research communications
and DFT study of a zinc xanthate complex
aDepartment of Chemistry, College of Science, Salahaddin University, Erbil, Iraq, bDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139, Kurupelit, Samsun, Turkey, cInstitute of Chemical Sciences, School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK, and dTaras Shevchenko National University of Kyiv, Department of Chemistry, 64, Vladimirska Str., Kiev 01601, Ukraine
*Correspondence e-mail: sevgi.kansiz85@gmail.com, ifritsky@univ.kiev.ua
In the title compound, bis(2-methoxyethyl xanthato-κS)(N,N,N′,N′-tetramethylethylenediamine-κ2N,N′)zinc(II) acetone hemisolvate, [Zn(C4H7O2S2)2(C6H16N2)]·0.5C3H6O, the ZnII ion is coordinated by two N atoms of the N,N,N′,N′-tetramethylethylenediamine ligand and two S atoms from two 2-methoxyethyl xanthate ligands. The amine ligand is disordered over two orientations and was modelled with refined occupancies of 0.538 (6) and 0.462 (6). The molecular structure features two C—H⋯O and two C—H⋯S intramolecular interactions. In the crystal, molecules are linked by weak C—H⋯O and C—H⋯S hydrogen bonds, forming a three-dimensional supramolecular architecture. The molecular structure was optimized using density functional theory (DFT) at the B3LYP/6–311 G(d,p) level. The smallest HOMO–LUMO energy gap (3.19 eV) indicates the suitability of this crystal for optoelectronic applications. The molecular electrostatic potential (MEP) further identifies the positive, negative and neutral electrostatic potential regions of the molecules. Half a molecule of disordered acetone was removed with the solvent-mask procedure in OLEX2 [Dolomanov et al. (2009). J. Appl. Cryst. 42, 339–341] and this contribition is included in the formula.
Keywords: crystal structure; xanthate; zinc (II); DFT; molecular electrostatic potential.
CCDC reference: 1420207
1. Chemical context
in vitro (Friebolin et al., 2005). They have been used as accelerators in the vulcanization of rubber (Gupta et al., 2012), in cellulose synthesis (Tiravanti et al., 1998), as collectors in the of metal sulfide ores (Lee et al., 2009) and as reagents for heavy-metal sedimentation in waste-water treatment (Chakraborty et al., 2006). In our previous work, we prepared and structurally characterized nickel(II) and zinc(II) n-propylxanthate complexes containing N,N,N′,N′-tetramethylethylenediamine as a neutral ligand. Both complexes showed a distorted octahedral environment around the metal center (Qadir & Dege, 2019). In this paper, we report the synthesis and of a zinc(II) 2-methoxyethylxanthate complex containing N,N,N′,N′-tetramethylethylenediamine, [Zn(S2COC2H4OCH3)2(tmeda)], which was investigated by a DFT study.
(dithiocarbonates) are related to the dithiolate family. Xanthate is a bidentate monoanionic sulfur–sulfur donor ligand. It stabilizes complexes of most of the transition elements and can bind metal centers in monodentate, isobidenate, anisobidenate or ionic modes. have the ability to inhibit the replication of both RNA and DNA viruses2. Structural commentary
The molecular structure of the title compound is illustrated in Fig. 1. The ZnII ion is coordinated by two N atoms of the N,N,N′,N′-tetramethylethylenediamine molecule and two S atoms from two 2-methoxyethylxanthate molecules. The Zn1—N1, Zn1—N2, Zn1—S1 and Zn1—S3 bond lengths are 2.141 (5), 2.123 (5), 2.3107 (9) and 2.3050 (9) Å, respectively (Table 1). These bond distances are similar to those reported in the work of Cusack et al. (2004). The C7—O8 and C13—O14 bond lengths are similar [1.344 (3) and 1.346 (3) Å, respectively], while the C9—O8 and C15—O14 bonds are also not significantly different [1.454 (3) and 1.459 (3) Å, respectively]. In the same way, the C10—O11 [1.417 (3)] and C16—O17 [1.418 (4)] bond lengths are similar to each other. All of the C—O bonds show single-bond character. In the {S2C} section of the xanthate ligands, the carbon-to-sulfur S1 distance is 1.731 (3) Å, which is typical of a single bond whereas the carbon-to-sulfur S2 distance of 1.647 (3) Å is typical of a carbon-to-sulfur double bond. In the molecule, weak C1—H1C⋯O8, C2A—H2AB⋯O11, C5A—H5AA⋯S1 and C6—H6C⋯S4 intramolecular interactions are observed (Table 2).
|
3. Supramolecular features
The crystal packing of the title compound (Fig. 2) features intermolecular hydrogen bonds (C6—H6B⋯O11i, C3A—H3AB⋯S2ii, C6A—H6AA⋯S1ii, C4A—H4AA⋯O17iii, C4A—H4AB⋯S3iii, C9—H9A⋯O17iv, C9—H9B⋯S2v and C18—H18B⋯S2vi; symmetry codes as in Table 2), which connect the molecules into a three-dimensional supramolecular architecture.
4. Database survey
Previously reported complexes related to the title complex are [Cd(S2COCH2CH2OMe)2(bipy)] [CSD (Groom et al., 2016) refcode BENDII; Chen et al., 2002], [Ni(C4H7O2S2)2(C6H16N2)] (NADTAQ; Qadir, 2016), [Ni(moexa)2phen] (unsolvated form) and [Ni(moexa)2phen] (benzene solvate), moexa = O-methoxyethylxanthato-S,S′ (with refcodes SICTUT and SICVAB, respectively; Edwards et al., 1990a), [Ni(moexa)2bpy]; forms I and II (with refcodes VETVIZ and VETVIZ01, respectively; Edwards et al., 1990b) and [Cd(S2COCH2CH2OCH3)2(4,7-Me2phen)] (WACPOG; Chen et al., 2003). The Cd—S and Cd—N bond lengths range from 2.489 to 2.796 Å and 2.334 to 2.406 Å, respectively. Similarly, the Ni—S and Ni—N bond lengths range from 2.432 to 2.458 Å and 2.070 to 2.172 Å, respectively. In these complexes, compared with the ZnII complex, the metal-to-ligand distances with M—S/N bond lengths follow the order ZnII < NiII < CdII in the corresponding complexes.
5. Frontier molecular orbital analysis
The highest occupied molecular orbitals (HOMOs) and the lowest unoccupied molecular orbitals (LUMOs) are named as frontier molecular orbitals (FMOs). The FMOs play an important role in the optical and electric properties. The frontier orbital gap characterizes the chemical reactivity and the kinetic stability of the molecule. A molecule with a small frontier orbital gap is generally associated with a high chemical reactivity, low kinetic stability and is also termed a soft molecule. The density functional theory (DFT) quantum-chemical calculations for the title compound were performed at the B3LYP/6–311 G(d,p) level (Becke, 1993) as implemented in GAUSSIAN09 (Frisch et al., 2009). Fig. 3 illustrates the HOMO and LUMO energy levels of the title compound. The small HOMO–LUMO energy gap (3.19 eV) in this compound indicates the chemical reactivity is strong and the kinetic stability is weak, which in turn increases the non-linear optical activity. As a result, with the small HOMO–LUMO energy gap, this compound could potentially be used in optoelectronic applications.
6. Molecular electrostatic potential (MEP)
The MEP map of the title molecule was calculated theoretically at the B3LYP/6-311G(d,p) level of theory and is illustrated in Fig. 4. The blue-coloured region is electrophilic and electron poor, whereas the red colour indicates the nucleophilic region with rich electrons in the environment and provide information about interactions that can occur between molecules (Tankov & Yankova, 2019). In the title compound, the reactive sites are localized near the C—O group: this is the region having the most negative potential spots (red colour), all over the oxygen atom because of the C—H⋯O interactions in the The negative potential value of −0.092 a.u. indicates the region that shows the strongest repulsion (electrophilic attack). In addition, the most positive region is located at the hydrogen atoms and shows the strongest attraction (nucleophilic attack) sites, which involve the N,N,N′,N′-tetramethylethylenediamine moiety.
7. Synthesis and crystallization
Tetramethylethylenediamine (10 mmol, 1.16 g) was added to a hot solution of Zn(CH3CO2)·2H2O (10 mmol, 2.20 g) in 2-methoxyethanol. A hot solution of potassium 2-methoxyethylxanthate (20 mmol, 3.81 g) in 2-methoxyethanol was added and the mixture was stirred for 30 min. Water was added to the mixture and a white precipitate was formed. The product was recrystallized from acetone.
8. Refinement
Crystal data, data collection and structure . The C-bound H atoms were positioned geometrically and refined using a riding model, with C—H = 0.98 and 0.99 Å and with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) otherwise. All atoms of the amine ligand are disordered and were modelled as two orientations with relative occupancies of 0.538 (6) and 0.462 (6). The diffuse electron density of half an acetone solvent molecule was removed with the solvent-mask procedure implemented in OLEX2 (Dolomanov et al., 2009). There are two voids of 122.4 Å3 in the and the electron count was 18.2 per void.
details are summarized in Table 3
|
Supporting information
CCDC reference: 1420207
https://doi.org/10.1107/S2056989019013148/lh5921sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019013148/lh5921Isup2.hkl
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).[Zn(C4H7O2S2)2(C6H16N2)]·0.5C3H6O | F(000) = 1016 |
Mr = 513.05 | Dx = 1.346 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 9.604 (3) Å | Cell parameters from 8223 reflections |
b = 22.785 (6) Å | θ = 2.4–27.2° |
c = 11.374 (3) Å | µ = 1.40 mm−1 |
β = 106.304 (12)° | T = 100 K |
V = 2389.0 (12) Å3 | Plate, colourless |
Z = 4 | 0.56 × 0.52 × 0.06 mm |
Bruker APEXII CCD diffractometer | 3870 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.054 |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | θmax = 27.5°, θmin = 2.6° |
Tmin = 0.594, Tmax = 0.746 | h = −12→12 |
35197 measured reflections | k = −29→29 |
5276 independent reflections | l = −13→14 |
Refinement on F2 | 244 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.040 | H-atom parameters constrained |
wR(F2) = 0.105 | w = 1/[σ2(Fo2) + (0.057P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max = 0.001 |
5276 reflections | Δρmax = 0.41 e Å−3 |
299 parameters | Δρmin = −0.68 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Zn1 | 0.94679 (3) | 0.20615 (2) | 0.25390 (3) | 0.01743 (10) | |
S1 | 0.77332 (8) | 0.16292 (3) | 0.09443 (7) | 0.02362 (17) | |
S2 | 0.81448 (9) | 0.08333 (3) | −0.10110 (7) | 0.02709 (19) | |
S3 | 1.11500 (8) | 0.15676 (3) | 0.40643 (6) | 0.02205 (17) | |
S4 | 0.82433 (9) | 0.13279 (3) | 0.44905 (8) | 0.0312 (2) | |
N1 | 1.0669 (9) | 0.2630 (3) | 0.1684 (7) | 0.0187 (17) | 0.538 (6) |
N2 | 0.8649 (9) | 0.2832 (2) | 0.3157 (8) | 0.0199 (19) | 0.538 (6) |
C1 | 1.0675 (9) | 0.2455 (3) | 0.0430 (7) | 0.0234 (15) | 0.538 (6) |
H1A | 0.9674 | 0.2412 | −0.0084 | 0.035* | 0.538 (6) |
H1B | 1.1167 | 0.2757 | 0.0081 | 0.035* | 0.538 (6) |
H1C | 1.1187 | 0.2081 | 0.0465 | 0.035* | 0.538 (6) |
C2 | 1.2174 (11) | 0.2697 (6) | 0.2467 (12) | 0.022 (2) | 0.538 (6) |
H2A | 1.2162 | 0.2813 | 0.3294 | 0.034* | 0.538 (6) |
H2B | 1.2689 | 0.2323 | 0.2505 | 0.034* | 0.538 (6) |
H2C | 1.2669 | 0.3000 | 0.2121 | 0.034* | 0.538 (6) |
C3 | 0.9856 (7) | 0.3192 (2) | 0.1604 (6) | 0.0229 (13) | 0.538 (6) |
H3A | 0.8955 | 0.3170 | 0.0919 | 0.027* | 0.538 (6) |
H3B | 1.0453 | 0.3517 | 0.1431 | 0.027* | 0.538 (6) |
C4 | 0.9477 (7) | 0.3317 (2) | 0.2780 (5) | 0.0245 (13) | 0.538 (6) |
H4A | 1.0384 | 0.3385 | 0.3442 | 0.029* | 0.538 (6) |
H4B | 0.8894 | 0.3681 | 0.2679 | 0.029* | 0.538 (6) |
C5 | 0.7089 (10) | 0.2896 (4) | 0.2515 (12) | 0.022 (2) | 0.538 (6) |
H5A | 0.6950 | 0.2885 | 0.1628 | 0.033* | 0.538 (6) |
H5B | 0.6548 | 0.2573 | 0.2750 | 0.033* | 0.538 (6) |
H5C | 0.6736 | 0.3271 | 0.2740 | 0.033* | 0.538 (6) |
C6 | 0.883 (2) | 0.2849 (6) | 0.4502 (9) | 0.029 (3) | 0.538 (6) |
H6A | 0.9861 | 0.2808 | 0.4943 | 0.044* | 0.538 (6) |
H6B | 0.8470 | 0.3225 | 0.4719 | 0.044* | 0.538 (6) |
H6C | 0.8282 | 0.2527 | 0.4729 | 0.044* | 0.538 (6) |
N1A | 1.0736 (10) | 0.2669 (3) | 0.1831 (8) | 0.019 (2) | 0.462 (6) |
N2A | 0.8391 (10) | 0.2822 (3) | 0.2930 (9) | 0.020 (2) | 0.462 (6) |
C1A | 1.0349 (10) | 0.2672 (4) | 0.0475 (7) | 0.0209 (17) | 0.462 (6) |
H1AA | 0.9303 | 0.2736 | 0.0142 | 0.031* | 0.462 (6) |
H1AB | 1.0877 | 0.2988 | 0.0201 | 0.031* | 0.462 (6) |
H1AC | 1.0611 | 0.2294 | 0.0184 | 0.031* | 0.462 (6) |
C2A | 1.2323 (12) | 0.2571 (7) | 0.2278 (15) | 0.026 (3) | 0.462 (6) |
H2AA | 1.2624 | 0.2566 | 0.3175 | 0.039* | 0.462 (6) |
H2AB | 1.2564 | 0.2194 | 0.1968 | 0.039* | 0.462 (6) |
H2AC | 1.2830 | 0.2888 | 0.1985 | 0.039* | 0.462 (6) |
C3A | 1.0409 (7) | 0.3254 (3) | 0.2283 (8) | 0.0261 (15) | 0.462 (6) |
H3AA | 1.0678 | 0.3568 | 0.1787 | 0.031* | 0.462 (6) |
H3AB | 1.0991 | 0.3307 | 0.3145 | 0.031* | 0.462 (6) |
C4A | 0.8818 (7) | 0.3300 (3) | 0.2199 (7) | 0.0258 (15) | 0.462 (6) |
H4AA | 0.8618 | 0.3687 | 0.2514 | 0.031* | 0.462 (6) |
H4AB | 0.8237 | 0.3269 | 0.1332 | 0.031* | 0.462 (6) |
C5A | 0.6793 (11) | 0.2766 (5) | 0.2581 (15) | 0.022 (2) | 0.462 (6) |
H5AA | 0.6435 | 0.2671 | 0.1708 | 0.033* | 0.462 (6) |
H5AB | 0.6520 | 0.2452 | 0.3063 | 0.033* | 0.462 (6) |
H5AC | 0.6365 | 0.3137 | 0.2741 | 0.033* | 0.462 (6) |
C6A | 0.889 (2) | 0.2966 (7) | 0.4260 (10) | 0.023 (3) | 0.462 (6) |
H6AA | 0.9949 | 0.3006 | 0.4516 | 0.035* | 0.462 (6) |
H6AB | 0.8448 | 0.3336 | 0.4409 | 0.035* | 0.462 (6) |
H6AC | 0.8603 | 0.2651 | 0.4731 | 0.035* | 0.462 (6) |
C7 | 0.8778 (3) | 0.11821 (10) | 0.0299 (3) | 0.0221 (6) | |
O8 | 1.0160 (2) | 0.11540 (7) | 0.09989 (17) | 0.0220 (4) | |
C9 | 1.1153 (3) | 0.07649 (11) | 0.0618 (3) | 0.0262 (7) | |
H9A | 1.1345 | 0.0914 | −0.0139 | 0.031* | |
H9B | 1.0731 | 0.0367 | 0.0454 | 0.031* | |
C10 | 1.2527 (3) | 0.07470 (11) | 0.1641 (3) | 0.0246 (6) | |
H10A | 1.2301 | 0.0685 | 0.2429 | 0.030* | |
H10B | 1.3139 | 0.0417 | 0.1514 | 0.030* | |
O11 | 1.3286 (2) | 0.12830 (8) | 0.1677 (2) | 0.0318 (5) | |
C12 | 1.4621 (3) | 0.12837 (14) | 0.2611 (3) | 0.0380 (8) | |
H12A | 1.5113 | 0.1660 | 0.2607 | 0.057* | |
H12B | 1.4437 | 0.1226 | 0.3408 | 0.057* | |
H12C | 1.5237 | 0.0965 | 0.2463 | 0.057* | |
C13 | 1.0016 (3) | 0.12252 (11) | 0.4785 (3) | 0.0208 (6) | |
O14 | 1.0774 (2) | 0.08476 (8) | 0.56361 (18) | 0.0248 (4) | |
C15 | 1.0045 (4) | 0.05469 (13) | 0.6430 (3) | 0.0303 (7) | |
H15A | 0.9223 | 0.0311 | 0.5933 | 0.036* | |
H15B | 0.9664 | 0.0836 | 0.6911 | 0.036* | |
C16 | 1.1136 (4) | 0.01571 (12) | 0.7265 (3) | 0.0330 (8) | |
H16A | 1.0658 | −0.0086 | 0.7762 | 0.040* | |
H16B | 1.1574 | −0.0109 | 0.6779 | 0.040* | |
O17 | 1.2226 (2) | 0.05108 (8) | 0.80437 (19) | 0.0278 (5) | |
C18 | 1.3393 (4) | 0.01777 (13) | 0.8787 (3) | 0.0378 (8) | |
H18A | 1.4112 | 0.0443 | 0.9305 | 0.057* | |
H18B | 1.3026 | −0.0089 | 0.9307 | 0.057* | |
H18C | 1.3847 | −0.0050 | 0.8264 | 0.057* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.01874 (19) | 0.01410 (15) | 0.01842 (19) | 0.00001 (12) | 0.00353 (13) | −0.00176 (11) |
S1 | 0.0204 (4) | 0.0212 (3) | 0.0258 (4) | 0.0008 (3) | 0.0008 (3) | −0.0072 (3) |
S2 | 0.0331 (5) | 0.0199 (3) | 0.0239 (4) | −0.0004 (3) | 0.0008 (3) | −0.0061 (3) |
S3 | 0.0203 (4) | 0.0247 (3) | 0.0203 (4) | 0.0006 (3) | 0.0042 (3) | 0.0036 (3) |
S4 | 0.0221 (4) | 0.0326 (4) | 0.0391 (5) | −0.0011 (3) | 0.0089 (4) | −0.0034 (3) |
N1 | 0.019 (3) | 0.014 (3) | 0.024 (3) | 0.004 (2) | 0.006 (3) | 0.002 (2) |
N2 | 0.023 (3) | 0.016 (2) | 0.018 (4) | −0.002 (2) | 0.002 (3) | −0.003 (2) |
C1 | 0.029 (4) | 0.022 (4) | 0.023 (3) | 0.001 (3) | 0.012 (3) | −0.003 (3) |
C2 | 0.023 (4) | 0.022 (5) | 0.024 (5) | 0.001 (3) | 0.009 (3) | 0.001 (3) |
C3 | 0.027 (3) | 0.013 (2) | 0.029 (3) | 0.003 (2) | 0.009 (2) | 0.003 (2) |
C4 | 0.028 (3) | 0.016 (2) | 0.030 (3) | −0.002 (2) | 0.009 (3) | −0.005 (2) |
C5 | 0.019 (4) | 0.011 (4) | 0.034 (4) | −0.006 (3) | 0.006 (3) | −0.003 (3) |
C6 | 0.045 (5) | 0.028 (5) | 0.014 (4) | 0.002 (4) | 0.008 (4) | −0.008 (4) |
N1A | 0.022 (3) | 0.016 (3) | 0.020 (3) | −0.001 (3) | 0.004 (3) | −0.001 (3) |
N2A | 0.025 (4) | 0.016 (3) | 0.016 (4) | −0.002 (2) | 0.002 (3) | −0.009 (2) |
C1A | 0.024 (4) | 0.024 (4) | 0.016 (3) | −0.001 (3) | 0.008 (3) | −0.005 (3) |
C2A | 0.013 (4) | 0.033 (7) | 0.030 (6) | −0.004 (4) | 0.001 (4) | 0.002 (4) |
C3A | 0.034 (3) | 0.015 (2) | 0.031 (3) | −0.002 (2) | 0.010 (3) | −0.005 (2) |
C4A | 0.033 (3) | 0.017 (2) | 0.025 (3) | 0.005 (3) | 0.004 (3) | −0.002 (2) |
C5A | 0.016 (5) | 0.013 (5) | 0.033 (5) | −0.004 (3) | 0.000 (4) | −0.006 (3) |
C6A | 0.023 (4) | 0.033 (6) | 0.014 (5) | −0.001 (4) | 0.003 (4) | −0.005 (4) |
C7 | 0.0281 (17) | 0.0105 (11) | 0.0239 (16) | −0.0027 (11) | 0.0008 (13) | 0.0009 (10) |
O8 | 0.0218 (11) | 0.0173 (9) | 0.0240 (11) | 0.0031 (7) | 0.0019 (9) | −0.0058 (7) |
C9 | 0.0274 (17) | 0.0213 (13) | 0.0292 (17) | 0.0043 (12) | 0.0070 (13) | −0.0070 (11) |
C10 | 0.0270 (17) | 0.0133 (12) | 0.0343 (18) | 0.0000 (11) | 0.0097 (13) | −0.0023 (11) |
O11 | 0.0291 (13) | 0.0238 (10) | 0.0375 (13) | −0.0099 (9) | 0.0012 (10) | 0.0063 (9) |
C12 | 0.0253 (19) | 0.0333 (17) | 0.049 (2) | −0.0047 (13) | −0.0001 (16) | −0.0026 (14) |
C13 | 0.0247 (16) | 0.0187 (12) | 0.0174 (15) | −0.0010 (11) | 0.0033 (12) | −0.0016 (10) |
O14 | 0.0255 (12) | 0.0254 (10) | 0.0253 (12) | −0.0016 (8) | 0.0100 (9) | 0.0046 (8) |
C15 | 0.037 (2) | 0.0319 (15) | 0.0236 (18) | −0.0143 (13) | 0.0105 (14) | 0.0024 (12) |
C16 | 0.052 (2) | 0.0203 (14) | 0.0284 (18) | −0.0091 (14) | 0.0133 (15) | 0.0034 (12) |
O17 | 0.0337 (13) | 0.0198 (9) | 0.0277 (12) | 0.0002 (8) | 0.0051 (10) | 0.0041 (8) |
C18 | 0.044 (2) | 0.0318 (16) | 0.037 (2) | 0.0101 (14) | 0.0098 (16) | 0.0124 (14) |
Zn1—S1 | 2.3107 (9) | C1A—H1AB | 0.9800 |
Zn1—S3 | 2.3050 (9) | C1A—H1AC | 0.9800 |
Zn1—N1 | 2.141 (5) | C2A—H2AA | 0.9800 |
Zn1—N2 | 2.123 (5) | C2A—H2AB | 0.9800 |
Zn1—N1A | 2.144 (6) | C2A—H2AC | 0.9800 |
Zn1—N2A | 2.128 (6) | C3A—H3AA | 0.9900 |
S1—C7 | 1.731 (3) | C3A—H3AB | 0.9900 |
S2—C7 | 1.647 (3) | C3A—C4A | 1.508 (7) |
S3—C13 | 1.723 (3) | C4A—H4AA | 0.9900 |
S4—C13 | 1.657 (3) | C4A—H4AB | 0.9900 |
N1—C1 | 1.482 (6) | C5A—H5AA | 0.9800 |
N1—C2 | 1.477 (7) | C5A—H5AB | 0.9800 |
N1—C3 | 1.489 (6) | C5A—H5AC | 0.9800 |
N2—C4 | 1.492 (6) | C6A—H6AA | 0.9800 |
N2—C5 | 1.478 (7) | C6A—H6AB | 0.9800 |
N2—C6 | 1.491 (7) | C6A—H6AC | 0.9800 |
C1—H1A | 0.9800 | C7—O8 | 1.344 (3) |
C1—H1B | 0.9800 | O8—C9 | 1.454 (3) |
C1—H1C | 0.9800 | C9—H9A | 0.9900 |
C2—H2A | 0.9800 | C9—H9B | 0.9900 |
C2—H2B | 0.9800 | C9—C10 | 1.495 (4) |
C2—H2C | 0.9800 | C10—H10A | 0.9900 |
C3—H3A | 0.9900 | C10—H10B | 0.9900 |
C3—H3B | 0.9900 | C10—O11 | 1.417 (3) |
C3—C4 | 1.509 (6) | O11—C12 | 1.417 (4) |
C4—H4A | 0.9900 | C12—H12A | 0.9800 |
C4—H4B | 0.9900 | C12—H12B | 0.9800 |
C5—H5A | 0.9800 | C12—H12C | 0.9800 |
C5—H5B | 0.9800 | C13—O14 | 1.346 (3) |
C5—H5C | 0.9800 | O14—C15 | 1.459 (3) |
C6—H6A | 0.9800 | C15—H15A | 0.9900 |
C6—H6B | 0.9800 | C15—H15B | 0.9900 |
C6—H6C | 0.9800 | C15—C16 | 1.494 (4) |
N1A—C1A | 1.482 (7) | C16—H16A | 0.9900 |
N1A—C2A | 1.482 (7) | C16—H16B | 0.9900 |
N1A—C3A | 1.494 (7) | C16—O17 | 1.418 (4) |
N2A—C4A | 1.496 (7) | O17—C18 | 1.420 (4) |
N2A—C5A | 1.479 (7) | C18—H18A | 0.9800 |
N2A—C6A | 1.490 (7) | C18—H18B | 0.9800 |
C1A—H1AA | 0.9800 | C18—H18C | 0.9800 |
S3—Zn1—S1 | 125.54 (3) | H1AB—C1A—H1AC | 109.5 |
N1—Zn1—S1 | 105.2 (2) | N1A—C2A—H2AA | 109.5 |
N1—Zn1—S3 | 106.5 (2) | N1A—C2A—H2AB | 109.5 |
N2—Zn1—S1 | 111.1 (2) | N1A—C2A—H2AC | 109.5 |
N2—Zn1—S3 | 113.7 (2) | H2AA—C2A—H2AB | 109.5 |
N2—Zn1—N1 | 86.9 (2) | H2AA—C2A—H2AC | 109.5 |
N1A—Zn1—S1 | 109.9 (3) | H2AB—C2A—H2AC | 109.5 |
N1A—Zn1—S3 | 104.2 (3) | N1A—C3A—H3AA | 109.6 |
N2A—Zn1—S1 | 103.0 (3) | N1A—C3A—H3AB | 109.6 |
N2A—Zn1—S3 | 121.3 (3) | N1A—C3A—C4A | 110.4 (6) |
N2A—Zn1—N1A | 85.1 (3) | H3AA—C3A—H3AB | 108.1 |
C7—S1—Zn1 | 101.98 (10) | C4A—C3A—H3AA | 109.6 |
C13—S3—Zn1 | 100.13 (10) | C4A—C3A—H3AB | 109.6 |
C1—N1—Zn1 | 115.0 (5) | N2A—C4A—C3A | 110.2 (6) |
C1—N1—C3 | 108.4 (5) | N2A—C4A—H4AA | 109.6 |
C2—N1—Zn1 | 110.4 (8) | N2A—C4A—H4AB | 109.6 |
C2—N1—C1 | 109.9 (7) | C3A—C4A—H4AA | 109.6 |
C2—N1—C3 | 110.8 (7) | C3A—C4A—H4AB | 109.6 |
C3—N1—Zn1 | 102.0 (4) | H4AA—C4A—H4AB | 108.1 |
C4—N2—Zn1 | 103.9 (4) | N2A—C5A—H5AA | 109.5 |
C5—N2—Zn1 | 109.6 (7) | N2A—C5A—H5AB | 109.5 |
C5—N2—C4 | 109.5 (6) | N2A—C5A—H5AC | 109.5 |
C5—N2—C6 | 108.4 (9) | H5AA—C5A—H5AB | 109.5 |
C6—N2—Zn1 | 114.5 (7) | H5AA—C5A—H5AC | 109.5 |
C6—N2—C4 | 110.9 (7) | H5AB—C5A—H5AC | 109.5 |
N1—C1—H1A | 109.5 | N2A—C6A—H6AA | 109.5 |
N1—C1—H1B | 109.5 | N2A—C6A—H6AB | 109.5 |
N1—C1—H1C | 109.5 | N2A—C6A—H6AC | 109.5 |
H1A—C1—H1B | 109.5 | H6AA—C6A—H6AB | 109.5 |
H1A—C1—H1C | 109.5 | H6AA—C6A—H6AC | 109.5 |
H1B—C1—H1C | 109.5 | H6AB—C6A—H6AC | 109.5 |
N1—C2—H2A | 109.5 | S2—C7—S1 | 123.82 (18) |
N1—C2—H2B | 109.5 | O8—C7—S1 | 111.76 (19) |
N1—C2—H2C | 109.5 | O8—C7—S2 | 124.4 (2) |
H2A—C2—H2B | 109.5 | C7—O8—C9 | 118.3 (2) |
H2A—C2—H2C | 109.5 | O8—C9—H9A | 110.3 |
H2B—C2—H2C | 109.5 | O8—C9—H9B | 110.3 |
N1—C3—H3A | 109.4 | O8—C9—C10 | 107.1 (2) |
N1—C3—H3B | 109.4 | H9A—C9—H9B | 108.5 |
N1—C3—C4 | 111.1 (5) | C10—C9—H9A | 110.3 |
H3A—C3—H3B | 108.0 | C10—C9—H9B | 110.3 |
C4—C3—H3A | 109.4 | C9—C10—H10A | 109.8 |
C4—C3—H3B | 109.4 | C9—C10—H10B | 109.8 |
N2—C4—C3 | 113.3 (5) | H10A—C10—H10B | 108.2 |
N2—C4—H4A | 108.9 | O11—C10—C9 | 109.5 (2) |
N2—C4—H4B | 108.9 | O11—C10—H10A | 109.8 |
C3—C4—H4A | 108.9 | O11—C10—H10B | 109.8 |
C3—C4—H4B | 108.9 | C12—O11—C10 | 111.9 (2) |
H4A—C4—H4B | 107.7 | O11—C12—H12A | 109.5 |
N2—C5—H5A | 109.5 | O11—C12—H12B | 109.5 |
N2—C5—H5B | 109.5 | O11—C12—H12C | 109.5 |
N2—C5—H5C | 109.5 | H12A—C12—H12B | 109.5 |
H5A—C5—H5B | 109.5 | H12A—C12—H12C | 109.5 |
H5A—C5—H5C | 109.5 | H12B—C12—H12C | 109.5 |
H5B—C5—H5C | 109.5 | S4—C13—S3 | 126.24 (16) |
N2—C6—H6A | 109.5 | O14—C13—S3 | 110.2 (2) |
N2—C6—H6B | 109.5 | O14—C13—S4 | 123.6 (2) |
N2—C6—H6C | 109.5 | C13—O14—C15 | 119.2 (2) |
H6A—C6—H6B | 109.5 | O14—C15—H15A | 110.2 |
H6A—C6—H6C | 109.5 | O14—C15—H15B | 110.2 |
H6B—C6—H6C | 109.5 | O14—C15—C16 | 107.5 (3) |
C1A—N1A—Zn1 | 113.0 (6) | H15A—C15—H15B | 108.5 |
C1A—N1A—C3A | 109.8 (6) | C16—C15—H15A | 110.2 |
C2A—N1A—Zn1 | 114.3 (9) | C16—C15—H15B | 110.2 |
C2A—N1A—C1A | 106.9 (8) | C15—C16—H16A | 109.9 |
C2A—N1A—C3A | 108.2 (7) | C15—C16—H16B | 109.9 |
C3A—N1A—Zn1 | 104.5 (4) | H16A—C16—H16B | 108.3 |
C4A—N2A—Zn1 | 104.6 (4) | O17—C16—C15 | 108.8 (2) |
C5A—N2A—Zn1 | 113.7 (7) | O17—C16—H16A | 109.9 |
C5A—N2A—C4A | 109.8 (7) | O17—C16—H16B | 109.9 |
C5A—N2A—C6A | 107.8 (9) | C16—O17—C18 | 112.9 (2) |
C6A—N2A—Zn1 | 110.8 (9) | O17—C18—H18A | 109.5 |
C6A—N2A—C4A | 110.1 (8) | O17—C18—H18B | 109.5 |
N1A—C1A—H1AA | 109.5 | O17—C18—H18C | 109.5 |
N1A—C1A—H1AB | 109.5 | H18A—C18—H18B | 109.5 |
N1A—C1A—H1AC | 109.5 | H18A—C18—H18C | 109.5 |
H1AA—C1A—H1AB | 109.5 | H18B—C18—H18C | 109.5 |
H1AA—C1A—H1AC | 109.5 | ||
Zn1—S1—C7—S2 | −170.71 (15) | C2—N1—C3—C4 | −73.8 (9) |
Zn1—S1—C7—O8 | 9.49 (19) | C5—N2—C4—C3 | −84.1 (8) |
Zn1—S3—C13—S4 | −6.90 (19) | C6—N2—C4—C3 | 156.4 (9) |
Zn1—S3—C13—O14 | 172.51 (16) | N1A—C3A—C4A—N2A | 58.4 (9) |
Zn1—N1—C3—C4 | 43.8 (6) | C1A—N1A—C3A—C4A | 81.0 (8) |
Zn1—N2—C4—C3 | 32.9 (7) | C2A—N1A—C3A—C4A | −162.6 (10) |
Zn1—N1A—C3A—C4A | −40.5 (8) | C5A—N2A—C4A—C3A | −164.5 (9) |
Zn1—N2A—C4A—C3A | −42.1 (8) | C6A—N2A—C4A—C3A | 77.0 (10) |
S1—C7—O8—C9 | 176.11 (18) | C7—O8—C9—C10 | −171.4 (2) |
S2—C7—O8—C9 | −3.7 (3) | O8—C9—C10—O11 | −73.4 (3) |
S3—C13—O14—C15 | 174.79 (18) | C9—C10—O11—C12 | −178.4 (2) |
S4—C13—O14—C15 | −5.8 (3) | C13—O14—C15—C16 | 179.5 (2) |
N1—C3—C4—N2 | −55.6 (8) | O14—C15—C16—O17 | 65.4 (3) |
C1—N1—C3—C4 | 165.5 (6) | C15—C16—O17—C18 | −173.9 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1C···O8 | 0.98 | 2.48 | 3.103 (7) | 121 |
C2A—H2AB···O11 | 0.98 | 2.24 | 3.207 (13) | 168 |
C5A—H5AA···S1 | 0.98 | 2.92 | 3.454 (16) | 115 |
C6—H6C···S4 | 0.98 | 2.74 | 3.512 (13) | 136 |
C6—H6B···O11i | 0.98 | 2.54 | 3.321 (13) | 136 |
C3A—H3AB···S2ii | 0.99 | 2.81 | 3.483 (7) | 125 |
C6A—H6AA···S1ii | 0.98 | 2.84 | 3.764 (16) | 158 |
C4A—H4AA···O17iii | 0.99 | 2.44 | 3.380 (6) | 159 |
C4A—H4AB···S3iii | 0.99 | 2.81 | 3.774 (8) | 164 |
C9—H9A···O17iv | 0.99 | 2.61 | 3.415 (4) | 138 |
C9—H9B···S2v | 0.99 | 2.94 | 3.708 (3) | 135 |
C18—H18B···S2vi | 0.98 | 3.02 | 3.998 (3) | 176 |
Symmetry codes: (i) x−1/2, −y+1/2, z+1/2; (ii) x+1/2, −y+1/2, z+1/2; (iii) x−1/2, −y+1/2, z−1/2; (iv) x, y, z−1; (v) −x+2, −y, −z; (vi) −x+2, −y, −z+1. |
Funding information
We would like to thank the EPSRC for an equipment grant, which funded the diffractometer at Heriot-Watt University.
References
Becke, A. D. (1993). J. Chem. Phys. 98, 5648–5652. CrossRef CAS Web of Science Google Scholar
Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chakraborty, S. & Tare, V. (2006). Bioresour. Technol. 97, 2407–2413. Web of Science CrossRef PubMed CAS Google Scholar
Chen, D., Lai, C. S. & Tiekink, E. R. T. (2002). Z. Kristallogr. 217, 747–752. Google Scholar
Chen, D., Lai, C. S. & Tiekink, E. R. T. (2003). Appl. Organomet. Chem. 17, 247–248. Web of Science CSD CrossRef CAS Google Scholar
Cusack, J., Drew, M. G. B. & Spalding, T. R. (2004). Polyhedron, 23, 2315–2321. Web of Science CSD CrossRef CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Edwards, A. J., Hoskins, B. F. & Winter, G. (1990a). Acta Cryst. C46, 1789–1792. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Edwards, A. J., Hoskins, B. F. & Winter, G. (1990b). Acta Cryst. C46, 1786–1789. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Friebolin, W., Schilling, G., Zöller, M. & Amtmann, E. (2005). J. Med. Chem. 48, 7925–7931. Web of Science CrossRef PubMed CAS Google Scholar
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gupta, B., Kalgotra, N., Andotra, S. & Pandey, S. K. (2012). Monatsh. Chem. 143, 1087–1095. Web of Science CrossRef CAS Google Scholar
Lee, K., Archibald, D., McLean, J. & Reuter, M. A. (2009). Miner. Eng. 22, 395–401. Web of Science CrossRef CAS Google Scholar
Qadir, A. M. (2016). Asian J. Chem. 28, 1169–1170. CrossRef CAS Google Scholar
Qadir, A. M. & Dege, N. (2019). J. Struct. Chem. 60, 844–848. Web of Science CrossRef Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Tankov, I. & Yankova, R. (2019). J. Mol. Liq. 278, 183–194. Web of Science CrossRef CAS Google Scholar
Tiravanti, G., Marani, D., Passino, R. & Santori, M. (1998). Stud. Environ. Sci. 34, 109–118. CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.