research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and DFT study of a zinc xanthate complex

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, College of Science, Salahaddin University, Erbil, Iraq, bDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139, Kurupelit, Samsun, Turkey, cInstitute of Chemical Sciences, School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK, and dTaras Shevchenko National University of Kyiv, Department of Chemistry, 64, Vladimirska Str., Kiev 01601, Ukraine
*Correspondence e-mail: sevgi.kansiz85@gmail.com, ifritsky@univ.kiev.ua

Edited by A. J. Lough, University of Toronto, Canada (Received 9 September 2019; accepted 23 September 2019; online 3 October 2019)

In the title compound, bis­(2-meth­oxy­ethyl xanthato-κS)(N,N,N′,N′-tetra­methyl­ethylenedi­amine-κ2N,N′)zinc(II) acetone hemisolvate, [Zn(C4H7O2S2)2(C6H16N2)]·0.5C3H6O, the ZnII ion is coordinated by two N atoms of the N,N,N′,N′-tetra­methyl­ethylenedi­amine ligand and two S atoms from two 2-meth­oxy­ethyl xanthate ligands. The amine ligand is disordered over two orientations and was modelled with refined occupancies of 0.538 (6) and 0.462 (6). The mol­ecular structure features two C—H⋯O and two C—H⋯S intra­molecular inter­actions. In the crystal, mol­ecules are linked by weak C—H⋯O and C—H⋯S hydrogen bonds, forming a three-dimensional supra­molecular architecture. The mol­ecular structure was optimized using density functional theory (DFT) at the B3LYP/6–311 G(d,p) level. The smallest HOMO–LUMO energy gap (3.19 eV) indicates the suitability of this crystal for optoelectronic applications. The mol­ecular electrostatic potential (MEP) further identifies the positive, negative and neutral electrostatic potential regions of the mol­ecules. Half a mol­ecule of disordered acetone was removed with the solvent-mask procedure in OLEX2 [Dolomanov et al. (2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]). J. Appl. Cryst. 42, 339–341] and this contribition is included in the formula.

1. Chemical context

Xanthates (di­thio­carbonates) are related to the di­thiol­ate family. Xanthate is a bidentate monoanionic sulfur–sulfur donor ligand. It stabilizes complexes of most of the transition elements and can bind metal centers in monodentate, isobidenate, anisobidenate or ionic modes. Xanthates have the ability to inhibit the replication of both RNA and DNA viruses in vitro (Friebolin et al., 2005[Friebolin, W., Schilling, G., Zöller, M. & Amtmann, E. (2005). J. Med. Chem. 48, 7925-7931.]). They have been used as accelerators in the vulcanization of rubber (Gupta et al., 2012[Gupta, B., Kalgotra, N., Andotra, S. & Pandey, S. K. (2012). Monatsh. Chem. 143, 1087-1095.]), in cellulose synthesis (Tiravanti et al., 1998[Tiravanti, G., Marani, D., Passino, R. & Santori, M. (1998). Stud. Environ. Sci. 34, 109-118.]), as collectors in the froth flotation of metal sulfide ores (Lee et al., 2009[Lee, K., Archibald, D., McLean, J. & Reuter, M. A. (2009). Miner. Eng. 22, 395-401.]) and as reagents for heavy-metal sedimentation in waste-water treatment (Chakraborty et al., 2006[Chakraborty, S. & Tare, V. (2006). Bioresour. Technol. 97, 2407-2413.]). In our previous work, we prepared and structurally characterized nickel(II) and zinc(II) n-propylxanthate complexes containing N,N,N′,N′-tetra­methyl­ethylenedi­amine as a neutral ligand. Both complexes showed a distorted octa­hedral environment around the metal center (Qadir & Dege, 2019[Qadir, A. M. & Dege, N. (2019). J. Struct. Chem. 60, 844-848.]). In this paper, we report the synthesis and crystal structure of a zinc(II) 2-meth­oxy­ethylxanthate complex containing N,N,N′,N′-tetra­methyl­ethylenedi­amine, [Zn(S2COC2H4OCH3)2(tmeda)], which was investigated by a DFT study.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound is illustrated in Fig. 1[link]. The ZnII ion is coordinated by two N atoms of the N,N,N′,N′-tetra­methyl­ethylenedi­amine mol­ecule and two S atoms from two 2-meth­oxy­ethylxanthate mol­ecules. The Zn1—N1, Zn1—N2, Zn1—S1 and Zn1—S3 bond lengths are 2.141 (5), 2.123 (5), 2.3107 (9) and 2.3050 (9) Å, respectively (Table 1[link]). These bond distances are similar to those reported in the work of Cusack et al. (2004[Cusack, J., Drew, M. G. B. & Spalding, T. R. (2004). Polyhedron, 23, 2315-2321.]). The C7—O8 and C13—O14 bond lengths are similar [1.344 (3) and 1.346 (3) Å, respectively], while the C9—O8 and C15—O14 bonds are also not significantly different [1.454 (3) and 1.459 (3) Å, respectively]. In the same way, the C10—O11 [1.417 (3)] and C16—O17 [1.418 (4)] bond lengths are similar to each other. All of the C—O bonds show single-bond character. In the {S2C} section of the xanthate ligands, the carbon-to-sulfur S1 distance is 1.731 (3) Å, which is typical of a single bond whereas the carbon-to-sulfur S2 distance of 1.647 (3) Å is typical of a carbon-to-sulfur double bond. In the mol­ecule, weak C1—H1C⋯O8, C2A—H2AB⋯O11, C5A—H5AA⋯S1 and C6—H6C⋯S4 intra­molecular inter­actions are observed (Table 2[link]).

Table 1
Selected geometric parameters (Å, °)

Zn1—S1 2.3107 (9) S1—C7 1.731 (3)
Zn1—S3 2.3050 (9) S2—C7 1.647 (3)
Zn1—N1 2.141 (5) S3—C13 1.723 (3)
Zn1—N2 2.123 (5) S4—C13 1.657 (3)
       
S3—Zn1—S1 125.54 (3) N1—Zn1—S3 106.5 (2)
N1—Zn1—S1 105.2 (2) N2—Zn1—N1 86.9 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1C⋯O8 0.98 2.48 3.103 (7) 121
C2A—H2AB⋯O11 0.98 2.24 3.207 (13) 168
C5A—H5AA⋯S1 0.98 2.92 3.454 (16) 115
C6—H6C⋯S4 0.98 2.74 3.512 (13) 136
C6—H6B⋯O11i 0.98 2.54 3.321 (13) 136
C3A—H3AB⋯S2ii 0.99 2.81 3.483 (7) 125
C6A—H6AA⋯S1ii 0.98 2.84 3.764 (16) 158
C4A—H4AA⋯O17iii 0.99 2.44 3.380 (6) 159
C4A—H4AB⋯S3iii 0.99 2.81 3.774 (8) 164
C9—H9A⋯O17iv 0.99 2.61 3.415 (4) 138
C9—H9B⋯S2v 0.99 2.94 3.708 (3) 135
C18—H18B⋯S2vi 0.98 3.02 3.998 (3) 176
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) x, y, z-1; (v) -x+2, -y, -z; (vi) -x+2, -y, -z+1.
[Figure 1]
Figure 1
The mol­ecular structure of the title complex, with the atom labelling. Only the major component of the disordered amine ligand is shown. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

The crystal packing of the title compound (Fig. 2[link]) features inter­molecular hydrogen bonds (C6—H6B⋯O11i, C3A—H3AB⋯S2ii, C6A—H6AA⋯S1ii, C4A—H4AA⋯O17iii, C4A—H4AB⋯S3iii, C9—H9A⋯O17iv, C9—H9B⋯S2v and C18—H18B⋯S2vi; symmetry codes as in Table 2[link]), which connect the mol­ecules into a three-dimensional supra­molecular architecture.

[Figure 2]
Figure 2
A view of the crystal packing of the title complex. Dashed lines denote the inter­molecular hydrogen bonds (Table 2[link]). Symmetry codes: (i) x − [{1\over 2}], −y + [{1\over 2}], z − [{1\over 2}]; (ii) x + [{1\over 2}], −y + [{1\over 2}], z + [{1\over 2}].

4. Database survey

Previously reported complexes related to the title complex are [Cd(S2COCH2CH2OMe)2(bipy)] [CSD (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) refcode BENDII; Chen et al., 2002[Chen, D., Lai, C. S. & Tiekink, E. R. T. (2002). Z. Kristallogr. 217, 747-752.]], [Ni(C4H7O2S2)2(C6H16N2)] (NADTAQ; Qadir, 2016[Qadir, A. M. (2016). Asian J. Chem. 28, 1169-1170.]), [Ni(moexa)2phen] (unsolvated form) and [Ni(moexa)2phen] (benzene solvate), moexa = O-methoxy­ethyl­xan­thato-S,S′ (with refcodes SICTUT and SICVAB, respectively; Edwards et al., 1990a[Edwards, A. J., Hoskins, B. F. & Winter, G. (1990a). Acta Cryst. C46, 1789-1792.]), [Ni(moexa)2bpy]; forms I and II (with refcodes VETVIZ and VETVIZ01, respectively; Edwards et al., 1990b[Edwards, A. J., Hoskins, B. F. & Winter, G. (1990b). Acta Cryst. C46, 1786-1789.]) and [Cd(S2COCH2CH2OCH3)2(4,7-Me2phen)] (WACPOG; Chen et al., 2003[Chen, D., Lai, C. S. & Tiekink, E. R. T. (2003). Appl. Organomet. Chem. 17, 247-248.]). The Cd—S and Cd—N bond lengths range from 2.489 to 2.796 Å and 2.334 to 2.406 Å, respectively. Similarly, the Ni—S and Ni—N bond lengths range from 2.432 to 2.458 Å and 2.070 to 2.172 Å, respectively. In these complexes, compared with the ZnII complex, the metal-to-ligand distances with M—S/N bond lengths follow the order ZnII < NiII < CdII in the corresponding complexes.

5. Frontier mol­ecular orbital analysis

The highest occupied mol­ecular orbitals (HOMOs) and the lowest unoccupied mol­ecular orbitals (LUMOs) are named as frontier mol­ecular orbitals (FMOs). The FMOs play an important role in the optical and electric properties. The frontier orbital gap characterizes the chemical reactivity and the kinetic stability of the mol­ecule. A mol­ecule with a small frontier orbital gap is generally associated with a high chemical reactivity, low kinetic stability and is also termed a soft mol­ecule. The density functional theory (DFT) quantum-chemical calculations for the title compound were performed at the B3LYP/6–311 G(d,p) level (Becke, 1993[Becke, A. D. (1993). J. Chem. Phys. 98, 5648-5652.]) as implemented in GAUSSIAN09 (Frisch et al., 2009[Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.]). Fig. 3[link] illustrates the HOMO and LUMO energy levels of the title compound. The small HOMO–LUMO energy gap (3.19 eV) in this compound indicates the chemical reactivity is strong and the kinetic stability is weak, which in turn increases the non-linear optical activity. As a result, with the small HOMO–LUMO energy gap, this compound could potentially be used in optoelectronic applications.

[Figure 3]
Figure 3
The electron distribution of the HOMO and LUMO energy levels of the title compound.

6. Mol­ecular electrostatic potential (MEP)

The MEP map of the title mol­ecule was calculated theoretic­ally at the B3LYP/6-311G(d,p) level of theory and is illustrated in Fig. 4[link]. The blue-coloured region is electrophilic and electron poor, whereas the red colour indicates the nucleophilic region with rich electrons in the environment and provide information about inter­actions that can occur between mol­ecules (Tankov & Yankova, 2019[Tankov, I. & Yankova, R. (2019). J. Mol. Liq. 278, 183-194.]). In the title compound, the reactive sites are localized near the C—O group: this is the region having the most negative potential spots (red colour), all over the oxygen atom because of the C—H⋯O inter­actions in the crystal structure. The negative potential value of −0.092 a.u. indicates the region that shows the strongest repulsion (electrophilic attack). In addition, the most positive region is located at the hydrogen atoms and shows the strongest attraction (nucleophilic attack) sites, which involve the N,N,N′,N′-tetra­methyl­ethylenedi­amine moiety.

[Figure 4]
Figure 4
The total electron density three-dimensional surface mapped for the title compound with the electrostatic potential calculated at the B3LYP/6–311 G(d,p) level.

7. Synthesis and crystallization

Tetra­methyl­ethylenedi­amine (10 mmol, 1.16 g) was added to a hot solution of Zn(CH3CO2)·2H2O (10 mmol, 2.20 g) in 2-meth­oxy­ethanol. A hot solution of potassium 2-meth­oxy­ethylxanthate (20 mmol, 3.81 g) in 2-meth­oxy­ethanol was added and the mixture was stirred for 30 min. Water was added to the mixture and a white precipitate was formed. The product was recrystallized from acetone.

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The C-bound H atoms were positioned geometrically and refined using a riding model, with C—H = 0.98 and 0.99 Å and with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) otherwise. All atoms of the amine ligand are disordered and were modelled as two orientations with relative occupancies of 0.538 (6) and 0.462 (6). The diffuse electron density of half an acetone solvent mol­ecule was removed with the solvent-mask procedure implemented in OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]). There are two voids of 122.4 Å3 in the unit cell and the electron count was 18.2 per void.

Table 3
Experimental details

Crystal data
Chemical formula [Zn(C4H7O2S2)2(C6H16N2)]·0.5C3H6O
Mr 513.05
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 9.604 (3), 22.785 (6), 11.374 (3)
β (°) 106.304 (12)
V3) 2389.0 (12)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.40
Crystal size (mm) 0.56 × 0.52 × 0.06
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.594, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 35197, 5276, 3870
Rint 0.054
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.105, 1.06
No. of reflections 5276
No. of parameters 299
No. of restraints 244
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.41, −0.69
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Bis(2-methoxyethyl xanthato-κS)(N,N,N',N'-\ tetramethylethylenediamine-κ2N,N')zinc(II) acetone hemisolvate top
Crystal data top
[Zn(C4H7O2S2)2(C6H16N2)]·0.5C3H6OF(000) = 1016
Mr = 513.05Dx = 1.346 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.604 (3) ÅCell parameters from 8223 reflections
b = 22.785 (6) Åθ = 2.4–27.2°
c = 11.374 (3) ŵ = 1.40 mm1
β = 106.304 (12)°T = 100 K
V = 2389.0 (12) Å3Plate, colourless
Z = 40.56 × 0.52 × 0.06 mm
Data collection top
Bruker APEXII CCD
diffractometer
3870 reflections with I > 2σ(I)
φ and ω scansRint = 0.054
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
θmax = 27.5°, θmin = 2.6°
Tmin = 0.594, Tmax = 0.746h = 1212
35197 measured reflectionsk = 2929
5276 independent reflectionsl = 1314
Refinement top
Refinement on F2244 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.105 w = 1/[σ2(Fo2) + (0.057P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
5276 reflectionsΔρmax = 0.41 e Å3
299 parametersΔρmin = 0.68 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.94679 (3)0.20615 (2)0.25390 (3)0.01743 (10)
S10.77332 (8)0.16292 (3)0.09443 (7)0.02362 (17)
S20.81448 (9)0.08333 (3)0.10110 (7)0.02709 (19)
S31.11500 (8)0.15676 (3)0.40643 (6)0.02205 (17)
S40.82433 (9)0.13279 (3)0.44905 (8)0.0312 (2)
N11.0669 (9)0.2630 (3)0.1684 (7)0.0187 (17)0.538 (6)
N20.8649 (9)0.2832 (2)0.3157 (8)0.0199 (19)0.538 (6)
C11.0675 (9)0.2455 (3)0.0430 (7)0.0234 (15)0.538 (6)
H1A0.96740.24120.00840.035*0.538 (6)
H1B1.11670.27570.00810.035*0.538 (6)
H1C1.11870.20810.04650.035*0.538 (6)
C21.2174 (11)0.2697 (6)0.2467 (12)0.022 (2)0.538 (6)
H2A1.21620.28130.32940.034*0.538 (6)
H2B1.26890.23230.25050.034*0.538 (6)
H2C1.26690.30000.21210.034*0.538 (6)
C30.9856 (7)0.3192 (2)0.1604 (6)0.0229 (13)0.538 (6)
H3A0.89550.31700.09190.027*0.538 (6)
H3B1.04530.35170.14310.027*0.538 (6)
C40.9477 (7)0.3317 (2)0.2780 (5)0.0245 (13)0.538 (6)
H4A1.03840.33850.34420.029*0.538 (6)
H4B0.88940.36810.26790.029*0.538 (6)
C50.7089 (10)0.2896 (4)0.2515 (12)0.022 (2)0.538 (6)
H5A0.69500.28850.16280.033*0.538 (6)
H5B0.65480.25730.27500.033*0.538 (6)
H5C0.67360.32710.27400.033*0.538 (6)
C60.883 (2)0.2849 (6)0.4502 (9)0.029 (3)0.538 (6)
H6A0.98610.28080.49430.044*0.538 (6)
H6B0.84700.32250.47190.044*0.538 (6)
H6C0.82820.25270.47290.044*0.538 (6)
N1A1.0736 (10)0.2669 (3)0.1831 (8)0.019 (2)0.462 (6)
N2A0.8391 (10)0.2822 (3)0.2930 (9)0.020 (2)0.462 (6)
C1A1.0349 (10)0.2672 (4)0.0475 (7)0.0209 (17)0.462 (6)
H1AA0.93030.27360.01420.031*0.462 (6)
H1AB1.08770.29880.02010.031*0.462 (6)
H1AC1.06110.22940.01840.031*0.462 (6)
C2A1.2323 (12)0.2571 (7)0.2278 (15)0.026 (3)0.462 (6)
H2AA1.26240.25660.31750.039*0.462 (6)
H2AB1.25640.21940.19680.039*0.462 (6)
H2AC1.28300.28880.19850.039*0.462 (6)
C3A1.0409 (7)0.3254 (3)0.2283 (8)0.0261 (15)0.462 (6)
H3AA1.06780.35680.17870.031*0.462 (6)
H3AB1.09910.33070.31450.031*0.462 (6)
C4A0.8818 (7)0.3300 (3)0.2199 (7)0.0258 (15)0.462 (6)
H4AA0.86180.36870.25140.031*0.462 (6)
H4AB0.82370.32690.13320.031*0.462 (6)
C5A0.6793 (11)0.2766 (5)0.2581 (15)0.022 (2)0.462 (6)
H5AA0.64350.26710.17080.033*0.462 (6)
H5AB0.65200.24520.30630.033*0.462 (6)
H5AC0.63650.31370.27410.033*0.462 (6)
C6A0.889 (2)0.2966 (7)0.4260 (10)0.023 (3)0.462 (6)
H6AA0.99490.30060.45160.035*0.462 (6)
H6AB0.84480.33360.44090.035*0.462 (6)
H6AC0.86030.26510.47310.035*0.462 (6)
C70.8778 (3)0.11821 (10)0.0299 (3)0.0221 (6)
O81.0160 (2)0.11540 (7)0.09989 (17)0.0220 (4)
C91.1153 (3)0.07649 (11)0.0618 (3)0.0262 (7)
H9A1.13450.09140.01390.031*
H9B1.07310.03670.04540.031*
C101.2527 (3)0.07470 (11)0.1641 (3)0.0246 (6)
H10A1.23010.06850.24290.030*
H10B1.31390.04170.15140.030*
O111.3286 (2)0.12830 (8)0.1677 (2)0.0318 (5)
C121.4621 (3)0.12837 (14)0.2611 (3)0.0380 (8)
H12A1.51130.16600.26070.057*
H12B1.44370.12260.34080.057*
H12C1.52370.09650.24630.057*
C131.0016 (3)0.12252 (11)0.4785 (3)0.0208 (6)
O141.0774 (2)0.08476 (8)0.56361 (18)0.0248 (4)
C151.0045 (4)0.05469 (13)0.6430 (3)0.0303 (7)
H15A0.92230.03110.59330.036*
H15B0.96640.08360.69110.036*
C161.1136 (4)0.01571 (12)0.7265 (3)0.0330 (8)
H16A1.06580.00860.77620.040*
H16B1.15740.01090.67790.040*
O171.2226 (2)0.05108 (8)0.80437 (19)0.0278 (5)
C181.3393 (4)0.01777 (13)0.8787 (3)0.0378 (8)
H18A1.41120.04430.93050.057*
H18B1.30260.00890.93070.057*
H18C1.38470.00500.82640.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01874 (19)0.01410 (15)0.01842 (19)0.00001 (12)0.00353 (13)0.00176 (11)
S10.0204 (4)0.0212 (3)0.0258 (4)0.0008 (3)0.0008 (3)0.0072 (3)
S20.0331 (5)0.0199 (3)0.0239 (4)0.0004 (3)0.0008 (3)0.0061 (3)
S30.0203 (4)0.0247 (3)0.0203 (4)0.0006 (3)0.0042 (3)0.0036 (3)
S40.0221 (4)0.0326 (4)0.0391 (5)0.0011 (3)0.0089 (4)0.0034 (3)
N10.019 (3)0.014 (3)0.024 (3)0.004 (2)0.006 (3)0.002 (2)
N20.023 (3)0.016 (2)0.018 (4)0.002 (2)0.002 (3)0.003 (2)
C10.029 (4)0.022 (4)0.023 (3)0.001 (3)0.012 (3)0.003 (3)
C20.023 (4)0.022 (5)0.024 (5)0.001 (3)0.009 (3)0.001 (3)
C30.027 (3)0.013 (2)0.029 (3)0.003 (2)0.009 (2)0.003 (2)
C40.028 (3)0.016 (2)0.030 (3)0.002 (2)0.009 (3)0.005 (2)
C50.019 (4)0.011 (4)0.034 (4)0.006 (3)0.006 (3)0.003 (3)
C60.045 (5)0.028 (5)0.014 (4)0.002 (4)0.008 (4)0.008 (4)
N1A0.022 (3)0.016 (3)0.020 (3)0.001 (3)0.004 (3)0.001 (3)
N2A0.025 (4)0.016 (3)0.016 (4)0.002 (2)0.002 (3)0.009 (2)
C1A0.024 (4)0.024 (4)0.016 (3)0.001 (3)0.008 (3)0.005 (3)
C2A0.013 (4)0.033 (7)0.030 (6)0.004 (4)0.001 (4)0.002 (4)
C3A0.034 (3)0.015 (2)0.031 (3)0.002 (2)0.010 (3)0.005 (2)
C4A0.033 (3)0.017 (2)0.025 (3)0.005 (3)0.004 (3)0.002 (2)
C5A0.016 (5)0.013 (5)0.033 (5)0.004 (3)0.000 (4)0.006 (3)
C6A0.023 (4)0.033 (6)0.014 (5)0.001 (4)0.003 (4)0.005 (4)
C70.0281 (17)0.0105 (11)0.0239 (16)0.0027 (11)0.0008 (13)0.0009 (10)
O80.0218 (11)0.0173 (9)0.0240 (11)0.0031 (7)0.0019 (9)0.0058 (7)
C90.0274 (17)0.0213 (13)0.0292 (17)0.0043 (12)0.0070 (13)0.0070 (11)
C100.0270 (17)0.0133 (12)0.0343 (18)0.0000 (11)0.0097 (13)0.0023 (11)
O110.0291 (13)0.0238 (10)0.0375 (13)0.0099 (9)0.0012 (10)0.0063 (9)
C120.0253 (19)0.0333 (17)0.049 (2)0.0047 (13)0.0001 (16)0.0026 (14)
C130.0247 (16)0.0187 (12)0.0174 (15)0.0010 (11)0.0033 (12)0.0016 (10)
O140.0255 (12)0.0254 (10)0.0253 (12)0.0016 (8)0.0100 (9)0.0046 (8)
C150.037 (2)0.0319 (15)0.0236 (18)0.0143 (13)0.0105 (14)0.0024 (12)
C160.052 (2)0.0203 (14)0.0284 (18)0.0091 (14)0.0133 (15)0.0034 (12)
O170.0337 (13)0.0198 (9)0.0277 (12)0.0002 (8)0.0051 (10)0.0041 (8)
C180.044 (2)0.0318 (16)0.037 (2)0.0101 (14)0.0098 (16)0.0124 (14)
Geometric parameters (Å, º) top
Zn1—S12.3107 (9)C1A—H1AB0.9800
Zn1—S32.3050 (9)C1A—H1AC0.9800
Zn1—N12.141 (5)C2A—H2AA0.9800
Zn1—N22.123 (5)C2A—H2AB0.9800
Zn1—N1A2.144 (6)C2A—H2AC0.9800
Zn1—N2A2.128 (6)C3A—H3AA0.9900
S1—C71.731 (3)C3A—H3AB0.9900
S2—C71.647 (3)C3A—C4A1.508 (7)
S3—C131.723 (3)C4A—H4AA0.9900
S4—C131.657 (3)C4A—H4AB0.9900
N1—C11.482 (6)C5A—H5AA0.9800
N1—C21.477 (7)C5A—H5AB0.9800
N1—C31.489 (6)C5A—H5AC0.9800
N2—C41.492 (6)C6A—H6AA0.9800
N2—C51.478 (7)C6A—H6AB0.9800
N2—C61.491 (7)C6A—H6AC0.9800
C1—H1A0.9800C7—O81.344 (3)
C1—H1B0.9800O8—C91.454 (3)
C1—H1C0.9800C9—H9A0.9900
C2—H2A0.9800C9—H9B0.9900
C2—H2B0.9800C9—C101.495 (4)
C2—H2C0.9800C10—H10A0.9900
C3—H3A0.9900C10—H10B0.9900
C3—H3B0.9900C10—O111.417 (3)
C3—C41.509 (6)O11—C121.417 (4)
C4—H4A0.9900C12—H12A0.9800
C4—H4B0.9900C12—H12B0.9800
C5—H5A0.9800C12—H12C0.9800
C5—H5B0.9800C13—O141.346 (3)
C5—H5C0.9800O14—C151.459 (3)
C6—H6A0.9800C15—H15A0.9900
C6—H6B0.9800C15—H15B0.9900
C6—H6C0.9800C15—C161.494 (4)
N1A—C1A1.482 (7)C16—H16A0.9900
N1A—C2A1.482 (7)C16—H16B0.9900
N1A—C3A1.494 (7)C16—O171.418 (4)
N2A—C4A1.496 (7)O17—C181.420 (4)
N2A—C5A1.479 (7)C18—H18A0.9800
N2A—C6A1.490 (7)C18—H18B0.9800
C1A—H1AA0.9800C18—H18C0.9800
S3—Zn1—S1125.54 (3)H1AB—C1A—H1AC109.5
N1—Zn1—S1105.2 (2)N1A—C2A—H2AA109.5
N1—Zn1—S3106.5 (2)N1A—C2A—H2AB109.5
N2—Zn1—S1111.1 (2)N1A—C2A—H2AC109.5
N2—Zn1—S3113.7 (2)H2AA—C2A—H2AB109.5
N2—Zn1—N186.9 (2)H2AA—C2A—H2AC109.5
N1A—Zn1—S1109.9 (3)H2AB—C2A—H2AC109.5
N1A—Zn1—S3104.2 (3)N1A—C3A—H3AA109.6
N2A—Zn1—S1103.0 (3)N1A—C3A—H3AB109.6
N2A—Zn1—S3121.3 (3)N1A—C3A—C4A110.4 (6)
N2A—Zn1—N1A85.1 (3)H3AA—C3A—H3AB108.1
C7—S1—Zn1101.98 (10)C4A—C3A—H3AA109.6
C13—S3—Zn1100.13 (10)C4A—C3A—H3AB109.6
C1—N1—Zn1115.0 (5)N2A—C4A—C3A110.2 (6)
C1—N1—C3108.4 (5)N2A—C4A—H4AA109.6
C2—N1—Zn1110.4 (8)N2A—C4A—H4AB109.6
C2—N1—C1109.9 (7)C3A—C4A—H4AA109.6
C2—N1—C3110.8 (7)C3A—C4A—H4AB109.6
C3—N1—Zn1102.0 (4)H4AA—C4A—H4AB108.1
C4—N2—Zn1103.9 (4)N2A—C5A—H5AA109.5
C5—N2—Zn1109.6 (7)N2A—C5A—H5AB109.5
C5—N2—C4109.5 (6)N2A—C5A—H5AC109.5
C5—N2—C6108.4 (9)H5AA—C5A—H5AB109.5
C6—N2—Zn1114.5 (7)H5AA—C5A—H5AC109.5
C6—N2—C4110.9 (7)H5AB—C5A—H5AC109.5
N1—C1—H1A109.5N2A—C6A—H6AA109.5
N1—C1—H1B109.5N2A—C6A—H6AB109.5
N1—C1—H1C109.5N2A—C6A—H6AC109.5
H1A—C1—H1B109.5H6AA—C6A—H6AB109.5
H1A—C1—H1C109.5H6AA—C6A—H6AC109.5
H1B—C1—H1C109.5H6AB—C6A—H6AC109.5
N1—C2—H2A109.5S2—C7—S1123.82 (18)
N1—C2—H2B109.5O8—C7—S1111.76 (19)
N1—C2—H2C109.5O8—C7—S2124.4 (2)
H2A—C2—H2B109.5C7—O8—C9118.3 (2)
H2A—C2—H2C109.5O8—C9—H9A110.3
H2B—C2—H2C109.5O8—C9—H9B110.3
N1—C3—H3A109.4O8—C9—C10107.1 (2)
N1—C3—H3B109.4H9A—C9—H9B108.5
N1—C3—C4111.1 (5)C10—C9—H9A110.3
H3A—C3—H3B108.0C10—C9—H9B110.3
C4—C3—H3A109.4C9—C10—H10A109.8
C4—C3—H3B109.4C9—C10—H10B109.8
N2—C4—C3113.3 (5)H10A—C10—H10B108.2
N2—C4—H4A108.9O11—C10—C9109.5 (2)
N2—C4—H4B108.9O11—C10—H10A109.8
C3—C4—H4A108.9O11—C10—H10B109.8
C3—C4—H4B108.9C12—O11—C10111.9 (2)
H4A—C4—H4B107.7O11—C12—H12A109.5
N2—C5—H5A109.5O11—C12—H12B109.5
N2—C5—H5B109.5O11—C12—H12C109.5
N2—C5—H5C109.5H12A—C12—H12B109.5
H5A—C5—H5B109.5H12A—C12—H12C109.5
H5A—C5—H5C109.5H12B—C12—H12C109.5
H5B—C5—H5C109.5S4—C13—S3126.24 (16)
N2—C6—H6A109.5O14—C13—S3110.2 (2)
N2—C6—H6B109.5O14—C13—S4123.6 (2)
N2—C6—H6C109.5C13—O14—C15119.2 (2)
H6A—C6—H6B109.5O14—C15—H15A110.2
H6A—C6—H6C109.5O14—C15—H15B110.2
H6B—C6—H6C109.5O14—C15—C16107.5 (3)
C1A—N1A—Zn1113.0 (6)H15A—C15—H15B108.5
C1A—N1A—C3A109.8 (6)C16—C15—H15A110.2
C2A—N1A—Zn1114.3 (9)C16—C15—H15B110.2
C2A—N1A—C1A106.9 (8)C15—C16—H16A109.9
C2A—N1A—C3A108.2 (7)C15—C16—H16B109.9
C3A—N1A—Zn1104.5 (4)H16A—C16—H16B108.3
C4A—N2A—Zn1104.6 (4)O17—C16—C15108.8 (2)
C5A—N2A—Zn1113.7 (7)O17—C16—H16A109.9
C5A—N2A—C4A109.8 (7)O17—C16—H16B109.9
C5A—N2A—C6A107.8 (9)C16—O17—C18112.9 (2)
C6A—N2A—Zn1110.8 (9)O17—C18—H18A109.5
C6A—N2A—C4A110.1 (8)O17—C18—H18B109.5
N1A—C1A—H1AA109.5O17—C18—H18C109.5
N1A—C1A—H1AB109.5H18A—C18—H18B109.5
N1A—C1A—H1AC109.5H18A—C18—H18C109.5
H1AA—C1A—H1AB109.5H18B—C18—H18C109.5
H1AA—C1A—H1AC109.5
Zn1—S1—C7—S2170.71 (15)C2—N1—C3—C473.8 (9)
Zn1—S1—C7—O89.49 (19)C5—N2—C4—C384.1 (8)
Zn1—S3—C13—S46.90 (19)C6—N2—C4—C3156.4 (9)
Zn1—S3—C13—O14172.51 (16)N1A—C3A—C4A—N2A58.4 (9)
Zn1—N1—C3—C443.8 (6)C1A—N1A—C3A—C4A81.0 (8)
Zn1—N2—C4—C332.9 (7)C2A—N1A—C3A—C4A162.6 (10)
Zn1—N1A—C3A—C4A40.5 (8)C5A—N2A—C4A—C3A164.5 (9)
Zn1—N2A—C4A—C3A42.1 (8)C6A—N2A—C4A—C3A77.0 (10)
S1—C7—O8—C9176.11 (18)C7—O8—C9—C10171.4 (2)
S2—C7—O8—C93.7 (3)O8—C9—C10—O1173.4 (3)
S3—C13—O14—C15174.79 (18)C9—C10—O11—C12178.4 (2)
S4—C13—O14—C155.8 (3)C13—O14—C15—C16179.5 (2)
N1—C3—C4—N255.6 (8)O14—C15—C16—O1765.4 (3)
C1—N1—C3—C4165.5 (6)C15—C16—O17—C18173.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1C···O80.982.483.103 (7)121
C2A—H2AB···O110.982.243.207 (13)168
C5A—H5AA···S10.982.923.454 (16)115
C6—H6C···S40.982.743.512 (13)136
C6—H6B···O11i0.982.543.321 (13)136
C3A—H3AB···S2ii0.992.813.483 (7)125
C6A—H6AA···S1ii0.982.843.764 (16)158
C4A—H4AA···O17iii0.992.443.380 (6)159
C4A—H4AB···S3iii0.992.813.774 (8)164
C9—H9A···O17iv0.992.613.415 (4)138
C9—H9B···S2v0.992.943.708 (3)135
C18—H18B···S2vi0.983.023.998 (3)176
Symmetry codes: (i) x1/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x1/2, y+1/2, z1/2; (iv) x, y, z1; (v) x+2, y, z; (vi) x+2, y, z+1.
 

Funding information

We would like to thank the EPSRC for an equipment grant, which funded the diffractometer at Heriot-Watt University.

References

First citationBecke, A. D. (1993). J. Chem. Phys. 98, 5648–5652.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChakraborty, S. & Tare, V. (2006). Bioresour. Technol. 97, 2407–2413.  Web of Science CrossRef PubMed CAS Google Scholar
First citationChen, D., Lai, C. S. & Tiekink, E. R. T. (2002). Z. Kristallogr. 217, 747–752.  Google Scholar
First citationChen, D., Lai, C. S. & Tiekink, E. R. T. (2003). Appl. Organomet. Chem. 17, 247–248.  Web of Science CSD CrossRef CAS Google Scholar
First citationCusack, J., Drew, M. G. B. & Spalding, T. R. (2004). Polyhedron, 23, 2315–2321.  Web of Science CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEdwards, A. J., Hoskins, B. F. & Winter, G. (1990a). Acta Cryst. C46, 1789–1792.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationEdwards, A. J., Hoskins, B. F. & Winter, G. (1990b). Acta Cryst. C46, 1786–1789.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFriebolin, W., Schilling, G., Zöller, M. & Amtmann, E. (2005). J. Med. Chem. 48, 7925–7931.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFrisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGupta, B., Kalgotra, N., Andotra, S. & Pandey, S. K. (2012). Monatsh. Chem. 143, 1087–1095.  Web of Science CrossRef CAS Google Scholar
First citationLee, K., Archibald, D., McLean, J. & Reuter, M. A. (2009). Miner. Eng. 22, 395–401.  Web of Science CrossRef CAS Google Scholar
First citationQadir, A. M. (2016). Asian J. Chem. 28, 1169–1170.  CrossRef CAS Google Scholar
First citationQadir, A. M. & Dege, N. (2019). J. Struct. Chem. 60, 844–848.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTankov, I. & Yankova, R. (2019). J. Mol. Liq. 278, 183–194.  Web of Science CrossRef CAS Google Scholar
First citationTiravanti, G., Marani, D., Passino, R. & Santori, M. (1998). Stud. Environ. Sci. 34, 109–118.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds