research communications
Z)-4-benzyl-2-(2,4-dichlorobenzylidene)-2H-1,4-benzothiazin-3(4H)-one
Hirshfeld surface analysis and interaction energy and DFT studies of (2aLaboratoire de Chimie Appliquée et Environnement, Equipe de Chimie Bioorganique Appliquée, Faculté des Sciences, Université Ibn Zohr, Agadir, Morocco, bLaboratoire de Chimie Organique Hétérocyclique URAC 21, Pôle de Compétence Pharmacochimie, Av. Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, cDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, and dDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: elghayatilhoussaine2018@gmail.com
The title compound, C22H15Cl2NOS, contains 1,4-benzothiazine and 2,4-dichlorobenzylidene units, where the dihydrothiazine ring adopts a screw-boat conformation. In the crystal, intermolecular C—HBnz⋯OThz (Bnz = benzene and Thz = thiazine) hydrogen bonds form corrugated chains extending along the b-axis direction which are connected into layers parallel to the bc plane by intermolecular C—HMethy⋯SThz (Methy = methylene) hydrogen bonds, enclosing R44(22) ring motifs. Offset π-stacking interactions between 2,4-dichlorophenyl rings [centroid–centroid = 3.7701 (8) Å] and π-interactions which are associated by C—HBnz⋯π(ring) and C—HDchlphy⋯π(ring) (Dchlphy = 2,4-dichlorophenyl) interactions may be effective in the stabilization of the The Hirshfeld surface analysis of the indicates that the most important contributions for the crystal packing are from H⋯H (29.1%), H⋯C/C⋯H (27.5%), H⋯Cl/Cl⋯H (20.6%) and O⋯H/H⋯O (7.0%) interactions. Hydrogen-bonding and van der Waals interactions are the dominant interactions in the crystal packing. Computational chemistry indicates that in the crystal, the C—HBnz⋯OThz and C—HMethy⋯SThz hydrogen-bond energies are 55.0 and 27.1 kJ mol−1, respectively. Density functional theory (DFT) optimized structures at the B3LYP/6-311G(d,p) level are compared with the experimentally determined molecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap.
Keywords: crystal structure; dihydrothiazine; hydrogen bond; π-stacking; Hirshfeld surface.
1. Chemical context
1,4-Benzothiazine derivatives constitute an important class of heterocyclic systems. These molecules exhibit a wide range of biological applications, indicating the fact that the 1,4-benzothiazine moiety is a template potentially useful in medicinal chemistry research and therapeutic applications, such as the anti-inflammatory (Trapani et al., 1985; Gowda et al., 2011), antipyretic (Warren & Knaus, 1987), antimicrobial (Armenise et al., 2012; Rathore & Kumar, 2006), antiviral (Malagu et al., 1998), anticancer (Gupta et al., 1985; Gupta & Gupta, 1991) and anti-oxidant (Zia-ur-Rehman et al., 2009) areas. They have also been reported as precursors for the syntheses of new compounds (Sebbar et al., 2015a; Vidal et al., 2006) possessing antidiabetic (Tawada et al., 1990) and anticorrosion activities (Ellouz et al., 2016a,b; Sebbar et al., 2016a). They also possess biological properties (Hni et al., 2019a,b; Sebbar et al., 2017; Ellouz et al., 2017a,b, 2018). As a continuation of our research on the development of N-substituted 1,4-benzothiazine derivatives and the evaluation of their potential pharmacological activities, we report here the synthesis of (2Z)-4-benzyl-2-(2,4-dichlorobenzylidene)-2H-1,4-benzothiazin-3(4H)-one, (I), by the reaction of benzyl chloride with (Z)-2-(2,4-dichlorobenzylidene)-2H-1,4-benzothiazin-3(4H)-one and potassium carbonate in the presence of tetra-n-butylammonium bromide (as catalyst). The molecular and crystal structures, together with the Hirshfeld surface analysis, the intermolecular interaction energies and density functional theory (DFT) computational calculations were carried out at the B3LYP/6-311G(d,p) and B3LYP/6-311G(d,p) levels, respectively, for (I) (see Scheme 1).
2. Structural commentary
The title compound, (I), contains 1,4-benzothiazine and 2,4-dichlorobenzylidene units (Fig. 1), where the dihydrothiazine ring, B (atoms S1/N1/C1/C6–C8), adopts a screw-boat conformation with puckering parameters (Cremer & Pople, 1975) of QT = 0.4331 (10) Å, θ = 68.34 (16)° and φ = 333.95 (17)°. The planar rings A (C1–C6), C (C10–C15) and D (C17–C22) are oriented at dihedral angles of A/C = 60.49 (4)°, A/D = 79.69 (4)° and C/D = 41.29 (4)°. Atoms Cl1 and Cl2 are −0.0156 (3) and 0.0499 (4) Å from ring C and so are almost coplanar.
3. Supramolecular features
In the crystal, intermolecular C—HBnz⋯OThz (Bnz = benzene and Thz = thiazine) hydrogen bonds form corrugated chains extending along the b-axis direction which are connected into layers parallel to the bc plane by intermolecular C—HMethy⋯SThz (Methy = methylene) hydrogen bonds, enclosing (22) ring motifs (Bernstein et al., 1995) (Table 1 and Fig. 2). Offset π-stacking interactions between 2,4-dichlorophenyl rings C [atoms C10–C15; Cg3⋯Cg3i, where Cg3 is the centroid of ring C; symmetry code: (i) −x, −y + 1, −z + 1], may further stabilize the structure, with a centroid–centroid distance of 3.7701 (8) Å, together with π-interactions, i.e. C—HBnz⋯π(ring) and C—HDchlphy⋯π(ring) (Dchlphy = 2,4-dichlorophenyl). The Hirshfeld surface analysis of the indicates that the most important contributions for the crystal packing are from H⋯H (29.1%), H⋯C/C⋯H (27.5%), H⋯Cl/Cl⋯H (20.6%) and O⋯H/H⋯O (7.0%) interactions. Hydrogen-bonding and van der Waals interactions are the dominant interactions in the crystal packing.
4. Hirshfeld surface analysis
In order to visualize the intermolecular interactions in the crystal of (I), a Hirshfeld surface (HS) analysis (Hirshfeld, 1977; Spackman & Jayatilaka, 2009) was carried out using CrystalExplorer (Version 17.5; Turner et al., 2017). In the HS plotted over dnorm (Fig. 3), the white surface indicates contacts with distances equal to the sum of the van der Waals radii, and the red and blue colours indicate distances shorter (in close contact) or longer (distinct contact) than the van der Waals radii, respectively (Venkatesan et al., 2016). The bright-red spots appearing near atoms O1, S1 and H4 indicate their roles as the respective donors and/or acceptors; they also appear as blue and red regions corresponding to positive and negative potentials on the HS mapped over electrostatic potential (Spackman et al., 2008; Jayatilaka et al., 2005), as shown in Fig. 4. The blue regions indicate the positive electrostatic potential (hydrogen-bond donors), while the red regions indicate the negative electrostatic potential (hydrogen-bond acceptors). The shape-index of the HS is a tool to visualize the π–π stacking by the presence of adjacent red and blue triangles; if there are no adjacent red and/or blue triangles, then there are no π–π interactions. Fig. 5 clearly suggest that there are π–π interactions in (I). The overall two-dimensional (2D) fingerprint plot (Fig. 6a) and those delineated into H⋯H, H⋯C/C⋯H, H⋯Cl/Cl⋯H, O⋯H/H⋯O, C⋯C, S⋯H/H⋯S and Cl⋯C/C⋯Cl contacts (McKinnon et al., 2007) are illustrated in Figs. 6(b)–(h), respectively, together with their relative contributions to the Hirshfeld surface. The most important interaction is H⋯H, contributing 29.1% to the overall crystal packing, which is reflected in Fig. 6(b) as widely scattered points of high density due to the large hydrogen content of the molecule with the tip at de = di = 1.17 Å, due to the short interatomic H⋯H contacts (Table 2). In the presence of C—H⋯π interactions, the pairs of characteristic wings resulting in the fingerprint plot delineated into H⋯C/C⋯H contacts (Fig. 6c), with a 27.5% contribution to the HS, arises from the H⋯C/C⋯H contacts (Table 2) and are viewed as pairs of spikes with the tips at de + di = 2.82 and 2.78 Å for thin and thick spikes, respectively. The pair of scattered points of the wings resulting in the fingerprint plots delineated into H⋯Cl/Cl⋯H (Fig. 6d), with a 20.6% contribution to the HS, has a symmetrical distribution of points with the edges at de + di = 2.78 Å arising from the H⋯Cl/Cl⋯H contacts (Table 2). The pair of characteristic wings resulting in the fingerprint plot delineated into O⋯H/H⋯O contacts (Fig. 6e), with a 7.0% contribution to the HS, arises from the O⋯H/H⋯O contacts (Table 2) and is viewed as a pair of spikes with the tips at de + di = 2.35 Å. The C⋯C contacts (Fig. 6f) have an arrow-shaped distribution of points with the tip at de = di = 1.7 Å. Finally, the characteristic wings resulting in the fingerprint plots delineated into S⋯H/H⋯S and Cl⋯C/C⋯Cl contacts (Figs. 6g and 6h), with 4.0 and 2.2% contributions to the HS, arise from the S⋯H/H⋯S and Cl⋯C/C⋯Cl contacts (Table 2) and are viewed with the tips at de = di = 2.70 Å and de + di = 3.46 Å, respectively.
|
The Hirshfeld surface representations with the function dnorm plotted onto the surface are shown for the H⋯H, H⋯C/C⋯H, H⋯Cl/Cl⋯H, O⋯H/H⋯O, C⋯C and S⋯H/H⋯S interactions in Figs. 7(a)–(f), respectively.
The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯H, H⋯C/C⋯H, H⋯Cl/Cl⋯H and O⋯H/H⋯O interactions suggest that van der Waals interactions and hydrogen bonding play the biggest roles in the crystal packing (Hathwar et al., 2015).
5. Interaction energy calculations
The intermolecular interaction energies are calculated using CE–B3LYP/6-31G(d,p) energy model available in CrystalExplorer (CE) (Version 17.5; Turner et al., 2017), where a cluster of molecules would need to be generated by applying operations with respect to a selected central molecule within a default radius of 3.8 Å (Turner et al., 2014). The total intermolecular energy (Etot) is the sum of the electrostatic (Eele), polarization (Epol), dispersion (Edis) and exchange-repulsion (Erep) energies (Turner et al., 2015), with scale factors of 1.057, 0.740, 0.871 and 0.618, respectively (Mackenzie et al., 2017). Hydrogen-bonding interaction energies (in kJ mol−1) were calculated as −20.3 (Eele), −2.6 (Epol), −79.4 (Edis), 60.7 (Erep) and −55.0 (Etot) for C—HBnz⋯OThz hydrogen-bonding interactions, and −5.8 (Eele), −1.0 (Epol), −51.0 (Edis), 39.3 (Erep) and −27.1 (Etot) for C—HMethy⋯SThz hydrogen-bonding interactions.
6. DFT calculations
The optimized structure of (I) in the gas phase was generated theoretically via density functional theory (DFT) using standard B3LYP functional and 6-311G(d,p) basis-set calculations (Becke, 1993), as implemented in GAUSSIAN09 (Frisch et al., 2009). The theoretical and experimental results were in good agreement (Table 3). The highest-occupied molecular orbital (HOMO), acting as an and the lowest-unoccupied molecular orbital (LUMO), acting as an are very important parameters for quantum chemistry. When the energy gap is small, the molecule is highly polarizable and has high chemical reactivity. The DFT calculations provide some important information on the reactivity and site selectivity of the molecular framework. EHOMO and ELUMO clarifying the inevitable charge exchange collaboration inside the studied material, (χ), hardness (η), potential (μ), (ω) and softness (σ) are recorded in Table 4. The significance of η and σ is to evaluate both the reactivity and stability. The electron transition from the HOMO to the LUMO energy level is shown in Fig. 8. The HOMO and LUMO are localized in the plane extending from the whole molecule. The energy band gap (ΔE = ELUMO – EHOMO) of the molecule was about 5.3364 eV, and the frontier molecular orbital (FMO) energies, EHOMO and ELUMO, were −8.2479 and −2.9115 eV, respectively.
|
|
7. Database survey
A search in the Cambridge Structural Database (Groom et al., 2016; updated to June 2019) for compounds containing the fragment II (with R1 = Ph and R2 = C; see Scheme 2) gave 14 hits. With R1 = Ph and R2 = CH2C≡CH (IIa) (Sebbar et al., 2014a), CH2COOH (IIb) (Sebbar et al., 2016c), 2-(2-oxo-1,3-oxazolidin-3-yl)ethyl (IIc) (Sebbar et al., 2016b) and (3-phenyl-4,5-dihydro-1,2-oxazol-5-yl)methyl (IIf) (Sebbar et al., 2015b)] (Scheme 2), there are other examples with R1 = 4-FC6H4 and R2 = CH2C≡CH (IIa) (Hni et al., 2019a), R1 = 4-ClC6H4 and R2 = CH2Ph2 (IId) (Ellouz et al., 2016c), and R1 = 2-ClC6H4 and R2 = CH2C≡CH (IIa) (Sebbar et al., 2017) (Scheme 2). In all compounds, the configuration about the benzylidene-group C=CHC6H5 bond is Z, and in the majority of these, the heterocyclic ring is quite nonplanar, with the dihedral angle between the plane defined by the benzene ring plus the N and S atoms, and that defined by the N and S atoms and the other two C atoms separating them ranging from ca 29 (for IIa) to 36° (for IIf). The other two (IIa and IIc) have the benzothiazine unit nearly planar, with corresponding dihedral angles of ca 3–4°.
8. Synthesis and crystallization
To a solution of (Z)-2-(2,4-dichlorobenzylidene)-2H-1,4-benzothiazin-3(4H)-one (3.21 mmol), benzyl chloride (6.52 mmol) and potassium carbonate (6.51 mmol) in dimethylformamide (DMF; 17 ml) was added a catalytic amount of tetra-n-butylammonium bromide (0.33 mmol). The mixture was stirred for 24 h. The solid material was removed by filtration and the solvent evaporated under vacuum. The solid product was purified by recrystallization from ethanol to afford colourless crystals in 82% yield.
9. Refinement
The experimental details, including the crystal data, data collection and . H atoms were located in a difference Fourier map and refined freely.
are summarized in Table 5
|
Supporting information
https://doi.org/10.1107/S2056989019013586/lh5925sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019013586/lh5925Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989019013586/lh5925Isup3.cdx
Data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Bruker, 2016).C22H15Cl2NOS | F(000) = 848 |
Mr = 412.31 | Dx = 1.460 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54178 Å |
a = 9.0373 (7) Å | Cell parameters from 9943 reflections |
b = 16.6798 (13) Å | θ = 4.4–43.5° |
c = 12.511 (1) Å | µ = 4.25 mm−1 |
β = 95.982 (2)° | T = 150 K |
V = 1875.6 (3) Å3 | Block, colourless |
Z = 4 | 0.14 × 0.13 × 0.09 mm |
Bruker D8 VENTURE PHOTON 100 CMOS diffractometer | 3847 independent reflections |
Radiation source: INCOATEC IµS micro-focus source | 3650 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.038 |
Detector resolution: 10.4167 pixels mm-1 | θmax = 74.6°, θmin = 4.4° |
ω scans | h = −11→11 |
Absorption correction: numerical (SADABS; Krause et al., 2015) | k = −20→20 |
Tmin = 0.59, Tmax = 0.70 | l = −15→15 |
48886 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.026 | All H-atom parameters refined |
wR(F2) = 0.070 | w = 1/[σ2(Fo2) + (0.0379P)2 + 0.6937P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max = 0.001 |
3847 reflections | Δρmax = 0.22 e Å−3 |
304 parameters | Δρmin = −0.26 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.32725 (3) | 0.51603 (2) | 0.51778 (3) | 0.03318 (9) | |
Cl2 | −0.08376 (4) | 0.45362 (2) | 0.78449 (3) | 0.03443 (10) | |
S1 | 0.15102 (3) | 0.21109 (2) | 0.37534 (2) | 0.02451 (9) | |
O1 | 0.29675 (11) | 0.36735 (6) | 0.18264 (8) | 0.0318 (2) | |
N1 | 0.36671 (11) | 0.23777 (6) | 0.20360 (8) | 0.0231 (2) | |
C1 | 0.29233 (13) | 0.14621 (7) | 0.34225 (10) | 0.0235 (2) | |
C2 | 0.30706 (15) | 0.07308 (8) | 0.39669 (11) | 0.0287 (3) | |
H2 | 0.2413 (19) | 0.0621 (10) | 0.4526 (14) | 0.033 (4)* | |
C3 | 0.41257 (16) | 0.01777 (8) | 0.37140 (12) | 0.0327 (3) | |
H3 | 0.4187 (18) | −0.0323 (10) | 0.4058 (13) | 0.030 (4)* | |
C4 | 0.50780 (16) | 0.03719 (8) | 0.29531 (13) | 0.0330 (3) | |
H4 | 0.579 (2) | −0.0001 (12) | 0.2780 (15) | 0.042 (5)* | |
C5 | 0.49570 (15) | 0.11045 (8) | 0.24245 (11) | 0.0285 (3) | |
H5 | 0.5655 (19) | 0.1230 (11) | 0.1921 (13) | 0.035 (4)* | |
C6 | 0.38507 (13) | 0.16533 (7) | 0.26301 (10) | 0.0233 (2) | |
C7 | 0.29726 (13) | 0.30575 (7) | 0.23567 (10) | 0.0237 (2) | |
C8 | 0.22305 (13) | 0.30312 (7) | 0.33731 (10) | 0.0223 (2) | |
C9 | 0.20587 (14) | 0.37330 (7) | 0.38765 (10) | 0.0241 (2) | |
H9 | 0.2472 (18) | 0.4183 (10) | 0.3553 (13) | 0.031 (4)* | |
C10 | 0.13615 (13) | 0.38965 (7) | 0.48567 (10) | 0.0232 (2) | |
C11 | 0.18203 (13) | 0.45583 (7) | 0.55067 (10) | 0.0239 (2) | |
C12 | 0.11763 (15) | 0.47512 (8) | 0.64272 (11) | 0.0266 (3) | |
H12 | 0.152 (2) | 0.5194 (11) | 0.6845 (14) | 0.040 (5)* | |
C13 | 0.00202 (14) | 0.42783 (8) | 0.67128 (10) | 0.0261 (3) | |
C14 | −0.04785 (15) | 0.36229 (8) | 0.61082 (11) | 0.0283 (3) | |
H14 | −0.130 (2) | 0.3302 (11) | 0.6306 (14) | 0.038 (4)* | |
C15 | 0.01925 (15) | 0.34384 (8) | 0.51908 (11) | 0.0271 (3) | |
H15 | −0.019 (2) | 0.3021 (11) | 0.4758 (15) | 0.042 (5)* | |
C16 | 0.43514 (15) | 0.24544 (8) | 0.10287 (10) | 0.0261 (3) | |
H16A | 0.4342 (18) | 0.1915 (10) | 0.0694 (13) | 0.029 (4)* | |
H16B | 0.3717 (18) | 0.2771 (10) | 0.0550 (13) | 0.027 (4)* | |
C17 | 0.59004 (14) | 0.28115 (7) | 0.11411 (10) | 0.0235 (2) | |
C18 | 0.65243 (16) | 0.30239 (9) | 0.02058 (11) | 0.0311 (3) | |
H18 | 0.593 (2) | 0.2943 (11) | −0.0487 (15) | 0.039 (5)* | |
C19 | 0.79411 (17) | 0.33523 (9) | 0.02566 (13) | 0.0384 (3) | |
H19 | 0.835 (2) | 0.3503 (12) | −0.0383 (16) | 0.050 (5)* | |
C20 | 0.87604 (17) | 0.34739 (9) | 0.12401 (14) | 0.0382 (3) | |
H20 | 0.973 (2) | 0.3695 (12) | 0.1271 (15) | 0.046 (5)* | |
C21 | 0.81497 (16) | 0.32701 (8) | 0.21707 (13) | 0.0334 (3) | |
H21 | 0.874 (2) | 0.3354 (11) | 0.2875 (14) | 0.040 (5)* | |
C22 | 0.67257 (15) | 0.29448 (8) | 0.21258 (11) | 0.0273 (3) | |
H22 | 0.6283 (17) | 0.2799 (9) | 0.2793 (12) | 0.024 (4)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.02604 (16) | 0.03290 (17) | 0.04160 (19) | −0.00735 (12) | 0.00829 (13) | −0.00211 (13) |
Cl2 | 0.03839 (18) | 0.03495 (18) | 0.03231 (17) | 0.00967 (13) | 0.01489 (13) | 0.00164 (12) |
S1 | 0.02266 (15) | 0.02109 (15) | 0.03075 (17) | −0.00207 (11) | 0.00738 (12) | 0.00098 (11) |
O1 | 0.0405 (5) | 0.0264 (5) | 0.0303 (5) | 0.0018 (4) | 0.0116 (4) | 0.0066 (4) |
N1 | 0.0226 (5) | 0.0248 (5) | 0.0224 (5) | −0.0006 (4) | 0.0050 (4) | 0.0000 (4) |
C1 | 0.0225 (6) | 0.0217 (6) | 0.0261 (6) | −0.0018 (5) | 0.0009 (5) | −0.0017 (5) |
C2 | 0.0297 (7) | 0.0241 (6) | 0.0321 (7) | −0.0029 (5) | 0.0017 (5) | 0.0022 (5) |
C3 | 0.0349 (7) | 0.0215 (6) | 0.0406 (8) | 0.0005 (5) | −0.0015 (6) | 0.0025 (5) |
C4 | 0.0295 (7) | 0.0245 (6) | 0.0446 (8) | 0.0037 (5) | 0.0022 (6) | −0.0047 (6) |
C5 | 0.0253 (6) | 0.0267 (6) | 0.0337 (7) | −0.0007 (5) | 0.0044 (5) | −0.0047 (5) |
C6 | 0.0225 (6) | 0.0214 (6) | 0.0255 (6) | −0.0026 (5) | 0.0004 (5) | −0.0020 (5) |
C7 | 0.0223 (6) | 0.0241 (6) | 0.0247 (6) | −0.0015 (5) | 0.0025 (5) | 0.0010 (5) |
C8 | 0.0194 (5) | 0.0231 (6) | 0.0246 (6) | 0.0002 (4) | 0.0034 (4) | 0.0033 (4) |
C9 | 0.0229 (6) | 0.0224 (6) | 0.0276 (6) | 0.0000 (5) | 0.0051 (5) | 0.0036 (5) |
C10 | 0.0228 (6) | 0.0207 (6) | 0.0265 (6) | 0.0038 (5) | 0.0041 (5) | 0.0034 (4) |
C11 | 0.0201 (6) | 0.0224 (6) | 0.0293 (6) | 0.0025 (4) | 0.0034 (5) | 0.0033 (5) |
C12 | 0.0259 (6) | 0.0242 (6) | 0.0293 (6) | 0.0039 (5) | 0.0015 (5) | −0.0006 (5) |
C13 | 0.0265 (6) | 0.0260 (6) | 0.0267 (6) | 0.0083 (5) | 0.0069 (5) | 0.0042 (5) |
C14 | 0.0279 (6) | 0.0238 (6) | 0.0350 (7) | 0.0014 (5) | 0.0111 (5) | 0.0048 (5) |
C15 | 0.0281 (6) | 0.0222 (6) | 0.0318 (7) | −0.0001 (5) | 0.0075 (5) | 0.0002 (5) |
C16 | 0.0273 (6) | 0.0315 (7) | 0.0196 (6) | −0.0010 (5) | 0.0033 (5) | −0.0020 (5) |
C17 | 0.0256 (6) | 0.0215 (6) | 0.0240 (6) | 0.0032 (5) | 0.0062 (5) | 0.0002 (4) |
C18 | 0.0344 (7) | 0.0333 (7) | 0.0271 (7) | 0.0065 (6) | 0.0104 (5) | 0.0039 (5) |
C19 | 0.0385 (8) | 0.0330 (7) | 0.0476 (9) | 0.0061 (6) | 0.0232 (7) | 0.0101 (6) |
C20 | 0.0270 (7) | 0.0262 (7) | 0.0630 (10) | −0.0002 (5) | 0.0123 (6) | 0.0026 (6) |
C21 | 0.0290 (7) | 0.0262 (7) | 0.0442 (8) | −0.0002 (5) | −0.0002 (6) | −0.0042 (6) |
C22 | 0.0294 (6) | 0.0261 (6) | 0.0265 (6) | −0.0009 (5) | 0.0042 (5) | −0.0013 (5) |
Cl1—C11 | 1.7357 (13) | C10—C11 | 1.4076 (18) |
Cl2—C13 | 1.7382 (13) | C11—C12 | 1.3814 (18) |
S1—C8 | 1.7525 (12) | C12—C13 | 1.3854 (19) |
S1—C1 | 1.7561 (13) | C12—H12 | 0.940 (19) |
O1—C7 | 1.2228 (16) | C13—C14 | 1.3781 (19) |
N1—C7 | 1.3759 (16) | C14—C15 | 1.3874 (19) |
N1—C6 | 1.4192 (16) | C14—H14 | 0.971 (19) |
N1—C16 | 1.4661 (16) | C15—H15 | 0.928 (19) |
C1—C2 | 1.3967 (18) | C16—C17 | 1.5143 (18) |
C1—C6 | 1.4000 (18) | C16—H16A | 0.993 (17) |
C2—C3 | 1.387 (2) | C16—H16B | 0.945 (16) |
C2—H2 | 0.981 (18) | C17—C22 | 1.3899 (18) |
C3—C4 | 1.387 (2) | C17—C18 | 1.3965 (18) |
C3—H3 | 0.938 (17) | C18—C19 | 1.388 (2) |
C4—C5 | 1.388 (2) | C18—H18 | 0.979 (18) |
C4—H4 | 0.94 (2) | C19—C20 | 1.383 (2) |
C5—C6 | 1.3990 (18) | C19—H19 | 0.95 (2) |
C5—H5 | 0.960 (18) | C20—C21 | 1.382 (2) |
C7—C8 | 1.4988 (17) | C20—H20 | 0.95 (2) |
C8—C9 | 1.3458 (18) | C21—C22 | 1.392 (2) |
C9—C10 | 1.4616 (17) | C21—H21 | 0.993 (18) |
C9—H9 | 0.948 (17) | C22—H22 | 0.992 (16) |
C10—C15 | 1.4024 (18) | ||
Cl1···Cl1i | 3.2439 (5) | C6···C22 | 3.4830 (18) |
Cl1···C14ii | 3.4981 (14) | C6···C12v | 3.5828 (18) |
Cl1···H9 | 2.647 (16) | C7···C22 | 3.4391 (18) |
Cl2···H19iii | 2.96 (2) | C10···C12ii | 3.4871 (18) |
Cl2···H9ii | 3.044 (16) | C14···C20iv | 3.572 (2) |
Cl2···H4iv | 3.138 (18) | C5···H16A | 2.563 (16) |
S1···Cl2v | 3.5832 (5) | C6···H22 | 2.904 (15) |
S1···Cl2v | 3.5832 (5) | C8···H15 | 2.929 (18) |
S1···N1 | 3.0801 (11) | C16···H5 | 2.556 (18) |
S1···C15 | 3.1625 (14) | C17···H5 | 2.829 (18) |
S1···C13v | 3.6033 (13) | C18···H3vi | 2.998 (17) |
S1···H15 | 2.578 (18) | C21···H12i | 2.845 (18) |
O1···C17 | 3.2096 (16) | H14···C20iv | 2.964 (18) |
O1···C4vi | 3.3346 (17) | H14···C21iv | 2.899 (18) |
O1···H9 | 2.406 (16) | H14···C22iv | 2.990 (18) |
O1···H16B | 2.345 (16) | H15···C19iv | 2.951 (18) |
O1···H4vi | 2.51 (2) | H16B···S1v | 2.852 (16) |
N1···S1 | 3.0801 (11) | H16B···C1v | 2.973 (16) |
N1···H22 | 2.552 (15) | H18···C6v | 2.934 (19) |
C1···C12v | 3.4639 (18) | H5···H16A | 2.16 (2) |
C1···C13v | 3.4372 (18) | H12···H21i | 2.46 (3) |
C2···C12v | 3.541 (2) | H15···H21viii | 2.51 (3) |
C3···C3vii | 3.485 (2) | H16B···H18 | 2.51 (2) |
C5···C22 | 3.4988 (19) | H18···H22v | 2.53 (2) |
C5···C17 | 3.4201 (18) | ||
C8—S1—C1 | 100.14 (6) | C11—C12—C13 | 118.49 (12) |
C7—N1—C6 | 125.51 (10) | C11—C12—H12 | 120.1 (11) |
C7—N1—C16 | 115.14 (10) | C13—C12—H12 | 121.4 (11) |
C6—N1—C16 | 119.20 (10) | C14—C13—C12 | 121.49 (12) |
C2—C1—C6 | 120.71 (12) | C14—C13—Cl2 | 119.70 (10) |
C2—C1—S1 | 117.26 (10) | C12—C13—Cl2 | 118.79 (10) |
C6—C1—S1 | 122.02 (10) | C13—C14—C15 | 118.94 (12) |
C3—C2—C1 | 120.17 (13) | C13—C14—H14 | 120.9 (10) |
C3—C2—H2 | 121.4 (10) | C15—C14—H14 | 120.1 (10) |
C1—C2—H2 | 118.5 (10) | C14—C15—C10 | 122.24 (12) |
C4—C3—C2 | 119.47 (13) | C14—C15—H15 | 118.7 (12) |
C4—C3—H3 | 120.7 (10) | C10—C15—H15 | 118.9 (12) |
C2—C3—H3 | 119.8 (10) | N1—C16—C17 | 115.04 (10) |
C3—C4—C5 | 120.59 (13) | N1—C16—H16A | 107.3 (9) |
C3—C4—H4 | 119.6 (12) | C17—C16—H16A | 111.3 (9) |
C5—C4—H4 | 119.7 (12) | N1—C16—H16B | 108.1 (10) |
C4—C5—C6 | 120.71 (13) | C17—C16—H16B | 109.4 (10) |
C4—C5—H5 | 118.7 (10) | H16A—C16—H16B | 105.2 (13) |
C6—C5—H5 | 120.6 (11) | C22—C17—C18 | 118.42 (12) |
C5—C6—C1 | 118.24 (12) | C22—C17—C16 | 123.41 (11) |
C5—C6—N1 | 120.50 (11) | C18—C17—C16 | 118.16 (12) |
C1—C6—N1 | 121.26 (11) | C19—C18—C17 | 120.85 (14) |
O1—C7—N1 | 120.68 (11) | C19—C18—H18 | 120.7 (11) |
O1—C7—C8 | 120.54 (11) | C17—C18—H18 | 118.5 (11) |
N1—C7—C8 | 118.78 (10) | C20—C19—C18 | 120.29 (14) |
C9—C8—C7 | 117.09 (11) | C20—C19—H19 | 119.3 (12) |
C9—C8—S1 | 124.79 (10) | C18—C19—H19 | 120.4 (12) |
C7—C8—S1 | 117.88 (9) | C21—C20—C19 | 119.32 (14) |
C8—C9—C10 | 129.48 (12) | C21—C20—H20 | 120.6 (11) |
C8—C9—H9 | 114.8 (10) | C19—C20—H20 | 120.1 (11) |
C10—C9—H9 | 115.7 (10) | C20—C21—C22 | 120.69 (14) |
C15—C10—C11 | 116.15 (11) | C20—C21—H21 | 119.2 (11) |
C15—C10—C9 | 123.53 (12) | C22—C21—H21 | 120.1 (11) |
C11—C10—C9 | 120.29 (11) | C17—C22—C21 | 120.43 (13) |
C12—C11—C10 | 122.68 (12) | C17—C22—H22 | 118.7 (9) |
C12—C11—Cl1 | 117.23 (10) | C21—C22—H22 | 120.9 (9) |
C10—C11—Cl1 | 120.08 (10) | ||
C8—S1—C1—C2 | 155.71 (10) | S1—C8—C9—C10 | 4.6 (2) |
C8—S1—C1—C6 | −25.73 (11) | C8—C9—C10—C15 | −29.8 (2) |
C6—C1—C2—C3 | −1.12 (19) | C8—C9—C10—C11 | 152.34 (13) |
S1—C1—C2—C3 | 177.47 (10) | C15—C10—C11—C12 | 0.42 (18) |
C1—C2—C3—C4 | 3.0 (2) | C9—C10—C11—C12 | 178.46 (11) |
C2—C3—C4—C5 | −1.7 (2) | C15—C10—C11—Cl1 | 179.25 (9) |
C3—C4—C5—C6 | −1.5 (2) | C9—C10—C11—Cl1 | −2.71 (16) |
C4—C5—C6—C1 | 3.35 (19) | C10—C11—C12—C13 | −0.78 (19) |
C4—C5—C6—N1 | −175.72 (12) | Cl1—C11—C12—C13 | −179.64 (9) |
C2—C1—C6—C5 | −2.05 (18) | C11—C12—C13—C14 | 0.72 (19) |
S1—C1—C6—C5 | 179.43 (9) | C11—C12—C13—Cl2 | −177.88 (9) |
C2—C1—C6—N1 | 177.02 (11) | C12—C13—C14—C15 | −0.33 (19) |
S1—C1—C6—N1 | −1.50 (17) | Cl2—C13—C14—C15 | 178.27 (10) |
C7—N1—C6—C5 | −158.93 (12) | C13—C14—C15—C10 | 0.0 (2) |
C16—N1—C6—C5 | 16.29 (17) | C11—C10—C15—C14 | 0.00 (19) |
C7—N1—C6—C1 | 22.03 (18) | C9—C10—C15—C14 | −177.97 (12) |
C16—N1—C6—C1 | −162.76 (11) | C7—N1—C16—C17 | 84.01 (14) |
C6—N1—C7—O1 | 174.42 (12) | C6—N1—C16—C17 | −91.69 (14) |
C16—N1—C7—O1 | −0.96 (17) | N1—C16—C17—C22 | 9.68 (18) |
C6—N1—C7—C8 | −5.15 (18) | N1—C16—C17—C18 | −169.73 (11) |
C16—N1—C7—C8 | 179.46 (10) | C22—C17—C18—C19 | 0.7 (2) |
O1—C7—C8—C9 | −23.67 (18) | C16—C17—C18—C19 | −179.87 (13) |
N1—C7—C8—C9 | 155.91 (11) | C17—C18—C19—C20 | 0.1 (2) |
O1—C7—C8—S1 | 150.91 (10) | C18—C19—C20—C21 | −0.4 (2) |
N1—C7—C8—S1 | −29.52 (15) | C19—C20—C21—C22 | 0.1 (2) |
C1—S1—C8—C9 | −145.73 (11) | C18—C17—C22—C21 | −1.06 (19) |
C1—S1—C8—C7 | 40.15 (10) | C16—C17—C22—C21 | 179.53 (12) |
C7—C8—C9—C10 | 178.71 (12) | C20—C21—C22—C17 | 0.7 (2) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x, −y+1, −z+1; (iii) x−1, y, z+1; (iv) x−1, −y+1/2, z+1/2; (v) x, −y+1/2, z−1/2; (vi) −x+1, y+1/2, −z+1/2; (vii) −x+1, −y, −z+1; (viii) x−1, y, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4···O1ix | 0.936 (19) | 2.51 (2) | 3.3346 (17) | 147.7 (15) |
C16—H16B···S1v | 0.945 (16) | 2.852 (16) | 3.7011 (13) | 149.9 (12) |
C3—H3···Cg4ix | 0.938 (17) | 2.901 (17) | 3.6428 (15) | 136.8 (13) |
C14—H14···Cg4x | 0.971 (19) | 2.710 (18) | 3.5593 (15) | 146.8 (14) |
C18—H18···Cg1xi | 0.979 (18) | 2.969 (18) | 3.6759 (16) | 130.0 (13) |
Symmetry codes: (v) x, −y+1/2, z−1/2; (ix) −x+1, y−1/2, −z+1/2; (x) x−1, −y−1/2, z−1/2; (xi) x, −y−1/2, z−3/2. |
Bonds/angles | X-ray | B3LYP/6-311G(d,p) |
Cl1—C11 | 1.7357 (13) | 1.80981 |
Cl2—C13 | 1.7382 (13) | 1.80489 |
S1—C8 | 1.7525 (12) | 1.80120 |
S1—C1 | 1.7561 (13) | 1.82629 |
O1—C7 | 1.2228 (16) | 1.23968 |
N1—C7 | 1.3759 (16) | 1.38157 |
N1—C6 | 1.4192 (16) | 1.41776 |
N1—C16 | 1.4661 (16) | 1.47048 |
C8—S1—C1 | 100.14 (6) | 98.69028 |
C7—N1—C6 | 125.51 (10) | 124.58623 |
C7—N1—C16 | 115.14 (10) | 116.12685 |
C6—N1—C16 | 119.20 (10) | 119.26679 |
C2—C1—C6 | 120.71 (12) | 121.24260 |
C2—C1—S1 | 117.26 (10) | 117.48822 |
C6—C1—S1 | 122.02 (10) | 121.26667 |
Molecular Energy (a.u.) (eV) | Compound (I) |
Total Energy TE (eV) | -62249, 6662 |
EHOMO (eV) | -8.2479 |
ELUMO (eV) | -2.9115 |
Gap ΔE (eV) | 5.3364 |
Dipole moment, µ (Debye) | 3.4723 |
Ionisation potential, I (eV) | 8.2479 |
Electron affinity, A | 2.9115 |
Electro negativity, χ | 5.3364 |
Hardness, η | 2.6682 |
Electrophilicity index, ω | 5.8340 |
Softness, σ | 0.3748 |
Fraction of electron transferred, ΔN | 0.2662 |
Acknowledgements
The support of NSF-MRI for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.
Funding information
Funding for this research was provided by: NSF-MRI (grant No. 1228232); Hacettepe University Scientific Research Project Unit (grant No. 013 D04 602 004 to TH).
References
Armenise, D., Muraglia, M., Florio, M. A., Laurentis, N. D., Rosato, A., Carrieri, A., Corbo, F. & Franchini, C. (2012). Mol. Pharmacol. 50, 1178–1188. Google Scholar
Becke, A. D. (1993). J. Chem. Phys. 98, 5648–5652. CrossRef CAS Web of Science Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2016). APEX3, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Ellouz, M., Elmsellem, H., Sebbar, N. K., Steli, H., Al Mamari, K., Nadeem, A., Ouzidan, Y., Essassi, E. M., Abdel-Rahaman, I. & Hristov, P. (2016b). J. Mater. Environ. Sci. 7, 2482–2497. CAS Google Scholar
Ellouz, M., Sebbar, N. K., Boulhaoua, M., Essassi, E. M. & Mague, J. T. (2017a). IUCrData, 2, x170646. Google Scholar
Ellouz, M., Sebbar, N. K., Elmsellem, H., Steli, H., Fichtali, I., Mohamed, A. M. M., Mamari, K. A., Essassi, E. M. & Abdel-Rahaman, I. (2016a). J. Mater. Environ. Sci. 7, 2806–2819. CAS Google Scholar
Ellouz, M., Sebbar, N. K., Essassi, E. M., Ouzidan, Y., Mague, J. T. & Zouihri, H. (2016c). IUCrData, 1, x160764. Google Scholar
Ellouz, M., Sebbar, N. K., Fichtali, I., Ouzidan, Y., Mennane, Z., Charof, R., Mague, J. T., Urrutigoïty, M. & Essassi, E. M. (2018). Chem. Cent. J. 12, 123. Web of Science CrossRef PubMed Google Scholar
Ellouz, M., Sebbar, N. K., Ouzidan, Y., Essassi, E. M. & Mague, J. T. (2017b). IUCrData, 2, x170097. Google Scholar
Frisch, M. J., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA. Google Scholar
Gowda, J., Khader, A. M. A., Kalluraya, B., Shree, P. & Shabaraya, A. R. (2011). Eur. J. Med. Chem. 46, 4100–4106. Web of Science CrossRef CAS PubMed Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gupta, R. R., Kumar, R. & Gautam, R. K. (1985). J. Fluor. Chem. 28, 381–385. CrossRef CAS Web of Science Google Scholar
Gupta, V. & Gupta, R. R. (1991). J. Prakt. Chem. 333, 153–156. CrossRef CAS Web of Science Google Scholar
Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138. CrossRef CAS Web of Science Google Scholar
Hni, B., Sebbar, N. K., Hökelek, T., El Ghayati, L., Bouzian, Y., Mague, J. T. & Essassi, E. M. (2019b). Acta Cryst. E75, 593–599. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hni, B., Sebbar, N. K., Hökelek, T., Ouzidan, Y., Moussaif, A., Mague, J. T. & Essassi, E. M. (2019a). Acta Cryst. E75, 372–377. Web of Science CSD CrossRef IUCr Journals Google Scholar
Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO - A System for Computational Chemistry. Available at: https://hirshfeldsurface.net/. Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575–587. Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
Malagu, K., Boustie, J., David, M., Sauleau, J., Amoros, M., Girre, R. L. & Sauleau, A. (1998). Pharm. Pharmacol. Commun. 4, 57–60. CAS Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Rathore, B. S. & Kumar, M. (2006). Bioorg. Med. Chem. 14, 5678–5682. Web of Science CrossRef PubMed CAS Google Scholar
Sebbar, N. K., Ellouz, M., Essassi, E. M., Ouzidan, Y. & Mague, J. T. (2015a). Acta Cryst. E71, o999. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sebbar, N. K., Ellouz, M., Essassi, E. M., Saadi, M. & El Ammari, L. (2015b). Acta Cryst. E71, o423–o424. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sebbar, N. K., Ellouz, M., Essassi, E. M., Saadi, M. & El Ammari, L. (2016a). IUCrData, 1, x161012. Google Scholar
Sebbar, N. K., Ellouz, M., Mague, J. T., Ouzidan, Y., Essassi, E. M. & Zouihri, H. (2016c). IUCrData, 1, x160863. Google Scholar
Sebbar, N. K., Ellouz, M., Ouzidan, Y., Kaur, M., Essassi, E. M. & Jasinski, J. P. (2017). IUCrData, 2, x170889. Google Scholar
Sebbar, N. K., Mekhzoum, M. E. M., Essassi, E. M., Zerzouf, A., Talbaoui, A., Bakri, Y., Saadi, M. & Ammari, L. E. (2016b). Res. Chem. Intermed. 42, 6845–6862. Web of Science CSD CrossRef CAS Google Scholar
Sebbar, N. K., Zerzouf, A., Essassi, E. M., Saadi, M. & El Ammari, L. (2014a). Acta Cryst. E70, o614. CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388. CAS Google Scholar
Tawada, H., Sugiyama, Y., Ikeda, H., Yamamoto, Y. & Meguro, K. (1990). Chem. Pharm. Bull. 38, 1238–1245. CrossRef CAS PubMed Google Scholar
Trapani, G., Reho, A., Morlacchi, F., Latrofa, A., Marchini, P., Venturi, F. & Cantalamessa, F. (1985). Farmaco Ed. Sci. 40, 369–376. CAS Google Scholar
Turner, M. J., Grabowsky, S., Jayatilaka, D. & Spackman, M. A. (2014). J. Phys. Chem. Lett. 5, 4249–4255. Web of Science CrossRef CAS PubMed Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. Google Scholar
Turner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735–3738. Web of Science CrossRef CAS Google Scholar
Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 625–636. Web of Science CSD CrossRef CAS PubMed Google Scholar
Vidal, A., Madelmont, J. C. & Mounetou, E. A. (2006). Synthesis, 2006, 591–593. CrossRef Google Scholar
Warren, B. K. & Knaus, E. E. (1987). Eur. J. Med. Chem. 22, 411–415. CrossRef CAS Web of Science Google Scholar
Zia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2009). Eur. J. Med. Chem. 44, 1311–1316. Web of Science PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.