crystal size (mm) 0.45 × 0.32 × 0.23 0.30 × 0.12 × 0.11
 
Data collection
Diffractometer Bruker KappaCCD Bruker KappaCCD
Absorption correction Gaussian integration (Coppens, 1970[Coppens, P. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 255-270. Copenhagen: Munksgaard.]) Gaussian integration (Coppens, 1970[Coppens, P. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 255-270. Copenhagen: Munksgaard.])
Tmin, Tmax 0.748, 0.907 0.813, 0.947
No. of measured, independent and observed [I > 2σ(I)] reflections 17906, 1848, 1768 7504, 1708, 1192
Rint 0.075 0.131
(sin θ/λ)max−1) 0.806 0.758
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.121, 1.04 0.058, 0.163, 1.04
No. of reflections 1848 1708
No. of parameters 76 76
No. of restraints 3 0
H-atom treatment All H-atom parameters refined All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.62, −0.93 0.66, −0.67
Computer programs: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]), HKL SCALEPACK and DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014/7 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Computing details top

For both structures, data collection: COLLECT (Hooft, 1998); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997); data reduction: HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: enCIFer (Allen et al., 2004).

Bis(oxonium) ethane-1,2-disulfonate (I) top
Crystal data top
2H3O+·C2H4O6S22F(000) = 236
Mr = 226.22Dx = 1.778 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 5.8050 (3) ÅCell parameters from 11538 reflections
b = 8.3566 (6) Åθ = 1.0–35.0°
c = 8.7433 (6) ŵ = 0.64 mm1
β = 95.148 (4)°T = 296 K
V = 422.43 (5) Å3Prism, pale yellow
Z = 20.45 × 0.32 × 0.23 mm
Data collection top
Bruker KappaCCD
diffractometer
1848 independent reflections
Radiation source: fine-focus sealed tube1768 reflections with I > 2σ(I)
Horizonally mounted graphite crystal monochromatorRint = 0.075
Detector resolution: 9 pixels mm-1θmax = 34.9°, θmin = 3.4°
CCD scansh = 99
Absorption correction: integration
Gaussian integration (Coppens, 1970)
k = 1313
Tmin = 0.748, Tmax = 0.907l = 1414
17906 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041All H-atom parameters refined
wR(F2) = 0.121 w = 1/[σ2(Fo2) + (0.0797P)2 + 0.1864P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.026
1848 reflectionsΔρmax = 0.62 e Å3
76 parametersΔρmin = 0.93 e Å3
3 restraintsExtinction correction: SHELXL-2014/7 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: difference Fourier mapExtinction coefficient: 0.20 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.03777 (17)0.61584 (15)0.29236 (14)0.0319 (2)
O20.4298 (2)0.65073 (13)0.21941 (13)0.0302 (2)
O30.30307 (19)0.79554 (12)0.43552 (13)0.0308 (2)
S40.27802 (4)0.64978 (3)0.34467 (3)0.01890 (13)
C50.3753 (2)0.48838 (15)0.46678 (14)0.0231 (2)
H5A0.270 (5)0.476 (3)0.541 (3)0.043 (6)*
H5B0.360 (4)0.393 (3)0.404 (2)0.025 (5)*
O60.7708 (2)0.90258 (15)0.39286 (16)0.0363 (3)
H610.822 (6)1.009 (3)0.357 (4)0.066 (9)*
H620.588 (4)0.889 (4)0.383 (4)0.067 (9)*
H630.797 (4)0.795 (3)0.350 (3)0.041 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0219 (4)0.0345 (5)0.0373 (5)0.0002 (3)0.0079 (4)0.0012 (4)
O20.0341 (5)0.0339 (5)0.0238 (4)0.0083 (4)0.0096 (4)0.0055 (3)
O30.0333 (5)0.0227 (4)0.0362 (5)0.0020 (3)0.0025 (4)0.0081 (4)
S40.01863 (17)0.01917 (17)0.01865 (17)0.00184 (7)0.00025 (10)0.00054 (7)
C50.0218 (4)0.0231 (5)0.0234 (5)0.0027 (3)0.0032 (3)0.0061 (4)
O60.0307 (5)0.0320 (5)0.0452 (6)0.0022 (4)0.0012 (4)0.0000 (5)
Geometric parameters (Å, º) top
O1—S41.4561 (10)C5—H5A0.94 (3)
O2—S41.4658 (11)C5—H5B0.97 (2)
O3—S41.4544 (10)O6—H611.00 (2)
S4—C51.7804 (11)O6—H621.06 (2)
C5—C5i1.523 (2)O6—H630.99 (2)
O3—S4—O1112.37 (7)S4—C5—H5A108.0 (16)
O3—S4—O2111.48 (7)C5i—C5—H5B110.7 (12)
O1—S4—O2112.91 (7)S4—C5—H5B106.3 (12)
O3—S4—C5107.23 (6)H5A—C5—H5B105 (2)
O1—S4—C5106.51 (6)H61—O6—H62113 (3)
O2—S4—C5105.82 (6)H61—O6—H63129 (2)
C5i—C5—S4111.82 (11)H62—O6—H6393 (2)
C5i—C5—H5A114.1 (17)
O3—S4—C5—C5i57.98 (14)O2—S4—C5—C5i61.12 (14)
O1—S4—C5—C5i178.48 (12)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H63···O20.99 (2)2.62 (2)3.1795 (17)116 (2)
O6—H61···O2ii1.00 (2)2.02 (3)2.9312 (16)150 (3)
O6—H62···O31.06 (2)1.92 (3)2.9141 (16)154 (3)
O6—H61···O3iii1.00 (2)2.60 (3)2.9857 (16)103 (2)
O6—H63···O1iv0.99 (2)2.14 (2)3.0266 (18)148 (2)
Symmetry codes: (ii) x+3/2, y+1/2, z+1/2; (iii) x+1, y+2, z+1; (iv) x+1, y, z.
Bis(oxonium) ethane-1,2-disulfonate (II) top
Crystal data top
2H3O+·C2H4O6S22Z = 1
Mr = 226.22F(000) = 118
Triclinic, P1Dx = 1.597 Mg m3
a = 5.0371 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 5.5424 (2) ÅCell parameters from 4728 reflections
c = 8.8188 (4) Åθ = 1.0–32.6°
α = 98.426 (5)°µ = 0.57 mm1
β = 104.511 (3)°T = 296 K
γ = 91.663 (4)°Columnar, colorless
V = 235.22 (2) Å30.30 × 0.12 × 0.11 mm
Data collection top
Bruker KappaCCD
diffractometer
1708 independent reflections
Radiation source: fine-focus sealed tube1192 reflections with I > 2σ(I)
Horizonally mounted graphite crystal monochromatorRint = 0.131
Detector resolution: 9 pixels mm-1θmax = 32.6°, θmin = 2.4°
CCD scansh = 76
Absorption correction: integration
Gaussian integration (Coppens, 1970)
k = 88
Tmin = 0.813, Tmax = 0.947l = 1113
7504 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058All H-atom parameters refined
wR(F2) = 0.163 w = 1/[σ2(Fo2) + (0.0869P)2 + 0.0186P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.016
1708 reflectionsΔρmax = 0.66 e Å3
76 parametersΔρmin = 0.67 e Å3
0 restraintsExtinction correction: SHELXL-2014/7 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: difference Fourier mapExtinction coefficient: 0.19 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.6030 (4)0.9888 (3)0.7642 (2)0.0387 (4)
O20.6622 (4)0.5760 (3)0.8252 (2)0.0378 (4)
O30.2119 (4)0.6995 (4)0.7086 (3)0.0417 (5)
S40.50463 (11)0.73087 (9)0.72171 (6)0.0267 (2)
C50.5533 (5)0.6324 (4)0.5302 (3)0.0290 (5)
H5A0.473 (7)0.750 (6)0.459 (4)0.043 (8)*
H5B0.737 (7)0.654 (6)0.526 (4)0.054 (9)*
O60.1360 (5)0.2554 (4)0.8443 (3)0.0477 (5)
H610.318 (10)0.173 (8)0.827 (5)0.083 (13)*
H620.113 (7)0.415 (6)0.798 (5)0.049 (9)*
H630.056 (8)0.173 (6)0.822 (5)0.057 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0405 (11)0.0264 (8)0.0464 (10)0.0019 (7)0.0115 (8)0.0030 (7)
O20.0425 (11)0.0396 (9)0.0301 (8)0.0109 (8)0.0059 (7)0.0062 (7)
O30.0235 (9)0.0476 (10)0.0538 (11)0.0009 (7)0.0125 (8)0.0028 (8)
S40.0229 (3)0.0261 (3)0.0297 (3)0.0012 (2)0.0060 (2)0.0014 (2)
C50.0289 (12)0.0297 (11)0.0271 (10)0.0025 (9)0.0059 (9)0.0034 (8)
O60.0415 (13)0.0454 (11)0.0535 (12)0.0046 (9)0.0092 (10)0.0046 (9)
Geometric parameters (Å, º) top
O1—S41.4625 (17)C5—H5A0.99 (3)
O2—S41.4509 (18)C5—H5B0.94 (4)
O3—S41.4532 (19)O6—H611.07 (4)
S4—C51.777 (2)O6—H621.02 (4)
C5—C5i1.519 (4)O6—H631.02 (4)
O2—S4—O3112.00 (12)S4—C5—H5A109.0 (18)
O2—S4—O1113.45 (11)C5i—C5—H5B110 (2)
O3—S4—O1111.31 (11)S4—C5—H5B113 (2)
O2—S4—C5106.21 (10)H5A—C5—H5B98 (3)
O3—S4—C5107.20 (12)H61—O6—H62111 (3)
O1—S4—C5106.16 (11)H61—O6—H63127 (3)
C5i—C5—S4111.0 (2)H62—O6—H63107 (3)
C5i—C5—H5A114.8 (19)
O2—S4—C5—C5i61.3 (3)O1—S4—C5—C5i177.6 (2)
O3—S4—C5—C5i58.6 (3)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H61···O1ii1.07 (4)1.93 (4)2.991 (3)170 (4)
O6—H62···O2iii1.02 (4)2.52 (3)3.002 (3)108 (2)
O6—H62···O31.02 (4)1.97 (4)2.945 (3)158 (3)
O6—H63···O1iv1.02 (4)1.89 (4)2.899 (3)173 (3)
Symmetry codes: (ii) x, y1, z; (iii) x1, y, z; (iv) x1, y1, z.
 

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBlack, S. N., Collier, E. A., Davey, R. J. & Roberts, R. J. (2007). J. Pharm. Sci. 96, 1053–1068.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCoppens, P. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 255–270. Copenhagen: Munksgaard.  Google Scholar
First citationElder, D. P., Delaney, E. D., Teasdale, A., Eyley, S., Reif, V. D., Jacq, K., Facchine, K. L., Oestrich, R. S., Sandra, P. & David, F. (2010). J. Pharm. Sci. 99, 2948–2961.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationKitajgorodskij, A. I. (1973). Molecular Crystals and Molecules. New York: Academic Press.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMootz, D. & Wunderlich, H. (1970). Acta Cryst. B26, 1820–1825.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationNeau, S. H. & Loka, N. C. (2018). 15 Pharmaceutical Salts. In Water-Insoluble Drug Formulation, edited by R. Liu, pp. 451–469. Boca Raton: CRC Press.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSaal, C. & Becker, A. (2013). Eur. J. Pharm. Sci. 49, 614–623.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSartori, P., Jüschke, R., Boese, R. & Bläser, D. (1994). Z. Naturforsch. 49, 1467–1472.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSteele, G. & Talbir, A. (2016). In Pharmaceutical preformulation and formulation, edited by M. Gibson, pp. 29–140. Boca Raton: CRC Press.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds