research communications
Hirshfeld surface analysis and DFT studies of ethyl 2-{4-[(2-ethoxy-2-oxoethyl)(phenyl)carbamoyl]-2-oxo-1,2-dihydroquinolin-1-yl}acetate
aLaboratoire de Chimie Organique Appliquée, Université Sidi Mohamed Ben Abdallah, Faculté des Sciences et Techniques, Route d'immouzzer, BP 2202, Fez, Morocco, bDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, cDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, dLaboratoire de Chimie bioorganique appliquée, Faculté des sciences, Université Ibn Zohr, Agadir, Morocco, and eLaboratoire de Chimie Organique Hétérocyclique URAC 21, Pôle de Compétence Pharmacochimie, Av. Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco
*Correspondence e-mail: yassir.filali.baba2018@gmail.com
The title compound, C24H24N2O6, consists of ethyl 2-(1,2,3,4-tetrahydro-2-oxoquinolin-1-yl)acetate and 4-[(2-ethoxy-2-oxoethyl)(phenyl)carbomoyl] units, where the oxoquinoline unit is almost planar and the acetate substituent is nearly perpendicular to its mean plane. In the crystal, C—HOxqn⋯OEthx and C—HPhyl⋯OCarbx (Oxqn = oxoquinolin, Ethx = ethoxy, Phyl = phenyl and Carbx = carboxylate) weak hydrogen bonds link the molecules into a three-dimensional network sturucture. A π–π interaction between the constituent rings of the oxoquinoline unit, with a centroid–centroid distance of 3.675 (1) Å may further stabilize the structure. Both terminal ethyl groups are disordered over two sets of sites. The ratios of the refined occupanies are 0.821 (8):0.179 (8) and 0.651 (18):0.349 (18). The Hirshfeld surface analysis of the indicates that the most important contributions for the crystal packing are from H⋯H (53.9%), H⋯O/O⋯H (28.5%) and H⋯C/C⋯H (11.8%) interactions. Weak intermolecular hydrogen-bond interactions and van der Waals interactions are the dominant interactions in the crystal packing. Density functional theory (DFT) geometric optimized structures at the B3LYP/6-311G(d,p) level are compared with the experimentally determined molecular structure in the solid state. The HOMO–LUMO molecular orbital behaviour was elucidated to determine the energy gap.
1. Chemical context
In recent years, research has been focused on existing molecules and their modifications in order to reduce their side effects and to explore their other pharmacological properties. Quinolone derivatives have constituted an important class of heterocyclic compounds which, even when part of a complex molecule, possesses a wide spectrum of biological activities, such as anticancer (Elderfield & Le Von, 1960), antifungal (Musiol et al., 2010), antitubercular (Fan et al., 2018a; Xu et al., 2017), antimalarial (Fan et al., 2018b; Hu et al., 2017), anti-HIV (Sekgota et al., 2017; Luo et al., 2010), anti-HCV (Manfroni et al., 2014; Cheng et al., 2016) and antimicrobial (Musiol et al., 2006). They have been developed for the treatment of many diseases, like malaria (Lutz et al., 1946) and HIV (Ahmed et al., 2010). As a continuation of our research work devoted to the development of N-substituted quinoline derivatives and the assessments of their potential pharmacological activities (Filali Baba et al., 2016a, 2017, 2019; Bouzian et al., 2018, 2019a), we report herein the synthesis and molecular and of the title compound, along with the Hirshfeld surface (HS) analysis and density functional theory (DFT) computational calculations carried out at the B3LYP/6-311G(d,p) level of an N-substituted quinoline derivative by an alkylation reaction of ethyl bromoacetate with 2-oxo-N-phenyl-1,2-dihydroquinoline-4-carboxamide under conditions using tetra-n-butylammonium bromide (TBAB) as a catalyst and potassium carbonate as a base.
2. Structural commentary
The title molecule is composed of ethyl 2-(1,2,3,4-tetrahydro-2-oxoquinolin-1-yl)acetate and 4-[(2-ethoxy-2-oxoethyl)(phenyl)carbomoyl] units (Fig. 1). The mean planes of the constituent rings, i.e. A (atoms N1/C1–C4/C9) and B (C4–C9), of the oxoquinoline unit are oriented at a dihedral angle of 1.04 (6)°. Thus, they are almost coplanar, with a maximum deviation of 0.017 (3) Å for atom C7. Atoms O1 and C10 deviate only by 0.007 (2) and 0.022 (2) Å from that plane and so are essential coplanar. The acetate substituent is nearly perpendicular to that plane, with a torsion angle of C1—N1—C10—C11 = −104.8 (2)°. The mean plane of the phenyl ring, C (C19–C24), is oriented with respect to the oxoquinoline unit at a dihedral angle of 68.17 (6)°. The carboxyl groups, O5/O6/C11 and O3/O4/C16, are twisted out of coplanarity with the best least-squares plane of the oxoquinoline unit and phenyl ring C by dihedral angles of 79.7 (2) and 62.9 (2)°, respectively.
3. Supramolecular features
In the crystal, weak C—HOxqn⋯OEthx and C—HPhyl⋯OCarbx (Oxqn = oxoquinolin, Ethx = ethoxy, Phyl = phenyl and Carbx = carboxylate) hydrogen bonds (Table 1) link the molecules into a three-dimensional network structure (Fig. 2). A π–π contact between the constituent rings, i.e. A (N1/C1–C4/C9) and B (C4–C9), of the oxoquinoline unit, with Cg1⋯Cg2i = 3.675 (1) Å [symmetry code: (i) −x + 1, −y + 1, −z + 1; Cg1 and Cg2 are the centroids of rings A and B], may further stabilize the structure. The Hirshfeld surface analysis of the indicates that the most important contributions for crystal packing are from H⋯H (53.9%), H⋯O/O⋯H (28.5%) and H⋯C/C⋯H (11.8%) interactions. Weak intermolecular hydrogen-bond interactions and van der Waals interactions are the dominant interactions in the crystal packing.
4. Hirshfeld surface analysis
In order to visualize the intermolecular interactions in the title compound, a Hirshfeld surface (HS) analysis (Hirshfeld, 1977; Spackman & Jayatilaka, 2009) was carried out by using CrystalExplorer17.5 (Turner et al., 2017). In the HS plotted over dnorm (Fig. 3), the white surface indicates contacts with distances equal to the sum of the van der Waals radii, and the red and blue colours indicate distances shorter (in close contact) or longer (distinct contact) than the van der Waals radii, respectively (Venkatesan et al., 2016). The bright-red spots appearing near O2 and H atoms H7 and H22 indicate their roles as the respective donors and/or acceptors; they also appear as blue and red regions corresponding to positive and negative potentials on the HS mapped over the electrostatic potential (Spackman et al., 2008; Jayatilaka et al., 2005), as shown in Fig. 4. The blue regions indicate a positive electrostatic potential (hydrogen-bond donors), while the red regions indicate a negative electrostatic potential (hydrogen-bond acceptors). The shape-index of the HS is a tool to visualize the π–π stacking by the presence of adjacent red and blue triangles; if there are no adjacent red and/or blue triangles, then there are no π–π interactions. Fig. 5 clearly suggests that there are π–π interactions in (I). The overall two-dimensional fingerprint plot (Fig. 6a) and those delineated into H⋯H, H⋯O/O⋯H, H⋯C/C⋯H, C⋯C and O⋯C/C⋯O contacts (McKinnon et al., 2007) are illustrated in Figs. 6(b)–(f), respectively, together with their relative contributions to the Hirshfeld surface. The most important interaction is H⋯H, contributing 53.9% to the overall crystal packing, which is reflected in Fig. 6(b) as widely scattered points of high density due to the large hydrogen content of the molecule, with the tip at de = di = 1.05 Å, due to the short interatomic H⋯H contacts. The pair of characteristic wings resulting in the fingerprint plot delineated into H⋯O/O⋯H contacts (Fig. 6c) has a 28.5% contribution to the HS and is viewed as a pair of spikes with the tips at de + di = 2.30 Å. In the absence of weak C—H⋯π interactions, the pair of characteristic wings resulting in the fingerprint plot delineated into H⋯C/C⋯H contacts (Fig. 6d), with a 11.8% contribution to the HS and are viewed as a pair of spikes with the tip at de + di = 2.83 Å. The C⋯C contacts (Fig. 6e) have an arrow-shaped distribution of points with the tip at de = di = 1.81 Å. Finally, the pair of the scattered points of wings from the fingerprint plot are delineated into O⋯C/C⋯O (Fig. 6f) contacts, with a 1.1% contribution to the HS, and has a nearly symmetrical distribution of points with the edges at de + di = 3.15 Å.
The Hirshfeld surface representations with the function dnorm plotted onto the surface are shown for the H⋯H, H⋯O/O⋯H, H⋯C/C⋯H and C⋯C interactions in Figs. 7(a)–(d), respectively.
The Hirshfeld surface analysis confirms the importance of weak H-atom contacts in establishing the packing structure. The large number of H⋯H, H⋯O/O⋯H and H⋯C/C⋯H interactions suggest that van der Waals interactions and weak hydrogen-bond intermolecular interactions play major roles in the crystal packing (Hathwar et al., 2015).
5. DFT calculations
The geometry optimized structure of the title compound in the gas phase was generated theoretically via density functional theory (DFT) computational calculations using a standard B3LYP functional and a 6-311G(d,p) basis set (Becke, 1993), as implemented in GAUSSIAN09 (Frisch et al., 2009). The theoretical and experimental results were in good agreement (Table 2). A DFT molecular orbital calculation indicated that the highest-occupied molecular orbital (HOMO), acting as an and the lowest-unoccupied molecular orbital (LUMO), acting as an are very important parameters for quantum chemistry. When the energy gap is small, the molecule is highly polarizable and has high chemical reactivity. Therefore, these DFT calculations provide important information on the reactivity and site selectivity of the molecular framework. EHOMO and ELUMO clarify the inevitable charge exchange collaboration inside the studied material, as well as (χ), hardness (η), potential (μ), (ω) and softness (σ), which are listed in Table 3. The significance of η and σ is to evaluate both reactivity and stability. The electron transition from a HOMO to a LUMO energy level is shown in Fig. 8. The HOMO and LUMO are localized in the plane extending from the whole ethyl 2-{4-[(2-ethoxy-2-oxoethyl)(phenyl)carbamoyl]-2-oxo-1,2-dihydroquinolin-1-yl}acetate ring. The energy band gap [ΔE = ELUMO − EHOMO] of the molecule was about 4.2091 eV, and the frontier molecular orbital (FMO) energies, i.e. EHOMO and ELUMO, were −6.1141 and −1.9050 eV, respectively.
|
|
6. Database survey
A non-alkylated analogue, namely quinoline and its derivatives, has been reported (Filali Baba et al., 2016b, 2017; Bouzian et al., 2019a), as well as three similar structures (see Castañeda et al., 2014; Kafka et al., 2012; Bouzian et al., 2018, 2019a; Divya Bharathi et al., 2015).
7. Synthesis and crystallization
To a solution of 2-oxo-N-phenyl-1,2-dihydroquinoline-4-carboxamide (1.89 mmol) in dimethylformamide (DMF, 10 ml) were added ethyl bromoacetate (4.16 mmol), K2CO3 (5.67 mmol) and tetrabutylammonium bromide (TBAB, 0.23 mmol). The reaction mixture was stirred at room temperature for 6 h. After removal of the salts by filtration, the DMF was evaporated under reduced pressure and the resulting residue was dissolved in dichloromethane. The organic phase was dried with Na2SO4 and then concentrated under reduced pressure. The pure compound was obtained by using as hexane/ethyl acetate (3:1 v/v). The isolated solid was recrystallized from hexane–diethyl acetate (1:1 v/v) to afford colourless crystals (yield 75%; m.p. 427 K).
8. Refinement
The experimental details, including the crystal data, data collection and . H atoms were positioned geometrically, with C—H = 0.93, 0.97 and 0.96 Å for aromatic CH, CH2 and CH3 H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = kUeq(C), where k = 1.5 for CH3 H atoms and k = 1.2 for other H atoms. The terminal ethyl groups are disordered with an occupancy ratio of 0.821 (8):0.179 (8) for C12 and C13, and 0.651 (18):0.349 (18) for C17 and C18.
are summarized in Table 4Supporting information
https://doi.org/10.1107/S2056989019014154/lh5924sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019014154/lh5924Isup2.hkl
Data collection: CrysAlis PRO (Rigaku OD, 2015); cell
CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015b); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015a); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C24H24N2O6 | F(000) = 1840 |
Mr = 436.45 | Dx = 1.275 Mg m−3 |
Monoclinic, I2/a | Cu Kα radiation, λ = 1.54184 Å |
a = 16.9368 (5) Å | Cell parameters from 3291 reflections |
b = 15.4130 (4) Å | θ = 4.0–71.1° |
c = 18.4562 (6) Å | µ = 0.76 mm−1 |
β = 109.254 (4)° | T = 173 K |
V = 4548.4 (3) Å3 | Prism, colourless |
Z = 8 | 0.32 × 0.22 × 0.14 mm |
Rigaku Oxford Diffraction Eos Gemini diffractometer | 3273 reflections with I > 2σ(I) |
Detector resolution: 16.0416 pixels mm-1 | Rint = 0.018 |
ω scans | θmax = 71.0°, θmin = 3.8° |
Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2015) | h = −20→20 |
Tmin = 0.710, Tmax = 1.000 | k = −16→18 |
8786 measured reflections | l = −22→14 |
4337 independent reflections |
Refinement on F2 | 92 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.045 | H-atom parameters constrained |
wR(F2) = 0.144 | w = 1/[σ2(Fo2) + (0.073P)2 + 1.2218P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max < 0.001 |
4337 reflections | Δρmax = 0.22 e Å−3 |
327 parameters | Δρmin = −0.13 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
O1 | 0.63298 (9) | 0.28034 (12) | 0.61795 (9) | 0.0789 (4) | |
O2 | 0.63302 (9) | 0.47704 (9) | 0.36302 (9) | 0.0744 (4) | |
O3 | 0.53817 (8) | 0.38810 (10) | 0.18865 (9) | 0.0758 (4) | |
O4 | 0.64912 (9) | 0.42678 (11) | 0.15548 (9) | 0.0788 (4) | |
O5 | 0.40565 (12) | 0.20343 (12) | 0.53243 (11) | 0.0931 (5) | |
O6 | 0.37031 (11) | 0.24950 (13) | 0.63200 (10) | 0.0916 (5) | |
N1 | 0.51128 (9) | 0.34488 (10) | 0.54667 (8) | 0.0550 (4) | |
N2 | 0.63939 (9) | 0.33627 (9) | 0.33178 (9) | 0.0531 (3) | |
C1 | 0.59207 (11) | 0.31706 (13) | 0.55847 (11) | 0.0580 (4) | |
C2 | 0.62452 (11) | 0.33490 (12) | 0.49639 (11) | 0.0583 (4) | |
H2 | 0.679690 | 0.316531 | 0.501696 | 0.070* | |
C3 | 0.58017 (10) | 0.37609 (11) | 0.43198 (11) | 0.0517 (4) | |
C4 | 0.49587 (11) | 0.40413 (11) | 0.42129 (10) | 0.0510 (4) | |
C5 | 0.44640 (13) | 0.44579 (14) | 0.35437 (12) | 0.0660 (5) | |
H5 | 0.468954 | 0.457597 | 0.314607 | 0.079* | |
C6 | 0.36578 (14) | 0.46981 (16) | 0.34545 (14) | 0.0793 (6) | |
H6 | 0.332464 | 0.498023 | 0.299848 | 0.095* | |
C7 | 0.33343 (13) | 0.45228 (17) | 0.40416 (14) | 0.0794 (6) | |
H7 | 0.277547 | 0.468683 | 0.398124 | 0.095* | |
C8 | 0.38016 (13) | 0.41215 (14) | 0.46997 (13) | 0.0670 (5) | |
H8 | 0.356741 | 0.401356 | 0.509326 | 0.080* | |
C9 | 0.46250 (11) | 0.38660 (11) | 0.48024 (10) | 0.0523 (4) | |
C10 | 0.47616 (13) | 0.32563 (14) | 0.60712 (11) | 0.0636 (5) | |
H10A | 0.448353 | 0.378149 | 0.618038 | 0.076* | |
H10B | 0.521855 | 0.309673 | 0.654605 | 0.076* | |
C11 | 0.41363 (13) | 0.25228 (15) | 0.58447 (12) | 0.0689 (5) | |
C12 | 0.3138 (3) | 0.1742 (3) | 0.6220 (3) | 0.1086 (14) | 0.821 (8) |
H12A | 0.279258 | 0.167850 | 0.567335 | 0.130* | 0.821 (8) |
H12B | 0.346565 | 0.120368 | 0.638828 | 0.130* | 0.821 (8) |
C12A | 0.2830 (5) | 0.2218 (16) | 0.6170 (13) | 0.112 (4) | 0.179 (8) |
H12C | 0.247895 | 0.267217 | 0.629105 | 0.134* | 0.179 (8) |
H12D | 0.256077 | 0.199531 | 0.564315 | 0.134* | 0.179 (8) |
C13 | 0.2606 (4) | 0.1904 (5) | 0.6689 (4) | 0.145 (2) | 0.821 (8) |
H13A | 0.222057 | 0.141575 | 0.663721 | 0.218* | 0.821 (8) |
H13B | 0.295592 | 0.196529 | 0.722769 | 0.218* | 0.821 (8) |
H13C | 0.228586 | 0.243799 | 0.651596 | 0.218* | 0.821 (8) |
C13A | 0.3071 (18) | 0.1534 (14) | 0.6746 (15) | 0.131 (6) | 0.179 (8) |
H13D | 0.256994 | 0.122845 | 0.676250 | 0.197* | 0.179 (8) |
H13E | 0.344312 | 0.112324 | 0.661214 | 0.197* | 0.179 (8) |
H13F | 0.336264 | 0.178906 | 0.724946 | 0.197* | 0.179 (8) |
C14 | 0.61890 (11) | 0.40053 (12) | 0.37191 (11) | 0.0545 (4) | |
C15 | 0.67713 (11) | 0.36176 (13) | 0.27471 (11) | 0.0575 (4) | |
H15A | 0.707109 | 0.311554 | 0.262692 | 0.069* | |
H15B | 0.718470 | 0.408417 | 0.295976 | 0.069* | |
C16 | 0.61226 (12) | 0.39333 (12) | 0.20217 (11) | 0.0582 (4) | |
C17 | 0.5912 (4) | 0.4604 (7) | 0.0815 (3) | 0.094 (2) | 0.651 (18) |
H17A | 0.541264 | 0.422697 | 0.062247 | 0.113* | 0.651 (18) |
H17B | 0.572714 | 0.519989 | 0.087923 | 0.113* | 0.651 (18) |
C17A | 0.5987 (10) | 0.4317 (12) | 0.0724 (4) | 0.111 (4) | 0.349 (18) |
H17C | 0.603984 | 0.376991 | 0.046247 | 0.133* | 0.349 (18) |
H17D | 0.538974 | 0.440902 | 0.066041 | 0.133* | 0.349 (18) |
C18 | 0.6387 (5) | 0.4598 (10) | 0.0289 (4) | 0.130 (3) | 0.651 (18) |
H18A | 0.603636 | 0.481446 | −0.021369 | 0.195* | 0.651 (18) |
H18B | 0.687974 | 0.497156 | 0.048961 | 0.195* | 0.651 (18) |
H18C | 0.656703 | 0.400418 | 0.023432 | 0.195* | 0.651 (18) |
C18A | 0.6304 (11) | 0.5040 (12) | 0.0395 (11) | 0.125 (5) | 0.349 (18) |
H18D | 0.598396 | 0.508837 | −0.015243 | 0.188* | 0.349 (18) |
H18E | 0.624789 | 0.557798 | 0.065709 | 0.188* | 0.349 (18) |
H18F | 0.689542 | 0.494139 | 0.045993 | 0.188* | 0.349 (18) |
C19 | 0.61117 (11) | 0.24813 (11) | 0.33022 (10) | 0.0519 (4) | |
C20 | 0.52672 (12) | 0.22939 (14) | 0.30965 (11) | 0.0617 (5) | |
H20 | 0.486416 | 0.274673 | 0.297629 | 0.074* | |
C21 | 0.50194 (15) | 0.14319 (16) | 0.30689 (13) | 0.0759 (6) | |
H21 | 0.444329 | 0.129315 | 0.294403 | 0.091* | |
C22 | 0.56040 (18) | 0.07794 (15) | 0.32215 (14) | 0.0821 (7) | |
H22 | 0.543027 | 0.019086 | 0.319532 | 0.099* | |
C23 | 0.64356 (17) | 0.09746 (15) | 0.34110 (15) | 0.0804 (6) | |
H23 | 0.683586 | 0.051977 | 0.351179 | 0.096* | |
C24 | 0.66976 (13) | 0.18267 (13) | 0.34571 (12) | 0.0646 (5) | |
H24 | 0.727594 | 0.196038 | 0.359409 | 0.078* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0656 (8) | 0.1041 (12) | 0.0636 (9) | 0.0104 (8) | 0.0167 (7) | 0.0190 (8) |
O2 | 0.0863 (9) | 0.0559 (8) | 0.0981 (11) | −0.0102 (7) | 0.0532 (9) | −0.0039 (7) |
O3 | 0.0554 (7) | 0.0897 (10) | 0.0856 (10) | 0.0103 (7) | 0.0275 (7) | 0.0135 (8) |
O4 | 0.0712 (8) | 0.1044 (12) | 0.0674 (9) | 0.0048 (8) | 0.0319 (7) | 0.0265 (8) |
O5 | 0.1114 (13) | 0.0924 (12) | 0.0826 (11) | −0.0233 (10) | 0.0414 (10) | −0.0174 (9) |
O6 | 0.0886 (11) | 0.1127 (14) | 0.0891 (11) | −0.0207 (9) | 0.0504 (9) | −0.0027 (9) |
N1 | 0.0547 (8) | 0.0648 (9) | 0.0493 (8) | 0.0017 (6) | 0.0225 (6) | 0.0000 (6) |
N2 | 0.0529 (7) | 0.0578 (8) | 0.0575 (8) | −0.0016 (6) | 0.0303 (7) | −0.0010 (6) |
C1 | 0.0527 (9) | 0.0646 (11) | 0.0553 (10) | 0.0013 (8) | 0.0159 (8) | 0.0006 (8) |
C2 | 0.0471 (8) | 0.0679 (11) | 0.0630 (11) | 0.0021 (8) | 0.0225 (8) | −0.0019 (9) |
C3 | 0.0526 (9) | 0.0508 (9) | 0.0580 (10) | −0.0032 (7) | 0.0266 (8) | −0.0077 (8) |
C4 | 0.0548 (9) | 0.0502 (9) | 0.0524 (9) | 0.0023 (7) | 0.0235 (8) | −0.0030 (7) |
C5 | 0.0723 (12) | 0.0695 (12) | 0.0630 (11) | 0.0116 (9) | 0.0316 (10) | 0.0067 (9) |
C6 | 0.0751 (13) | 0.0879 (15) | 0.0748 (14) | 0.0290 (11) | 0.0247 (11) | 0.0173 (12) |
C7 | 0.0610 (11) | 0.0917 (15) | 0.0899 (16) | 0.0266 (11) | 0.0308 (11) | 0.0116 (13) |
C8 | 0.0616 (10) | 0.0757 (12) | 0.0731 (13) | 0.0137 (9) | 0.0351 (10) | 0.0045 (10) |
C9 | 0.0528 (9) | 0.0532 (9) | 0.0553 (10) | 0.0041 (7) | 0.0236 (8) | −0.0056 (7) |
C10 | 0.0652 (11) | 0.0798 (13) | 0.0515 (10) | −0.0011 (9) | 0.0270 (9) | −0.0004 (9) |
C11 | 0.0698 (12) | 0.0798 (13) | 0.0614 (12) | −0.0012 (10) | 0.0276 (10) | 0.0072 (10) |
C12 | 0.106 (3) | 0.118 (3) | 0.119 (3) | −0.036 (2) | 0.061 (2) | −0.002 (3) |
C12A | 0.104 (6) | 0.121 (6) | 0.119 (6) | −0.018 (6) | 0.048 (6) | −0.003 (6) |
C13 | 0.118 (4) | 0.180 (5) | 0.169 (4) | −0.032 (3) | 0.091 (3) | 0.006 (4) |
C13A | 0.125 (10) | 0.128 (10) | 0.143 (10) | −0.021 (9) | 0.047 (10) | −0.008 (10) |
C14 | 0.0524 (9) | 0.0545 (10) | 0.0627 (11) | −0.0039 (7) | 0.0273 (8) | −0.0025 (8) |
C15 | 0.0525 (9) | 0.0673 (11) | 0.0622 (11) | −0.0001 (8) | 0.0318 (8) | 0.0034 (8) |
C16 | 0.0606 (10) | 0.0575 (10) | 0.0649 (11) | 0.0047 (8) | 0.0322 (9) | 0.0035 (8) |
C17 | 0.092 (3) | 0.129 (5) | 0.068 (2) | 0.034 (3) | 0.035 (2) | 0.039 (3) |
C17A | 0.084 (5) | 0.137 (8) | 0.107 (6) | 0.019 (6) | 0.027 (5) | 0.048 (5) |
C18 | 0.140 (4) | 0.196 (8) | 0.059 (3) | 0.047 (5) | 0.040 (3) | 0.028 (4) |
C18A | 0.120 (8) | 0.127 (8) | 0.115 (8) | −0.022 (7) | 0.021 (6) | 0.048 (7) |
C19 | 0.0596 (9) | 0.0555 (9) | 0.0475 (9) | −0.0043 (7) | 0.0272 (8) | −0.0046 (7) |
C20 | 0.0585 (10) | 0.0710 (11) | 0.0606 (11) | −0.0066 (9) | 0.0262 (9) | −0.0038 (9) |
C21 | 0.0758 (13) | 0.0865 (15) | 0.0706 (13) | −0.0277 (11) | 0.0313 (11) | −0.0120 (11) |
C22 | 0.1129 (19) | 0.0618 (12) | 0.0811 (15) | −0.0200 (12) | 0.0448 (14) | −0.0102 (11) |
C23 | 0.0962 (16) | 0.0603 (12) | 0.0931 (17) | 0.0033 (11) | 0.0428 (14) | −0.0023 (11) |
C24 | 0.0671 (11) | 0.0632 (11) | 0.0704 (12) | 0.0029 (9) | 0.0318 (10) | −0.0031 (9) |
O1—C1 | 1.226 (2) | C12—C13 | 1.462 (5) |
O2—C14 | 1.225 (2) | C12A—H12C | 0.9900 |
O3—C16 | 1.199 (2) | C12A—H12D | 0.9900 |
O4—C16 | 1.324 (2) | C12A—C13A | 1.456 (6) |
O4—C17 | 1.487 (4) | C13—H13A | 0.9800 |
O4—C17A | 1.491 (5) | C13—H13B | 0.9800 |
O5—C11 | 1.193 (3) | C13—H13C | 0.9800 |
O6—C11 | 1.317 (2) | C13A—H13D | 0.9800 |
O6—C12 | 1.476 (4) | C13A—H13E | 0.9800 |
O6—C12A | 1.475 (6) | C13A—H13F | 0.9800 |
N1—C1 | 1.381 (2) | C15—H15A | 0.9900 |
N1—C9 | 1.390 (2) | C15—H15B | 0.9900 |
N1—C10 | 1.457 (2) | C15—C16 | 1.505 (3) |
N2—C14 | 1.349 (2) | C17—H17A | 0.9900 |
N2—C15 | 1.455 (2) | C17—H17B | 0.9900 |
N2—C19 | 1.437 (2) | C17—C18 | 1.453 (5) |
C1—C2 | 1.451 (3) | C17A—H17C | 0.9900 |
C2—H2 | 0.9500 | C17A—H17D | 0.9900 |
C2—C3 | 1.338 (3) | C17A—C18A | 1.454 (6) |
C3—C4 | 1.442 (2) | C18—H18A | 0.9800 |
C3—C14 | 1.510 (2) | C18—H18B | 0.9800 |
C4—C5 | 1.399 (3) | C18—H18C | 0.9800 |
C4—C9 | 1.408 (2) | C18A—H18D | 0.9800 |
C5—H5 | 0.9500 | C18A—H18E | 0.9800 |
C5—C6 | 1.371 (3) | C18A—H18F | 0.9800 |
C6—H6 | 0.9500 | C19—C20 | 1.384 (2) |
C6—C7 | 1.393 (3) | C19—C24 | 1.378 (3) |
C7—H7 | 0.9500 | C20—H20 | 0.9500 |
C7—C8 | 1.360 (3) | C20—C21 | 1.389 (3) |
C8—H8 | 0.9500 | C21—H21 | 0.9500 |
C8—C9 | 1.401 (2) | C21—C22 | 1.374 (4) |
C10—H10A | 0.9900 | C22—H22 | 0.9500 |
C10—H10B | 0.9900 | C22—C23 | 1.368 (4) |
C10—C11 | 1.511 (3) | C23—H23 | 0.9500 |
C12—H12A | 0.9900 | C23—C24 | 1.380 (3) |
C12—H12B | 0.9900 | C24—H24 | 0.9500 |
C16—O4—C17 | 115.0 (3) | H13A—C13—H13C | 109.5 |
C16—O4—C17A | 117.2 (6) | H13B—C13—H13C | 109.5 |
C11—O6—C12 | 115.0 (2) | C12A—C13A—H13D | 109.5 |
C11—O6—C12A | 129.0 (10) | C12A—C13A—H13E | 109.5 |
C1—N1—C9 | 123.54 (14) | C12A—C13A—H13F | 109.5 |
C1—N1—C10 | 116.70 (15) | H13D—C13A—H13E | 109.5 |
C9—N1—C10 | 119.72 (15) | H13D—C13A—H13F | 109.5 |
C14—N2—C15 | 116.96 (15) | H13E—C13A—H13F | 109.5 |
C14—N2—C19 | 124.11 (13) | O2—C14—N2 | 122.43 (16) |
C19—N2—C15 | 117.61 (14) | O2—C14—C3 | 119.32 (16) |
O1—C1—N1 | 121.49 (17) | N2—C14—C3 | 118.21 (15) |
O1—C1—C2 | 123.02 (17) | N2—C15—H15A | 109.3 |
N1—C1—C2 | 115.48 (16) | N2—C15—H15B | 109.3 |
C1—C2—H2 | 118.5 | N2—C15—C16 | 111.42 (14) |
C3—C2—C1 | 122.92 (15) | H15A—C15—H15B | 108.0 |
C3—C2—H2 | 118.5 | C16—C15—H15A | 109.3 |
C2—C3—C4 | 120.27 (15) | C16—C15—H15B | 109.3 |
C2—C3—C14 | 121.19 (15) | O3—C16—O4 | 125.22 (19) |
C4—C3—C14 | 118.37 (16) | O3—C16—C15 | 124.77 (17) |
C5—C4—C3 | 122.42 (16) | O4—C16—C15 | 110.01 (15) |
C5—C4—C9 | 119.62 (16) | O4—C17—H17A | 110.6 |
C9—C4—C3 | 117.95 (16) | O4—C17—H17B | 110.6 |
C4—C5—H5 | 119.6 | H17A—C17—H17B | 108.8 |
C6—C5—C4 | 120.84 (18) | C18—C17—O4 | 105.6 (5) |
C6—C5—H5 | 119.6 | C18—C17—H17A | 110.6 |
C5—C6—H6 | 120.5 | C18—C17—H17B | 110.6 |
C5—C6—C7 | 119.1 (2) | O4—C17A—H17C | 110.2 |
C7—C6—H6 | 120.5 | O4—C17A—H17D | 110.2 |
C6—C7—H7 | 119.3 | H17C—C17A—H17D | 108.5 |
C8—C7—C6 | 121.38 (18) | C18A—C17A—O4 | 107.6 (10) |
C8—C7—H7 | 119.3 | C18A—C17A—H17C | 110.2 |
C7—C8—H8 | 119.7 | C18A—C17A—H17D | 110.2 |
C7—C8—C9 | 120.59 (18) | C17—C18—H18A | 109.5 |
C9—C8—H8 | 119.7 | C17—C18—H18B | 109.5 |
N1—C9—C4 | 119.83 (15) | C17—C18—H18C | 109.5 |
N1—C9—C8 | 121.67 (16) | H18A—C18—H18B | 109.5 |
C8—C9—C4 | 118.50 (17) | H18A—C18—H18C | 109.5 |
N1—C10—H10A | 109.3 | H18B—C18—H18C | 109.5 |
N1—C10—H10B | 109.3 | C17A—C18A—H18D | 109.5 |
N1—C10—C11 | 111.49 (16) | C17A—C18A—H18E | 109.5 |
H10A—C10—H10B | 108.0 | C17A—C18A—H18F | 109.5 |
C11—C10—H10A | 109.3 | H18D—C18A—H18E | 109.5 |
C11—C10—H10B | 109.3 | H18D—C18A—H18F | 109.5 |
O5—C11—O6 | 125.2 (2) | H18E—C18A—H18F | 109.5 |
O5—C11—C10 | 125.32 (19) | C20—C19—N2 | 120.64 (16) |
O6—C11—C10 | 109.49 (19) | C24—C19—N2 | 118.43 (16) |
O6—C12—H12A | 110.3 | C24—C19—C20 | 120.85 (18) |
O6—C12—H12B | 110.3 | C19—C20—H20 | 120.6 |
H12A—C12—H12B | 108.6 | C19—C20—C21 | 118.8 (2) |
C13—C12—O6 | 107.0 (4) | C21—C20—H20 | 120.6 |
C13—C12—H12A | 110.3 | C20—C21—H21 | 119.9 |
C13—C12—H12B | 110.3 | C22—C21—C20 | 120.3 (2) |
O6—C12A—H12C | 113.1 | C22—C21—H21 | 119.9 |
O6—C12A—H12D | 113.1 | C21—C22—H22 | 119.9 |
H12C—C12A—H12D | 110.5 | C23—C22—C21 | 120.2 (2) |
C13A—C12A—O6 | 92.9 (14) | C23—C22—H22 | 119.9 |
C13A—C12A—H12C | 113.1 | C22—C23—H23 | 119.7 |
C13A—C12A—H12D | 113.1 | C22—C23—C24 | 120.5 (2) |
C12—C13—H13A | 109.5 | C24—C23—H23 | 119.7 |
C12—C13—H13B | 109.5 | C19—C24—C23 | 119.3 (2) |
C12—C13—H13C | 109.5 | C19—C24—H24 | 120.4 |
H13A—C13—H13B | 109.5 | C23—C24—H24 | 120.4 |
O1—C1—C2—C3 | −179.0 (2) | C10—N1—C1—C2 | 178.29 (16) |
N1—C1—C2—C3 | 0.5 (3) | C10—N1—C9—C4 | −179.07 (16) |
N1—C10—C11—O5 | 15.0 (3) | C10—N1—C9—C8 | 1.0 (3) |
N1—C10—C11—O6 | −166.24 (17) | C11—O6—C12—C13 | −169.7 (5) |
N2—C15—C16—O3 | −8.9 (3) | C11—O6—C12A—C13A | 120.5 (16) |
N2—C15—C16—O4 | 171.66 (16) | C12—O6—C11—O5 | 5.8 (4) |
N2—C19—C20—C21 | 178.30 (17) | C12—O6—C11—C10 | −173.0 (3) |
N2—C19—C24—C23 | −177.10 (18) | C12A—O6—C11—O5 | −32.5 (12) |
C1—N1—C9—C4 | −1.4 (3) | C12A—O6—C11—C10 | 148.7 (12) |
C1—N1—C9—C8 | 178.65 (18) | C14—N2—C15—C16 | −79.0 (2) |
C1—N1—C10—C11 | −104.9 (2) | C14—N2—C19—C20 | 54.7 (3) |
C1—C2—C3—C4 | −0.7 (3) | C14—N2—C19—C24 | −128.68 (19) |
C1—C2—C3—C14 | 174.41 (17) | C14—C3—C4—C5 | 6.1 (3) |
C2—C3—C4—C5 | −178.65 (19) | C14—C3—C4—C9 | −175.41 (15) |
C2—C3—C4—C9 | −0.1 (3) | C15—N2—C14—O2 | −2.0 (3) |
C2—C3—C14—O2 | −109.2 (2) | C15—N2—C14—C3 | −179.57 (15) |
C2—C3—C14—N2 | 68.5 (2) | C15—N2—C19—C20 | −111.76 (18) |
C3—C4—C5—C6 | 178.5 (2) | C15—N2—C19—C24 | 64.9 (2) |
C3—C4—C9—N1 | 1.2 (2) | C16—O4—C17—C18 | −157.1 (9) |
C3—C4—C9—C8 | −178.90 (17) | C16—O4—C17A—C18A | 152.2 (17) |
C4—C3—C14—O2 | 66.1 (2) | C17—O4—C16—O3 | 0.6 (5) |
C4—C3—C14—N2 | −116.24 (19) | C17—O4—C16—C15 | −180.0 (5) |
C4—C5—C6—C7 | 0.1 (4) | C17A—O4—C16—O3 | −21.0 (10) |
C5—C4—C9—N1 | 179.72 (17) | C17A—O4—C16—C15 | 158.4 (10) |
C5—C4—C9—C8 | −0.3 (3) | C19—N2—C14—O2 | −168.50 (18) |
C5—C6—C7—C8 | 0.2 (4) | C19—N2—C14—C3 | 13.9 (3) |
C6—C7—C8—C9 | −0.5 (4) | C19—N2—C15—C16 | 88.48 (19) |
C7—C8—C9—N1 | −179.5 (2) | C19—C20—C21—C22 | −1.9 (3) |
C7—C8—C9—C4 | 0.6 (3) | C20—C19—C24—C23 | −0.5 (3) |
C9—N1—C1—O1 | −179.89 (19) | C20—C21—C22—C23 | 0.8 (4) |
C9—N1—C1—C2 | 0.6 (3) | C21—C22—C23—C24 | 0.5 (4) |
C9—N1—C10—C11 | 72.9 (2) | C22—C23—C24—C19 | −0.7 (3) |
C9—C4—C5—C6 | 0.0 (3) | C24—C19—C20—C21 | 1.8 (3) |
C10—N1—C1—O1 | −2.2 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C7—H7···O2i | 0.95 | 2.46 | 3.404 (2) | 171 |
C12A—H12D···O5ii | 0.99 | 2.73 | 3.477 (14) | 132 |
C17A—H17C···O1iii | 0.99 | 2.73 | 3.377 (17) | 124 |
C22—H22···O3iv | 0.95 | 2.42 | 3.342 (3) | 164 |
Symmetry codes: (i) x−1/2, −y+1, z; (ii) −x+1/2, y, −z+1; (iii) x, −y+1/2, z−1/2; (iv) −x+1, y−1/2, −z+1/2. |
Bonds/angles | X-ray | B3LYP/6-311G(d,p) |
O1—C1 | 1.226 (2) | 1.23817 |
O2—C14 | 1.225 (2) | 1.23404 |
O3—C16 | 1.199 (2) | 1.20354 |
O4—C16 | 1.324 (2) | 1.36931 |
O4—C17 | 1.487 (4) | 1.48849 |
O5—C11 | 1.193 (3) | 1.22578 |
O6—C11 | 1.317 (3) | 1.38125 |
O6—C12 | 1.476 (4) | 1.47909 |
N1—C1 | 1.381 (2) | 1.41268 |
N1—C9 | 1.390 (3) | 1.40270 |
N1—C10 | 1.457 (2) | 1.45920 |
N2—C14 | 1.349 (2) | 1.38292 |
N2—C15 | 1.455 (2) | 1.46732 |
N2—C19 | 1.437 (2) | 1.43915 |
C16—O4—C17 | 115.0 (3) | 117.00006 |
C11—O6—C12 | 115.0 (2) | 117.92667 |
C1—N1—C9 | 123.54 (14) | 123.13299 |
C1—N1—C10 | 116.70 (15) | 115.18860 |
C9—N1—C10 | 119.72 (15) | 120.66132 |
C14—N2—C15 | 116.96 (15) | 115.85567 |
C14—N2—C19 | 124.11 (13) | 125.08748 |
C19—N2—C15 | 117.61 (14) | 119.01375 |
O1—C1—N1 | 121.49 (17) | 120.57635 |
O1—C1—C2 | 123.02 (17) | 123.38727 |
N1—C1—C2 | 115.48 (16) | 116.01507 |
Molecular Energy (a.u.) (eV) | Compound (I) |
Total Energy TE (eV) | -40528.2845 |
EHOMO (eV) | -6.1141 |
ELUMO (eV) | -1.9050 |
Gap ΔE (eV) | 4.2091 |
Dipole moment µ (Debye) | 7.7590 |
Ionization potential I (eV) | 6.1141 |
Electron affinity A | 1.9050 |
Electro negativity χ | 4.0095 |
Hardness η | 2.1046 |
Electrophilicity index ω | 3.8194 |
Softness σ | 0.4752 |
Fraction of electron transferred ΔN | 0.7105 |
Funding information
Funding for this research was provided by: NSF-MRI (grant No. CHE-1039027 to purchase the X-ray diffractometer, acknowledged by JPJ); Hacettepe University Scientific Research Project Unit (grant No. 013 D04 602 004, to TH).
References
Ahmed, N., Brahmbhatt, K. G., Sabde, S., Mitra, D., Singh, I. P. & Bhutani, K. K. (2010). Bioorg. Med. Chem. 18, 2872–2879. CrossRef CAS PubMed Google Scholar
Becke, A. D. (1993). J. Chem. Phys. 98, 5648–5652. CrossRef CAS Web of Science Google Scholar
Bouzian, Y., Hlimi, F., Sebbar, N. K., El Hafi, M., Hni, B., Essassi, E. M. & Mague, J. T. (2018). IUCrData, 3, x181438. Google Scholar
Bouzian, Y., Karrouchi, K., Anouar, E. H., Bouhfid, R., Arshad, S. & Essassi, E. M. (2019a). Acta Cryst. E75, 912–916. CrossRef IUCr Journals Google Scholar
Castañeda, R., Antal, S. A., Draguta, S., Timofeeva, T. V. & Khrustalev, V. N. (2014). Acta Cryst. E70, o924–o925. CSD CrossRef IUCr Journals Google Scholar
Cheng, Y., Shen, J., Peng, R. Z., Wang, G. F., Zuo, J. P. & Long, Y. Q. (2016). Bioorg. Med. Chem. Lett. 26, 2900–2906. Web of Science CrossRef CAS PubMed Google Scholar
Divya Bharathi, M., Ahila, G., Mohana, J., Chakkaravarthi, G. & Anbalagan, G. (2015). Acta Cryst. E71, o261–o262. Web of Science CSD CrossRef IUCr Journals Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Elderfield, R. C. & Le Von, E. F. (1960). J. Org. Chem. 25, 1576–1583. CrossRef CAS Web of Science Google Scholar
Fan, Y. L., Cheng, X. W., Wu, J. B., Liu, M., Zhang, F. Z., Xu, Z. & Feng, L. S. (2018b). Eur. J. Med. Chem. 146, 1–14. Web of Science CrossRef CAS PubMed Google Scholar
Fan, Y. L., Wu, J. B., Cheng, X. W., Zhang, F. Z. & Feng, L. S. (2018a). Eur. J. Med. Chem. 146, 554–563. Web of Science CrossRef CAS PubMed Google Scholar
Filali Baba, Y., Elmsellem, H., KandriRodi, Y., Steli, H., AD, C., Ouzidan, Y., Ouazzani Chahdi, F., Sebbar, N. K., Essassi, E. M. & Hammouti, B. (2016a). Pharma Chem. 8, 159–169. Google Scholar
Filali Baba, Y., Kandri Rodi, Y., Ouzidan, Y., Mague, J. T., Ouazzani Chahdi, F. & Essassi, E. M. (2017). IUCrData, 2, x171038. Google Scholar
Filali Baba, Y., Mague, J. T., Kandri Rodi, Y., Ouzidan, Y., Essassi, E. M. & Zouihri, H. (2016b). IUCrData, 1, x160997. Google Scholar
Filali Baba, Y., Sert, Y., Kandri Rodi, Y., Hayani, S., Mague, J. T., Prim, D., Marrot, J., Ouazzani Chahdi, F., Sebbar, N. K. & Essassi, E. M. (2019). J. Mol. Struct. 1188, 255–268. Web of Science CSD CrossRef CAS Google Scholar
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA. Google Scholar
Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138. CrossRef CAS Web of Science Google Scholar
Hu, Y. Q., Gao, C., Zhang, S., Xu, L., Xu, Z., Feng, L. S., Wu, X. & Zhao, F. (2017). Eur. J. Med. Chem. 139, 22–47. CrossRef CAS PubMed Google Scholar
Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO – A System for Computational Chemistry. Available at: https://hirshfeldsurface.net/. Google Scholar
Kafka, S., Pevec, A., Proisl, K., Kimmel, R. & Košmrlj, J. (2012). Acta Cryst. E68, o3199–o3200. CSD CrossRef IUCr Journals Google Scholar
Luo, Z. G., Tan, J. J., Zeng, Y., Wang, C. X. & Hu, L. M. (2010). Mini Rev. Med. Chem. 10, 1046–1057. Web of Science CAS PubMed Google Scholar
Lutz, R. E., Bailey, P. S., Clark, M. T., Codington, J. F., Deinet, A. J., Freek, J. A., Harnest, G. H., Leake, N. H., Martin, T. A., Rowlett, R. J., Salsbury, J. M., Shearer, N. H., Smith, J. D. & Wilson, J. W. (1946). J. Am. Chem. Soc. 68, 1813–1831. CrossRef PubMed Google Scholar
Manfroni, G., Cannalire, R., Barreca, M. L., Kaushik-Basu, N., Leyssen, P., Winquist, J., Iraci, N., Manvar, D., Paeshuyse, J., Guhamazumder, R., Basu, A., Sabatini, S., Tabarrini, O., Danielson, U. H., Neyts, J. & Cecchetti, V. (2014). J. Med. Chem. 57, 1952–1963. Web of Science CrossRef CAS PubMed Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Musiol, R., Jampilek, J., Buchta, V., Silva, L., Niedbala, H., Podeszwa, B., Palka, A., Majerz-Maniecka, K., Oleksyn, B. & Polanski, J. (2006). Bioorg. Med. Chem. 14, 3592–3598. Web of Science CrossRef PubMed CAS Google Scholar
Musiol, R., Serda, M., Hensel-Bielowka, S. & Polanski, J. (2010). Curr. Med. Chem. 17, 1960–1973. Web of Science CrossRef CAS PubMed Google Scholar
Rigaku OD (2015). CrysAlis PRO. Rigaku Americas, The Woodlands, TX, USA. Google Scholar
Sekgota, K. C., Majumder, S., Isaacs, M., Mnkandhla, D., Hoppe, H. C., Khanye, S. D., Kriel, F. H., Coates, J. & Kaye, P. T. (2017). Bioorg. Chem. 75, 310–316. Web of Science CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388. CAS Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia. Google Scholar
Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 625–636. Web of Science CSD CrossRef CAS PubMed Google Scholar
Xu, Z., Song, X. F., Hu, Y. Q., Qiang, M. & Lv, Z. S. (2017). Eur. J. Med. Chem. 138, 66–71. Web of Science CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.